
Liger: Linearizing Large Language Models to Gated Recurrent Structures

Disen Lan 1 2 * Weigao Sun 1 � Jiaxi Hu 3 Jusen Du 1 4 * Yu Cheng 5 �

Abstract
Transformers with linear recurrent modeling of-
fer linear-time training and constant-memory in-
ference. Despite their demonstrated efficiency
and performance, pretraining such non-standard
architectures from scratch remains costly and
risky. The linearization of large language mod-
els (LLMs) transforms pretrained standard models
into linear recurrent structures, enabling more effi-
cient deployment. However, current linearization
methods typically introduce additional feature
map modules that require extensive fine-tuning
and overlook the gating mechanisms used in state-
of-the-art linear recurrent models. To address
these issues, this paper presents Liger, short for
Linearizing LLMs to gated recurrent structures.
Liger is a novel approach for converting pre-
trained LLMs into gated linear recurrent models
without adding extra parameters. It repurposes the
pretrained key matrix weights to construct diverse
gating mechanisms, facilitating the formation of
various gated recurrent structures while avoid-
ing the need to train additional components from
scratch. Using lightweight fine-tuning with Low-
Rank Adaptation (LoRA), Liger restores the per-
formance of the linearized gated recurrent models
to match that of the original LLMs. Addition-
ally, we introduce Liger Attention, an intra-layer
hybrid attention mechanism, which significantly
recovers 93% of the Transformer-based LLM per-
formance at 0.02% pre-training tokens during the
linearization process, achieving competitive re-
sults across multiple benchmarks, as validated on
models ranging from 1B to 8B parameters.

1Shanghai AI Laboratory 2South China University of Tech-
nology 3The Hong Kong University of Science and Technology
(Guangzhou) 4Nanjing University 5The Chinese University of
Hong Kong. * Interns at Shanghai AI Laboratory. � Correspond-
ing Authors: Weigao Sun <sunweigao@outlook.com>, Yu Cheng
<chengyu@cse.cuhk.edu.hk>. Weigao Sun is the Project Lead.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

MMLU

PiQA

74.1
75.0

74.1
69.9

65.4 ARC-e

ARC-c

Hella.

36.4

63.8

60.0

31.0

Wino.

25.8
25.3 23.1

59.1
58.2

53.9

55.2

27.6
48.9

65.463.7

35.736.4

59.8

51.2

0.02%	Tokens

Figure 1. Liger Performance and Efficiency. Our proposed Liger
recovers nearly 93% performance of Llama-3.2-1B and outper-
forms pretrained gated recurrent models at only 0.02% of the
pre-training tokens cost.

1. Introduction
Large language models (LLMs) have demonstrated excep-
tional performance across various natural language process-
ing tasks (Chintala, 2023; Team, 2023; Zhu et al., 2024;
Qu et al., 2024). However, the Transformer-based architec-
ture (Vaswani et al., 2017) used in modern LLMs, with its
reliance on softmax attention, suffers from quadratic compu-
tational complexity. This inefficiency results in significant
speed and memory challenges, particularly during pretrain-
ing on long sequences. During inference, the Key-Value
(KV) cache (Kwon et al., 2023) grows linearly with the
input sequence length, leading to reduced inference speed
and high memory usage, which severely limits the capabil-
ity of these models for handling long-sequence tasks (Sun
et al., 2024a). In contrast, models based on linear recurrent
modeling (Katharopoulos et al., 2020; Yang et al., 2023;
Qin et al., 2024b; Sun et al., 2025; Du et al., 2025) pro-
vide linear-time training and constant-memory inference,
offering substantial efficiency benefits and positioning them-
selves as promising candidates for the next generation of
foundational architectures (MiniMax et al., 2025).

While pretraining LLMs using architectures based on linear

The source code is available at https://github.com/
OpenSparseLLMs/Linearization and the models are
available at https://huggingface.co/collections/
linear-moe-hub.

1

https://github.com/OpenSparseLLMs/Linearization
https://github.com/OpenSparseLLMs/Linearization
https://huggingface.co/collections/linear-moe-hub
https://huggingface.co/collections/linear-moe-hub


Liger: Linearizing Large Language Models to Gated Recurrent Structures

recurrent modeling reduces costs due to their linear training
complexity, the high expenses of pretraining from scratch
associated with large model sizes and datasets still remain
a major obstacle to their adoption and practical use. This
challenge has hindered the advancement of linear recurrent
models. Linearizing pretrained LLMs like SUPRA (Mercat
et al., 2024), MambaInLlama (Wang et al., 2024) and LoL-
CATs (Zhang et al., 2024a), as an emerging new direction,
allows the transfer of weights from an existing pretrained
model to one with linear recurrent modeling architectures
at a small fraction of the original pretraining cost. The
linearization approach is a promising post-training tech-
nique to enable efficient pretrained model deployment while
preserving their performance. Gating mechanisms (Qin
et al., 2024a; Sun et al., 2023) play a crucial role in lin-
ear recurrent models by controlling memory retention and
forgetting, with their effectiveness widely demonstrated in
such architectures. However, incorporating gate modules as
additional components requires both transferring weights
from pre-trained LLMs and training these gating modules
from scratch. This process not only increases the cost of lin-
earization but also creates a larger architectural divergence
from Transformer-based LLMs. This divergence may hinder
the effective approximation of softmax attention, limiting
the performance of gated linear recurrent models (Zhang
et al., 2024d). Moreover, existing linearization methods
often overlook the detailed design considerations of gated
linear models, and the newly added modules fail to lever-
age the pre-trained weights of LLMs, further reducing the
efficiency of linearization.

In this paper, we present Liger, which stands for Linearizing
large language models to gated recurrent structures, a
novel approach for linearizing LLMs. Liger repurposes
the weights from pre-trained Transformer-based LLMs and
introduces a novel method for constructing crucial gating
mechanisms in gated recurrent structures using the key pro-
jection. This approach avoids the complex attention trans-
fer process found in existing linearization methods. After
transforming the weights and constructing the gating mech-
anisms, Liger requires only lightweight fine-tuning of the
linearized gated recurrent model parameters through LoRA
autoregressive training. By introducing Liger Attention, this
efficient process restores further improves the model’s per-
formance with minimal linearization cost, achieving com-
petitive results across a range of language modeling and
understanding benchmarks while benefiting from the linear-
time inference efficiency of the recurrent architecture.

Our contributions can be summarized as follows:

• We introduce Liger, a novel method for adapting pre-
trained Transformer-based LLMs into gated recurrent
structures. This approach efficiently repurposes re-
dundant weights from pre-trained models to construct

gating modules without introducing additional parame-
ters, obtaining gated recurrent LLMs with the benefits
of constant-memory inference.

• We propose Liger Attention, an intra-layer hybrid
attention mechanism that combines sliding window
softmax attention with linear recurrent modeling. This
simple yet effective design retains the essential soft-
max non-linearity, accelerating the linearization pro-
cess while maintaining the capabilities of pre-trained
LLMs and ensuring linear-time inference efficiency.

• We apply Liger to linearize the latest Llama-3 series,
ranging from 1B to 8B parameters. Experimental re-
sults show that Liger outperforms existing linearization
methods (like SUPRA (Mercat et al., 2024), MambaIn-
Llama (Wang et al., 2024) and LoLCATs (Zhang et al.,
2024a)), in terms of both efficiency and its ability to
preserve the original performance of pre-trained LLMs.

2. Preliminary
Transformer with Softmax Attention. Given the input
sequence X = {x1,x2, . . . ,xT } ∈ RT×D, with sequence
length T and dimension D, vanilla transformer (Vaswani
et al., 2017) adopts standard softmax attention:

Q,K,V = XWQ,XWK,XWV

O = Softmax((
QK⊤
√
D

)⊙M)V
(1)

where WQ, WK, WV ∈ RD×D are learnable parameters
for input sequence X projection and M ∈ RT×T is a mask
matrix for causal modeling by preventing future information
leakage in autoregressive generation task. The above paral-
lel form of softmax attention in Eq.1 is applied for efficient
training and can be rewritten in the following recurrent form
during inference stage:

qt,kt,vt = xtWQ,xtWK,xtWV

ot =

∑t
i=1 exp(qtk

⊤
i /

√
D)vi∑t

i=1 exp(qik
⊤
i /

√
D)

(2)

The standard softmax attention is highly reliant on the grow-
ing KV Cache (Chou et al., 2024b; Wang et al., 2024) to
recall the history "memory" for sequence modeling, which
results in quadratic complexity and costly memory require-
ments especially in long context setting.

