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Figure 1: The motivation of our TaCo benchmark, established through an extensive evaluation on tactile codecs
across multiple dimensions. First, we assess 30 off-the-shelf and neural codecs on 5 heterogeneous tactile
datasets with more than 250K frames. Second, we introduce purely-trained TaCo-LL and TaCo-L codecs to
explore the data-driven approaches in the field of lossless and lossy tactile data compression. Finally, we
evaluate the coding performance on 4 distinct task types designed to serve for human, machine, and robotics.

ABSTRACT

Tactile sensing is crucial for embodied intelligence, providing fine-grained per-
ception and control in complex environments. However, efficient tactile data
compression, which is essential for real-time robotic applications under strict
bandwidth constraints, remains underexplored. The inherent heterogeneity and
spatiotemporal complexity of tactile data further complicate this challenge. To
bridge this gap, we introduce TaCo, the first comprehensive benchmark for Tactile
data Codecs. TaCo evaluates 30 compression methods, including off-the-shelf
compression algorithms and neural codecs, across five diverse datasets from var-
ious sensor types. We systematically assess both lossless and lossy compression
schemes on four key tasks: lossless storage, human visualization, material and
object classification, and dexterous robotic grasping. Notably, we pioneer the
development of data-driven codecs explicitly trained on tactile data, TaCo-LL
(lossless) and TaCo-L (lossy). Results have validated the superior performance
of our TaCo-LL and TaCo-L. This benchmark provides a foundational framework
for understanding the critical trade-offs between compression efficiency and task
performance, paving the way for future advances in tactile perception.

1 INTRODUCTION

The acquisition and interpretation of tactile data are paramount for advancing embodied AI and
achieving sophisticated human-machine interaction, as they provide the rich, physical context neces-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

sary for dexterous manipulation and awareness of the environment. However, the high-dimensional,
spatio-temporally dense nature of tactile sensing results in rapidly growing data volumes, posing
a significant bottleneck for real-time applications. Consequently, efficient tactile data compression
is critical for real-time haptic feedback in dexterous hands, remote teleoperation, and large-scale
storage of physical interactions for robotic model training.

While the imperative for efficient tactile data compression is well-established, current approaches
remain diverse and fragmented. A corpus of existing research has explored this challenge through
classical signal processing techniques (like dimensionality reduction and wavelet transforms), lever-
aging transforms and codecs designed for speech or image data. In recent years, data-driven methods
have gradually gained popularity for their ability to learn optimal compact representations. Specif-
ically, neural networks can learn compact latent representations in a data-driven manner, enabling
efficient lossless or lossy compression (Liu et al., 2023b; Mentzer et al., 2019). Compared to tradi-
tional codecs, neural compression offers greater flexibility and adaptability, particularly in scenarios
involving complex or irregular signal structures (Ma et al., 2019). These methods have been suc-
cessfully applied in domains such as video and image compression (Zhao et al., 2025; Feng et al.,
2025a), but they are still unexplored for tactile data. Another difficulty in generating a data-driven
codec for tactile datasets is the heterogeneity, arising from different sensing principles: visuo-tactile
sensors such as Gelsight (Yuan et al., 2017a) and DIGIT (Lambeta et al., 2020) capture surface trans-
formation, while other force-based sensors (Paxini, 2025) measure force data. Therefore, the estab-
lishment of a comprehensive and open benchmark, comprising representative datasets, standardized
evaluation metrics, and baseline models, is not merely beneficial but a necessary prerequisite for
catalyzing advancements in this critical domain and enabling new research.

As illustrated in Fig. 1, we construct a comprehensive benchmark to evaluate the compression per-
formance of various codecs on heterogeneous tactile datasets. First, we collect five diverse tactile
datasets, and 30 representative codecs. They include off-the-shelf codecs designed for text, image
and video, aiming to remove the 1D and 2D, inter-frame and intra-frame redundancies. We also
incorporate neural codecs pretrained on other modalities to assess their cross-domain generaliza-
tion on tactile data. Second, we propose two data-driven codecs, i.e. TaCo-LL and TaCo-L, which
are trained from tactile datasets to learn intrinsic data patterns and exploit the redundancies in het-
erogeneous tactile data. Third, we evaluate tactile compression performance using four types of
tasks: lossless compression, lossy compression for human perception, semantic classification, and
robot grasping. Experimental results validate the superior performance of our proposed data-driven
models, TaCo-LL and TaCo-L, and we hope our benchmark will inspire further research in this field.

In summary, our main contributions are as follows.

• We propose TaCo, the first comprehensive benchmark for tactile data codecs. It comprises
five publicly tactile datasets, 30 codecs, and four tactile-related tasks: lossless compression,
lossy compression for human visualization, tactile classification, and robotic grasping.

• We introduce TaCo-LL and TaCo-L, the first purely data-driven tactile codecs, trained
end-to-end on heterogeneous tactile datasets to learn the intrinsic data distributions.

• Extensive experimental results demonstrate that our proposed TaCo-LL and TaCo-L models
surpass existing methods across all four tasks, establishing a foundation for future research
in the field of tactile data compression.

2 RELATED WORK

Tactile Datasets. Tactile datasets play a key role in advancing robotic perception and manipula-
tion, supporting tasks like grasping, object recognition, and material classification. Several recent
datasets focus only on tactile signals (Liu & Ward-Cherrier, 2024; Zhao et al., 2024; Suresh et al.,
2023; Yuan et al., 2018b; Higuera et al., 2024; Schneider et al., 2025). TIP Bench (Liu & Ward-
Cherrier, 2024) converts sensor outputs into heatmaps and evaluates spatial acuity, stability, and
generalization. FoTa (Zhao et al., 2024) merges multiple open datasets into a unified collection of
over three million samples. YCB-Slide (Suresh et al., 2023) records both simulated and real slid-
ing interactions between a DIGIT tactile sensor and YCB objects. TacBench (Higuera et al., 2024)
comprises 180,000+ unlabeled tactile images from surface-sliding interactions, facilitating large-
scale self-supervised learning. Tactile MNIST (Schneider et al., 2025) provides both simulated and
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real GelSight interactions for MNIST digits, including 13,580 3D-printable meshes and 153,600
tactile recordings. ActiveCloth (Yuan et al., 2018b) comprises 6,616 robotic squeeze trials on 153
garments, recording synchronized GelSight tactile videos and Kinect depth with 11 attributes.

Beyond pure tactile sensing, some other recent works (Yang et al., 2022; Feng et al., 2025b; Liu
et al.; Cheng et al., 2025a; Yu et al., 2024; Suresh et al., 2024; Kerr et al., 2022; Yuan et al., 2017b;
Li et al., 2019; Gao et al., 2021; Cheng et al., 2025b) incorporate multi-modal signals, combining
tactile with vision, language, or audio to support cross-modal learning. For instance, Touch and Go
(Yang et al., 2022) is the first large-scale tactile dataset collected in outdoor environments, captur-
ing human interactions with natural objects via synchronized tactile and video data. VTDexManip
(Liu et al.) provides 565,000 frames of video–tactile data from human multi-finger manipulations
across 10 tasks and 182 objects, filling a gap in dexterous interaction datasets. Touch100K (Cheng
et al., 2025a) compiles and cleans TAG and VisGel data into 100,147 high-quality triplets, offer-
ing the first large-scale alignment across tactile, visual, and linguistic modalities. TacQuad (Feng
et al., 2025b) integrates four visual–tactile sensors, recording aligned tactile signals, RGB frames,
and GPT-generated textual descriptions for multimodal reasoning. ObjectForlder (Gao et al., 2021)
provides 100 neural object representations that encode 3D shape, appearance, sound, and tactile
properties, supporting on-demand multimodal data generation for unified perception and control.

