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Abstract

Measurement and analysis of high energetic particles for scientific, medical or industrial
applications is a complex procedure, requiring the design of sophisticated detector and data
processing systems. The development of adaptive and differentiable software pipelines using
a combination of conventional and machine learning algorithms is therefore getting ever
more important to optimize and operate the system efficiently while maintaining end-to-end
(E2E) differentiability. In this work, we lay the groundwork for E2E differentiable decision
focused learning for the application of charged particle tracking using graph neural net-
works with combinatorial components solving a linear assignment problem for each detector
layer. We demonstrate empirically that including differentiable variations of discrete as-
signment operations allows for efficient network optimization, working better or on par with
approaches that lack E2E differentiability. In additional studies, we dive deeper into the op-
timization process and provide further insights from a loss landscape perspective, providing
a robust foundation for future work. We demonstrate that while both methods converge into
similar performing, globally well-connected regions, they suffer under substantial predictive
instability across initialization and optimization methods, which can have unpredictable
consequences on the performance of downstream tasks such as image reconstruction. We
also point out a dependency between the interpolation factor of the gradient estimator and
the prediction stability of the model, suggesting the choice of sufficiently small values. Given
the strong global connectivity of learned solutions and the excellent training performance,
we argue that E2E differentiability provides, besides the general availability of gradient in-
formation, an important tool for robust particle tracking to mitigate prediction instabilities
by favoring solutions that perform well on downstream tasks.

1 Introduction

Charged particle tracking (Strandlie & Frühwirth, 2010) is a central element in analyzing readouts generated
by ionizing energy losses in particle detectors, with the goal of reconstructing distinct sets of coherent parti-
cle tracks from a discrete particle cloud measured over subsequent detector layers. Current state-of-the-art
approaches in particle tracking heavily utilizes geometric deep learning in a two-phase predict-then-optimize
approach (Shlomi et al., 2021; Duarte & Vlimant, 2022; Thais et al., 2022). In an initial prediction step,
relations between detector readouts described as a graph structure are modelled and quantified. Then the
predicted relationships are used in a separate and disconnected step to parameterize a discrete optimization
problem generating disconnected track candidates. Separating the initial scoring from the final assignment
operations, however, bares the risk of learning suboptimal solutions, that only minimize the intermediate
optimization quantity of the scoring task (prediction loss) instead of the final task loss (Mandi et al., 2023).
This effect is potentially further increased by integrating particle tracking in entire component-based data
processing pipelines1 used for reconstruction and analysis, introducing additional complexities due to non-
monotonic error dependencies of components on the downstream reconstruction performance, as well as

1Processing pipelines for, e.g., Bergen pCT project and the ALICE, ATLAS and CMS experiment, depicting the complexity
and variety of individual chained components, are described in detail in Aehle et al. (2023b); Buncic et al. (2015); Åkesson et al.
(2005); Lange & the CMSCollaboration) (2011).
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complex error propagation due to entanglement of individual processing steps (Sculley et al., 2015; Nushi
et al., 2017) (further discussed in Section 3.2). Providing end-to-end differentiable pipelines, where all in-
dividual components allow the propagation of gradient information, could significantly improve the overall
performance of reconstruction and analysis and allow the integration of gradient-based experiment design
and optimization (Dorigo et al., 2023; Aehle et al., 2023b). However, providing end-to-end differentiable so-
lutions is not trivial as the final track assignment inherently involves discrete, piece-wise constant assignment
operations where the gradient is undefined. This issue is examined and discussed comprehensively in Aehle
et al. (2023b). The decision-focused learning or predict-and-optimize paradigm (Kotary et al., 2021; Mandi
et al., 2023) provides a general framework where prediction of intermediate scoring and optimization for
structured outputs are directly integrated in the training procedure by embedding the combinatorial solver
as a component of the network architecture, allowing to optimize the main objective in an E2E manner.
This framework has already been proven highly efficient for various fields of applications such as natural
language processing, computer vision or planning and scheduling tasks (Mandi et al., 2023). In this work,
we propose and explore a predict-and-optimize framework for charged particle tracking, providing to our
knowledge the first fully differentiable charged particle tracking pipeline for high-energy physics2. Further,
we aim to provide first insights into the importance and usability of end-to-end particle tracking for fully
differentiable reconstruction and analysis pipelines analyzing the loss landscape (e.g, sharpness/flatness of
minima, connectivity of local minima and similarity of learned models) of the tracking network. We choose
this simplification over an analysis of an entire pipeline to reduce the overall complexity, introduced by other
components, obscuring the influence of E2E tracking on the overall optimization performance. Further, E2E
differentiability is still an active area of research for high-energy physics, with differentiability yet to be
provided or improved for some components, making a meaningful and robust analysis infeasible. Our main
contributions in this paper summarize as follows, serving as a foundation for further work on E2E charged
particle tracking:

1. We propose an edge-classification architecture for particle tracking, that operates on a filtered line
graph representation of an original hit graph, providing a strong inductive bias for the dominant
effect of particle scattering.