Linear Attention. Linear transformer (Katharopoulos et al.,
2020; Qin et al., 2023) approximates softmax self-attention
as the dot product of the kernel feature mapping and utilizes
associative property of matrix products to calculate the self-
attention weights, achieving efficient linear-time sequence

2



Liger: Linearizing Large Language Models to Gated Recurrent Structures

modeling and constant memory consumption. Concretely,
the linear attention can be formulated as follows:

ot =

∑t
i=1 ϕ(qt)ϕ(ki)

⊤vi∑t
i=1 ϕ(qt)ϕ(ki)⊤

=
ϕ(qt)

∑t
i=1 ϕ(ki)

⊤vi

ϕ(qt)
∑t

i=1 ϕ(ki)⊤

(3)

Let St =
∑t

i=1 ϕ(ki)
⊤vi and zt =

∑t
i=1 ϕ(ki)

⊤, the
above formulation in Eq. 3 can be rewritten in the recurrent
form as an RNN (Katharopoulos et al., 2020):

{
St = St−1 + ϕ(kt)

⊤vt,

zt = zt−1 + ϕ(kt)
⊤,

ot =
ϕ(qt)St

ϕ(qt)zt
(4)

Although linear attention with causal mask matrix cannot
use matrix associativity to reduce the parallel form training
complexity from quadratic to linear, its chunk-wise parallel
form allows hardware-efficient sub-quadratic and partially
parallel training (Yang et al., 2023; Sun et al., 2024a; 2025;
Qin et al., 2024a).

Gating Mechanism. While linear attention (or linear recur-
rent structures) are widely recognized for their linear-time
computational efficiency, they have historically exhibited
a notable performance gap compared to standard softmax
attention. To address this limitation, recent advances in
linear recurrent models have incorporated gating mecha-
nism, which is a critical architectural component enabling
dynamic, context-aware information retention through in-
put and forget gates. This mechanism allows models to
selectively preserve or discard historical information, sub-
stantially enhancing their expressiveness through constant
memorization capacity. The integration of gating mecha-
nism has consequently become a prevalent design paradigm
in state-of-the-art linear attention variants (Yang et al., 2023;
Peng et al., 2023; Qin et al., 2024c). A representative im-
plementation, Gated Linear Attention (GLA) (Yang et al.,
2023), demonstrates this principle through its mathematical
formulation:

St = Gt ⊙ St−1 + k⊤
t vt (5)

At its core, Gated Linear Attention (GLA) fundamentally
augments conventional linear attention through the integra-
tion of a gating mechanism. This modification serves as a
generalized framework that can be systematically extended
to diverse linear recurrent architectures by reparameterizing
the gating term Gt. Specifically, Gt governs the tempo-
ral decay dynamics, enabling broad and flexible adaptation
across variant gated linear recurrent structures.

3. Methodology
In this section, we will introduce our proposed Liger for
linearizing large language models to gated recurrent struc-
tures. We also design a simple yet effective hybrid attention
form, namely Liger Attention, and build the Liger archi-
tecture based on it, including intra- and inter-layer hybrid
architectures.

3.1. Gate Construction by Key Projection

The parameter space of large language models (LLMs) ex-
hibits intrinsic structural redundancy (Yu et al., 2024; Agha-
janyan et al., 2020), a phenomenon attributed to the over-
parameterization inherent in deep neural architectures. This
redundancy motivates a principled approach to reformulat-
ing LLMs as gated linear recurrent architectures: rather
than introducing new parameters, we strategically repurpose
subsets of pre-trained LLM weights to serve dual roles as
gating modules.

Building on the design principle of gated linear recur-
rent structures for optimal softmax attention approxima-
tion, we propose reallocating the key projection matrix
WK as dual roles to concurrently perform its canonical
linear transformation and gating mechanism. Formally,
the gating mechanism is derived via a transformation of
Gt = f(kt) = f(xtWK), where f(·) operates on the pro-
jected key embeddings. This parameter-sharing paradigm
ensures compatibility with pre-trained weights while elim-
inating the need for auxiliary trainable gating parameters,
thereby preserving computational and memory efficiency.

In practical implementations, gating mechanisms can be
instantiated through diverse transformation strategies. Our
approach employs a parameter-free Pooling(·) operation to
derive gate values, circumventing the need for additional
trainable parameters. This design preserves compatibil-
ity with pre-trained LLM weights, enabling direct reuse
of existing parameters for gate construction without archi-
tectural modification. Empirical evaluations demonstrate
that this parameter-efficient strategy achieves competitive
performance compared to conventional trainable gating pro-
jections (e.g., linear or nonlinear parametric layers), while
maintaining computational efficiency and reducing opti-
mization complexity.

3.2. Liger: Linearizing LLMs to Gated Recurrent
Structures

Prior methodologies for linearizing transformer-based large
language models (LLMs) typically rely on auxiliary com-
ponents, such as feature mapping layers, to approximate
softmax attention mechanisms (Zhang et al., 2024a). No-
tably, LoLCATs (Zhang et al., 2024a) propose a two-stage
fine-tuning paradigm to mitigate this limitation: First stage:

3



Liger: Linearizing Large Language Models to Gated Recurrent Structures

Frozen Trainable

MatMul

Softmax

WV WK WQ

MatMul

Standard Softmax Attention Gated Recurrent Structures

P
o
o
lin
g

+

MatMul

Gated 
Recurrent

WQ WK WV

MatMul

Liger: Linearizing Large Language Models to Gated Recurrent Structures

(a) Parallel Training Form (b) Recurrent Inference Form

xtSt−1

gt ktvt qt

St

⊗

⊙

⨁ ⊛

yt

LoRA
Finetune

P
re

-t
ra

in
e
d

LL
M

Attention

MLP

Norm

Norm

Input

⊕

⊕

Embedding

Norm

Head

N ×

Output

Linearization

Figure 2. Overall Framework of Liger. We linearize the Transformer-based large language model (LLM) architecture into a gated linear
recurrent model by 1) Replacing Softmax Attention with a Gated Recurrent Memory module, and 2) Employing LoRA to fine-tune the
Liger architecture while frozen most original weight parameters. The Liger architecture enables efficient chunk-wise parallel training also
enjoying cheap linear recurrent inference.

Model Gate Parameterization Pooling for Gate Construction

Gated Linear Attention (Yang et al., 2023) Gt = α⊤
t 1 αt = σ(Pooling(kt))

Mamba2 (Dao & Gu, 2024) Gt = αt1
⊤1 αt = exp(− softplus(Pooling(kt)))

mLSTM (Beck et al., 2024) Gt = αt1
⊤1 αt = σ(Pooling(kt))

Gated Retention (Sun et al., 2024b) Gt = αt1
⊤1 αt = σ(Pooling(kt))

HGRN2 (Qin et al., 2024c) Gt = α⊤
t 1 αt = γ + (1− γ)σ(Pooling(kt))

RWKV6 (Peng et al., 2024) Gt = α⊤
t 1 αt = exp(− exp(Pooling(kt)))

Gated Slot Attention (Zhang et al., 2024c) Gt = α⊤
t 1 αt = σ(Pooling(kt))

Table 1. Gated Linear Recurrent Structures with Variations of Gate Gt Parameterization. Gating mechanism can be constructed
through pooling to reuse the key projection of pre-trained LLM.

Attention Transfer phase trains newly introduced modules
(e.g., kernel approximations) while freezing pre-existing
parameters, followed by the Second stage: employing Low-
Rank Adaptation (LoRA) to fine-tune attention layers. How-
ever, previous linearization approaches including LoLCATs
incurs two critical constraints:

❶ Architectural Overhead: The dependency on supplemen-
tary feature mapping and gating modules to replicate soft-
max attention outputs precludes direct reuse of pre-trained
LLM parameters, necessitating non-trivial architectural
modifications.

❷ Optimization Fragility: The sequential training paradigm
introduces brittleness, as end-to-end fine-tuning is infeasi-
ble due to the interdependency between the frozen base
model and the auxiliary components.