Tactile Compression. While tactile sensing continues to advance rapidly in resolution, sampling
rate, and coverage, compression research for tactile data remains under-explored. Existing work
has proposed some sparse or task-specific compression approaches (Hollis et al., 2016; Bartolozzi
et al., 2017; Hollis et al., 2018; Shao et al., 2020; Hassen et al., 2020; Seeling et al., 2021; Liu et al.,
2023a; Slepyan et al., 2024; Li et al., 2025; Lu et al., 2025). For instance, Shao et al. (2020) exploits
the propagation of mechanical waves during dynamic contact to enable compact tactile encoding.
(Hassen et al., 2020) proposes a perceptual vibrotactile codec that combines sparse linear prediction
with an acceleration sensitivity function. (Seeling et al., 2021) achieves real-time tactile compression
by combining bit-level truncation with delta-coding driven by just-noticeable-difference thresholds.
Others like (Liu et al., 2023a) and (Slepyan et al., 2024) investigate dimensionality reduction via
stacked auto-encoders or wavelet sparsification. However, these methods typically focus on simple
signal sparsity or quantization strategies, often lack rigorous compression metrics and are tailored
to relatively narrow scenarios or limited generalizability. In fact, many common tactile signals can
be naturally transformed into image-like formats, enabling the use of standard image or general-
purpose compressors. This direction is appealing not only because these compressors are well-
established and widely available, but also because they offer tunable configurations to trade off
compression ratio and distortion, making them adaptable to diverse robotic applications. Yet, this
perspective remains largely under-explored in the tactile domain. To fill this gap, this paper presents
a comprehensive benchmark for tactile compression methods, aiming to provide practical guidance
and spark future research into efficient tactile data compression.

3 TACTILE DATASETS AND COMPRESSION METHODS

3.1 TACTILE DATASETS

We benchmark tactile compression across five representative datasets: Touch and Go (Yang et al.,
2022), ObjectFolder 1.0 (Gao et al., 2021), SSVTP (Kerr et al., 2022), YCB-Slide (Suresh et al.,
2023), and ObjTac (Cheng et al., 2025b). These datasets span a range of sensor types (vision-
based and force-based), resolutions (from 120 × 160 to 640 × 480), and data scales, as detailed in
Table. 8. Depending on the sensor type, tactile data exhibit strong structural heterogeneity, along
with complex spatiotemporal correlations and redundancy, as illustrated in Fig. 1.

Specifically, the GelSight-based datasets (Touch and Go and ObjectFolder) and DIGIT-based
datasets (SSVTP and YCB-Slide) are collected using vision-based tactile sensors that operate by
illuminating a deformable elastomer surface with micro-LED arrays and capturing its surface de-
formation through an internal camera. This process converts tactile interactions into sequences of
RGB images or videos, enabling direct applications of image or video compression techniques. In
contrast, the ObjTac dataset is collected using force-based tactile sensors. The sensor comprises
N = 60 contact points across the contact surface, each measuring a 3D force vector. These mea-
surements form a temporally structured sequence of force data. To enable efficient compression, we
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Table 1: Introduction of the utilized tactile datasets.

Dataset #Objects #Frames Resolution Sensor
Touch and Go (Yang et al., 2022) 3971 13.9K 640× 480× 30Hz GelSight (Yuan et al., 2017a)
ObjectFolder 1.0 (Gao et al., 2021) 100 100K 120× 160× 30Hz GelSight (Yuan et al., 2017a)
SSVTP (Kerr et al., 2022) 10 4.5K 240× 320× 30Hz DIGIT (Lambeta et al., 2020)
YCB-Slide Suresh et al. (2023) 10 4.5K 240× 320× 30Hz DIGIT (Lambeta et al., 2020)
ObjTac (Cheng et al., 2025b) 56 135K 5× 12× 200Hz Force Sensor (Paxini, 2025)

map each 3D force vector to an RGB pixel and temporally stack the force readings across a time
duration T , generating images of resolution T × 60.

3.2 TACTILE COMPRESSION METHODS

We establish a benchmark for two categories of tactile codecs: 1) off-the-shelf codecs based on
conventional signal processing, originally designed for general-purpose or visual data, and 2) neural
codecs that leverage neural networks to learn data patterns end-to-end. As tactile signals are natively
or transformable into image or video formats (see Section 3.1), our evaluation of neural codecs
includes both pretrained image codecs and, to our knowledge, the first data-driven codecs explicitly
trained on tactile datasets.

3.2.1 OFF-THE-SHELF COMPRESSION METHODS

Typically, off-the-shelf compression methods have been historically designed for text, image and
video data. These classical techniques are fundamentally rooted in signal processing principles,
aiming to eliminate statistical, spatial, or temporal redundancies present in 1D or 2D data.

General-Purpose Compression Methods. We evaluate three general-purpose lossless compres-
sors: gzip (Pasco., 1996), zstd (Meta., 2015), and bzip2 (Seward, 2000), which are designed to
exploit 1D symbol redundancy using techniques such as dictionary coding (e.g., LZ77 in gzip and
zstd), block-sorting transforms (e.g., Burrows-Wheeler in bzip2), and entropy coding.

Image and Video Compression Methods. When treating tactile data as images, we evaluate six
standard image lossless codecs: PNG (Boutell, 1997), FLIF (Sneyers, 2015), WebP (Google, 2010),
JPEG-XL (Team, 2021), JPEG2000 (ISO/IEC, 2000), and BPG (Bellard, 2014) (the intra-mode of
HEVC/265 codec). These image-specific compressors remove 2D spatial redundancy in images via
predictive coding, transform coding (e.g., DCT or wavelets), and context-based entropy coding.

In addition, we also evaluate six lossy image codecs: JPEG-XL (Team, 2021), JPEG2000 (ISO/IEC,
2000), as well as the intra-frame and screen content coding (SCC) modes of HM Sullivan et al.
(2012) and VTM (Bross et al., 2021) (i.e., HM-Intra, HM-SCC, VTM-Intra, VTM-SCC).

To further address the inter-frame redundancy in tactile data, we evaluate three off-the-shell video
codecs, VVenC (Bross et al., 2021), x265 (Sullivan et al., 2012), and SVT-AV1 (Han et al., 2021).
Due to the huge amount of video data, lossless video compression is rarely used in practice, so we
only discuss lossy video compression methods.

3.2.2 NEURAL COMPRESSION METHODS

Recently, neural codecs have surpassed conventional codecs on text, image and video, owing to
powerful learning capabilities of neural networks to fit the latent data distribution. However, tactile
data exhibit unique statistical patterns, and heterogeneous tactile datasets involve different distribu-
tions, potentially making pre-trained neural encoders less applicable. Herein, we briefly introduce
the diagram of learning-based lossy and lossless neural codecs, as Fig. 2.

In the case of lossless compression, the tactile signal x is sequentially fed into a neural network fa
to predict the distribution of next symbol, p(xi|x<i), then it is followed by an arithmetic encoder
(AE) to generate bitstream. The loss is the entropy, which is the minimal bound to encode x:

L = E[− log2(p(xi|x<i))] (1)
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Figure 2: Diagram of data-driven compression methods and our proposed TaCo-L and TaCo-LL.

At the decoder side, the symbols can be lossless autoregressively decoded through an arithmetic
decoder (AD) and the same network.

For neural lossy codecs, the tactile signal x is transformed through a transform function ga into
a latent presentation y. Afterwards, y is quantized through Q to get discrete values ŷ, then it is
followed by AE to generate bitstream. At the decoder side, ŷ is decoded from bitstream using an
AD and then transformed back to reconstructed images x̂ though an inverse transform function gs.
ha and hs denote analysis and synthesis transforms in the hyper autoencoder to generate side bits z,
as a prior to estimate density model of ŷ. The loss is defined as a rate-distortion function:

L = λ×D(x, x̂) + E[− log2(pŷ|ẑ(ŷ|ẑ))] (2)

where λ is a hyper-parameter to control the bitrate, and all the parameters are learnable.

Pretrained Neural Codecs The lossless neural-based methods include 5 image compression mod-
els, DLPR (Bai et al., 2024), P2LLM (Chen et al., 2024), and DualComp-I (Zhao et al., 2025), as well
as LMIC (Deletang et al., 2024), a multi-modality compressor based on pretrained large language
models (specifially, in this paper we use RWKV-7B (Peng et al., 2025) and Llama3-8B (AI@Meta,
2024) as LLMs for implementation). It is worth noting that these models are pretrained on natural
language or image data, and evaluated on tactile data without any domain-specific adaptations.

For the purpose of lossy neural-based compression approaches, we evaluate a total of 6 compression
models, consisting of three recent neural-based image codecs (ELIC (He et al., 2022), TCM (Liu
et al., 2023b)) and LALIC (Feng et al., 2025a), and three recent neural-based video compressors
(DCVC-DC (Li et al., 2023), DCVC-FM (Li et al., 2024), and DCVC-RT (Jia et al., 2025)).

