
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIZE-AWARE COMPRESSION OF 3D GAUSSIANS WITH
FINE-GRAINED MIXED PRECISION QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose a method to automatically select hyperparameters to
compress 3D Gaussians to a target file size while maximizing visual quality. We
iteratively search for a hyperparameter configuration until the file size meets the
specified budget. However, existing compression frameworks require complet-
ing the entire compression process to determine the compressed file size, which
is time-consuming. To accelerate this, we design a tailored size estimator for
frameworks that can determine hyperparameters without requiring fine-tuning.
Although the finetuning-free frameworks are more predictable, they typically un-
derperform compared to fine-tuning-based approaches, which utilize end-to-end
differentiable structures to achieve superior results. To close this performance gap,
we propose a mixed-precision quantization strategy that exploits the heterogene-
ity of attribute channels by compressing each channel with different bit-widths.
The resulting combinatorial optimization problem is efficiently solved using 0-1
integer linear programming. Additionally, we partition each attribute channel into
blocks of vectors, quantizing each vector based on the optimal bit-width deter-
mined in the previous step. The block length is then determined via dynamic pro-
gramming. Our method identifies hyperparameter settings that meet the target file
size within 70 seconds, outperforming state-of-the-art methods in both efficiency
and quality. Extensive experiments demonstrate that our approach significantly
enhances the performance of fine-tuning-free methods, with its upper-bound per-
formance comparable to that of fine-tuning-required techniques.

1 INTRODUCTION

In recent years, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged as a popular research
topic due to its excellent quality and real-time rendering speed in novel view synthesis. 3DGS rep-
resents a 3D scene using a set of neural Gaussians initiated from Structure-from-Motion (SfM) with
learnable attributes such as color, shape, and opacity. The 2D images can be effectively rendered
using differentiable rasterization and end-to-end training is enabled. Meanwhile, benefiting from
efficient CUDA implementation, real-time rendering is achieved. Despite its success, 3DGS still en-
counters limitations in storage efficiency. For example, 5.27106 Gaussians are required to represent
the bicycle scene in the Mip-NeRF 360 dataset (Barron et al., 2022), occupying 1.3 GB of storage
under 32-bit float precision. This sizable file poses challenges in transmission and storage. Hence, a
tailored codec for 3D Gaussians is required.

Current 3D Gaussian compression frameworks can be categorized into two types: finetuning-
free (Xie et al., 2024; Niedermayr et al., 2024; Fan et al., 2023; Papantonakis et al., 2024) and
finetuning-required (Lee et al., 2024; Chen et al., 2024; Morgenstern et al., 2024; Papantonakis et al.,
2024; Wang et al., 2024). The finetuning-free approach allows direct compression of a fully-trained
3DGS using given hyperparameters, without any additional training. In contrast, the finetuning-
required approach involves training a module from scratch as part of the compression process, such
as learning a pruning mask (Lee et al., 2024) or a context model (Chen et al., 2024). To compress
the 3DGS to meet a specific size budget while achieving optimal visual quality, we have to itera-
tively search for a hyperparameter configuration until the file size meets the size budget. However,
neither of these frameworks cannot support such an operation because they require completing the
entire compression process to determine the final file size. For example, finetuning-free methods

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

like MesonGS typically take about one minute to complete compression, while finetuning-required
methods can take up to 20 minutes, as they need to learn a pruning mask from scratch to remove
Gaussian points. In addition, the file size fluctuates during the finetuning process, making the final
size harder to predict. As a result, we chose MesonGS (Xie et al., 2024), a finetuning-free method,
as the foundation of our approach and designed a tailored size estimator for it.

As ScaffoldGS (Lu et al., 2024) became a mainstream basemodel for 3D Gaussian compression, we
first migrate MesonGS to ScaffoldGS. Then, we design a size estimator tailored to the ScaffoldGS-
based MesonGS, which can predict the final size with negligible latency under a given hyperparam-
eter setting. Based on the size estimator and the observation of heterogeneity across channels of
attributes, we formulate the size-aware mixed-precision quantization as an Integer Linear Program-
ming (ILP) problem to find the best bit-precision setting. Compared to the contemporary work (Chen
et al., 2024) - HAC, our approach leverages the differences between different channels of attributes,
while HAC cheats the different channels of attributes as the same. Furthermore, given the number
of blocks, we have to slice each channel of attributes into multiple blocks, we propose a dynamic
programming to determine the length of each block. Our main contributions can be listed as follows:

• We propose an estimator to predict the final size of compressed 3D Gaussians before com-
pression. This Size Estimator can help quickly search for hyperparameter settings that meet
the size budget while maximizing visual quality.

• Based on the estimator, we propose a size-aware hierarchical mixed precision quantization
scheme. On the inter-attribute level, we formulate mixed bit-width selection as a 0-1 ILP
problem subject to the size. On the intra-attribute level, we propose a high-speed dynamic
programming algorithm to solve the mixed block-length setting inside a channel.

• Our method can find hyperparameter settings that meet the size budget and maximize visual
quality within 70 seconds, which is 100× faster than baselines. Furthermore, our mixed-
precision method addresses the shortcomings of fine-tuning-free approaches, achieving per-
formance comparable to or even better than state-of-the-art results across multiple datasets.