These limitations hinder extensibility to modern linear recur-
rent architectures incorporating gated mechanisms, which
require seamless integration with pre-trained weights and

end-to-end trainability.

To advance the linearization of pre-trained large language
models (LLMs) into gated recurrent neural architectures,
we propose a parameter-efficient strategy that employs the
canonical Softmax operation for feature mapping. Unlike
existing approaches that rely on trainable modules such
as T2R (Mercat et al., 2024) or Hedgehog (Zhang et al.,
2024b) to approximate attention dynamics, our method uti-
lizes Softmax to inherently normalize query and key rep-
resentations. This normalization ensures bounded magni-
tude in the query-key product space, a critical property for
faithfully replicating the numerical stability of conventional
softmax attention within linearized frameworks.

By eschewing auxiliary trainable components, our design
eliminates architectural dependencies on attention trans-
fer mechanisms. This divergence from sequential training
paradigms (e.g., frozen base models with incremental mod-
ule updates) enables fully end-to-end fine-tuning without

4



Liger: Linearizing Large Language Models to Gated Recurrent Structures

compromising compatibility with pre-trained LLM weights.
The resultant gated recurrent architecture, formulated as:

qt = xtWq,kt = xtWk,vt = xtWv

Gt = Pooling(kt)
(6)

With the generated gate Gt, the recurrent update rule and
the followed output computation will be:

St = Gt ⊙ St−1 + ϕ(k⊤
t )vt

ot = ϕ(qt)St

(7)

Here all the trainable parameters WQ,WK,WV are in-
herited from the pre-trained LLM. This method of gating
mechanism construction can be extended to various gated
linear recurrent structures, as shown in Table 1. Prior linear
recurrent models employ learnable feature mapping func-
tions (denoted as ϕ(·)) to compute similarity representations
between query (qt) and key (kt) vectors, which introduce
superfluous trainable parameters while generating output
distributions that deviate from the canonical Softmax atten-
tion distribution inherent in pre-trained LLM. Such distri-
butional discrepancies consequently degrade the efficacy of
linearization by impairing compatibility with the original
attention mechanisms. We found that feature mapping ϕ(·)
can be effectively approximated via a simple normaliza-
tion operation (Softmax(·) in our implementation), thereby
eliminating the requirement for computationally intensive at-
tention transfer or distillation procedures while maintaining
fidelity to the target attention distribution. Eq. 7 preserves
the expressivity of softmax attention while inheriting the
computational efficiency of linear recurrent models. This
unification of architectural simplicity and functional fidelity
addresses key limitations in prior linearization methods.

Following the initialization of the model with pre-trained
LLM weights and its architectural reconfiguration into a
gated linear recurrent framework, we employ next-token pre-
diction as the fine-tuning objective to recover performance
in the transformed architecture. Formally, we parameterize
the adapted weights as Θ = Θ0 +∆Θ, where ∆Θ denotes
the incremental adjustments required to align the original
transformer-based parameters with the gated linear recur-
rent structure. The optimization objective minimizes the
cross-entropy loss L for autoregressive prediction over input
sequences x1:t−1:

L = −
∑

logPΘ(xt|x1:t−1) (8)

This approach circumvents the need for auxiliary training
stages (e.g., attention transfer) by directly optimizing the
gated linear recurrent architecture end-to-end, thereby pre-
serving the computational efficiency and parameter effi-
ciency inherent to the original LLM.

Input

Embedding

Norm

Head

Output

Softmax 
Attention

MLP

Norm

Norm

⊕

⊕

Liger
Transformer

Block

Attention
Transformer 

Block

xt

ot

Liger 
Attention

MLP

Norm

Norm

⊕

⊕

xt

ot

Figure 3. Liger Hybrid Architecture. Liger adopts intra-hybrid
Liger Attention and inter-hybrid model architecture by stacking a
layer of standard attention Transformer blocks every a few (e.g. 7)
layers of Liger Transformer blocks.

we apply Low-Rank Adaptation (LoRA) (Hu et al., 2021)
specifically to the linear recurrent layers of large language
models (LLMs), focusing on the fine-tuning of the weight
matrices WQ,WK,WV. Instead of training all model
parameters, LoRA decomposes the adaptation term ∆Θ
into two low-rank matrices B and A, such that ∆Θ =
BA, where B ∈ RD×r, A ∈ Rr×D, and r ≪ D with
r typically set to a small value, such as 8. Our empirical
results demonstrate that LoRA consistently outperforms
full-rank fine-tuning, offering a more efficient and effective
approach for LLM linearization.

3.3. Liger Attention: A Hybrid of Sliding Window
Attention and Gated Recurrent Modeling

Building upon previous works that combine softmax atten-
tion with linear attention (Katharopoulos et al., 2020; Arora
et al., 2024; MiniMax et al., 2025), we propose an intra-
layer hybrid attention mechanism, termed Liger Attention.
This method integrates a hybrid form of Gated Recurrent
Modeling (GRM) and Sliding Window Attention (SWA)
(Beltagy et al., 2020) with narrow softmax attention win-
dow size, by blending their outputs in a weighted manner.
Specifically, the formulation is given by:

ot = LigerAttn(qt,kt,vt)

= αGRM(qt,kt,vt) + β SWA(qt,kt,vt)
(9)

where GRM denotes Gated Recurrent Modeling (and its
variants) in Eq. 3 and SWA refers to Sliding Window Atten-
tion, which is a variant of softmax attention as expressed in
Eq. 1 formulated in Eq. 10. The parameters α and β control
the relative contributions of each attention mechanism. We
found that setting the sum of the two parameters α and β to
1 is particularly critical for linearization (simply sets to 0.5
each in our implementation), which can better approximate
the original attention output distribution.

5



Liger: Linearizing Large Language Models to Gated Recurrent Structures

Model Training
Tokens (B)

PiQA ARC-e ARC-c Hella. Wino. MMLU Avg. Avg.

acc ↑ acc ↑ acc_norm ↑ acc_norm ↑ acc ↑ acc (5-shot) ↑ ↑ (no MMLU) ↑
Mistral-7B 8000 80.6 80.7 53.9 81.1 74.3 62.6 72.2 74.1
SUPRA-Mistral-7B 100 80.4 75.9 45.8 77.1 70.3 34.2 64.0 69.9
LoLCATs-Mistral-7B Attn. Trf. 0.02 79.8 79.3 51.7 48.3 74.2 23.0 59.4 66.7
LoLCATs-Mistral-7B LoRA 0.02 77.3 74.9 45.1 40.9 67.9 23.0 54.8 61.2
LoLCATs-Mistral-7B 0.04 79.7 78.4 47.4 58.4 71.0 23.7 59.8 67.0

Liger-GLA-Mistral-7B (Ours) 0.02 80.1 78.7 49.3 76.3 70.1 36.3 65.1 70.9

Llama-3-8B 15000 79.4 80.1 53.2 79.2 72.9 65.3 71.7 73.0
SUPRA-Llama-3-8B 20 78.9 75.1 46.5 71.7 65.8 40.9 63.2 67.6
Mamba2-Llama-3-8B 20 76.8 74.1 48.0 70.8 58.6 43.2 61.9 65.6
Mamba2-Llama-3-8B 50% Attn. 20 81.5 78.8 58.2 79.5 71.5 56.7 71.0 73.9
LoLCATs-Llama-3-8B Attn. Trf. 0.02 78.4 79.3 51.9 51.6 73.4 23.5 59.7 66.9
LoLCATs-Llama-3-8B LoRA 0.02 72.4 72.6 44.3 34.6 68.0 23.0 52.5 58.4
LoLCATs-Llama-3-8B 0.04 80.1 80.4 53.5 63.4 72.9 42.1 65.4 70.0

Liger-GLA-Llama-3-8B (Ours) 0.02 80.3 81.1 52.5 76.3 72.0 43.4 67.6 72.4

Table 2. Linearized LLMs Comparison. Liger outperforms other linearization method on language modeling and understanding tasks
with less training tokens across Mistral-7B and Llama-3-8B LLM architectures.

ôt = SWA(qt,kt,vt)

=

∑t
i=t−w+1 exp(qtk

⊤
i /

√
D)vi∑t

i=t−w+1 exp(qtk
⊤
i /

√
D)

(10)

where w denotes the window size (set to 64 in our default
implementation) for limiting the length of the lookback
window for the input token. Liger Attention demonstrates
strong performance in sequence modeling tasks while main-
taining efficient linear complexity of O(TWD + TD2).