2. We then formalize the generation of track candidates as a layer-wise linear sum assignment problem,
for which we provide gradient information based on previous work by Vlastelica et al. (2020).

3. We demonstrate the competitive performance of our proposed network architecture for both tradi-
tional and E2E optimization, comparing it with existing tracking algorithms for the Bergen pCT
detector prototype.

4. We find significant predictive instabilities between the different training paradigms as well as across
random initializations, arguing the importance of E2E differentiability for robust particle tracking,
providing necessary tools to constraint the solution space of tracking models to a subset optimizing
an additional metric of the downstream tasks.

5. Further, we reveal, analyzing the local and global structure of the loss landscape, strong connectiv-
ity between the trained representations both for E2E training and optimization of a prediction loss.
Together with the high predictive instability, we argue that the strong connectivity of diverse recon-
struction policies enables efficient end-to-end optimization in reconstruction and analysis pipelines,
favoring tracking solutions that provide beneficial performance on downstream tasks.

6. Finally, we point out a coupling between the interpolation parameter defined by the blackbox gradi-
ents and the prediction stability, suggesting the choice of sufficiently small values for optimization.

2 Related Work

Charged particle tracking is a well-studied problem, with the majority of advancements originating from
developments in high-energy physics research at particle facilities (e.g., CERN). For the last decades, track-

2The source code and data utilized in this study are detailed in Appendix F, including all relevant source code, datasets,
and results necessary to reproduce the findings presented in this paper.
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Figure 1: Schematic representation of the combinatorial complexity of reconstructing particle tracks over
multiple subsequent layers. Marked in bold lines is the correct particle track. Marked in dashed lines are
only possible next track segments originating from the previous correct segment. During reconstruction, all
possible combinations of segments over all hits are considered.

ing algorithms have been dominated by conventional model based, pattern recognition and optimization
algorithms such as Kalman filter (Frühwirth, 1987), Hough transform (Hough, 1959) or cellular automaton
(Glazov et al., 1993). Here we specifically want to point out existing work by Pusztaszeri et al. (1996)
related to our work, using combinatorial optimization on handcrafted features for particle tracking providing
solutions that satisfy unique combination of vertex detector observations using a five-dimensional assignment
model. With the ever-accelerating advancement and availability of deep learning algorithms, coupled with
the increasing complexity and density of collision events, a significant demand has been imposed on novel
reconstruction algorithms, resulting in faster and more precise models. While initial studies mainly relied on
basic regression- and classification models based on convolutional neural networks (CNN) or recurrent neural
networks (RNN) (Farrell et al., 2017a;b), remarkable progress has been made recently by computationally
efficient and well-performing network architectures based on geometric deep learning (GDL) (Shlomi et al.,
2021; Thais et al., 2022) leveraging sparse representations of particle events in combination with graph neural
networks (GNN). Here, the vast majority of current designs can be categorized into one of two main schemes.
Edge classification tracking (Farrell et al., 2018; Ju et al., 2020; Duarte & Vlimant, 2020; Baranov et al.,
2019; Heintz et al., 2020; DeZoort et al., 2021; Elabd et al., 2022; Murnane et al., 2023) predicts for each
graph edge connecting two particle hits in subsequent layers a continuous output score which is then used
to construct track candidates. In object condensation tracking (Kieseler, 2020; Qasim et al., 2022; Lieret
& DeZoort, 2023; Lieret et al., 2023), GNN’s are trained with a multi-objective object condensation loss.
In contrast to scoring edges in the graph, object condensation embeds particle hits in an N-dimensional
cluster space, where hits belonging to the same track are attracted to a close proximity while hits from dif-
ferent tracks are repelled from each other. While both approaches provide great tracking performances, they
require a separate optimization step (e.g., clustering) to generate final track candidates in a disconnected
step, thus lacking an end-to-end differentiable architecture, preventing gradient flow throughout the whole
reconstruction process. Recent progress has been made using reinforcement learning (Kortus et al., 2023) for
charged particle tracking, allowing to differentiate through the discrete assignment operation using variants
of the policy gradient or score function estimator approach maximizing an objective function J(θ), defined
as the expected future reward obtained by the agent’s policy.

3 Theory and Background

In this work, we focus on reconstructing particle tracks generated in the pixelated proton computed tomogra-
phy (pCT) detector prototype, proposed by the Bergen pCT Collaboration (Alme et al., 2020; Aehle et al.,
2023a). This detector is designed for generating high-resolution computer tomographic images using accel-
erated protons and is composed using a total of 4644 high-resolution ALPIDE CMOS Pixel sensors (Mager,
2016; Aglieri Rinella, 2017) developed for the upgrade of the Inner Tracking System (ITS) of the ALICE
experiment at CERN. To capture the residual energy and path of the particle, the detector is arranged in a
multi-layer structure, aligned in two tracking and 41 calorimeter layers. Each of the tracking layers, used for
capturing the incoming particle path with as little interaction as possible, is separated from each subsequent
layer by a 55.18 mm and 39.58 mm air gap respectively. The following calorimeter layers are separated from
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each other with a 3.5 mm aluminum slate. A detailed description of the detector geometry can be found
in Alme et al. (2020). In this detector setup, multiple simultaneous particle trajectories, generated by a
230 MeV scanning pencil beam, are captured distal to a patient as discrete readouts of pixel clusters in the
sensitive layers which have to be reconstructed into particle tracks under the influence of physical interactions
with the detector material, randomly deflecting the particle from its straight path (ref. Appendix C). With
the high particle density in the detector, the resulting combinatorial explosion of track candidates, where
each hit combination in subsequent layers need to be considered as possible partial solutions, requires effi-
cient and reliable algorithms that are able to simultaneously reconstruct disjoint particle tracks by uniquely
connecting particle hits over multiple layers in the detector (ref. Figure 1).