Tactile Data-Driven Neural Codecs To our knowledge, there have been yet no existing methods
fully trained on tactile signals to explore the upper bound of tactile compression performance. To
further explore the performance potential of data-driven codec, we retrain two state-of-the-art com-
pression models, DualComp-I and LALIC, using tactile datasets. Specifically, DualComp-I operates
lossless compression by tokenizing the input into discrete representations and applying an auto-
regressive model to predict each token’s distributions, enabling efficient entropy coding. LALIC
implements lossy compression and follows a variational auto-encoder (VAE) (Doersch, 2016) ar-
chitecture. The two models are chosen for their competitive performance and efficiency in their
respective domains. By retraining them on tactile data, we aim to assess the benefits of data-driven
tactile compression. The retrained models are referred to as TaCo-LL (lossless) and TaCo-L (lossy),
respectively, to distinguish them from their original pretrained versions.

Specifically, for TaCo-LL, the tokenization is conducted as shown in Fig. 3. We divide the input
into 16×16×3 patches to preserve local spatial correlations. We then flatten the data in a raster-scan
order. For visuo-tactile data, including Touch and Go, YCB-slide, ObjectFolder, SSVTP, the RGB
values are sequentially expanded as sub-pixels (R1, G1, B1, R2, G2, B2, · · ·). For three-axis force
signals, i.e. ObjTac, are treated as three color channels and expanded as (x1, y1, z1, x2, y2, z2, · · ·).
For TaCo-L, we follow the setup of LALIC 1 and randomly crop or zero-pad the input tactile image
to 256 × 256 resolution. Since the input tensor has three channels for both visuo-tactile data and

1https://github.com/sjtu-medialab/RwkvCompress
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Visuo−Tactile <	𝑹𝟏, 𝑮𝟏, 𝑩𝟏, 	𝑹𝟐 , … >

Tokenization: [B, H*W*3]

Force-Tactile <	𝒙𝟏, 𝒚𝟏, 𝒛𝟏, 	𝒙𝟐 , … >

LossLess Codec: TaCo-LL Lossy Codec: TaCo-L

w/o Tokenization: 
[B, H, W, 3]

*Training Patch Size: 
[B, 16*16 *3]

*Training Patch Size: 
[B, 256, 256 ,3]

Visuo-Tactile <	𝑹𝟏, 𝑮𝟏, 𝑩𝟏, 	𝑹𝟐 , … >

Figure 3: Detailed implementations of our proposed TaCo-L and TaCo-LL.

force-tactile data, no tokenization is needed, as shown in Fig. 3. The network architecture is adopted
from the LALIC model (Feng et al., 2025a) and the ga and gs consist of four downsampling and
upsampling operations, respectively.

To this end, we benchmark a total of 30 codecs to evaluate the compressibility of tactile data. Among
them, 14 codecs (9 off-the-shell codecs, 4 neural codecs and one proposed TaCo-LL) support lossless
compression, aiming to preserve exact signal fidelity. The remaining codecs (9 off-the-shell, 6 neural
codecs and one proposed TaCo-L) are lossy, targeting higher compression ratios at the cost of some
reconstruction distortion. These methods can also be categorized by their training data domain: 28
codecs are existing methods originally developed for general-purpose or visual data and applied
without any tactile-specific adaptation, while the remaining two (TaCo-LL, TaCo-L) are data-driven
models explicitly trained on tactile datasets. Evaluating the pretrained models allows us to assess
how well existing compression techniques generalize to tactile data, whereas the tactile data-driven
methods help explore the potential of tactile-aware compression strategies.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We benchmark the performance of tactile compression on five representative tactile datasets: Touch
and Go, ObjectFolder 1.0, SSVTP, YCB-Slide, and ObjTac, as shown in Section 3.1. Specifically,
we randomly select 70% of the data from the Touch and Go and ObjectFolder datasets to train the
TaCo-LL and TaCo-L models. The remaining 30% of the two datasets, together with the entire
SSVTP, YCB-Slide and ObjTac datasets, are used for all methods’ compression evaluation. Fol-
lowing (Zhao et al., 2025), for TaCo-LL we use the FusedAdam optimizer (NVIDIA, 2018) with a
cosine annealing learning rate schedule Loshchilov & Hutter (2016), starting at 1×10−4 and decay-
ing to 2 × 10−5 over 20 epochs. Following (Feng et al., 2025a), we train TaCo-L using the Adam
optimizer (Kingma & Ba, 2014). The learning rate is set to 1× 10−4 for 40 epochs, then decayed to
1× 10−5 for another 4 epochs. The training is performed on two NVIDIA A100 GPUs.

4.2 LOSSLESS COMPRESSION

Evaluation Metrics. We evaluate lossless compression efficiency using bits per Byte, which quan-
tifies the number of bits required to encode one byte of the original tactile data. Lower bits/Byte
values indicate more effective compression, with uncompressed data corresponding to 8 bits/Byte.
We also compare the complexity of different algorithms using four metrics, i.e. model parameters,
MACs, inference speed (KB/s) on multiple devices (including NVIDIA A100 GPU, a MacBook
Pro), and the frame per second (FPS) ranging with different spatial resolutions.

Results. Table. 2 benchmarks the lossless compression performance across five tactile datasets. As
expected, all methods obviously reduce the data’s storage cost, but the degree of compression varies
across the compressors and datasets. Among off-the-shelf baselines, general-purpose compressors
such as gzip and zstd achieve moderate compression ratios. Image-specific codecs like FLIF and
JPEG-XL provide notably better results especially on vision-like tactile data, due to their ability to
exploit spatial correlations. Learning-based methods pretrained on natural images, such as DLPR,
P2LLM, and DualComp-I, effectively capture intra-frame correlations in tactile signals and gener-
ally provide pleasing results. However, their performance remains limited by domain mismatch,
especially on non-visual or structurally different tactile datasets.
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Table 2: Comparison of lossless compression performance (bits/Byte) on five tactile datasets. The best results
are highlighted in bold blue, second-best in bold, and third to fifth in underline. For TaCo, 12M/48M/96M
denotes the model parameter. To show the compression performance more clearly, we also list the compression
ratios relative to the uncompressed data (8 bits/Byte) in parentheses only for the best and second best results.

Compressor
bits/Byte↓

TouchandGo ObjectFolder SSVTP ObjTac YCB-Slide

uncompressed 8 (1×) 8 (1×) 8 (1×) 8 (1×) 8 (1×)

O
ff

-t
he

-S
he

lf

gzip (Pasco., 1996) 2.298 3.969 2.234 0.571 2.185
zstd (Meta., 2015) 2.263 3.966 2.233 0.568 2.184
bzip2 (Seward, 2000) 2.288 4.031 2.255 0.594 2.205
FLIF (Sneyers, 2015) 0.808 (10×) 3.765 1.567 0.363 (22×) 1.489 (5×)
BPG (Bellard, 2014) 1.293 3.726 2.000 0.513 1.922
WebP (Google, 2010) 0.936 3.612 1.820 0.424 (19×) 1.767
JPEG-XL (Team, 2021) 0.739 (11×) 3.657 1.478 (5×) 0.382 (21×) 1.431 (6×)
JPEG2000 (ISO/IEC, 2000) 1.552 3.989 1.997 1.399 1.916
PNG (Boutell, 1997) 2.500 3.964 2.233 0.579 2.183

N
eu

ra
l

DLPR (Bai et al., 2024) 1.082 3.774 1.539 0.522 1.503
P2LLM (Chen et al., 2024) 1.212 3.400 1.804 0.546 1.512
Llama3* (Deletang et al., 2024) 2.055 3.465 1.975 0.834 1.905
RWKV* (Deletang et al., 2024) 2.223 3.718 2.010 0.540 1.880
DualComp-I (Zhao et al., 2025) 0.948 3.126 (3×) 1.442 (6×) 0.540 1.388 (6×)
TaCo-LL-12M (ours) 0.622 (13×) 3.098 (3×) 1.457 (6×) 0.569 1.520
TaCo-LL-48M (ours) 0.504 (16×) 2.923 (3×) 1.249 (6×) 0.411 (20×) 1.321 (6×)
TaCo-LL-96M (ours) 0.447 (18×) 2.709 (3×) 1.066 (8×) 0.360 (22×) 1.073 (8×)

Table 3: The complexity of lossless compression algorithms on five tactile datasets. † and ‡ indicates speeds
measured on MacBook Pro CPU and NVIDIA A100 GPU, respectively.