3.4. Liger Architecture and Its Hybrid

The overall architecture of our proposed Liger is presented
in Fig. 2. Following the popular LLM architecture like
Llama (Dubey et al., 2024), we retain the Pre-Norm layers
and MLP layers with residual connection (He et al., 2016),
only change the softmax attention layers with Liger atten-
tion without introduction of any new trainable modules like
feature mapping. For the each Liger blocks including time
mixing layer and token mixing layer, the forward process
can be formulated as:

H = LigerAttn(Norm(X)) +X

O = MLP(Norm(H)) +H
(11)

As presented in Fig. 3, we also attempt to add one softmax
attention block after stacking a number of Liger (or gated
linear recurrent) blocks to construct layer-wise hybrid model
architecture.

4. Experiments
In this section, we conduct extensive experiments to answer
the following research questions (RQ):

RQ1: Can Liger linearize the pre-trained LLMs and re-
cover performance more effectively compared with
other linearization methods?

RQ2: Can Liger serve as a universal and scalable lineariza-
tion method for different LLM architectures?

RQ3: Does Liger genuinely achieves linear/subquadratic
time complexity and constant memory inference?

RQ4: How effective is Liger to its key components?

4.1. Experimental Setups

Models and Datasets. We select two popular LLM archi-
tectures: Mistral-7B (Jiang et al., 2023) and Llama-3-8B
(Dubey et al., 2024) as base model for linearization. We opt
for GLA (Yang et al., 2023), a general gated linear recurrent
model structure, as the basis of the Liger and its hybrid
architecture for linearization. We use 50,000 high quality
instruction samples of cleaned Alpaca dataset (Taori et al.,
2023) during linearization process to improve instruction-
following ability and recover LLM performance in language
modeling tasks.

Implementation Configurations and Details. All experi-
ments are implemented in PyTorch and conducted on single
NVIDIA A800 80GB GPU. We opt for AdamW optimizer
with a learining rate of 1e−3. By default, the LoRA rank
is set to 8 and alpha is set to 8. The finetuning epochs is
2, which means we only use 100,000 cleaned Alpaca in-
struction samples (around 0.02B tokens) for gate reccurrent
model linearization. We pad the input sequence to 1024
tokens with mini batch size of 1, and set the global batch
size to 8 by gradient accumulaltion, following the settings
in LoLCATs (Zhang et al., 2024a).

6



Liger: Linearizing Large Language Models to Gated Recurrent Structures

Model Training
Tokens (B)

PiQA ARC-e ARC-c Hella. Wino. MMLU Avg. Avg.

acc ↑ acc↑ acc_norm ↑ acc_norm ↑ acc ↑ acc (5-shot) ↑ ↑ (no MMLU) ↑
(Transformer)
Mistral-7B 8000 80.6 80.7 53.9 81.1 74.3 62.6 72.2 74.1
Llama-3-8B 15000 79.4 80.1 53.2 79.2 72.9 65.3 71.7 73.0

(Linear/Subquadratic)
Mamba-7B 1200 81.0 77.5 46.7 77.9 71.8 33.3 64.7 71.0
RWKV-6-World-7B 1420 78.7 76.8 46.3 75.1 70.0 - 69.4 69.4
TransNormerLLM-7B 1400 80.1 75.4 44.4 75.2 66.1 43.1 64.1 68.2
Hawk-7B 300 80.0 74.4 45.9 77.6 69.9 35.0 63.8 69.6
Griffin-7B 300 81.0 75.4 47.9 78.6 72.6 39.3 65.8 71.1

(Hybrid)
StripedHyena-Nous-7B - 78.8 77.2 40.0 76.4 66.4 26.0 60.8 67.8
Zamba-7B 1000 81.4 74.5 46.6 80.2 76.4 57.7 69.5 71.8
Zamba2-7B 2100 81.0 80.3 56.4 81.5 77.2 64.8 73.5 75.3

(Linearized)
Liger-GLA-Llama-3-8B (Ours) 0.02 80.3 81.1 52.5 76.3 72.0 43.4 67.6 72.4
Liger-GLA-Llama-3-8B-H (Ours) 0.02 80.6 80.7 52.7 76.9 71.4 44.4 67.8 72.5

Table 3. Performance Comparison of Pre-trained and Linearized LLMs on Common-sense Reasoning and Knowledge Benchmarks.
Results span Transformer-based (Mistral-7B, Llama-3-8B), linear/subquadratic (Mamba, RWKV), hybrid (Zamba), and our linearized
Liger-GLA variants on language modeling and understanding tasks. Our Linearized Liger models achieve competitive performance with
only 0.02B training tokens, demonstrating efficient adaptation to gated linear recurrent architectures.

1K 2K 4K 8K 16K 32K
Decoding Length

0

500

1000

1500

2000

2500

3000

3500

4000

La
te

nc
y 

Ti
m

e 
(s

ec
on

ds
)

LLaMA-3-8B w/o FA2 Time
LLaMA-3-8B w/ FA2 Time
Liger-GLA-8B Time
LLaMA-3-8B w/o FA2 Memory
LLaMA-3-8B w/ FA2 Memory
Liger-GLA-8B Memory
LLaMA-3-8B w/o FA2 OOM
LLaMA-3-8B w/ FA2 OOM

0

10

20

30

40

50

60

70

80

GP
U 

M
em

or
y 

Us
ag

e 
(G

B)

Figure 4. Decoding Latency Time and GPU Memory Usage of
Each 8B Models. We variate the decoding length from 1K to 32K
with fixed batch size of 16 on single A800 80GB GPU to evaluate
the models’ efficiency. Liger enjoys linear-time inference with
constant GPU memory usage.

4.2. Main Results: Liger can recover pre-trained LLMs’
performance more effectively (RQ1)

To validate the effectiveness of our proposed method, we
conducted experiments on a series of language modeling
and understanding tasks, including PiQA (Bisk et al., 2020),
ARC-easy (ARC-e), ARC-challenge (ARC-c) (Clark et al.,
2018), HellaSwag (Hella.) (Zellers et al., 2019), Wino-
Grande (Wino.) (Sakaguchi et al., 2019) and MMLU (Li
et al., 2023). The results are reported in Table 2 and all
evaluations were done using lm-evaluation-harness (Gao
et al., 2024). Liger, utilizing only 0.02B tokens, achieves a
linear recurrent model that recovers 90% of Mistral’s perfor-
mance and 93% of Llama-3’s performance with only 0.085%
model parameters LoRA finetuning. Our method signifi-
cantly outperforms other linearization baselines, incluing
SUPRA (Mercat et al., 2024) and Mamba In Llama (Wang
et al., 2024), which still need billions of tokens for linear

Model Avg. Avg.

↑ (no MMLU) ↑
Llama-3.2-1B 55.1 59.9
GLA-1B 46.9 51.1
LoLCATs-Llama-3.2-1B 51.1 56.7
Liger-GLA-Llama-3.2-1B 52.9 59.0

Llama-3.2-3B 66.1 68.1
GLA-3B 49.1 53.8
LoLCATs-Llama-3.2-3B 55.6 62.0
Liger-GLA-Llama-3.2-3B 60.7 66.5

Llama-3-8B 71.7 73.0
LoLCATs-Llama-3-8B 62.2 70.0
Liger-GLA-Llama-3-8B (Ours) 67.6 72.4

Table 4. Scalability Analysis of Linearized Llama-3 Architec-
tures across Model Sizes (1B to 8B). Liger demonstrates consis-
tent scaling laws, outperforming LoLCATs by +6.8–11.5% abso-
lute on average metrics while preserving 83–98% of base model
capabilities with only 0.02B adaptation tokens.

recurrent architecture conversion fine-tuning, and LoLCATs’
linearization approach, which requires a two-stage process
and twice the number of training tokens.