3.1 Particle Interactions in Matter

The path of protons at energies relevant for pCT is mainly influenced by interactions of the particles with
both electrons and atomic nuclei changing the path of the accelerated particle (Gottschalk, 2018; Groom
& Klein, 2000), baring additional difficulties in recovering the traversal path of the particle throughout a
multi-layer particle detector. In the following, we briefly describe all three relevant effects in increasing order
regarding their influence on the particle trajectories:

1. Ionizing energy loss: When interacting with negatively charged electrons in the atom’s outer
shell, protons lose a fraction of their initial energy, due to attracting forces between the particles
(Bloch, 1933), causing the particle to stop after a traversal range, proportional to the particle’s
energy. Due to the relatively small mass of the electron compared to the high momentum of the
accelerated proton, the proton remains on its original path.

2. Elastic nuclear interactions: However, when repeatedly interacting elastically with the heavier
atomic nuclei, the proton is deflected from its original path due to the repelling forces between nuclei
and particle. Integrated over multiple interactions, this effect, also referred to as Multiple-Coulomb
scattering (MCS), follows an approximately Gaussian shape proportional to the particle’s energy as
well as the amount and density of material traversed (Gottschalk, 2018).

3. Inelastic nuclear interactions: Finally, on rare occasions, particles suffer from inelastic interac-
tions with an atomic nucleus. In this case, the proton undergoes a destructive process, where the
primary can knock out one or multiple secondary particles of various types from the target nucleus.
Due to the stochastic nature of the event, the outgoing path of particles is highly complex in its
nature and involves significantly larger angles compared to MCS (Gottschalk, 2018). Inelastic inter-
actions are therefore extremely difficult to reconstruct while losing any meaningful information for
image reconstruction due to its stochastic behavior.

3.2 Component-based Processing Pipelines

Modern data processing pipelines are increasingly powered by data-driven or machine learning algorithms,
requiring the efficient interplay of multiple individually optimized tasks that are strongly coupled and en-
tangled with each other (Sculley et al., 2015; Nushi et al., 2017). The coupling of data-driven algorithms
introduces additional challenges that need to be considered in order to ensure operability and maintain-
ability while providing reproducible and optimal performance Sculley et al. (2015). While the influences of
component-based processing pipelines utilizing machine learning are manyfold, we focus in the following on
the following aspects, that influence the initial design and operation, especially benefiting from end-to-end
optimizable/differentiable solutions:

• Stochastic nature of optimization: In contrast to conventional model- or rule-based algo-
rithms, data-driven algorithms are sensitive to random mechanisms, such as parameter initialization,
stochastic optimization, parallel operations on GPUs, reducing the overall stability of the system.

• Error propagation: While individual model performances are often not only minimal affected
by prediction instabilities (Lopez-Martinez et al., 2022), the different sources of errors propagate
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throughout the entire pipeline, resulting in unpredictable error patterns in the final output of the
pipeline due to the existent complex entanglements of the downstream processing steps.

• Non-monotonic error: Finally, due to the entanglement of the individual components, model
improvements of individual components are not necessarily bound to an improvement of the overall
system performance Nushi et al. (2017). While this seems unintuitive at first, this behavior can be
caused by downstream tasks being optimized on the erroneous output signal of the upstream part of
the pipeline or misalignment of the individual components optimization metric and overall system
performance.

To tackle the challenges associated with component-based pipelines, different solutions have been developed
for mitigating the effect. This includes, for example, the development of modular processing pipelines,
aiming to decouple the individual pipeline components to reduce the complex effects of entanglements Modi
et al. (2023). Increasing effort has also been put into the development of E2E-differentiable or in general
optimizable ML pipelines (Yu et al., 2022; Hilprecht et al., 2023), allowing to optimize the entirety of
components while optimizing the final output of interest. A similar trend, utilizing end-to-end differentiable
solutions, can also be found in high-energy physics (Dorigo et al., 2023; Aehle et al., 2023b).

3.3 Loss Landscape Analysis

Optimization of neural networks in high-dimensional parametric spaces is notoriously difficult to visualize
and understand. While theoretical analysis is complex and usually requires multiple restrictive assumptions,
recent work addressed this problem by providing empirical tools for loss landscape analysis providing com-
pressed representations for characterizing and comparing different architectures or optimization schemes.
We provide in the following section a brief introduction to a subset of methods, used for the analyses in the
later sections. Here, we closely follow the methodology and taxonomy provided by Yang et al. (2021) helping
us to characterize and assess differences and qualities of traditional and end-to-end differentiable particle
tracking with graph neural networks by characterizing and comparing the general form of the loss landscape
as well as the global connectivity of the landscape.