Compressor #Params↓ MACs↓
Speed
(KB/s)

↑
Speed (FPS)↑

TouchandGo ObjectFolder SSVTP ObjTac YCB-Slide

O
ff

-t
he

-S
he

lf

gzip (Pasco., 1996) - - 14500† 15.7† 252† 62.9† 190† 63.9†

zstd (Meta., 2015) - - 11000† 11.9† 191† 47.7† 144† 47.4†

bzip2 (Seward, 2000) - - 3300† 3.58† 57.3† 14.3† 43.3† 14.3†

FLIF (Sneyers, 2015) - - 652† 0.71† 11.3† 2.84† 8.56† 2.84†

BPG (Bellard, 2014) - - 180† 0.20† 3.13† 0.78† 2.36† 0.78†

WebP (Google, 2010) - - 330† 0.36† 5.73† 1.43† 4.33† 1.43†

JPEG-XL (Team, 2021) - - 970† 1.05† 16.8† 4.21† 12.7† 4.21†

JPEG2000 (ISO/IEC, 2000) - - 5000† 5.43† 86.8† 21.7† 65.7† 21.7†

PNG (Boutell, 1997) - - 200† 0.22† 3.47† 0.87† 2.63† 0.87†

N
eu

ra
l

DLPR (Bai et al., 2024) 22.3M - 640‡ 0.69‡ 11.1‡ 2.78‡ 8.41‡ 2.78‡

P2LLM (Chen et al., 2024) 8B - 20‡ 0.02‡ 0.35‡ 0.09‡ 0.26‡ 0.09‡

Llama3* (Deletang et al., 2024) 8B 7.8G 20‡ 0.02‡ 0.35‡ 0.09‡ 0.26‡ 0.09‡

RWKV* (Deletang et al., 2024) 7B 7.2G 86‡ 0.09‡ 1.49‡ 0.37‡ 1.13‡ 0.37‡

DualComp-I (Zhao et al., 2025) 96M 59.9M 317‡ 0.34‡ 5.50‡ 1.38‡ 4.16‡ 1.38‡

TaCo-LL-12M (ours) 12M 11.6M 614‡ 0.67‡ 10.7‡ 2.66‡ 8.06‡ 2.66‡

TaCo-LL-48M (ours) 48M 33.3M 360‡ 0.39‡ 6.25‡ 1.56‡ 4.73‡ 1.56‡

TaCo-LL-96M (ours) 96M 59.9M 317‡ 0.34‡ 5.50‡ 1.38‡ 4.16‡ 1.38‡

To further explore the potential of data-driven compression, we retrain state-of-the-art lossless image
compressor, DualComp-I, on tactile datasets and obtain our TaCo-LL model. The largest variant,
TaCo-LL-96M, achieves the best performance across all five datasets, reaching 0.447 bits/Byte on
TouchandGo, 2.709 bits/Byte on ObjectFolder, 1.066 on SSVTP, 0.360 bits/Byte on ObjTac, and
1.073 on TCB-Slide, corresponding to 18×, 3×, 8×, 22×, and 8× compression ratios, respectively.
Table. 3 benchmarks the complexity of different compression algorithms. Off-the-shelf codecs can
achieve relatively fast speed. Among neural codecs, TaCo-LL models achieve competitive compres-
sion performance with fewer parameters compared to P2LLM, Llama3-8B and RWKV-7B, and the
encoding/decoding speed ranges from 317KB/s to 614KB/s.
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Table 4: Evaluation of lossy compression performance on five tactile datasets leveraging intra-frame compres-
sors. The best results are shown in blue bold, the second-best in bold, and the third-best in underline. For
the reference, the bandwidth consumption of the anchor HEVC-intra is approximately 2Mbps at the quality of
40dB, which is calculated by 0.22 bit per pixel ×640×480×30fps×10−6 for Touch and Go dataset, as Fig. 4.

Compressor
BD-Rate (%)↓

TouchandGo ObjectFolder SSVTP YCB-Slide ObjTac

O
ff

-t
he

-S
he

lf

HM-Intra (Sullivan et al., 2012) 0% 0% 0% 0% 0%
HM-SCC (Sullivan et al., 2012) -10.4% 2.0% 6.9% 7.2% -44.5%
VTM-Intra (Bross et al., 2021) -21.7% -19.7% -16.0% -24.4% -22.0%
VTM-SCC (Bross et al., 2021) -23.7% -18.0% -13.7% -19.1% -44.3%
JPEG-XL (Team, 2021) 66.7% 60.6% 77.5% 96.9% 99.4%
JPEG2000 (ISO/IEC, 2000) 59.7% 69.9% 107.9% 89.1% 103.8%

N
eu

ra
l

ELIC (He et al., 2022) -40.2% 0.6% -5.8% -9.2% 44.5%
LALIC (Feng et al., 2025a) -51.6% 0.2% 4.3% -4.6% 32.8%
TCM (Liu et al., 2023b) -39.9% 23.7% 42.9% 30.5% 97.2%
TaCo-L (Ours) -61.8% -24.3% -19.2% -27.4% -27.0%

Table 5: The complexity of lossy compression algorithms on five tactile datasets leveraging intra-frame com-
pressors. † and ‡ indicates speeds measured on MacBook Pro CPU and NVIDIA A100 GPU, respectively.

Compressor #Params↓ MACs↓
Speed
(KB/s)

↑
Speed (FPS)↑

TouchandGo ObjectFolder SSVTP YCB-Slide ObjTac

O
ff

-t
he

-S
he

lf

HM-Intra (Sullivan et al., 2012) - - 11.1† 0.12† 1.97† 0.50† 1.49† 0.50†

HM-SCC (Sullivan et al., 2012) - - 31.3† 0.34† 0.56† 0.41† 0.42† 0.41†

VTM-Intra (Bross et al., 2021) - - 9.22† 0.10† 1.63† 0.41† 1.23† 0.41†

VTM-SCC (Bross et al., 2021) - - 4.61† 0.05† 0.72† 0.18† 0.55† 0.18†

JPEG-XL (Team, 2021) - - 2305† 2.50† 40.0† 10.0† 30.2† 10.0†

JPEG2000 (ISO/IEC, 2000) - - 13200† 14.3† 228† 57.1† 172† 57.1†

N
eu

ra
l

ELIC (He et al., 2022) 33.3M 0.9M 4075‡ 4.42‡ 70.7‡ 17.7‡ 53.5‡ 17.7‡

LALIC (Feng et al., 2025a) 63.2M 0.7M 3700‡ 4.01‡ 64.2‡ 16.1‡ 48.6‡ 16.1‡

TCM (Liu et al., 2023b) 75.9M 1.8M 5680‡ 6.16‡ 98.6‡ 24.7‡ 74.6‡ 24.7‡

TaCo-L (Ours) 63.2M 0.73M 3700‡ 4.01‡ 64.2‡ 16.1‡ 48.6‡ 16.1‡

4.3 LOSSY COMPRESSION FOR HUMAN VISION

Evaluation Metrics. We evaluate lossy compression performance using the Bjøntegaard Delta
Rate (BD-Rate) (Bjontegaard, 2001) metric, which quantifies the average bitrate savings at a given
level of distortion. A lower BD-Rate indicates better compression efficiency. We measure the recon-
struction distortion using Peak Signal-to-Noise Ratio (PSNR) (Rosenfeld & Kak, 1982). The bitrate
is assessed in bits per pixel (BPP), where uncompressed data corresponds to 24 BPP.

Results. Table. 4 benchmarks the lossy compression performance when using intra-frame com-
pressors. Off-the-shelf intra-frame codecs like HM-Intra and VTM-Intra provide strong base-
lines, consistently delivering competitive performance. General-purpose codecs like JPEG2000 and
JPEG-XL are included as standard baselines, but their performance is relatively poor. Neural com-
pression methods pretrained on natural images, such as ELIC, LALIC, and TCM, show promising
results on some datasets, but they fail to generalize to more structurally distinct data like ObjTac.
In contrast, our TaCo-L model, trained on tactile datasets, achieves the best performance across
all five datasets. It outperforms all baselines with BD-Rate reductions of -61.8% (TouchandGo), -
24.3% (ObjectFolder), -27.4% (YCB-Slide), and -27.0% (ObjTac). Further, the force-based ObjTac
dataset, which is derived from 3D force signals and mapped into RGB images, exhibits character-
istics similar to screen content (large uniform regions and repetitive patterns). This makes screen-
content-optimized codecs, VTM-SCC and HM-SCC, particularly effective on this dataset, achiev-
ing BD-Rates of -44.3% and -44.5%, respectively, when taking HM-Intra as the anchor. Table. 5
benchmarks the complexity of different lossy compression algorithms. For off-the-shelf codecs, the
complexity increases along with the development of newer generations. For neural codecs, TaCo-L,
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Figure 4: Rate-distortion curves on TouchandGo dataset, when applying intra-frame compression methods.