2 RELATED WORK

2.1 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (Kerbl et al., 2023) is a novel method for reconstructing 3D scenes from 2D
images. It represents a scene using a set of 3D Gaussian distributions, which are small, fuzzy blobs.
These Gaussians capture the density, color, and opacity of the scene. It is faster and less memory-
intensive than previous methods like NeRF (Mildenhall et al., 2021) and can produce high-quality,
smooth results with fewer artifacts. Recently, a lot of work has been proposed for compressing
3D Gaussians. At first, they focused on compressing 3DGS model (Niedermayr et al., 2024; Lee
et al., 2024; Girish et al., 2024; Morgenstern et al., 2024; Navaneet et al., 2024; Papantonakis et al.,
2024; Fan et al., 2023; Xie et al., 2024). But now, many works pay attention to compressing a more
efficient GS model (Fang & Wang, 2024; Lu et al., 2024), in which ScaffoldGS (Lu et al., 2024)
became the hot spot. It proposed to divide anchors into voxels and introduce an anchor feature
for each voxel to grasp the common attributes of neural Gaussians in the voxel, i.e., the neural
Gaussians are predicted by the anchor features. HAC (Chen et al., 2024) recognized the advantages
of ScaffoldGS and proposed a tailored compression method for it, extracting a context from the 3D
coordinates to guide the quantization steps and entropy encoding parameters. ContextGS (Wang
et al., 2024) divides anchors into hierarchical levels and encodes them progressively. However,
existing compression frameworks for ScaffoldGS often require training from scratch, and thus the
size varies greatly over time, making size estimation under given hyperparameters challenging. This
paper transfers the relatively easy-to-estimate MesonGS to ScaffoldGS and conducts an in-depth
analysis of the compression components of MesonGS to build a nearly delay-free size estimator.

2.2 MIXED-PRECISION QUANTIZATION

Significant efforts have recently been made to improve the trade-off between the accuracy and ef-
ficiency of neural networks. A promising direction is to use mixed-precision quantization (Wang
et al., 2019; Dong et al., 2019; 2020; Yao et al., 2021; Tang et al., 2022). However, the challenge

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

with this approach is to find the right mixed-precision setting for the different layers of neural net-
works. A brute force approach is not feasible since the search space is exponentially large in the
number of layers. HAQ (Wang et al., 2019) proposes to employ reinforcement learning (RL) to
search this space. However, this RL-based solution requires tremendous computational resources.
HAWQ (Dong et al., 2019; 2020; Yao et al., 2021) proposes first to assign each layer a sensitiv-
ity score with the Hessian spectrum and then formulate an ILP solution that can generate mixed-
precision settings with various constraints (such as model size, BOPS, and latency). Unlike the
challenges faced by neural networks, all attributes of 3DGS are equivalent to the weights in neural
networks, and two levels of mixed precision need to be selected: inter-attributes and intra-attributes.
Moreover, 3DGS demands a higher compression speed than neural networks. We identify an oppor-
tunity to apply mixed precision quantization to attributes of the GS model and propose a hierarchical
scheme to quickly determine the optimal mixed-precision setting for the attribute. Besides, 3DGS
compression has 16 bit options available, far exceeding 2 bit options of HAWQ (INT4 and INT8).
Directly using the integer programming formulation from HAWQ3 makes it difficult to achieve good
results. To address this, we establish a more general and fast 0-1 integer programming formulation
to determine the optimal bit-width for each attribute channel.

3 PRELIMINARY

3D-GS (Kerbl et al., 2023) is an explicit 3D scene representation in the form of point clouds, utilizing
Gaussians to model the scene. Each Gaussian is characterized by a covariance matrix Σ and a center
point µ, which is referred to as the mean value of the Gaussian: G(x) = e−

1
2 (x−µ)⊤Σ−1(x−µ). To

maintain the positive definiteness of the covariance matrix Σ, 3D-GS decomposes Σ into a scaling
matrix S = diag(s), s ∈ R3 and a rotation matrix R: Σ = RSS⊤R⊤. The rotation matrix R is
parameterized by a rotation quaternion q ∈ R4. The backpropagation process is illustrated in (Kerbl
et al., 2023).

When rendering novel views, the technique of splatting (Zwicker et al., 2001a; Yifan et al., 2019)
is employed for the Gaussians within the camera planes. As introduced by (Zwicker et al., 2001b),
using a viewing transform denoted as W and the Jacobian J of the affine approximation of the
projective transformation, the covariance matrix Σ′ in camera coordinates system can be computed
by Σ′ = JWΣW⊤J⊤.

In summary, each element of 3D Gaussians has the following parameters: (1) a 3D center µ ∈ R3;
(2) a rotation quaternion q ∈ R4; (3) a scale vector s ∈ R3; (4) a color feature defined by spherical
harmonics coefficients SH ∈ Rh, with h = 3(d + 1)2, where d is the harmonics degree; and
(5) an opacity logit o ∈ R. Specifically, for each pixel, the color and opacity of Gaussians are
computed using G(x). The blending of N ordered points that overlap the pixel is given by: C =∑

i∈N ciαi

∏i−1
j=1(1− αj). Here, ci and αi represent the density and color of this point computed

by a Gaussian with covariance Σ multiplied by a per-point opacity and SH color coefficients.

Scaffold-GS (Lu et al., 2024) is a variant of 3DGS, widely adopted in 3DGS compression due to
its low storage requirements. It introduces anchor points to capture common attributes of local 3D
Gaussians. Specifically, the anchor points are initialized from neural Gaussians by voxelizing the
3D scenes. Each anchor point has a context feature f ∈ R32, a location x ∈ R3, a scaling factor
l ∈ R6 and k learnable offset O ∈ Rk×3. Given a camera at xc, anchor points are used to predict
the view-dependent neural Gaussians in their corresponding voxels as follows,

{ci, ri, si, αi}ki=0 = F (f ,σc, d⃗c), (1)

where σc = ||x − xc||2, d⃗c = x−xc

||x−xc||2 , the superscript i represents the index of neural Gaussian
in the voxel, si, ci ∈ R3 are the scaling and color respectively, and ri ∈ R4 is the quaternion for
rotation. In the left side of the Fig. 1, the positions of neural Gaussians are then calculated as

{µ0, ...,µk−1} = x+ {O0, ...,Ok−1} · l:3, (2)

where x is the learnable positions of the anchor and l:3 is the base scaling of its associated neural
Gaussians. After decoding the properties of neural Gaussians from anchor points, other processes
are the same as the 3DGS (Kerbl et al., 2023). By predicting the properties of neural Gaussians from
the anchor features and saving the properties of anchor points only, Scaffold-GS greatly eliminates
the redundancy among 3D neural Gaussians and decreases the storage demand.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Octree

Attributes 𝒜 = {𝐟, 𝐥, 𝐎}	

𝐟 ∈ ℝ𝟑𝟐

𝐥 ∈ ℝ𝟔
…

𝐨 ∈ ℝ𝟑𝑲
scaling

features

offsets

𝐱 ∈ ℝ𝟑(𝑥, 𝑦, 𝑧) location

RAHT

𝑛% channels

……

DC

AC

Point Pruning ……

{𝑞&, 𝑞', … , 𝑞(!}
Mixed bit-widths

Anchor Point

𝑙'

𝑙)

𝑙*

Mixed block-lengths
{𝑙', 𝑙), … , 𝑙("}

Scale & Zero Metadata

DC coeff.