Loss surfaces: To obtain a general understanding of the smoothness and shape of the loss landscape Li
et al. (2018) proposed a method to visualize two-dimensional loss surfaces along random slices of the loss
landscape centered on the estimated parameters θ∗ according to

f(α, β) = L(θ∗ + αν + βη). (1)

Here, ν and η are random vectors, spanning a 2D-slice through the high-dimensional loss landscape. While
this technique is not fully descriptive and only a partial view of the optimization landscape, Li et al. (2018)
demonstrates that the qualitative characteristic and behavior of the loss landscape is consistent across dif-
ferent randomly selected directions. In our analysis, we use the first two eigenvectors with the highest
eigenvalues of the hessian matrix (Chatzimichailidis et al., 2019) of the trained network parameters θ∗,
providing the loss surface along the steepest curvature.

Mode connectivity: Garipov et al. (2018) and Draxler et al. (2018), demonstrated in independent work
the existence of non-linear low-energy connecting curves between neural network parameters. While this
approach was initially proposed for generating ensembles, Gotmare et al. (2018) and Yang et al. (2021)
demonstrated the usefulness of this approach for comparing different initialization and optimization strategies
as well as characterizing global loss landscape characteristics. For finding connecting curves of form ψθ(t) :
[0, 1] → Rd, Garipov et al. (2018) defines an optimization schemes using two modes ŵa, ŵb (weights after
training), minimizing the integral loss alongside the parameterized curve approximated by minimizing the
expectation of randomly sampled points, following a uniform distribution:

L(θ) =
∫ 1

0
L(ψθ(t))dt = Et∼U(0,1) [L (ψθ(t))] . (2)
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For quantifying the connectivity of minima generated using two-step and E2E optimization, we follow the
recommended parametrization of the learnable curve used in Yang et al. (2021), defined by a Bézier curve
with three anchor points (ŵa, ŵb and a learnable anchor θ), with

ψθ(t) = (1 − t)2ŵa + 2t(1 − t)θ + t2ŵb. (3)

We additionally evaluate the linear connectivity both as a baseline and a measure for mechanistic similari-
ties (Neyshabur et al., 2020; Juneja et al., 2022; Lubana et al., 2023).

Representational and functional similarities: Analyzing network similarities in both representations
and outputs is an effective tool in comparing results of network configurations, providing an estimate of
proximity in the loss landscape, especially for globally well-connected minima (Yang et al., 2021).

Achieving high network similarity is especially desirable for our use cases, as differences in reconstructed
tracks might influence results of the downstream tasks, such as image reconstruction for pCT or statistical
analysis for HEP experiments.

To gain an insight into the behavior of the trained networks, we thus quantify both the similarity of learned
representations using CKA similarities (Kornblith et al., 2019) and prediction instability using the min-max
normalized disagreement (Klabunde et al., 2023).

• Linear-CKA Linear central kernel alignment (CKA) is widely used to quantify a correlation-like
similarity metric (Kornblith et al., 2019) to compare learned representations of neural network layers
of same or different models. CKA compares representations via the Hilbert-Schmidt Independence
Criterion (HSIC) according to

CKA(K,L) = HSIC(K,L)√
HSIC(L,L)HSIC(K,K)

. (4)

where K = XXT and L = Y Y T are the gram matrices calculated for the representations of two
layers with X ∈ Rn×d1 and Y ∈ Rn×d2 . To cope with the large number of processed nodes and
edges processed, we use the batched Linear-CKA leveraging an unbiased estimator of the HSIC over
a set of minibatches (Nguyen et al., 2020).

• Prediction instability Prediction instability or churn captures the average ratio of disagreement
between predictions of different models f1 and f2 (Fard et al., 2016; Klabunde & Lemmerich, 2023).
For a general multi-class classifier, the disagreement is defined as following

d(f1, f2) = Ex,f1,f21 {arg max f1(x) ̸= arg max f2(x)} . (5)

This concept naturally translates to binary classifiers as used in this paper, where the argmax is
replaced by a threshold function. This metric, however, is difficult to interpret since the value range
is bounded by

|qErr(f1) − qErr(f2)| ≤ d(f1, f2) ≤ min(qErr(f1) + qErr(f2), 1), (6)

where qErr is the error rate of the model f1 or f2, respectively (Klabunde & Lemmerich, 2023). We
thus use the min-max normalized disagreement (Klabunde & Lemmerich, 2023), defined as

dnorm(f1, f2) = d(f1, f2) − min d(f1, f2)
max d(f1, f2) − min d(f1, f2) . (7)

with min d(f1, f2) = |qErr(f1) − qErr(f2)| and max d(f1, f2) = min (qErr(f1) + qErr(f2), 1) giving us
similarities in a bounded interval of [0, 1].
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Figure 2: Schematic representation of directed hit graph (GH) and undirected line graph (GL := L(GH))
using detector readout data simulated for the Bergen pCT prototype detector over multiple detector layers.