We also compared Liger with other pre-trained models, in-
cluding the Transformer models Mistral (Jiang et al., 2023)
and Llama-3 (Touvron et al., 2023), linear/subquadratic
models such as Mamba (Gu & Dao, 2023), RWKV-6 (Peng
et al., 2023), TransNormerLLM (Qin et al., 2023), Hawk
and Griffin (De et al., 2024), as well as hybrid models
like StripedHyena (Poli et al., 2023), Zamba and Zamba2
(Glorioso et al., 2024). As shown in Table 3, our pro-
posed method outperformed nearly all of the pre-trained

7



Liger: Linearizing Large Language Models to Gated Recurrent Structures

Gated Linear
Recurrent Variants

Gated Memory
Formulation Output Formulation Form of

Gate G
Avg. MMLU

0-shot 5-shot

Liger-GLA St = Gt ⊙ St−1 + k⊤
t vt ot = qtSt Gt ∈ RD 72.4 43.4

Liger-HGRN2 St = GtSt−1 + (1−Gt)
⊤vt ot = qtSt Gt ∈ RD 69.5 36.2

Liger-GSA
{
K̃t = GtK̃t−1 + (1−Gt)

⊤kt

Ṽt = GtṼt−1 + (1−Gt)
⊤vt

ot = Ṽt Softmax(K̃⊤
t qt) Gt ∈ RM 70.5 41.2

Table 5. Gated Linear Recurrent Model Variants with Liger. Liger can be applied to the efficient linearization of various linear
recurrent structures with gating mechanism and achive high quality performance recovery.

linear/subquadratic models and achieve competitive perfor-
mance compared with transformer-based and hybrid LLMs.

4.3. Liger is a Efficient and Scalable Hybrid Structure
(RQ2 & RQ3)

We conducted experiments to compare efficiency in terms of
decoding latency speed and GPU memory consumption of
Llama-3-8B without (w/o.) Flash-Attention-2 (FA2), Llama-
3-8B with (w/.) Flash-Attention-2 (FA2) and Liger-GLA-8B
on single A800 80GB GPU. We set a fixed batch size of 16
and variate the decoding sequence length from 1K to 32K
with the fixed prefix input length of 128. As presented in
Fig. 4, we observe that Liger achieves linear-time decoding
complexity while maintaining constant memory usage.

We evaluate efficiency across three scales of the Llama-3
series (1B, 3B, 8B), comparing vanilla transformers, GLA,
LoLCATs, and our Liger-GLA. As shown in Table 4, Liger
consistently outperforms both GLA and LoLCATs while
preserving 93% of the base Llama-3’s performance on av-
erage. Notably, GLA-1B substantially underperforms all
methods (46.9% average), highlighting the necessity of our
parameter-efficient adaptation strategy. The performance
gap between Liger and vanilla Llama-3 narrows with model
size (∆ = 4.8% at 1B → ∆ = 1.8% at 8B), indicating
improved architectural compatibility at scale.

We conduct experiments on gated linear recurrent structure
variations including GLA (Yang et al., 2023), HGRN2 (Qin
et al., 2024c) and GSA (Zhang et al., 2024d), with the
results presented in Table 5, demonstrating the extensibility
of Liger on various gated linear recurrent structures.

4.4. Liger Framework Analysis (RQ4)

To verify the key components of Liger, we conducted abla-
tion studies on the model structure. Specifically, we exper-
imented with using gates generated from randomly initial-
ized gate projections (Gate Proj.) instead of pooling, and
adopting pure linear attention without considering gating
mechanism (Pure LA). Additionally, we incorporated learn-
able feature map modules (Feat. Map.), similar to Zhang
et al. (2024b). We also evaluated the effects of removing
LoRA (w/o LoRA), GLA (w/o GLA) and SWA (w/o SWA)

Model
Variants

Validation PPL. Avg. Avg.

↓ ↑ (no MMLU) ↑
Liger-GLA 2.96 67.6 72.4
- Gate Proj. 3.16 63.8 68.8
- Feat. Map. 9.04 43.5 40.2
- Pure LA 3.00 66.1 71.5
- w/o LoRA 3.23 61.7 68.1
- w/o SWA 3.75 54.2 60.2
- w/o GLA 3.01 66.2 72.0

Table 6. Ablation Study of Liger on Gated Linear Attention.
We linearize Llama-3-8B into Gated Linear Attention (GLA) to
evaluate the key components of Liger. We report Validation per-
plexity (PPL.) on cleaned alpaca dataset after Liger linearization
and the average performance on language modeling and under-
standing tasks.

individually. The results of these experiments are detailed
in Table 6, demonstrating the effectiveness of proposed
components in Liger.

5. Related Work
Linear Recurrent Models and their Hybrid. To address
the challenges of quadratic complexity computation cost
in standard softmax attention, many linear recurrent mod-
els are proposed to achieve efficient training and inference.
Data-dependent gating/decay has been proved as an effec-
tive mechanism to control the memory changes and improve
sequence modeling expressiveness (Yang et al., 2023; Peng
et al., 2024; Qin et al., 2024c; Zhang et al., 2024c; Du et al.,
2025). Recently, some layer-wise hybrid model architec-
tures have been proposed to compensate for the lack of
memory capacity in the linear recurrent models, such as
StripedHyena-Nous (Poli et al., 2023), Jamba (Lieber et al.,
2024), Zamba (Glorioso et al., 2024), Hymba (Dong et al.,
2024), Titans (Behrouz et al., 2024) and Minimax-01 (Min-
iMax et al., 2025). Actually, all of these hybrid attention
architectures introduce extra modules (e.g. feature mapping
or gate modules) that need to be trained from scratch, which
increases the complexity of the model architecture design
and may lead to suboptimal softmax attention approxima-

8



Liger: Linearizing Large Language Models to Gated Recurrent Structures

tion. In addition, integration of softmax and linear attention
shows great potential as a new intra-layer hybrid attention
paradigm, such as Agent Attention (Han et al., 2024), Based
(Arora et al., 2024), GSA (Zhang et al., 2024c). However,
these inter-layer hybrid attention forms have linear recur-
rent modules that only focus on long-term modeling and
ignore local information (Arora et al., 2024), and lack a
gating mechanism and the approximation of the attention
output distribution by controlling the hybrid ratio (or hybrid
weights) (Han et al., 2024; Arora et al., 2024), which is
particularly critical in the linearization process.

Linearizing Large Language Models. Linearizing or fine-
tuning (uptraining) transformers to linear-RNNs could sig-
nificantly reduce the cost of training a brand-new large-scale
linear recurrent model architecture by distilling knowledge
from pre-trained LLMs. Most linearization methods are pro-
posed to uptrain transformer-based LLMs into linear-RNNs
by introducing extra feature mapping modules (Kasai et al.,
2021; Mercat et al., 2024; Chen et al., 2024) or adding a
loss (Zhang et al., 2024b; Bick et al., 2024; Zhang et al.,
2024a) to approximate softmax attention. However, these
methods have to introduce extra modules that cannot reuse
the existing pre-trained LLM weights and need to be trained
from scratch, which may not match the output of the orig-
inal attention and increases the complexity of the model
architecture, leading to suboptimal attention approximation.

6. Conclusion
This paper introduces Liger, a novel method for lineariz-
ing Transformer-based LLMs into gated linear recurrent
structures. By leveraging the key matrix weights of pre-
trained standard-structure models and repurposing them to
construct the gating mechanisms, Liger avoids the need
for additional parameters and extensive fine-tuning, mak-
ing it a cost-effective and efficient linearization approach.
The use of end-to-end LoRA fine-tuning restores model
performance while minimizing linearization costs. Further-
more, the introduction of Liger Attention enhances nearly
93% performance recovery with only 0.02% pre-training
tokens, making Liger a competitive solution across a range
of language modeling and understanding tasks. Our results
demonstrate the effectiveness of Liger on models ranging
from 1B to 8B parameters, offering a promising path to-
ward more efficient deployment of large-scale LLMs with
linear-time inference and constant memory usage.

Acknowledgements
This work is supported by the Shanghai AI Laboratory.

Impact Statement
This work represents a notable advancement in artificial
intelligence and machine learning, particularly in lineariz-
ing the pretrained Transformer-based models into gated
recurrent structures. Liger enables the processing of much
longer sequences compared to existing methods while sig-
nificantly accelerating computation, making it highly benefi-
cial for tasks like natural language understanding, genomic
sequence analysis, and time-series forecasting. However,
the enhanced capabilities and efficiency introduced by Liger
also raise ethical and societal considerations, such as the
potential for misuse in generating persuasive but misleading
content or in surveillance applications. Nevertheless, the
contributions of Liger to reducing computational overhead
and energy consumption in training large models may also
bring positive environmental impacts.