Quantized AC Octree

Mixed Precision Quantization (4.2&4.3) Entropy codingSize Estimator (4.1) 𝜏 𝑑 𝑛+
MLPA quantization unit

Figure 1: Overview. The left side shows the process of generating 3D Gaussian splats from the
anchor points, along with the data associated with them, including features, scaling, offsets, and
location. Then, from the middle to the right, the figure illustrates how the MesonGS compression
framework is applied to ScaffoldGS representation. The specific process involves pruning unimpor-
tant anchor points, performing voxelization on the locations to generate an octree, applying Region
Adaptive Hierarchical Transform (RAHT) to the attributes based on the voxelized locations to gener-
ate DC and AC coefficients, then quantizing the AC coefficients using hierarchical mixed-precision
quantization, and finally packing all the elements. The design of the Size Estimator is based on
the MesonGS framework, which first determines the pruning ratio τ , octree depth d, and number of
blocks nb. Subsequently, the size estimator can also help solve the bit-width settings for each chan-
nel of attributes, given a specified size budget (Sec. 4.2). Finally, we use dynamic programming
to further optimize the block partitioning for each channel, enhancing the compression within the
given size budget.

4 METHODOLOGY

4.1 SIZE ESTIMATOR FOR COMPRESSED 3D GAUSSIAN FILE

Estimating the file size for compressed 3DGS is nontrivial. First, the difficulty of size estimation
varies across different frameworks. We observe that the more modules that require training, the
harder it becomes to estimate the final file size. The learnable masking module proposed by (Lee
et al., 2024) requires training; in HAC (Chen et al., 2024), context information extracted from the
coordinates (represented using a Hash Grid) needs to be trained from scratch, as well as the hyper-
parameters used for entropy coding. These representations, which need to be learned from scratch,
result in a compressed file size that is difficult to predict. In contrast, frameworks like MesonGS,
which allow for offline compression, are easier to predict since none of the modules require training.
As shown in Fig. 2a, the final file size of HAC fluctuates continuously during training, while the
size of MesonGS remains very stable with almost no variation. Therefore, we adopt the MesonGS
framework for compression.

Since ScaffoldGS is currently the base model of the state-of-the-art 3D Gaussian compression
works (Chen et al., 2024; Wang et al., 2024; Bagdasarian et al., 2024), we also adopt it as the
base model for our approach. Hence, we migrate MesonGS onto ScaffoldGS and the compression
process can be summarized as follows. As illustrated in the middle of Fig. 2, we first calculate the
importance of each anchor point by averaging the importance of Gaussian splats generated by it.
Then, we prune the anchor points based on a hyperparameter pruning percentage τ . The coordinates
of the anchor points are voxelized to form an Octree. For anchor points within the same voxel, we
average the attributes to ensure that each voxel corresponds to only one anchor point. We denote
the number of points that after pruning and voxelization as N . Based on the voxelized coordinates,
we apply region-adaptive hierarchical transform (RAHT) to all attributes, which produces the DC
and AC coefficients. DC coefficients are stored in float format while the AC coefficients are then
quantized in a block-wise manner. We denote the channels of attributes as M . Here, block-wise
quantization means dividing each channel’s attributes into K blocks and then quantizing each block
into the bit width of 8. Here, elements in a block share the same scale and zero-point parameters. Fi-
nally, all components are compressed by LZ77 (Gailly & Adler, 2003; Ziv & Lempel, 1977; 1978)
codec as shown in the right side of the Fig. 1. The metadata includes the octree depth d and the
number of blocks K.

By analyzing the above compression process, we identify the hyperparameters that impact the final
model size are pruning percentage τ , octree depth d, and the number of blocks K. First, to simplify

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

20 40 60 80 100
Progress rate (%)

20

40

60

80

M
od

el
 S

iz
e

(M
B

)

HAC Meson_Scaffold

(a) Size fluctuation.

20 40 60
Pruning percent (%)

0

20

40

60

Si
ze

 (M
B

)

truck
playroom

lego
bicycle

(b) Size vs. τ .

3.75 3.80 3.85 3.90 3.95
Model Size (MB)

34.25

34.29

34.33

34.37

34.41

P
S

N
R

 (d
B

)

Opacity
Rotation
SH0
Scale
Baseline

(c) Intra-attribute.

3.72 3.76 3.80 3.84
Model Size (MB)

34.24

34.28

34.32

34.36

34.40

PS
N

R
 (d

B
)

Baseline
Scale-mix

(d) Inter-attribute.

Figure 2: Motivation of size estimation and mixed precision quantization.

the influence of voxelization on the final size, we aim to provide the finest possible subdivision. This
ensures that the octree depth is sufficient, so the number of anchor points is minimally reduced after
voxelization. Next, we consider the effect of the pruning percentage on the final size. As shown
in Fig. 2b, we observe a linear relationship between the pruning percentage and the final file size.
Finally, as MesonGS quantizes all of the blocks into the same bit width, we can estimate the bit-
width of the compressed AC coefficient as (N − 1) ∗ H ∗ 8. In summary, given a fixed pruning
percentage τ , the final file size S can be estimated using the following equation:

S =
1

8
((N − 1) ∗H ∗ 8︸ ︷︷ ︸

AC

+H ∗ 32︸ ︷︷ ︸
DC

+N ∗ 64︸ ︷︷ ︸
Octree

+H ∗K ∗ 32 ∗ 2︸ ︷︷ ︸
Scales & Zero points

+ 2 ∗ 32︸ ︷︷ ︸
depth,K

) + 50 ∗ 1024︸ ︷︷ ︸
MLP

. (3)

This size estimator formula is built for a universal bit-width setting. We will update this formula in
Sec. 4.2 and Sec. 4.3 to ensure that the final size prediction is accurate.