4 Predict-then-track and Predict-and-track Framework

In this section, we introduce our end-to-end differentiable predict-and-track (PAT) and two-step predict-
then-track (PTT) approaches, including preprocessing steps directly aimed at the specific data gathered
during proton computed tomography. We closely follow existing state-of-the-art edge-classifying approaches,
with modifications to match the algorithm to the specific challenges of reconstruction in a digital tracking
calorimeter, to provide a generally applicable blueprint and transferrable results that can be easily adapted
to different detector geometries and data structures.

4.1 Hit Graph and Edge (Line) Graph Construction

In this work, we parameterize the detector data as an undirected line graph GL = (VL, EL) generated from an
initially generated hit graph GH = (VH , EH) containing all the detector readouts of a single readout frame.
In an initial hit graph structure, we represent all particle hit centroids in a readout frame as a set of graph
vertices and describe possible partial track connections (segments) between two consecutive layers in the
detector by edge connections. This representation is widely used for particle tracking, as it allows describing
and parameterizing the particle hits and possible partial solutions in a single sparse structure. Yet, to capture
a richer representation of the scattering behavior over combinations of two consecutive segments, providing
a strong inductive bias for modelling the most likely path of the particle in the detector, under the influence
of elastic nuclear interactions, we transform this initial representation into a line graph (GL), where each
edge in GH is transformed into a node in GL (ref. Figure 2). Further, edges are generated between nodes
vL,i, vL,j that share a common vertex, constructing descriptions of track deflections of candidates over three
consecutive layers. This transformed representation allows to efficiently aggregate and compare information
of scattering behavior, providing important information on possible track segments in one edge feature, that
can be aggregated by a single GNN message, as supposed to the more complex aggregation in GH over
a two-hop neighborhood (ref. Figure 2). The usefulness of this transformation in terms of convergence
behavior and reconstruction performance is analyzed and confirmed in detail in Appendix D. To provide
machine-readable and differentiable features (w.r.t. simulation output) we parameterize both vertices (vi)
and edges (eij) as

vi = (∆EH,i∥∆EH,j∥⟨x, y, z⟩H,i∥⟨x, y, z⟩H,j)

eij =
{

sin(ω · [1 − √
scos]) if i = 2k

cos(ω · [1 − √
scos]) if i = 2k + 1

,
(8)
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Figure 3: Combination of interaction network style architecture and layerwise combinatorial assignment for
particle tracking, providing gradient information using linear interpolations of the optimization mapping.

where ∆EH is the deposited energy in the sensitive layers and ⟨x, y, z⟩H is the global position of the hit in
the detector3 for the adjacent nodes i and j. Further, each edge is parameterized by a positional encoding,
similar to Vaswani et al. (2017). However, instead of using discrete token positions, we leverage cosine
similarities scos between two hit segments as proposed by Kortus et al. (2023). To reduce the complexity
of the graph and to minimize the combinatorial explosion of edges in GL, we remove implausible edges with
high angles in GH , measured orthogonal to the sensitive layer. We find suitable independent thresholds for
both calorimeter and tracking layer edges as a trade-off between reducing the graph size and minimizing
the number of removed true edges required for constructing the particle tracks (see Appendix A). Both
thresholds are determined on the train-set and are kept constant for evaluation. Despite the elimination of
graph-edges, using a line-graph representation still introduces computational overhead for reconstruction.
Additional results quantifying the impact of the line-graph representation are presented in Appendix D.

4.2 Edge Scoring Architecture

Following the basic idea of track reconstruction using an edge classification scheme (Heintz et al., 2020;
DeZoort et al., 2021), we compose a graph neural network based on the interaction network (IN) architecture
(Battaglia et al., 2016; 2018) as proposed in (DeZoort et al., 2021), predicting edge scores capturing the
likelihood of every possible track segment candidate in GH . However, we use a slightly modified architecture
to predict node scores on the line graph representation GL, which directly correspond to the edge scores
in GH (see Figure 3). Following is the formulation of edge and node updates in a generic message passing
formulation, as well as the final scoring function based on node representation on GL. In a first step, updated
edge representations are calculated using a concatenated vector containing the edge attributes, describing
the scattering behavior of the triplet-candidate, together with the node attributes v

(0)
i and v

(0)
j of adjacent

nodes according to

e
(1)

ij = ϕR,1

(
v

(0)
i ,v

(0)
j , e

(0)
ij

)
. (9)

Here ϕR,1 is a multilayer feed-forward network mapping the concatenated input to a fixed size representation
with ϕR,1 : R2dnode+dedge → Rdhidden .

In a subsequent step, all node features of GL are updated in an aggregation step using the current node
representation and edge information aggregated from the direct neighborhood of the respective node vi:

3We use the continuous energy deposition and position outputs of the Monte-Carlo simulations here to be able to calculate
gradients w.r.t. position and energy deposition. The parameters can be replaced with the cluster size and cluster centroid
position accordingly. However, this representation requires additional work to provide differentiable solutions for pixel clustering.
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v
(1)

i = ϕO

(
v

(0)
i ,max

j∈Ni

(
e

(1)
ij

))
(10)

Given the dynamic number of incoming edges for each graph vertex, either due to the changing numbers of hit
readouts in subsequent layers of GH or the required generalization ability to different particle densities of the
proton beam, we use a node-agnostic max-aggregation scheme, providing empirically better generalization
abilities compared to non-node-agnostic aggregation schemes (Joshi et al., 2021).