References
Aghajanyan, A., Zettlemoyer, L., and Gupta, S. In-

trinsic dimensionality explains the effectiveness of lan-
guage model fine-tuning, 2020. URL https://arxiv.
org/abs/2012.13255.

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Alberti,
S., Dylan Zinsley, J. Z., Rudra, A., and Ré, C. Sim-
ple linear attention language models balance the recall-
throughput tradeoff. arXiv preprint arXiv:2402.18668,
2024.

Beck, M., Pöppel, K., Spanring, M., Auer, A., Prudnikova,
O., Kopp, M., Klambauer, G., Brandstetter, J., and
Hochreiter, S. xlstm: Extended long short-term mem-
ory, 2024. URL https://arxiv.org/abs/2405.
04517.

Behrouz, A., Zhong, P., and Mirrokni, V. Titans: Learning to
memorize at test time. arXiv preprint arXiv:2501.00663,
2024.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The
long-document transformer, 2020.

Bick, A., Li, K. Y., Xing, E. P., Kolter, J. Z., and Gu, A.
Transformers to ssms: Distilling quadratic knowledge
to subquadratic models, 2024. URL https://arxiv.
org/abs/2408.10189.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
Piqa: Reasoning about physical commonsense in natural
language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Chen, H., Liu, Z., Wang, X., Tian, Y., and Wang, Y. Dijiang:
Efficient large language models through compact ker-
nelization, 2024. URL https://arxiv.org/abs/
2403.19928.

9

https://arxiv.org/abs/2012.13255
https://arxiv.org/abs/2012.13255
https://arxiv.org/abs/2405.04517
https://arxiv.org/abs/2405.04517
https://arxiv.org/abs/2408.10189
https://arxiv.org/abs/2408.10189
https://arxiv.org/abs/2403.19928
https://arxiv.org/abs/2403.19928


Liger: Linearizing Large Language Models to Gated Recurrent Structures

Chintala, S. Gpt-4 moe, June 2023. URL
https://x.com/soumithchintala/status/
1671267150101721090.

Chou, Y., Yao, M., Wang, K., Pan, Y., Zhu, R., Zhong, Y.,
Qiao, Y., Wu, J., Xu, B., and Li, G. Metala: Unified
optimal linear approximation to softmax attention map.
arXiv preprint arXiv:2411.10741, 2024a.

Chou, Y., Yao, M., Wang, K., Pan, Y., Zhu, R., Zhong,
Y., Qiao, Y., Wu, J., Xu, B., and Li, G. Metala:
Unified optimal linear approximation to softmax atten-
tion map, 2024b. URL https://arxiv.org/abs/
2411.10741.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457, 2018.

Dao, T. and Gu, A. Transformers are ssms: Generalized
models and efficient algorithms through structured state
space duality. arXiv preprint arXiv:2405.21060, 2024.

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-
Muraru, G., Gu, A., Haroun, R., Berrada, L., Chen, Y.,
Srinivasan, S., Desjardins, G., Doucet, A., Budden, D.,
Teh, Y. W., Pascanu, R., Freitas, N. D., and Gulcehre,
C. Griffin: Mixing gated linear recurrences with lo-
cal attention for efficient language models, 2024. URL
https://arxiv.org/abs/2402.19427.

Dong, X., Fu, Y., Diao, S., Byeon, W., Chen, Z., Maha-
baleshwarkar, A. S., Liu, S.-Y., Van Keirsbilck, M., Chen,
M.-H., Suhara, Y., et al. Hymba: A hybrid-head ar-
chitecture for small language models. arXiv preprint
arXiv:2411.13676, 2024.

Du, J., Sun, W., Lan, D., Hu, J., and Cheng, Y. Mom: Linear
sequence modeling with mixture-of-memories. arXiv
preprint arXiv:2502.13685, 2025.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
07 2024. URL https://zenodo.org/records/
12608602.

Gershman, S. J., Fiete, I., and Irie, K. Key-value memory in
the brain. arXiv preprint arXiv:2501.02950, 2025.

Glorioso, P., Anthony, Q., Tokpanov, Y., Whittington, J.,
Pilault, J., Ibrahim, A., and Millidge, B. Zamba: A
compact 7b ssm hybrid model, 2024. URL https://
arxiv.org/abs/2405.16712.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Han, D., Ye, T., Han, Y., Xia, Z., Pan, S., Wan, P., Song,
S., and Huang, G. Agent attention: On the integration
of softmax and linear attention, 2024. URL https:
//arxiv.org/abs/2312.08874.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models, 2021. URL https://arxiv.
org/abs/2106.09685.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Kasai, J., Peng, H., Zhang, Y., Yogatama, D., Ilharco, G.,
Pappas, N., Mao, Y., Chen, W., and Smith, N. A. Fine-
tuning pretrained transformers into rnns, 2021. URL
https://arxiv.org/abs/2103.13076.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International Conference on
Machine Learning, pp. 5156–5165. PMLR, 2020.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Li, H., Zhang, Y., Koto, F., Yang, Y., Zhao, H., Gong, Y.,
Duan, N., and Baldwin, T. Cmmlu: Measuring massive
multitask language understanding in chinese, 2023.

Lieber, O., Lenz, B., Bata, H., Cohen, G., Osin, J., Dalmedi-
gos, I., Safahi, E., Meirom, S., Belinkov, Y., Shalev-
Shwartz, S., et al. Jamba: A hybrid transformer-mamba
language model. arXiv preprint arXiv:2403.19887, 2024.

10

https://x.com/soumithchintala/status/1671267150101721090
https://x.com/soumithchintala/status/1671267150101721090
https://arxiv.org/abs/2411.10741
https://arxiv.org/abs/2411.10741
https://arxiv.org/abs/2402.19427
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2405.16712
https://arxiv.org/abs/2405.16712
https://arxiv.org/abs/2312.08874
https://arxiv.org/abs/2312.08874
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2103.13076


Liger: Linearizing Large Language Models to Gated Recurrent Structures

Mercat, J., Vasiljevic, I., Keh, S., Arora, K., Dave, A.,
Gaidon, A., and Kollar, T. Linearizing large language
models, 2024. URL https://arxiv.org/abs/
2405.06640.

MiniMax, Li, A., Gong, B., Yang, B., Shan, B., Liu, C.,
Zhu, C., Zhang, C., Guo, C., Chen, D., Li, D., Jiao, E.,
Li, G., Zhang, G., Sun, H., Dong, H., Zhu, J., Zhuang, J.,
Song, J., Zhu, J., Han, J., Li, J., Xie, J., Xu, J., Yan, J.,
Zhang, K., Xiao, K., Kang, K., Han, L., Wang, L., Yu,
L., Feng, L., Zheng, L., Chai, L., Xing, L., Ju, M., Chi,
M., Zhang, M., Huang, P., Niu, P., Li, P., Zhao, P., Yang,
Q., Xu, Q., Wang, Q., Wang, Q., Li, Q., Leng, R., Shi, S.,
Yu, S., Li, S., Zhu, S., Huang, T., Liang, T., Sun, W., Sun,
W., Cheng, W., Li, W., Song, X., Su, X., Han, X., Zhang,
X., Hou, X., Min, X., Zou, X., Shen, X., Gong, Y., Zhu,
Y., Zhou, Y., Zhong, Y., Hu, Y., Fan, Y., Yu, Y., Yang,
Y., Li, Y., Huang, Y., Li, Y., Huang, Y., Xu, Y., Mao, Y.,
Li, Z., Li, Z., Tao, Z., Ying, Z., Cong, Z., Qin, Z., Fan,
Z., Yu, Z., Jiang, Z., and Wu, Z. Minimax-01: Scaling
foundation models with lightning attention, 2025. URL
https://arxiv.org/abs/2501.08313.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Biderman, S., Cao, H., Cheng, X., Chung, M., Der-
czynski, L., Du, X., Grella, M., Gv, K., He, X., Hou,
H., Kazienko, P., Kocon, J., Kong, J., Koptyra, B., Lau,
H., Lin, J., Mantri, K. S. I., Mom, F., Saito, A., Song,
G., Tang, X., Wind, J., Woźniak, S., Zhang, Z., Zhou,
Q., Zhu, J., and Zhu, R.-J. RWKV: Reinventing RNNs
for the transformer era. In Bouamor, H., Pino, J., and
Bali, K. (eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pp. 14048–14077, Sin-
gapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
936. URL https://aclanthology.org/2023.
findings-emnlp.936.