4.2 INTER-ATTRIBUTE MIXED PRECISION QUANTIZATION

Although post-training compression techniques like MesonGS are more convenient for estimating
the final size, pre-fixing hyperparameters hinder the model from achieving optimal performance.
The core reason lies in the fact that MesonGS uses a uniform quantization precision, which prevents
it from obtaining better compression results. As shown in Fig. 2, we observe that different attributes
are better suited to varying levels of compression granularity. Moreover, a block strategy with mixed
granularity yields better results for the same attribute. Besides, attributes occupy over 90% of the
final storage, further compressing them offers the greatest potential benefit.

Uniformly quantizing all the attributes to low-bitwidth (e.g. INT4) could lead to significant quality
degradation. However, it is possible to benefit from low-precision quantization by keeping a sub-
set of sensitive attributes at high precision. The basic idea is to keep sensitive channels at higher
precision and insensitive layers at lower precision. An important component of MPGS is that we
directly consider the size metric, to select the bit-precision configuration. Previous methods have
been unable to control the file size of the GS model. For example, given a desired file size, it has
been difficult to identify the bit configuration that is closest to this size while achieving the optimal
quality. In this work, we formalize the problem as an Integer Linear Programming (ILP) problem.

Assume that for each attribute channel, there are B quantization options (e.g., 2 options for INT4 or
INT8). For the AC coefficients with H attribute channels, the search space of the ILP is BH . The
objective of solving the ILP is to find the best bit configuration among these BH possibilities that
optimally balances information loss Ω and the user-specified file size. Each bit-precision setting can
lead to a different model perturbation. To simplify the problem, we assume that the perturbations of
each channel are independent of one another. This allows us to precompute the information loss of
each channel separately, and it only requires BH computations. For the information loss metric, we
use the mean square error between the original attributes and the restored attributes1. Formally, we
can precompute the information loss matrix Ω ∈ RH×B with:

Ω(i, j) = ∥ ˆAj
i −Ai∥2. (4)

1Similar assumption can be found in (Dong et al., 2019; 2020).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The ILP problem tries to find the right bit precision Q ∈ {0, 1}H×B that minimizes the information
loss, as follows:

Objective: Ω⊙Q, (5)
Subject to: S(Q) ≤ Model Size Limit, (6)

∀i ∈ {0, ...,H − 1},
B∑

j=0

Qi,j = 1. (7)

Here, S(·) denotes the compressed file size of the GS model under the bit-configuration of Q. Here,
to adapt the size estimator to mixed bit-widths, we replace the size estimation term of AC 8(N−1)H
with (N−1)wQ in Eq. 3, where w is [1, 2, ..., B]. We set B as 16. Note that we cannot solve out the
bit-width setting if there is no size estimator. Since the number of blocks and the bit-width setting
influence each other, we fix the number of blocks and only adjust the bit-width.

We solve this 0-1 ILP using open source PULP library (Roy & Mitchell, 2020) in Python, where we
found that for all the configurations tested in the paper, the solver can find the solution in less than 1
second given the sensitivity metric.

4.3 INTRA-ATTRIBUTE MIXED PRECISION QUANTIZATION

Given a desired model size limitation, the ILP solver in Sec. 4.2 generates optimal intra-attribute
bit precision configurations for different channels of attributes. In this part, we develop methods at
the single attribute level to optimally slice a channel of attribute into nb blocks. Our optimization
goal is to minimize the permutation loss for each channel of the attribute when slicing a channel of
attributes into ns blocks. Note that the size of each block does not have to be the same.

Assume that we want to split a channel of attributes with length N into K blocks, noted as
{b1, b2, ..., bK}, and then quantize each block to q bits. We denote the start index of each block as
{n1, n2, ..., nK}. Our goal is to minimize the information loss caused by block-wise quantization.
Following the metrics proposed by mixed precision quantization for deep learning models (Dong
et al., 2019; 2020; Yao et al., 2021), the minimal information loss for quantizing this channel of
attribute is written as:

L∗ = min
n1,n2,...,nK

{∑
i

L(ni, ni+1)

}
, L(ni, ni+1) =

∥b̂i − bi∥2

ni+1 − ni
, (8)

where b̂i refers to the vector that dequantized from the quantized bi. We measure the information
loss of quantizing a block vector as the mean square error between b̂i and bi.

DP formulation. To find L∗, we develop a DP algorithm. Specifically, we use the function F (k, l)
to represent the minimal total information loss when slicing the l elements into k blocks. We start
with F (0, 0) = 0, and derive the optimal substructure of F as follows:

F (k, l) = min
0<i≤l−k

{Ll−i,l + F (k − 1, l − i)}. (9)

Complexity. Our DP algorithm first iterates over all possible k and l. Then, for each F (k, l), the
DP algorithm traverses through l − k combinations to select the one with the minimum loss. For
each combination, we iterate through blocks of length i to compute the information loss. The overall
complexity is O(KN(N − K)2). Since K ≪ N , the final complexity becomes O(KN3). Here,
N represents the length of the attribute, which is also the number of points in the GS model. Hence,
this complexity is not feasible in practice because the number of points in a typical ScaffoldGS
model is around 80, 000. To accelerate this DP process, we limit the step size for each DP iteration
to multiples of U , reducing the complexity to O(K(N/U)3).

Note that incorporating mixed block lengths does not significantly affect the final file size. For
mixed block length quantization, we only need to record the starting index of each block to ensure
decompression. The size of these indices is generally 32NH .

Besides, although HAC employs mixed-precision quantization, its granularity is relatively coarse.
The reason is that the quantization granularity of HAC is cross-channel, whereas our method em-
ploys a finer-grained, intra-channel quantization. More illustrations are provided in the Appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Latency and quality of searched results, under a file size budget.