Table 6: Material classification results on TouchandGo, ObjectFolder-1.0 and object classification results on
YCB-Slide. Best results are in blue bold, the second-best results are in bold, and the third-best in underline.

Compressor BPP SVM Random Forest K-NN Linear Regression

To
uc

h
an

d
G

o Uncompressed 24 (1×) 76.63% 74.88% 68.24% 73.51%
VTM-Intra 0.213 74.08% 72.53% 65.06% 70.87%
JPEG-XL 0.218 70.67% 69.43% 61.87% 67.75%
LALIC 0.196 74.70% 73.07% 65.43% 71.24%
TaCo-L (ours) 0.193 (124×) 75.12% 73.55% 66.03% 71.89%

O
bj

ec
tF

ol
de

r Uncompressed 24 (1×) 44.11% 40.68% 37.14% 42.92%
VTM-Intra 0.384 42.23% 39.48% 36.00% 40.71%
JPEG-XL 0.499 40.27% 37.63% 34.36% 38.74%
LALIC 0.477 41.00% 38.28% 35.44% 39.91%
TaCo-L (ours) 0.453 (53×) 43.08% 39.85% 36.27% 41.02%

Y
C

B
-S

lid
e

Uncompressed 24 (1×) 98.75% 98.72% 98.58% 99.18%
VTM-Intra 0.118 97.36% 96.41% 97.08% 97.24%
JPEG-XL 0.121 94.08% 93.11% 93.67% 93.97%
LALIC 0.130 95.67% 95.22% 95.76% 96.23%
TaCo-L (ours) 0.126 (190×) 98.01% 97.35% 97.88% 98.20%

adapted from the latest LALIC, achieves the best compression performance at the cost of incremental
complexity, and the encoding/decoding FPS ranges from 4 FPS to 48 FPS at different resolutions.

Fig. 4 presents a representative rate-distortion (RD) curve comparison on the TouchandGo dataset
when using image compressors. Additional RD curves are provided in the appendix. We further
compare the subjective reconstruction quality by visualizing representative examples from the YCB-
Slide dataset, as shown in Fig. 8 in the appendix.

4.4 LOSSY COMPRESSION FOR CLASSIFICATION

Evaluation Metrics. We evaluate the semantic fidelity of lossy compression using two tactile
understanding tasks: material classification (on TouchandGo and ObjectFolder-1.0) and object clas-
sification (on YCB-Slide). For each dataset, we use four standard classifiers, SVM (Burges, 1998),
Random Forest (Rigatti, 2017), K-NN (Peterson, 2009), and Linear Regression (Seber & Lee, 2012),
with a fixed 60%/40% train-test data split. The top-1 accuracy is used as evaluation metric. Four
representative lossy codecs, VTM-Intra, JPEG-XL, LALIC, and TaCo-L, are used for comparison.

Results. Table. 6 As shown in Table. 6, all methods achieve classification performance close to the
uncompressed data, despite substantial bitrate savings (e.g., from 24 bpp to as low as 0.118 bpp). On
TouchandGo, TaCo-L achieves 75.12% (SVM) and 71.89% (Linear Regression), similar to 76.63%
and 73.51% when using uncompressed data. On ObjectFolder, where the task is more challenging,
the top-1 accuracy under SVM drops slightly from 44.11% to 43.08% after compression with TaCo-
L. On YCB-Slide, TaCo-L also preserves superior classification accuracy (98.01% and 98.20% when
using SVM and Linear Regression, respectively), while reducing the bitrate by 190×.

4.5 LOSSY COMPRESSION FOR DEXTEROUS GRASPING
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Table 7: Evaluation results on the dexterous grasping. Best results are shown in blue bold, the second-best
results are denoted in bold, and the third-best in underline. We also list the accuracy loss relative to the uncom-
pressed data (8 bits/Byte) in parentheses.

Compressor BPP Small Obj. Medium Obj. Large Obj. Deform. Obj. Avg
s

lif
t

Uncompressed 24 54.7% 67.4% 69.2% 63.9% 63.8% (-0.0%)

JPEG-XL 0.0505 47.2% 58.0% 59.7% 55.1% 55.0% (-8.8%)

VTM-Intra 0.0498 54.1% 66.6% 68.4% 63.1% 63.1% (-0.7%)

LALIC 0.0397 51.5% 63.4% 65.0% 60.1% 60.0% (-3.8%)

TaCo-L (ours) 0.0251 53.1% 65.3% 68.4% 61.9% 62.2% (-1.6%)

s
di

st
ur

b

Uncompressed 24 51.8% 65.8% 67.3% 61.8% 61.7% (-0.0%)

JPEG-XL 0.0505 46.4% 56.1% 57.4% 52.8% 53.2% (-8.5%)

VTM-Intra 0.0498 52.5% 65.0% 66.7% 61.1% 61.3% (-0.4%)

LALIC 0.0397 49.9% 61.8% 63.1% 58.0% 58.2% (-3.5%)

TaCo-L (ours) 0.0251 51.3% 63.6% 65.0% 59.7% 59.9% (-1.8%)

Task Definition. Many contact-rich manipulation algorithms for dexterous hands rely heavily on
high-fidelity tactile signals, which motivates us to conduct dexterous grasping experiment. In real-
world deployment scenarios, however, tactile data compression may affect the downstream perfor-
mance of such algorithms. Therefore, we introduce this experiment to evaluate the impact of tactile
compression quality on a realistic, task-driven benchmark. The goal of this task is to reach for an ob-
ject, grasp and lift it. We build the simulation using Nvidia IssacSim Makoviychuk et al. (2021), and
use a simple DexHand13 module Paxini. (2024) equipped with eleven tactile sensors. We modify
the input tactile signals by compressing them first and then feed it into a tactile-aware reinforcement
learning algorithm. In total we use 100 objects to evaluate the grasping performance, consisting of
29 small objects, 41 medium objects and 22 large objects, 8 deformable objects. For the following
section, we list the performance for each category.

Evaluation Metrics. To ensure robust interference capabilities during grasping, we evaluate the
performance using two evaluation metrics in the simulation. One is the success rate of lifting slift,
recorded when objects maintain stability lifted to the height of 0.1m. The other is the success rate
with disturbance resistance sdisturb, measured by applying 2.5N external forces along six axes for 2 s
after lifting and the object moves below 0.02 m.

Results. Table. 7 benchmarks the grasping performance across different objects. Since the tactile
signal simulated by Isaac Sim is relatively sparse, the achieved compression ratio is higher (up to
1000×) than what is typically attainable in the physical world (i.e. physical data achieve at most
22× (ObjTac) compression ratio). All compression methods successfully reduced the raw 24 bpp
tactile signal to substantially smaller sizes, ranging from 0.025 bpp to 0.5 bpp, with only a moder-
ate decrement in grasping success rate. Among them, TaCo-L outperforms JPEG-XL and LALIC,
achieving a higher compression ratio while maintaining competitive lifting success rate of 62.2%
compared to the baseline 63.8% and disturb-resistant grasping success rate of 59.9% compared to
the baseline 61.7%. While our method TaCo-L is only approximately 1% of VTM’s performance
(62.2% vs 63.1% and 59.9% vs 61.3%) in terms of task success rate, it achieves significantly higher
compression efficiency by operating at nearly half the bitrate (0.0251bpp vs. 0.0498 bpp).