Peng, B., Goldstein, D., Anthony, Q., Albalak, A., Al-
caide, E., Biderman, S., Cheah, E., Ferdinan, T., Hou, H.,
Kazienko, P., et al. Eagle and finch: Rwkv with matrix-
valued states and dynamic recurrence. arXiv preprint
arXiv:2404.05892, 2024.

Poli, M., Wang, J., Massaroli, S., Quesnelle, J., Carlow, R.,
Nguyen, E., and Thomas, A. Stripedhyena: Moving be-
yond transformers with hybrid signal processing models.
URL https://github. com/togethercomputer/stripedhyena,
2023.

Qin, Z., Li, D., Sun, W., Sun, W., Shen, X., Han, X., Wei,
Y., Lv, B., Luo, X., Qiao, Y., et al. Transnormerllm: A
faster and better large language model with improved
transnormer. arXiv preprint arXiv:2307.14995, 2023.

Qin, Z., Sun, W., Li, D., Shen, X., Sun, W., and Zhong, Y.
Lightning attention-2: A free lunch for handling unlim-

ited sequence lengths in large language models. arXiv
preprint arXiv:2401.04658, 2024a.

Qin, Z., Sun, W., Li, D., Shen, X., Sun, W., and Zhong,
Y. Various lengths, constant speed: Efficient lan-
guage modeling with lightning attention. arXiv preprint
arXiv:2405.17381, 2024b.

Qin, Z., Yang, S., Sun, W., Shen, X., Li, D., Sun, W., and
Zhong, Y. Hgrn2: Gated linear rnns with state expansion.
arXiv preprint arXiv:2404.07904, 2024c.

Qu, X., Dong, D., Hu, X., Zhu, T., Sun, W., and Cheng,
Y. Llama-moe v2: Exploring sparsity of llama from per-
spective of mixture-of-experts with post-training. arXiv
preprint arXiv:2411.15708, 2024.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. arXiv preprint arXiv:1907.10641, 2019.

Sun, W., Qin, Z., Li, D., Shen, X., Qiao, Y., and Zhong,
Y. Linear attention sequence parallelism. arXiv preprint
arXiv:2404.02882, 2024a.

Sun, W., Lan, D., Zhong, Y., Qu, X., and Cheng, Y. Lasp-2:
Rethinking sequence parallelism for linear attention and
its hybrid. arXiv preprint arXiv:2502.07563, 2025.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor to
transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Sun, Y., Dong, L., Zhu, Y., Huang, S., Wang, W., Ma,
S., Zhang, Q., Wang, J., and Wei, F. You only cache
once: Decoder-decoder architectures for language mod-
els, 2024b. URL https://arxiv.org/abs/2405.
05254.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Team, I. Internlm: A multilingual language model with
progressively enhanced capabilities, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

11

https://arxiv.org/abs/2405.06640
https://arxiv.org/abs/2405.06640
https://arxiv.org/abs/2501.08313
https://aclanthology.org/2023.findings-emnlp.936
https://aclanthology.org/2023.findings-emnlp.936
https://arxiv.org/abs/2405.05254
https://arxiv.org/abs/2405.05254
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Liger: Linearizing Large Language Models to Gated Recurrent Structures

Wang, J., Paliotta, D., May, A., Rush, A. M., and Dao,
T. The mamba in the llama: Distilling and accelerating
hybrid models, 2024. URL https://arxiv.org/
abs/2408.15237.

Yang, S., Wang, B., Shen, Y., Panda, R., and Kim, Y. Gated
linear attention transformers with hardware-efficient train-
ing. arXiv preprint arXiv:2312.06635, 2023.

Yu, L., Yu, B., Yu, H., Huang, F., and Li, Y. Language
models are super mario: Absorbing abilities from homol-
ogous models as a free lunch. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=fq0NaiU8Ex.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sen-
tence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

Zhang, M., Arora, S., Chalamala, R., Wu, A., Spector, B.,
Singhal, A., Ramesh, K., and Ré, C. Lolcats: On low-
rank linearizing of large language models, 2024a. URL
https://arxiv.org/abs/2410.10254.

Zhang, M., Bhatia, K., Kumbong, H., and Ré, C. The
hedgehog & the porcupine: Expressive linear attentions
with softmax mimicry, 2024b. URL https://arxiv.
org/abs/2402.04347.

Zhang, Y., Yang, S., Zhu, R., Zhang, Y., Cui, L., Wang,
Y., Wang, B., Freda Shi, Bailin Wang, W. B., Zhou, P.,
and Fu, G. Gated slot attention for efficient linear-time
sequence modeling. arXiv preprint arXiv:2409.07146,
2024c.

Zhang, Y., Yang, S., Zhu, R., Zhang, Y., Cui, L., Wang,
Y., Wang, B., Shi, F., Wang, B., Bi, W., et al. Gated
slot attention for efficient linear-time sequence modeling.
arXiv preprint arXiv:2409.07146, 2024d.

Zhu, T., Qu, X., Dong, D., Ruan, J., Tong, J., He, C., and
Cheng, Y. Llama-moe: Building mixture-of-experts from
llama with continual pre-training. In Proceedings of the
2024 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 15913–15923, 2024.

12

https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2408.15237
https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=fq0NaiU8Ex
https://arxiv.org/abs/2410.10254
https://arxiv.org/abs/2402.04347
https://arxiv.org/abs/2402.04347


Liger: Linearizing Large Language Models to Gated Recurrent Structures

A. Datasets and Benchmarks
We linearize Liger on Cleaned Alpaca dataset (Taori et al., 2023) and evaluate on downstream language tasks using
lm-evaluation-harness (Gao et al., 2024).

• Cleaned Alpaca (Taori et al., 2023): The cleaned Alpaca dataset is a structured dataset designed for instruction-tuning
of language models, containing 52,000 instructions and corresponding outputs generated by OpenAI’s text-davinci-003
engine. Each entry in the dataset includes an "instruction" field that specifies the task for the model, an optional "input"
field providing context or additional information, and an "output" field with the model’s response. The dataset is
formatted in JSON and is intended to enhance the ability of language models to follow instructions effectively.

• PiQA (Bisk et al., 2020): The PiQA (Physical Interaction: Question Answering) dataset is designed to assess physical
commonsense reasoning, containing 3,084 samples for testing. Each instance includes a "goal" field representing the
question, two "solution" fields with potential answers, and a "label" indicating the correct solution. The dataset focuses
on everyday situations requiring physical commonsense.

• ARC-Easy & ARC-Challenge (Clark et al., 2018): The ARC (AI2 Reasoning Challenge) dataset is a collection of
7,787 genuine grade-school level multiple-choice science questions. It is divided into two subsets: ARC-Easy and
ARC-Challenge. The ARC-Easy subset contains relatively straightforward questions that test basic knowledge, while
the ARC-Challenge subset includes more complex and difficult questions that require advanced reasoning abilities

• HellaSwag (Zellers et al., 2019): The HellaSwag dataset is a comprehensive collection of narrative reasoning tasks
designed to evaluate a model’s ability to predict the next event in a sequence. It consists of 10,125 examples, each
containing a context and four possible endings, with one correct and three incorrect options. The dataset is derived
from the ActivityNet Captions corpus and is structured to test the model’s understanding of narrative coherence and
common-sense reasoning based on the given context.

• WinoGrande (Sakaguchi et al., 2019): The WinoGrande dataset is a large-scale collection of 44,000 problems
designed to evaluate commonsense reasoning, inspired by the Winograd Schema Challenge but enhanced in scale and
difficulty. Each problem is structured as a fill-in-the-blank task with two options, requiring models to choose the correct
answer based on contextual understanding. WinoGrande is significantly more challenging than the original Winograd
Schema Challenge, with state-of-the-art models achieving lower accuracy, highlighting its effectiveness in testing true
commonsense understanding.