Method Target Size (B) PNSR SSIM LPIPS Searched Size (B) Search Time (s)
HAC 30,000,000 25.07 0.7424 0.2633 29,999,969 7725.32
Our 25.16 0.7446 0.2606 29,946,299 67.42

4.4 SEARCHING AND FINETUNING

Given a target file size, we first randomly select two τ values and perform the compression process
under 8-bit precision to obtain the final file sizes. Then, we substitute these results into the equation
size = ατ + β to solve for the parameters α and β, as illustrated in Fig 2b. Afterward, we can
solve for the τ corresponding to the target file size. Finally, we employ ILP and DP to determine the
bit-width and block length settings.

During fine-tuning, we fix the pruning mask and the 3D coordinate. We noticed that the fine-tuning
speed of the MesonGS is relatively slow and found this is due to MesonGS applying quantization
block by block. To accelerate this process, we implemented a CUDA kernel to parallelly run the
block-wise quantization.

5 EXPERIMENTS

Datasets. We conduct experiments on four datasets: 1) Mip-NeRF 360 (Barron et al., 2022). This
dataset contains five outdoor and four indoor scenes. Each scene contains 100 to 300 images. We use
the images at 1600×1063. 2) Tank & Temples (Knapitsch et al., 2017). This dataset contains two
scenes, including train and truck. 3) Deep Blending (Hedman et al., 2018). This dataset contains
two scenes, including drjohnson and playroom. 4) Synthetic-NeRF (Mildenhall et al., 2021). This
is a view synthesis dataset consisting of 8 synthetic scans, with 100 views used for training and 200
views for testing.

Baselines. We compare our method with the following baselines: 3DGS (Kerbl et al., 2023), Scaf-
foldGS (Lu et al., 2024), C3DGS (Niedermayr et al., 2024), Lee et al. (Lee et al., 2024), Light-
Gaussian Fan et al. (2023), EAGLES (Girish et al., 2024), SOGS (Morgenstern et al., 2024), Com-
pact3D (Navaneet et al., 2024), ReduGS Papantonakis et al. (2024), MesonGS (Xie et al., 2024),
HAC (Chen et al., 2024), DVGO (Sun et al., 2022), VQRF (Li et al., 2023), and ACRF (Fang
et al., 2024). Quantitative results of baseline methods are derived from HAC (Chen et al., 2024) and
MesonGS (Xie et al., 2024), while the qualitative results are produced from our experiments.

5.1 EXPERIMENTAL RESULTS

End-to-end Performance. Our method is proposed to solve the problem of automatically selecting
hyperparameters to compress 3D Gaussians under a size budget while maximizing visual quality. We
evaluate this ability of our method via latency and quality metrics. In Tab. 1, our method is 100×
faster than HAC and achieves better compression quality. Here, the latency of the HAC baseline
is measured by tuning the hyper-parameter λe. We tried λe from 0.04 to 0.037, 4 times, to find a
suitable file size of HAC.

Quantitative Comparison. The quantitative compression results of different methods are presented
in Tab. 2 and Fig. 4. Our method outperforms most others across all three datasets and achieves
performance comparable to the SOTA method – HAC, demonstrating that MPQ effectively addresses
the shortcomings of post-training compression methods. We also provide a comparison with NeRF
compression, as shown in Tab. 3. Our method achieves better performance with a smaller file size.

Qualitative Comparison. The qualitative results are depicted in Fig. 3. We present the render-
ing results and the corresponding error maps. From the error maps, it is evident that our method
handles chair reflections better than other methods while achieving rendering results comparable to
ScaffoldGS.

Encoding and Decoding Time Comparison. We also compare the encoding and decoding time
of the ScaffoldGS-based approach in Tab. 4. For consistency and fairness across all experiments,
we utilize a virtual machine equipped with 14 vCPU of Intel(R) Xeon(R) Platinum 8362 CPU @

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Quantitative results of our approach and others. The best and 2nd best results are high-
lighted in red and yellow cells. Note that we do not consider 3DGS and ScaffoldGS when high-
lighting this. The size is measured in MB.

Method Mip-NeRF 360 Tank&Temples Deep Blending
PSNR SSIM LPIPS Size PSNR SSIM LPIPS Size PSNR SSIM LPIPS Size

3D-GS 27.49 0.813 0.222 744.7 23.69 0.844 0.178 431.0 29.42 0.899 0.247 663.9
ScaffoldGS 27.50 0.806 0.252 253.9 23.96 0.853 0.177 86.50 30.21 0.906 0.254 66.00
Lee et al. 27.08 0.798 0.247 48.80 23.32 0.831 0.201 39.43 29.79 0.901 0.258 43.21
C3DGS 26.98 0.801 0.238 28.80 23.32 0.832 0.194 17.28 29.38 0.898 0.253 25.30
EAGLES 27.15 0.808 0.238 68.89 23.41 0.840 0.200 34.00 29.91 0.910 0.250 62.00
LightGaussian 27.00 0.799 0.249 44.54 22.83 0.822 0.242 22.43 27.01 0.872 0.308 33.94
SOGS 26.01 0.772 0.259 23.90 22.78 0.817 0.211 13.05 28.92 0.891 0.276 8.40
Compact3d 27.16 0.808 0.228 50.30 23.47 0.840 0.188 27.97 29.75 0.903 0.247 42.77
ReduGS 27.10 0.809 0.226 29.00 23.57 0.840 0.188 14.00 29.63 0.902 0.249 18.00
MesonGS 26.98 0.801 0.233 28.77 23.32 0.837 0.193 16.99 29.51 0.901 0.251 24.76
HAC 27.53 0.807 0.238 15.26 24.04 0.846 0.187 8.10 29.98 0.902 0.269 4.35
Our-big 27.65 0.809 0.235 21.63 24.01 0.835 0.200 11.99 30.25 0.904 0.271 5.99
Our-middle 27.45 0.806 0.241 17.62 23.94 0.835 0.198 10.24 30.14 0.901 0.276 7.42
Our-small 27.21 0.799 0.251 13.54 23.80 0.834 0.202 8.28 29.82 0.896 0.287 4.53

Ground Truth C3DGS
47.14 MB

ScffoldGS
248MB

Lee et al
62.99 MB

EAGLES
102 MB

SOGS
22.00 MB

ReduGS
48.00 MB

MesonGS
46.70 MB

HAC
28.61 MB

Ours
28.55 MB

Figure 3: Qualitative results (bicycle) of our method and other baselines. We present the rendering
results (rows 1 and 3) along with the corresponding error maps (rows 2 and 4).