To predict for each edge in GH an edge score, we perform a final reasoning step, transforming the node
embeddings of each node in GL into a single scalar output using a feedforward network ϕR,2:

sij = σ
(
ϕR,2

(
v

(1)
i

))
(11)

We generate the final edge scores sij ∈ [0, 1] using a sigmoid activation function as proposed in Heintz et al.
(2020); DeZoort et al. (2021). We augment the multi-layer feed forward networks using batch normalization
(Ioffe & Szegedy, 2015), to mitigate the risk of vanishing gradients and smoothen the optimization landscape
(Santurkar et al., 2018), providing better training and inference performance.

4.3 Track Construction as a Differentiable Assignment Problem

Generating discrete track candidates from the continuous edge-score predictions, requires the application
of a discrete algorithm that matches the tracks with the lowest total cost. Optimally, this would require a
multidimensional assignment problem (MAP) to minimize the total cost of all assignments over the entire
detector geometry. This exact definition is, however, impractical in real-world usage since solving a MAP is
NP-hard (Pierskalla, 1968), requiring an approximate solution to solve. In the related literature, different
optimization procedures, such as DBSCAN or union-find or partitioning algorithms, are used frequently
(DeZoort et al., 2021; Ju et al., 2021; Lieret & DeZoort, 2023). In this work, however, we rely on a relaxation
of the original MAP formulation to a layer-wise linear sum assignment problem (LSAP), finding a solution
y(C) that minimizes

y(C) : min
∑

(i,j)∈E

πijcij

s.t.
∑
i∈VS

πij = 1, j ∈ VT∑
j∈VT

πij ≤ 1, i ∈ VS

π ∈ {0, 1}, i, j ∈ VT × VS

(12)

for every detector layer. Here, cij ∈ C is the assignment cost for the edge combination i, j, where i ∈ VS is a
node from the set of source nodes and j ∈ VT is a node from the set of target nodes respectively. Further, πij

is the respective assignment policy defining whether the edge should be assigned under the reconstruction
policy. While the results in Section 5.1 demonstrate good performance for the choice of the LSA assignment,
we want to note here that an increasing amount of detector noise and particle scattering can significantly
influence the performance due to the required assignment without any notion of noise.

Edge-costs and solver: For the application of charged particle tracking we define a dense assignment
cost matrix C ∈ R|VF |×|VT |, where each entry with an existing edge in GH is set as 1 − sij

4. For all other
entries, we assign the cost matrix an infinite cost, marking this assignment as infeasible:

4Equivalently, we could directly predict the edge cost cij by the graph neural network instead of using the edge score sij .
However, we chose this particular notation to stay compatible with the output of the predict-then-optimize variant.
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C =
{

1 − sij if eij ∈ EH

∞ if eij /∈ EH

, (13)

The dense cost matrix allows us to solve the assignment problem reasonably efficient in O(n3) using the
Jonker-Volgenant algorithm (LAPJV) (Jonker & Volgenant, 1987). Similarly, for larger tracking detectors
with a sparser occupation per area and thus connectivity, this notation can be replaced by a sparse cost
matrix and solved with the sparse LAPMOD variant of the Jonker-Volgenant algorithm (Volgenant, 1996)
respectively.

Blackbox differentiation: For this general formulation of LSAP a wide range of work of predict-and-
optimize schemes providing an end-to-end optimization ability to combinatorial optimization problems exist
based on e.g., the interpolation of optimization mappings (Vlastelica et al., 2020; Sahoo et al., 2023), con-
tinuous relaxations (Amos & Kolter, 2017; Elmachtoub & Grigas, 2017; Wilder et al., 2019) or methods that
bypass the calculation of gradients for the optimizer entirely using surrogate losses (Mulamba et al., 2021;
Shah et al., 2022). For an in-depth review and comparison of existing approaches, the mindful reader is
referred to Geng et al. (2023). Geng et al. (2023) demonstrated for all major and representative types of
end-to-end training mechanisms for bipartite matching problems, similar regret bounds. We thus base our
selection of a technique solely on simplicity and generalizability of the approach to other optimizers and
use-cases. Vlastelica et al. (2020) defines a general blackbox differentiation scheme for combinatorial solvers
of form y(C) = arg miny∈Y c(C, y) by considering the linearization of the solver mapping at the point y(Ĉ)
according to

∇Cfλ(Ĉ) := − 1
λ

[
y(Ĉ) − yλ(C′)

]
, where C′ = clip

(
Ĉ + λ

dL

dy

(
y(Ĉ

)
), 0,∞

)
. (14)

Here, y(Ĉ) and yλ(C′) are standard and perturbed-cost output of the combinatorial solver, λ is a hyperpa-
rameter controlling the interpolation and dL/dy is the gradient of the reconstruction loss w.r.t. the output
of the combinatorial solver. Using a linearized view of the optimization mapping around the input allows
remaining with exact solvers without the necessity of using any relaxation of the combinatorial problem.