5 CONCLUSION

This paper introduced the TaCo benchmark, the first comprehensive framework for evaluating tactile
data codecs. This is a suite of 30 codecs, 5 datasets and 4 types of tasks to advance the research
on tactile sensing and tactile data compression. Further, we presented TaCo-LL and TaCo-L, data-
driven codecs that learn the latent distribution of tactile data end-to-end. Extensive experiments
demonstrate that our proposed models establish a new state-of-the-art result, outperforming existing
methods across lossless/lossy compression, classification, and grasping tasks. Our work provides a
critical foundation and a baseline for future research in efficient tactile perception and transmission.
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ETHICS STATEMENT

This work does not involve any sensitive personal data, private information, or high-risk deployment
scenarios. Our evaluation relies solely on publicly available tactile datasets. No human subjects,
practices to data set releases, potentially harmful insights, methodologies and applications, poten-
tial conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security
issues, legal compliance, and research integrity issues were involve.

REPRODUCIBILITY STATEMENT

Our experimental results rely on already published, publicly available datasets and compression
models. For novel models or algorithms, a link to an anonymous downloadable source code can be
submitted as supplementary materials; for theoretical results, clear explanations of any assumptions
and a complete proof of the claims can be included in the appendix; for any datasets used in the ex-
periments, a complete description of the data processing steps can be provided in the supplementary
materials. More implementation and training details are explained in the appendix. We will release
the code base used for experiments in Sec. 4 along with the code for evaluating our benchmark.
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A APPENDIX

A.1 BASELINE AND IMPLEMENTATION DETAILS

We benchmark the performance of tactile compression on five representative tactile datasets: Touch
and Go2, ObjectFolder 1.03, SSVTP4, YCB-Slide5, and ObjTac6, as detailed in Section 3.1. Specif-
ically, 70% of the samples from Touch and Go and ObjectFolder are used for training, while the
remaining 30%, along with the full SSVTP and ObjTac datasets, are used for evaluation. For the
Touch and Go dataset, while the official guideline recommends splitting by collection trajectories, it
does not specify an exact train/test ratio or content. We followed this recommendation by grouping
data at the trajectory level and applied a common 70% and 30% split for training and testing. Each
trajectory was then decomposed into individual frames, ensuring that all frames from the same tra-
jectory are contained entirely within either the training or the testing set, avoiding any data leakage.

For TaCo-LL, adapted from DualComp-I (Zhao et al., 2025), we train it using the FusedAdam
optimizer (NVIDIA, 2018) with a cosine annealing learning rate schedule. (Loshchilov & Hutter,
2016), starting from 1× 10−4 and decaying to 2× 10−5 over 20 epochs. The batch size is set to 64.
The model is trained with a standard cross-entropy loss:

LTaCo-LL = −
∑

q log p (3)

where q and p are the target and predicted distributions, respectively.

For TaCo-L, We train our models using the Adam optimizer (Kingma & Ba, 2014) with a batch size
of 8. The model is optimized with a rate-distortion loss:

LTaCo-L = R+ λ · MSE (4)

where R denotes the estimated bitrate and λ controls the trade-off between rate and distortion. For
MSE-optimized models, λ is set to {0.0018, 0.0067, 0.025, 0.0483} to achieve different bitrates.
The learning rate is set to 1×10−4 for 40 epochs, and then decayed to 1×10−5 for another 4 epochs.
During training, input tactile images are randomly cropped or padded to 256× 256 resolution.

These two models are trained using two NVIDIA A100 GPUs with mixed precision enabled.

A.2 CROSS-DATASET COMPRESSION PERFORMANCE

Furthermore, the above training datasets are mainly collected on rigid and lambertian objects, and we
also validate compression performance on two new test datasets: Active Cloth (Yuan et al., 2018a)
covering soft and textured objects, and ObjectFolder-2.0 comprising a wide variety of everyday 3D
objects, as shown in Table. 8. Due to the large scale of both datasets, we conduct quick validation
on approximately the first 10% of the data from each: 10 objects from Active Cloth and 100 objects
from ObjectFolder-2.0. Lossless and lossy compression are performed, as summarized in Table 9
and Table 10.

Table 8: Introduction of two additional tactile datasets, where ActiveCloth (Yuan et al., 2018a) consists of 153
varied pieces of clothes and ObjectFolder-2.0 (Gao et al., 2022) mainly extends ObjectFolder-1.0 (Gao et al.,
2021) with 100 virtualized objects to 1000 common household real objects.

Dataset #Objects #Frames Resolution Sensor
ActiveCloth (Yuan et al., 2018a) 153 494655 640 × 480 × 30Hz GelSight (Yuan et al., 2017a)
ObjectFolder 2.0 (Gao et al., 2022) 1000 76000 120 × 160 × 30Hz GelSight (Yuan et al., 2017a)

When comparing Active Cloth and Touch and Go at the same resolution of 640×480, our TaCo-LL
model, with 96M parameters, achieves the best performance on both datasets. It achieves 0.723

2https://touch-and-go.github.io/
3https://objectfolder.stanford.edu/
4https://sites.google.com/berkeley.edu/ssvtp
5https://github.com/rpl-cmu/YCB-Slide
6https://readerek.github.io/Objtac.github.io/
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Table 9: Comparison of lossless compression performance (bits/Byte) on two additional tactile datasets to
validate the cross-dataset performance. The best results are highlighted in bold blue, second-best in bold,
and third in underline. For TaCo-LL, 12M/48M/96M denotes the model parameter. To show the compression
performance more clearly, we also list the compression ratios relative to the uncompressed data (8 bits/Byte) in
parentheses only for top three results.

Compressor
bits/Byte↓

ActiveCloth ObjectFolder-2.0
uncompressed 8 (1×) 8 (1×)

O
ff

-t
he

-S
he

lf
gzip (Pasco., 1996) 2.762 4.040
zstd (Meta., 2015) 2.771 4.037
bzip2 (Seward, 2000) 2.771 4.103
FLIF (Sneyers, 2015) 0.882 3.831
BPG (Bellard, 2014) 1.645 3.792
WebP (Google, 2010) 1.063 3.676
JPEG-XL (Team, 2021) 0.841 (9.5×) 3.659
JPEG2000 (ISO/IEC, 2000) 1.804 4.061
PNG (Boutell, 1997) 2.667 4.035

N
eu

ra
l

DLPR (Bai et al., 2024) 1.453 3.852
P2LLM (Chen et al., 2024) 2.193 3.470
Llama3* (Deletang et al., 2024) 2.620 3.659
RWKV* (Deletang et al., 2024) 2.640 3.800
DualComp-I (Zhao et al., 2025) 1.158 3.308
TaCo-LL-12M (ours) 1.059 3.179 (2.5×)
TaCo-LL-48M (ours) 0.816 (10×) 3.002 (2.7×)
TaCo-LL-96M (ours) 0.723 (11×) 2.855 (2.8×)

Table 10: Lossy compression performance (BD-Rate) on two additional tactile datasets to validate the cross-
dataset performance. The best results are shown in blue bold, the second-best in bold, and the third-best in
underline. For TaCo, 12M/48M/96M denotes the model parameter.

Compressor
BD-Rate (%)↓

ActiveCloth ObjectFolder-2.0

O
ff

-t
he

-S
he

lf

HM-Intra (Sullivan et al., 2012) 0% 0%
HM-SCC (Sullivan et al., 2012) -12.9% 2.2%
VTM-Intra (Bross et al., 2021) -28.0% -21.0%
VTM-SCC (Bross et al., 2021) -26.1% -19.3%
JPEG-XL (Team, 2021) 46.9% 80.7%
JPEG2000 (ISO/IEC, 2000) 86.5% 79.0%

N
eu

ra
l ELIC (He et al., 2022) -57.1% 3.2%

LALIC (Feng et al., 2025a) -54.8% 2.8%
TCM (Liu et al., 2023b) -49.8% 23.7%
TaCo-L (Ours) -65.4% -26.4%

bit/Byte (in Table 9) and 0.447 bit/Byte (in Table. 2), corresponding to compression ratios of 11×
and 18×, respectively. The results also suggest that soft objects in Active Cloth are more difficult
to compress than rigid objects, as deformable surfaces tend to generate more complex tactile data.
When comparing ObjectFolder-1.0 and ObjectFolder-2.0 at the same resolution of 120 × 160, all
the compression methods basically achieve consistent results and our TaCo-LL also achieve the best
performance with 2.855 bit/Byte, corresponding to compression ratios of 2.8×.

These findings are further supported by the BD-Rate comparisons in Table 10, where TaCo-L con-
sistently achieves the lowest BD-Rate across both ActiveCloth and ObjectFolder-2.0 datasets, out-
performing state-of-the-art neural compressors such as ELIC, LALIC, and TCM.