2.80GHz and an NVIDIA 3090 RTX GPU. The encoding time here refers to the training time per
iteration. The decoding speed of our method is faster. In addition, our CUDA implementation boosts
the speed by 2.69×.

Table 3: Quantitative comparison on Synthetic-
NeRF.

Method PNSR SSIM LPIPS Size (MB)
DVGO 31.90 0.956 0.035 105.92
VQRF 31.77 0.954 0.036 1.43
ACRF 31.79 0.954 0.037 1.15
Our 32.41 0.960 0.043 1.10

Table 4: We compare the encoding (Enc) and
decoding (Dec) times with HAC and MesonGS.

Method Enc (s) Dec (s)
HAC 0.07 8.78
MesonGS 110.02 4.86
Our (w/o CUDA) 6.87 1.00
Our 2.55 1.00

5.2 ABLATION STUDY

Unless otherwise specified, the following experiments are all conducted on the bicycle scene of the
Mip-NeRF 360 dataset.

0-1 ILP Superiority in Searching Bit-widths. In solving the optimal bit-width setting for differ-
ent attribute channels, we also demonstrate the superiority of the 0-1 ILP. As shown in Tab. 5, we
experimented with widely-used General ILP (Yao et al., 2021) and genetic algorithms (Guo et al.,
2020; Tang et al., 2024), both of which proved inferior. The 0-1 ILP fully utilizes the size budget

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

100 200
Size (MB)

26

27

PS
N

R
 (d

B
)

Mip-NeRF 360

Ours HAC ScaffoldGS Lee et al C3DGS EAGLES ReduGS SOGS MesonGS

20 40 60 80
Size (MB)

23

24

PS
N

R
 (d

B
)

Tank&Temples

20 40 60
Size (MB)

29

30

PS
N

R
 (d

B
)

DeepBlending

Figure 4: RD curves for quantitative comparisons.

Table 5: 0-1 ILP can search out better results.

Method Target size (B) Searched size (B) ∆ size (B) Information loss
Genetic algorithm

30000000
21,833,128 8,166,872 42,821,038

General ILP 28,934,805 1,065,195 1,258,394
0-1 ILP (Our) 29,831,203 168,797 11,826

while minimizing information loss. General ILP involves variables ranging from 1 to 16. In con-
trast, 0-1 ILP’s binary values offer finer control, easier integration of constraints, and more efficient
solution techniques. Genetic algorithms, though suited for non-linear or black-box problems, handle
constraints less efficiently, making them unsuitable for our linear programming structure.

Effectiveness of MPQ. As shown in Fig. 5, we evaluate the effectiveness of each component of
our proposed framework. The “baseline” refers to applying MesonGS to ScaffoldGS. We start with
the baseline method and progressively incorporate inter-attribute MPQ and intra-attribute MPQ. The
results show that the performance is consistently improved with the addition of each module, which
proves the effectiveness of hierarchical MPQ.

Robustness Evaluation. We evaluated the file size and corresponding performance of the searching
algorithm under different numbers of blocks. As shown in Tab. 6, for varying numbers of blocks and
different target sizes, our method consistently finds appropriate bit-width settings, ensuring that the
final file size is close to the target while maintaining optimal visual quality. Regardless of the block
number setting, the final file size and performance are similar, indicating that our method is robust
to the number of blocks.

Why Fixing the Coordinates? We also explore the necessity of updating coordinates during train-
ing. Specifically, we rewrite the backpropagation rules for the voxelization process of the Octree.
If, during the forward pass, points within a voxel are deduplicated by averaging, the gradient of that
voxel will be evenly distributed to the corresponding points during backpropagation. We find that
once backpropagation is enabled for the Octree, the loss fluctuates significantly, ultimately leading
to worse fine-tuning results compared to keeping the coordinates fixed.

6 CONCLUSION

In this paper, we propose a fine-grained mixed precision compression work to solve the problem
of automatically selecting hyper-parameters to compress 3D Gaussians to a target file size while
maximizing the visual quality. We propose several key components, including the selection of base
model - ScaffoldGS, the selection of compression framework - MesonGS, the size estimator, the
inter-attribute mix-precision quantization, and the intra-attribute mix-precision quantization. Ex-
tensive experimental results validate the effectiveness of our size-aware 3D Gaussians compression
methodology, showcasing a remarkable improvement in the size control of the 3D Gaussian com-
pression and better compression quality compared to SOTA methods. Our method lays the founda-
tion for providing a more controllable solution for the following transmission or streaming tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 8 9 10 11 12
Model Size (MB)

21

22

23

24

PS
N

R
 (d

B
)

Baseline
+InterMPQ
+IntraMPQ

Figure 5: Effectiveness of MPQ.

Table 6: Robustness Evaluation. Mixed-precision
quantization can adapt to different K, ensuring
that the visual quality within a given size is not
affected by the K.

N TgtSize PSNR LPIPS SrchSize
40

28.62
25.16 0.2606 28.55

30 25.15 0.2628 29.13
50 25.17 0.2610 29.09
40

19.08
25.05 0.279 19.46

30 25.01 0.283 19.21
50 25.08 0.278 19.59

REFERENCES

Milena T. Bagdasarian, Paul Knoll, Florian Barthel, Anna Hilsmann, Peter Eisert, and Wieland
Morgenstern. 3dgs.zip: A survey on 3d gaussian splatting compression methods, 2024. URL
https://arxiv.org/abs/2407.09510.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5470–5479, 2022.

Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac: Hash-grid assisted
context for 3d gaussian splatting compression. In European Conference on Computer Vision,
2024.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. HAWQ: Hes-
sian AWare Quantization of neural networks with mixed-precision. In The IEEE International
Conference on Computer Vision (ICCV), October 2019.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer.
HAWQ-V2: Hessian aware trace-weighted quantization of neural networks. In Advances in neu-
ral information processing systems (NeurIPS), 2020.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaus-
sian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint
arXiv:2311.17245, 2023.

Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number of
gaussians. In European Conference on Computer Vision, 2024.

Guangchi Fang, Qingyong Hu, Longguang Wang, and Yulan Guo. ACRF: Compressing explicit
neural radiance fields via attribute compression. In International Conference on Learning Repre-
sentations(ICLR), 2024.

Jean-loup Gailly and Mark Adler. Zlib general purpose compression library. User manual for zlib
version, 1(4), 2003.

Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians
with lightweight encodings. In European Conference on Computer Vision, 2024.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XVI 16, pp. 544–560. Springer, 2020.

10

https://arxiv.org/abs/2407.09510

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG), 37(6):1–15, 2018.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics (ToG), 42(4):1–14,
2023.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. CVPR, 2024.

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Liefeng Bo. Compressing volumetric radi-
ance fields to 1 mb. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4222–4231, 2023.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654–20664, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. Compact 3d scene rep-
resentation via self-organizing gaussian grids. In European Conference on Computer Vision.
Springer, 2024.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compgs: Smaller and faster gaussian splatting with vector quantization. ECCV, 2024.

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting
for accelerated novel view synthesis. In CVPR, 2024.

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and George Dret-
takis. Reducing the memory footprint of 3d gaussian splatting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 7(1), May 2024. URL https://repo-sam.
inria.fr/fungraph/reduced-3dgs/.

J.S. Roy and S.A. Mitchell. PuLP is an LP modeler written in Python. 2020. URL https:
//github.com/coin-or/pulp.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast con-
vergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5459–5469, 2022.

Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Yaowei Wang, Wen Ji, and Wenwu Zhu. Mixed-
precision neural network quantization via learned layer-wise importance. In European Conference
on Computer Vision, 2022.

Chen Tang, Yuan Meng, Jiacheng Jiang, Shuzhao Xie, Rongwei Lu, Xinzhu Ma, Zhi Wang, and
Wenwu Zhu. Retraining-free model quantization via one-shot weight-coupling learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15855–
15865, 2024.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: Hardware-aware automated quan-
tization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019.

Yufei Wang, Zhihao Li, Lanqing Guo, Wenhan Yang, Alex C Kot, and Bihan Wen. Contextgs:
Compact 3d gaussian splatting with anchor level context model. arXiv preprint arXiv:2405.20721,
2024.

11

https://repo-sam.inria.fr/fungraph/reduced-3dgs/
https://repo-sam.inria.fr/fungraph/reduced-3dgs/
https://github.com/coin-or/pulp
https://github.com/coin-or/pulp

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shuzhao Xie, Weixiang Zhang, Chen Tang, Yunpeng Bai, Rongwei Lu, Shijia Ge, and Zhi Wang.
Mesongs: Post-training compression of 3d gaussians via efficient attribute transformation. In
European Conference on Computer Vision. Springer, 2024.

Zhewei Yao et al. Hawq-v3: Dyadic neural network quantization. In ICML, pp. 11875–11886.
PMLR, 2021.

Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung. Differentiable
surface splatting for point-based geometry processing. ACM Transactions on Graphics (TOG),
38(6):1–14, 2019.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on information theory, 23(3):337–343, 1977.

Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE transactions on Information Theory, 24(5):530–536, 1978.

M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa volume splatting. In Proceedings Visualiza-
tion, 2001. VIS ’01., pp. 29–538, 2001a. doi: 10.1109/VISUAL.2001.964490.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Surface splatting. In
Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp.
371–378, 2001b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

Fig. 6 illustrates the difference between HAC and our method. The quantization scheme that we
employed is more fine-grained.

Fig. 7, Fig. 8 and Fig. 9 show the loss evolution without anchor, during 0-1000 steps, and during
1000-2000 steps with anchor integrated. It can be observed that the loss increases rapidly after inte-
grating anchor during training, and the overall convergence performance is worse than the baseline
training.

Tab. 11, Tab. 12, Tab. 13 and Tab. 14 present the detailed storage composition of our method on
MipNeRF 360 dataset, Tank&Temples dataset, Deep Blending dataset, and Synthetic-NeRF dataset.

Tab. 15 summarizes the notations used in this paper and their corresponding definitions.

Channel

B
at
ch

HAC

Our

Figure 6: Parition scheme: HAC vs. Our.

0 500 1000 1500 2000 2500 3000
Steps

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

None anchor

Figure 7: Loss Evolution without Anchor Integration (Baseline Training)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000
Steps

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Lo
ss

0-1000 anchor

Figure 8: Loss Evolution during Early Stage (0-1000 steps with Anchor Integration)

0 500 1000 1500 2000 2500 3000
Steps

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Lo
ss

1000-2000 anchor

Figure 9: Loss Evolution during Mid Stage (1000-2000 steps with Anchor Integration)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Per-scene results of Mip-NeRF360 dataset of our approach

Scene PSNR SSIM LPIPS Size (MB)

bicycle 25.02 0.728 0.286 20.71
bonsai 32.01 0.939 0.197 10.13
counter 28.77 0.897 0.221 6.97
kitchen 30.03 0.913 0.153 7.53
garden 26.46 0.813 0.186 17.90
room 31.32 0.917 0.217 6.63
stump 26.79 0.766 0.263 17.84
flowers 21.30 0.577 0.379 16.62
treehill 23.16 0.644 0.353 17.51

Average 27.21 0.799 0.251 13.54
bicycle 25.16 0.745 0.261 28.56
bonsai 32.47 0.944 0.189 12.48
counter 29.21 0.908 0.205 9.22
kitchen 30.44 0.917 0.145 9.58
garden 26.91 0.827 0.167 23.59
room 31.42 0.920 0.212 7.22
stump 26.86 0.766 0.262 23.28
flowers 21.35 0.579 0.375 22.08
treehill 23.20 0.644 0.351 22.60