Cost margins: The usage of discrete assignment does not provide any confidence scores, thus task losses
of correctly assigned edges are always exactly zero, even for marginal differences between cost elements,
potentially having a noticeable impact on the generalization performance (Rolínek et al., 2020b;a). To
enforce larger margins between predicted costs, Rolínek et al. (2020b;a) introduced ground-truth-induced
margins where a negative or positive penalty is added on the predicted costs based on the ground truth
labels. Later, Sahoo et al. (2023) introduced noise-induced margins, removing the previous ground-truth
dependence by adding random noise to the predicted costs. However, for the large number of edges in our
use case of particle tracking, we found both methods to be highly unstable, even for small margin factors.

4.4 Network Optimization

While all previous building blocks are shared between the proposed predict-and-track and predict-then-track
framework, the main difference lies in the optimization procedure of the network. We aim to optimize the
prediction quality of both networks by reducing a specific loss function minimizing the disagreement between
prediction and ground truth, which is defined as a binary label for every edge in GH . We treat splitting particle
tracks containing secondary particles as noisy labels due to the relatively low production rate and generally
short lifetime of most secondary particles (e.g., electrons). This avoids the need for computationally costly
tracing algorithms that follow the particle generation of the Monte-Carlo (MC) simulation for the creation
of the training data and avoids generating assignment rules for complex particle interactions. Given the true
edge labels, we minimize for the predict-and-optimize scheme the hamming loss of the assignments over a
batch of N randomly sampled hit graphs according to
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L({yn}1:N , {f(Gn)}1:N ) = 1
N

N∑
n=1

1
|En|

∑
(i,j)∈En

wij · (yij · (1 − ŷij) + (1 − yij) · ŷij) , (15)

where ŷij is the assignment of the k-th edge in hit graph GH and yij is the ground truth assignment of
the track. We perform additional weighting of the reconstruction loss for tracking and calorimeter layer
to account for the different scattering behavior. Similarly, we use the binary-cross entropy (BCE) loss
of the predicted edge scores for the predict-then-optimize version for comparison. To reduce the overall
memory footprint of the optimization, we implement the gradient calculation of a single batch using gradient
accumulation as N individual predictions over a single graph. We use for all following studies an RMSProp
optimizer (Hinton et al., 2012) with a learning rate of 1e−3, which we found to be significantly more stable
than Adam (Kingma & Ba, 2015) and more robust to the selection of the learning rate compared to standard
SGD. We train all network variants PAT and PTT for 10,000 training iterations, where in each iteration a
random minibatch of N graphs is sampled from the training set. In initial experiments, we observed that the
E2E architectures showed the tendency to get unstable after reaching a certain reconstruction performance.
We thus perform selective “early stopping”, where we used the training checkpoint (evaluated every 100
iterations) with the best validation performance, determined based on the purity of the reconstructed tracks.

5 Experimental Results and Analysis

Dataset: For the studies reported in this work, we rely on MC simulation of detector readout data, which
we generate using GATE (Jan et al., 2004; 2011) version 9.2 based on Geant4 (version 11.0.0) (Agostinelli
et al., 2003; Allison et al., 2006; 2016). We generate different datasets for training (100,000 particles) and
validation (5,000 particles), using a 230 MeV pencil beam as a beam source with water phantoms of various
thicknesses between particle beam and detector. For comparability purposes, the test set, containing 10,000
particles in total, is taken from Kortus et al. (2022). A detailed listing of all data sources is provided in
Appendix F. We generate for the training and validation simulations hit- and line graphs with 100 primaries
per frame (p+/F ), according to the description in Section 4.1, which we consider the expected target density
for the constructed detector. Further, we generate hit graphs for the test set with 50, 100 and 150 p+/F to
assess the generalization ability to unseen densities.

Hyperparameter settings: We share model hyperparameters for both PAT and PTT framework, doc-
umented in detail in Appendix B. As we consider the interpolation parameter λ as an important tunable
parameter, potentially impacting the optimization behavior, we analyze the effect of the parameter choice on
the tracking performance. For this study, we select values of 25, 50 and 75 covering a range that is well inside
the specified value ranges defined for similar applications (Vlastelica et al., 2020; Rolínek et al., 2020b).

Track reconstruction and filtering: During inference, particle tracks are constructed combining the
trained reconstruction networks (PTT and PAT) in all configurations with the linear assignment solver,
creating unique assignments of particle hits to tracks5. To remove particle tracks produced by secondary
particles or involving inelastic nuclear interactions, we apply a track filtering scheme similar to Pettersen
et al. (2020) and Kortus et al. (2023) removing implausible tracks after reconstruction based on physical
thresholds. In this work, we limit the track filters to an energy deposition threshold (625 keV in the last
reconstructed layer), ensuring the existence of a Bragg peak in the reconstructed track.