A.3 CROSS-OBJECT COMPRESSION PERFORMANCE

Table. 11 and Table. 12 present a evaluation of cross-object lossless compression performance (in
bits/Byte). Table. 11 focuses on rigid objects from TouchandGo and ObjTac datasets, while Table. 12
evaluates soft objects from ActiveCloth and ObjTac datasets. A key observation is that compression
performance is influenced primarily by the type of sensor modality, as evidenced by consistent trends
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Table 11: Cross-object lossless compression performance (bits/Byte) on RIGID objects. The best results are
highlighted in bold blue, the second-best in bold, and the third in underline. In TouchandGo, Tree and Wood
are training objects, while Concrete is unseen. The three objects in ObjTac are all unseen objects (∗).

Compressor
bits/Byte↓

Touch and Go ObjTac
Tree Wood Concrete∗ Stone∗ Pebble∗ Tile∗

uncompressed 8 (1×) 8 (1×) 8 (1×) 8 (1×) 8 (1×) 8 (1×)

O
ff

-t
he

-S
he

lf

gzip (Pasco., 1996) 2.531 2.082 2.214 1.100 0.943 0.529
zstd (Meta., 2015) 2.327 2.033 2.080 1.098 0.930 0.505
bzip2 (Seward, 2000) 2.486 2.068 2.186 1.123 0.976 0.541
FLIF (Sneyers, 2015) 0.865 0.737 0.782 0.697 0.648 0.303
BPG (Bellard, 2014) 1.395 1.141 1.246 1.061 0.847 0.453
WebP (Google, 2010) 1.000 0.855 0.924 0.848 0.720 0.387
JPEG-XL (Team, 2021) 0.796 0.670 0.730 0.742 0.656 0.372
JPEG2000 (ISO/IEC, 2000) 1.617 1.421 1.540 1.181 0.990 0.500
PNG (Boutell, 1997) 2.765 2.249 2.390 1.097 0.939 0.527

N
eu

ra
l

DLPR (Bai et al., 2024) 1.127 0.935 1.062 0.906 0.917 0.551
P2LLM (Chen et al., 2024) 1.946 1.475 1.832 0.933 0.911 0.534
Llama3* (Deletang et al., 2024) 2.479 2.010 2.145 1.098 1.102 0.809
RWKV* (Deletang et al., 2024) 2.558 2.120 2.396 1.175 1.110 0.832
DualComp-I (Zhao et al., 2025) 0.840 0.726 0.857 0.810 0.685 0.339
TaCo-LL-12M (ours) 0.810 0.704 0.815 0.796 0.680 0.336
TaCo-LL-48M (ours) 0.719 0.611 0.730 0.635 0.627 0.300
TaCo-LL-96M (ours) 0.607 0.598 0.700 0.590 0.596 0.288

Table 12: Cross-object lossless compression performance (bits/Byte) on SOFT objects. The best results are
highlighted in bold blue, the second-best in bold, and the third in underline. All these objects are unseen (∗).

Compressor
bits/Byte↓

Active Cloth ObjTac
Cloth-12∗ Cloth-29∗ Cloth-33∗ Sponge∗ Jeans∗ Leather Bag∗

uncompressed 8 (1×) 8 (1×) 8 (1×) 8 (1×) 8 (1×) 8 (1×)

O
ff

-t
he

-S
he

lf

gzip (Pasco., 1996) 3.540 1.902 3.609 0.214 0.178 0.129
zstd (Meta., 2015) 3.550 1.911 3.619 0.210 0.173 0.128
bzip2 (Seward, 2000) 3.552 1.907 3.619 0.252 0.206 0.144
FLIF (Sneyers, 2015) 1.097 0.668 1.101 0.106 0.079 0.071
BPG (Bellard, 2014) 2.043 1.194 2.064 0.207 0.148 0.144
WebP (Google, 2010) 1.319 0.802 1.323 0.178 0.092 0.065
JPEG-XL (Team, 2021) 1.055 0.621 1.057 0.106 0.076 0.088
JPEG2000 (ISO/IEC, 2000) 2.143 1.419 2.140 0.246 0.263 0.204
PNG (Boutell, 1997) 3.549 1.586 3.619 0.213 0.197 0.165

N
eu

ra
l

DLPR (Bai et al., 2024) 1.877 1.590 1.985 0.148 0.094 0.150
P2LLM (Chen et al., 2024) 2.033 1.724 2.082 0.170 0.142 0.143
Llama3* (Deletang et al., 2024) 3.147 1.883 3.251 0.492 0.185 0.158
RWKV* (Deletang et al., 2024) 3.219 1.890 3.238 0.510 0.179 0.163
DualComp-I (Zhao et al., 2025) 1.696 1.125 2.000 0.105 0.109 0.110
TaCo-LL-12M (ours) 1.710 1.147 1.991 0.106 0.100 0.113
TaCo-LL-48M (ours) 1.332 0.877 1.930 0.100 0.078 0.095
TaCo-LL-96M (ours) 1.016 0.725 1.255 0.097 0.053 0.079

within datasets from the same source (e.g., ActiveCloth vs. TouchandGo). However, the physical
properties of the object (like rigidity or softness) also have an obvious impact.

A.4 ANALYSIS OF TACTILE DATA CHARACTERISTIC

Fig. 5 includes samples from YCB-Slide (Digit sensor, rigid objects such as Sugar Box, Mug, and
Mustard Bottle), SSVTP (Digit sensor, soft cloth objects like Cloth Corner and Interior), Active
Cloth (GelSight sensor, soft fabrics including Cloth-12, 29, and 33), Touch and Go (GelSight sen-
sor, rigid surfaces such as Tree, Wood, and Concrete), and ObjTac (Force sensor, both soft objects
like Jeans, Leather Bag, Sponge, and rigid ones like Pebble, Stone, Tile). As depicted, the en-
tropy maps and FFT spectra show that tactile images are dominated by low-frequency energy with
highly repetitive, grid-like spatial structures. These signals exhibit strong directional patterns and
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Figure 5: Visualization of tactile data characteristics across different datasets, sensors, and object types. Each
subfigure displays the raw tactile image, its frequency spectrum, and the corresponding entropy map.

locally predictable regions, leading to sparse residuals after prediction. As a result, block-based
lossy codecs such as SCC perform especially well, since their intra prediction, palette modes, and
transform coding are optimized for smooth, structured, and repetitive content. The same properties
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also explain the behavior of lossless codecs: low entropy regions compress extremely well, while
periodic patterns favor context-based or LZ-type entropy models.

A.5 MORE LOSSY COMPRESSION PERFORMANCE FOR HUMAN VISION

In addition to intra-frame compression methdos, Table. 13 benchmarks the use of video codecs for
compressing tactile data, focusing on their ability to exploit inter-frame redundancy. It can be seen
that DCVC-RT achieves the best performance on most dataset, followed by DCVC-FM and VVenC.
Since each row of an ObjTac image corresponds to a distinct timestamp, the dataset does not have
video format and video compression evaluation.

Table 13: Evaluation on lossy compression performance with regard to intra-frame and inter-frame correlations.
The best results are denoted in bold, and the second-best in underline

Compressor
BD-Rate (%)↓

TouchandGo ObjectFolder SSVTP YCB-Slide

O
ff

-t
he

-
Sh

el
f x265 (Sullivan et al., 2012) 0% 0% 0% 0%

SVT-AV1 (Han et al., 2021) -40.6% -34.2% -28.2% -12.1%
VVenC (Bross et al., 2021) -67.6% -16.4% -33.6% -52.2%

N
eu

ra
l DCVC-DC (Li et al., 2023) -75.6% -12.2 % -20.4% -27.1%

DCVC-FM (Li et al., 2024) -80.0% -43.8% -45.2% -58.1%
DCVC-RT (Jia et al., 2025) -78.1% -48.8% -50.9% -65.5%

To complement the BD-Rate results in Table. 5 and Table. 13, we present full rate-distortion (RD)
curves for each dataset in both image-based (Fig. 6) and video-based (Fig. 7) compression settings,
using PSNR and MS-SSIM as distortion metrics. For the TouchandGo dataset, image-based RD
curves are shown in Fig. 4 of the main text.