Average 27.45 0.806 0.241 17.62
bicycle 25.14 0.741 0.263 35.32
bonsai 32.87 0.948 0.182 16.62
counter 29.45 0.913 0.195 11.39
kitchen 30.87 0.923 0.136 11.43
garden 27.24 0.842 0.150 29.72
room 32.02 0.928 0.194 11.75
stump 26.77 0.767 0.262 29.19
flowers 21.33 0.577 0.377 25.73
treehill 23.20 0.644 0.352 23.49

Average 27.65 0.809 0.235 21.63

Table 8: Per-scene results of Tank&Temples dataset of our approach

Scene PSNR SSIM LPIPS Size (MB)

truck 25.61 0.873 0.159 10.06
train 21.97 0.794 0.244 6.49

Average 23.79 0.833 0.201 8.27
truck 25.79 0.878 0.152 12.47
train 22.08 0.792 0.243 8.01

Average 23.93 0.835 0.197 10.24
truck 25.87 0.879 0.148 14.59
train 22.14 0.790 0.251 9.37

Average 24.01 0.835 0.199 11.98

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 9: Per-scene results of Deep Blending dataset of our approach

Scene PSNR SSIM LPIPS Size (MB)

drjonson 29.10 0.888 0.295 4.82
playroom 30.54 0.904 0.278 4.24
Average 29.82 0.896 0.286 4.53
drjonson 29.42 0.894 0.282 6.39
playroom 30.85 0.908 0.268 5.59
Average 30.13 0.901 0.275 5.99
drjonson 29.54 0.899 0.273 7.9
playroom 30.95 0.907 0.269 6.93
Average 30.24 0.903 0.271 7.42

Table 10: Per-scene results of Synthetic-NeRF dataset of our approach.

Scene PSNR SSIM LPIPS Size (MB)

chair 33.53 0.979 0.020 1.18
drumps 25.81 0.945 0.049 1.73

ficus 34.29 0.982 0.016 1.09
hotdogs 36.67 0.979 0.030 0.73

lego 33.93 0.972 0.030 1.39
materials 29.94 0.956 0.046 1.65

mic 35.44 0.989 0.010 0.89
ship 30.90 0.896 0.127 1.78

Average 32.56 0.962 0.041 1.30
chair 34.10 0.981 0.017 1.58

drumps 25.96 0.947 0.047 2.32
ficus 34.64 0.983 0.015 1.45

hotdogs 37.03 0.981 0.027 0.97
lego 34.20 0.975 0.026 1.80

materials 30.21 0.958 0.044 2.13
mic 35.97 0.990 0.009 1.18
ship 31.10 0.898 0.123 2.39

Average 32.90 0.964 0.038 1.73
chair 34.71 0.983 0.014 1.92

drumps 26.05 0.947 0.047 2.82
ficus 34.86 0.984 0.014 1.78

hotdogs 37.49 0.982 0.025 1.17
lego 35.08 0.978 0.021 2.24

materials 30.41 0.959 0.042 2.69
mic 36.39 0.991 0.008 1.42
ship 31.29 0.900 0.118 2.89

Average 33.28 0.965 0.036 2.12

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: Composition of Storage Sizes (MB) for Different Parts in the Mip-NeRF360 Dataset

Scene Octree Metadata+Attributes MLP

bicycle 1.360 27.19 0.048
bonsai 0.717 12.65 0.048
counter 0.491 8.69 0.048
garden 1.190 22.66 0.048
kitchen 0.331 9.21 0.048
room 0.431 9.01 0.048
stump 1.010 22.22 0.048
treehill 0.917 21.65 0.046
flowers 0.941 20.89 0.046

Table 12: Composition of Storage Sizes (MB) for Different Parts in the Tank&Temples Dataset

Scene Octree Metadata+Attributes MLP

train 0.243 6.21 0.046
truck 0.402 9.62 0.046

Table 13: Composition of Storage Sizes (MB) for Different Parts in the Deep Blending Dataset

Scene Octree Metadata+Attributes MLP

drjohnson 0.269 6.08 0.048
playroom 0.245 5.31 0.048

Table 14: Composition of Storage Sizes (MB) for Different Parts in the Synthetic-NeRF Dataset

Scene Octree Metadata+Attributes MLP

chair 0.073 1.47 0.046
drums 0.098 2.19 0.046
ficus 0.151 1.36 0.046

hotdog 0.101 0.89 0.046
lego 0.187 1.67 0.046

materials 0.213 1.99 0.046
mic 0.118 1.09 0.046
ship 0.248 2.25 0.046

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 15: Notation table.

Notation Definition
Σ Covariance matrix of a Gaussian distribution

G(x) Gaussian function
S Scaling matrix
s Scaling vector
R Rotation matrix.
q Rotation quaternion
W Viewing transform
J Jacobian matrix
Σ′ Covariance matrix of in camera space
SH Spherical harmonics co-efficient
o Opacity
µ 3D center of a Gaussian function
x Location of anchor point in ScaffoldGS
f A context feature of the anchor point
l Scaling factor of ScaffoldGS
O Learnable offsets of ScaffoldGS

A Attributes of ScaffoldGS, including features f , scaling
factor l, and learnable offsets O.

τ Pruning percentage

N
Number of anchor points after applying pruning and
voxelization

H Number of channels of ScaffoldGS’s attributes
d Depth of octree
K Number of blocks
B Quantization options, usually set as 16
Q One-hot bit precision matrix
w Weight vector, to transform Q into bit vector
Ω Information loss matrix for integer linear programming

S(·) Function of size estimator
bi A block of attribute
b̂i The vector that de-quantized from the quantized bi
ni The Start index of the block bi

F (k, l)
The minimal total information loss when slicing the l
elements into k blocks

U Step unit of dynamic programming
L(ni, ni+1) Information loss in quantizing block bi

18

	Introduction
	Related Work
	3D Gaussian Splatting
	Mixed-precision Quantization

	Preliminary
	Methodology
	Size Estimator for Compressed 3D Gaussian File
	Inter-Attribute Mixed Precision Quantization
	Intra-Attribute Mixed Precision Quantization
	Searching and Finetuning

	Experiments
	Experimental Results
	Ablation Study

	Conclusion
	Appendix