• MMLU (Li et al., 2023): The MMLU (Massive Multitask Language Understanding) dataset is a comprehensive
benchmark designed to evaluate AI models’ general knowledge across a wide range of subjects and languages. It
comprises 57 distinct categories, spanning elementary-level knowledge to advanced professional topics such as law,
physics, history, and computer science. The dataset has been translated into 14 languages using professional human
translators, ensuring high-quality and accurate translations. This multilingual approach aims to improve the inclusivity
and effectiveness of AI models across different linguistic communities.

B. Experiment Details
Our 8B model linearization experiments are conducted on single NVIDIA A800 80G GPU. With batch size 1 and gradient
accumulation over 8 batches, Liger method takes around 4 hours and 27GB GPU memory usage for 2 epochs end-to-end
linearization, instead of any multi-stage training. All our experiments were conducted and evaluated using a fixed random
seed of 0 to ensure reproducibility.

C. Model Weight Changes
LoLCATs Liger

∥ ∆W ∥1 3.68e+06 2.91e+06
∥ ∆W ∥1/W 4.82% 3.85%
∥ ∆W ∥2 3.93e+04 1.27e+03
∥ ∆W ∥2/W 179.29% 7.63%

Table 7. Model Weight Changes after Lin-
earization. Liger has a smaller number of chang-
ing model weights than LoLCATs.

We analyze the model weight changes after model architecture linearization.
Let W be the sum of each weight parameter of LLM, we calculate the model
weight changes ∆W in Liger compared with LoLCATs. As presented in
Table 7, we observe that Liger has a smaller number of changing parameters
than LoLCATs, which mitigates catastrophic forgetting of pretrained knowl-
edge during linearization process, thereby enhancing both training efficiency
and model effectiveness.

13



Liger: Linearizing Large Language Models to Gated Recurrent Structures

Model PiQA ARC-e ARC-c Hella. Wino. MMLU Avg. Avg.

acc ↑ acc ↑ acc_norm ↑ acc_norm ↑ acc ↑ acc (5-shot) ↑ ↑ (no MMLU) ↑
Liger-GLA-8B-Q-Pooling 80.2 78.6 51.6 76.7 71.6 41.7 66.7 71.7
Liger-GLA-8B-K-Pooling 80.3 81.1 52.5 76.3 72.0 43.4 67.6 72.4
Liger-GLA-8B-V-Pooling 80.7 77.4 50.6 76.4 70.4 43.7 66.5 71.1

Table 8. Results on Gate Construction from Different Components. We compare the Liger-GLA-8B’s performance of gate module
obtained by pooling from query (Q), key (K) and value (V) matrices, the gate construction from key matrix outperforms others.

D. Gate Construction from Different Components
We consider constructing gating mechanisms from different components of the model. We compare the Liger-GLA-8B’s
performance of gate module obtained by pooling from query (Q), key (K) and value (V) matrices, and the results are shown
in Table 8. We observed that the gate construction from key matrix outperforms than others. The key matrix usually serves as
memory indexing in transformer or linear model (Gershman et al., 2025), which is similar to the gate that determines which
part of the memory should be retrieved or forgotten. In this view, it is intuitive to choose Key for gate construction. MetaLA
(Chou et al., 2024a) also points out that the linear recurrent model needs to meet the "least parameter approximation"
condition to achieve the optimal linear attention design. In this case, the parameters of key matrix are redundant and can be
used to construct the gate, which also provides motivation and theoretical support for gate derived from Key.

E. Full Results

Sequence
Length

Llama-3-8B w/o FA2 Llama-3-8B w/ FA2 Liger-8B

Time Memory Time Memory Time Memory

1K 37.92 17.50 29.36 17.26 47.83 16.37
2K 102.54 19.75 62.52 19.29 94.41 16.37
4K 312.98 24.25 151.51 23.35 185.79 16.37
8K 1062.65 33.26 436.04 31.48 367.78 16.37

16K 3882.36 51.26 1449.20 47.73 734.91 16.37
32K - OOM - OOM 1465.52 16.37

Table 9. Detailed Results on Inference Efficiency in terms of Decoding Latency Time and GPU Memory Usage. We present the
decoding latency time (seconds) and the GPU memory usage (GB) during inference stage compared with Llama-3-8B without (w/o), with
(w/) Flash-Attention-2 (FA2) and Liger-8B. OOM denotes out of memory.

Model PiQA ARC-e ARC-c Hella. Wino. MMLU Avg. Avg.

acc ↑ acc ↑ acc_norm ↑ acc_norm ↑ acc ↑ acc (5-shot) ↑ ↑ (no MMLU) ↑
Liger-GLA 80.3 81.1 52.5 76.3 72.0 43.4 67.6 72.4
Liger-HGRN2 79.2 76.8 48.5 74.4 68.8 36.2 64.0 69.5
Liger-GSA 79.5 78.5 49.4 74.5 70.5 41.2 65.6 70.5

Table 10. Full Results on Different Gated Linear Recurrent Model Variants with Liger. Liger can be applied to the efficient
linearization of various linear recurrent structures with gating mechanism and achieve high quality performance recovery.

14



Liger: Linearizing Large Language Models to Gated Recurrent Structures

Model PiQA ARC-e ARC-c Hella. Wino. MMLU Avg. Avg.

acc ↑ acc ↑ acc_norm ↑ acc_norm ↑ acc ↑ acc (5-shot) ↑ ↑ (no MMLU) ↑
Llama-3.2-1B 74.1 65.4 36.4 63.8 60.0 31.0 55.1 59.9
GLA-1B 69.9 55.2 27.6 48.9 53.9 25.9 46.9 51.1
LoLCATs-Llama-3.2-1B 74.1 63.7 36.4 51.2 58.2 23.1 51.1 56.7
Liger-GLA-Llama-3.2-1B 75.0 65.4 35.7 59.8 59.1 22.4 52.9 59.0

Llama-3.2-3B 76.4 74.7 46.0 73.6 69.9 56.2 66.1 68.1
GLA-3B 71.5 59.2 30.0 53.0 55.3 25.6 49.1 53.8
LoLCATs-Llama-3.2-3B 76.7 72.0 42.3 51.9 66.9 23.6 55.6 62.0
Liger-GLA-Llama-3.2-3B 77.9 74.0 43.9 70.3 66.3 32.1 60.7 66.5

Llama-3-8B 79.4 80.1 53.2 79.2 72.9 65.3 71.7 73.0
LoLCATs-Llama-3-8B 80.1 80.4 53.5 63.4 72.9 42.8 65.5 70.0
Liger-GLA-Llama-3-8B (Ours) 80.3 81.1 52.5 76.3 72.0 43.4 67.6 72.4

Table 11. Full Results on Scalability Analysis of Linearized Llama-3 Architectures across Model Sizes (1B to 8B). Performance
comparisons between vanilla Llama-3, GLA, LoLCATs, and our Liger-GLA variants on language modeling and reasoning tasks. Liger
demonstrates consistent scaling laws, outperforming LoLCATs by +6.8–11.5% absolute on average metrics while preserving 83–98% of
base model capabilities with only 0.02B adaptation tokens.

Model Validation PPL. PiQA ARC-e ARC-c Hella. Wino. MMLU Avg. Avg.

↓ acc ↑ acc ↑ acc_norm ↑ acc_norm ↑ acc ↑ acc (5-shot) ↑ ↑ (no MMLU) ↑
Liger-GLA 2.96 80.3 81.1 52.5 76.3 72.0 43.4 67.6 72.4
- Gate Proj. 3.16 79.1 75.9 49.6 71.8 67.3 39.2 63.8 68.8
- Feat. Map. 9.04 63.1 46.3 24.2 33.7 50.4 23.8 40.2 43.5
- Pure LA 3.00 79.9 79.8 52.0 75.3 70.6 38.8 66.1 71.5
- w/o LoRA 3.23 78.7 75.6 47.4 74.0 64.8 29.5 61.7 68.1
- w/o SWA 3.75 75.0 68.3 39.1 63.4 55.3 26.4 54.2 60.2
- w/o GLA 3.01 79.8 80.5 52.4 76.3 72.4 37.0 66.2 72.0

Table 12. Full Results on Ablation Study. We linearize Llama-3-8B to Gated Linear Attention (GLA) to evaluate the key components of
Liger. We report Validation perplexity (PPL.) on cleaned alpaca dataset after Liger linearization and the average performance on language
modeling and under-standing tasks.

15