These curves provide a more detailed view of compression performance across bitrates. In the
image-based setting, JPEG-XL and JPEG2000 consistently result to relatively poor performance.
TaCo-L consistently achieves the best performance across all datasets except ObjTac, where screen-
content-coding (SCC) modes in VTM and HM are particularly effective due to the screen-content-
like patterns. In the video-based setting, neural codecs like DCVC variants outperform traditional
video codecs like x265, SVT-AV1 and VVenC, especially in the low-bitrate region.

Aside from objective metrics, We also use the YCB-Slide dataset as an example and provide per-
pixel RMSE error maps of the reconstructed tactile signals in Fig. 8. As discussed in Fig. 1 of the
main paper, although tactile images carry meaningful physical information, their visual appearance
is often unintuitive for human interpretation. Therefore, instead of relying on perceptual inspection,
we quantify local reconstruction discrepancies using the pixel-wise RMSE,

RMSE(x, x̂) =
√
(x− x̂)2. (5)

As shown in Fig. 8, all methods produce relatively low reconstruction errors even at low bitrates
(below 0.1 bpp, i.e., over 240× compression), indicating that lossy compression at relatively high
ratios is generally acceptable for human-viewing purposes.

A.6 MORE LOSSY COMPRESSION RESULTS FOR CLASSIFICATION

To complement the results in Table. 6 and illustrate the full-bitrate performance, we present the
bitrate-accuracy curves on Touch and Go, ObjectFolder-1.0, and YCB-Slides dataset, as shown in
Fig. 9. Each curve shows how classification accuracy changes as the bitrate varies, with dotted lines
indicating the performance on uncompressed data (24 bpp). These plots provide a more comprehen-
sive view of semantic preservation across different compression levels.

Specifically, the bitrate is varied by adjusting the quantization parameter (QP) for each compressor.
For each classification task, we split the reconstructed data into 60% for training and 40% for testing,
and apply four standard classifiers (SVM, Random Forest, K-NN, and Linear Regression) to per-
form material classification (TouchandGo and ObjectFolder) or object classification (YCB-Slide).
Overall, even at over 200× compression, the impact on classification accuracy remains minor for
all methods, suggesting that lossy compression can be applied without substantially compromising
downstream understanding tasks. Among them, TaCo-L consistently achieves the highest accuracy
across the full bitrate range, and closely approaches the accuracy of raw data (24 bpp).
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Figure 6: Rate-distortion performance across four tactile datasets when treating tactile data as images.

A.7 MORE LOSSY COMPRESSION RESULTS FOR DEXTEROUS GRASPING

We further visualize the simulation environment from the IssacSim and part of the assets, as shown
in Fig. 10. The hand model is based on the Paxini DexHand13 Paxini. (2024), which has four fingers
and a total of 16 DoF. Each finger except the thumb is equipped with three tactile sensors and the
thumb finger is equipped with two tactile sensors, resulting to a total of 11 tactile sensors. We
deploy a simple asymmetric actor-critic (AAC) network with the tactile data as the input, to learn
the dexterous grasping for general objects (Wang et al., 2025). Although the grasping success rate
of our baseline model is not very high, we focus on the impact of tactile compression.

We have conducted grasping experiments in real-world settings and employed four mature encoders
(JPEG2000, JPEG XL, BPG, VTM) to compress tactile signals with varying quantization parameters
(QP). Using four fingertip positions as primary observation metrics, we present the sensory force
data along the x, y, and z axes across these four fingertips, with the results illustrated in Fig. 11.

Fig. 12, Fig. 13,Fig. 14 and Fig. 15 illustrate the visualization results of tactile signals from four fin-
gertips using four different codecs in real-world experiments. Meanwhile, Fig. 16, Fig. 17,Fig. 18
and Fig. 19 illustrate the visualization results of tactile signals from four fingertips using four differ-
ent codecs in the simulations. These figures demonstrate that the compression algorithm itself does
not actually affect the main variation distribution of the tactile data, and therefore will not have a
catastrophic impact on the accuracy of real-world tasks.
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Figure 7: Rate-distortion performance across four tactile datasets when treating tactile data as videos.

Original
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JPEG-XL
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Figure 8: Visualization of reconstructed tactile images (top row) and their corresponding per-pixel root mean
squared error (RMSE) maps (bottom row) on the YCB-Slide dataset. The RMSE maps highlight local recon-
struction errors, with brighter regions indicating larger residuals.

Regarding the implementation details, the simulation environment for the reinforcement learning
controller operates at a control frequency of 100 Hz, which is determined by the simulation time
step of 0.01 seconds. Specifically, (1) the tactile sensors are updated at every simulation step, result-
ing in a tactile sampling rate of 100 Hz. (2) The overall latency of the control loop is approximately
0.01 seconds, plus the time required for policy inference. The policy inference is performed using
an ONNX model, and the inference time is logged during execution. If the inference time exceeds
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Touch and GO

ObjectFolder-1.0

YCB-Slide

Figure 9: Bpp-accuracy curves for material classification task on the TouchandGo and ObjectFolder-1.0
datasets, and object classification task on the YCB-Slide dataset.

Small Obj Medium Obj Large Obj Deformable Obj

Simulation
Environment

Simulator

Figure 10: Simulation environment and part of object assets we use in the grasping exeriments.

the simulation time step, the control frequency may decrease, and the latency would increase ac-
cordingly. (3) When the combined codec and inference latency approximately equals the simulation
update interval, the additional delay introduced to the simulation environment becomes negligible,
as it aligns with the natural timing cycle of the control loop. However, in the current implementa-
tion, the control command is applied in the same simulation step after inference, so the latency is
primarily determined by the simulation step and the inference time.

A.8 OUR MOTIVATION AND FUTURE WORK

In this section, we simply present the need for advancing tactile compression. The development
of this tactile codec benchmark is motivated by three critical challenges in practical robotics appli-

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) Visualization of cube grasping in the simulation.

(b) Visualization of ball grasping in the simulation.

(c) Visualization of ice tea grasping in the real world.

(d) Visualization of box grasping in the real world.

Figure 11: Visualization of grasping sequences in the simulation and real-world experiments.

cations. First, for dexterous manipulation, tactile data from high-resolution sensor arrays on robot
hands can consume a significant portion of the available bandwidth. This is analogous to the Cortical
Homunculus, where the hands claim a disproportionately large share of neural resources. The lim-
ited bandwidth of low-cost microcontrollers (MCUs) embedded in such hands creates a fundamental
bottleneck for real-time sensorimotor control.
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Raw Data
Jpeg2000(qp=30)
Jpeg2000(qp=40)

Figure 12: Visualization of tactile signals in the real-world experiments with JPEG2000 as the codec.

Raw Data
Jpegxl(qp=12)
Jpegxl(qp=20)

Figure 13: Visualization of tactile signals in the real-world experiments with JPEG-XL as the codec.

Second, in robotic tele-operation systems, achieving stable and transparent remote control requires
low-latency, high-fidelity transmission of tactile signals. Effective compression is paramount to
close the feedback loop for delicate tasks, enabling true physical understanding and interaction at a
distance.
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Figure 14: Visualization of tactile signals in the real-world experiments with BPG as the codec.
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Figure 15: Visualization of tactile signals in the real-world experiments with VTM as the codec.

Third, to scale up in the field of embodied intelligence, the creation of large-scale training datasets
necessitates efficient storage solutions. Specifically, Google introduced Open X-Embodiment
Dataset, the largest open-source real robot dataset to date. It contains 1M+ real robot trajectories
(download size is 8965 GB) O’Neill & Rehman (2024). While video compression is mature, spe-
cialized algorithms for tactile data remain underdeveloped, hindering our ability to build and manage
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Figure 16: Visualization of tactile signals in the simulation experiments with JPEG2000 as the codec.
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Figure 17: Visualization of tactile signals in the simulation experiments with JPEG-XL as the codec.

the vast datasets required for training generalist robotic models. These pressing needs collectively
motivate the establishment of a rigorous benchmark to advance the field of tactile data compression.

For the future work, we will develop a video-like tactile codec by retraining the tactile dataset using
the latest neural video compression models, like DCVC-serier models.
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Figure 18: Visualization of tactile signals in the simulation experiments with BPG as the codec.
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Figure 19: Visualization of tactile signals in the simulation experiments with VTM as the codec.

A.9 LLM USAGE STATEMENT

Large Language Models (LLMs) were not used during the research, experimentation, or analysis
phases of this work. During the manuscript preparation, LLMs were used solely for minor grammar
and language refinements. No content, ideas, or technical writing was generated by LLMs.
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