Baseline models: As baseline models, providing reference values for quantifying the track reconstruction
performance of the proposed architectures, we select both a traditional iterative track follower algorithm
(Pettersen et al., 2020)6, and a reinforcement learning (RL) based tracking algorithm (Kortus et al., 2023).
The first baseline finds suitable tracks by iteratively searching for track candidates minimizing the total
scattering angle. Similarly, the RL-based algorithm aims to learn a reconstruction policy functioning as a

5Visualizations of a selection of reconstructed tracks can be found in Appendix C
6The source code for the track follower proposed by Pettersen et al. is provided as a software component in the Digital

Tracking Calorimeter Toolkit (https://github.com/HelgeEgil/DigitalTrackingCalorimeterToolkit)
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Figure 4: True positive and false positive rate of assignments, as well as purity and efficiency of track
reconstruction, evaluated for predict-and-track and predict-then-track on validation set as a function of
training steps.

learned heuristic to the algorithm by (Pettersen et al., 2020) by iteratively maximizing the expected likelihood
of observing the scattering behavior determined by MCS during training.

Quantification of model performances: To compare the quality of the reconstruction, we quantify the
performance based on true positive rate (TPR), false positive rate (FPR) of the assigned edges as well as
reconstruction purity (p) and efficiency (ϵ) of entire tracks, defined respectively as

TPR = nT P

nT P + nF N
, FPR = nF P

nF P + nT N
, p =

Nfilt
rec,+

Nfilt
rec,+/−

, ϵ =
Nfilt

rec,+

Nprim
total

. (16)

Here nT P , nT N , nF N , and nF P are the number of true-positive, true-negative, false-negative and false-
positive reconstructed edge segments. Further, Nfilt

rec,+ is the number of correctly reconstructed particle
tracks after filtering, Nfilt

rec,+/− is the total number of reconstructed tracks after applying the track filter, and
Nprim

total is the total number of primary tracks (without inelastic nuclear interactions) in a readout frame. To
provide confidence intervals for the model performance as well as the following analysis of the loss landscapes,
we calculate the results over five independently trained networks with different random initializations.

5.1 Training and Inference Performance

Figure 4 visualizes the intermediate model performances for every 100 training iterations, determined by
true-positive rate, false-positive rate, purity and efficiency, both on the training and validation dataset.
Additionally, marked with horizontal dotted lines is the iteration of each model run with the highest vali-
dation purity. Noticeably, all model instances (PAT and PTT) display similar training performances with
a significant improvement of all metrics over the first 1000-2000 training iterations. Continuing from there,
the end-to-end trained networks, especially with a lambda of 50 and 75, shows slightly improved perfor-
mance compared to the model minimizing the prediction loss. However, this performance advantage does
not translate to the validation dataset, where once again all models show almost identical results. This lack
of generalization ability can be likely traced back to the absence of cost margins, as described in Section 4.3,
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Table 1: Reconstruction performance, measured in terms of purity p and efficiency ϵ for water phantoms
of 100, 150 and 200 mm thickness and 50, 100 and 150 primaries per frame p+/F . Results marked with *
us a layer-wise reconstruction scheme with the initial transition generated using ground truth. Results for
RL-based are taken from (Kortus et al., 2023)(↑: higher is better; ↓ lower is better)

100 mm Water Phantom 150 mm Water Phantom 200 mm Water Phantom
p+/F Algorithm p [%] (↑) ϵ [%] (↑) p [%] (↑) ϵ [%] (↑) p [%] (↑) ϵ [%] (↑)
50 Track follower Pettersen et al. (2020) 87.1±0.0 78.1±0.0 89.4±0.0 81.1±0.0 90.8±0.0 82.1±0.0

RL-based Kortus et al. (2023)* 92.5±0.2 81.5±0.3 93.7±0.2 84.0±0.4 94.4±0.2 85.4±0.4
GNNP T T (BCE. edge score) 94.9±0.1 83.8±0.0 96.2±0.2 86.9±0.2 96.4±0.0 88.7±0.1
GNNP AT (λ = 25.0) 94.9±0.1 83.8±0.1 96.2±0.1 87.0±0.1 96.5±0.1 88.9±0.1
GNNP AT (λ = 50.0) 95.0±0.2 83.9±0.2 96.3±0.2 87.1±0.2 96.5±0.1 89.0±0.1
GNNP AT (λ = 75.0) 95.0±0.2 83.9±0.2 96.3±0.1 87.1±0.1 96.5±0.0 89.0±0.0

100 Track follower Pettersen et al. (2020) 80.6±0.0 71.7±0.0 84.7±0.0 76.4±0.0 85.8±0.0 77.5±0.0
RL-based Kortus et al. (2023)* 85.6±0.3 75.2±0.5 88.8±0.5 79.0±0.5 89.5±0.4 80.8±0.5
GNNP T T (BCE. edge score) 87.4±0.3 75.2±0.2 91.9±0.3 82.4±0.3 91.7±0.2 83.8±0.1
GNNP AT (λ = 25.0) 87.3±0.2 75.0±0.2 91.7±0.2 82.1±0.3 92.2±0.2 84.4±0.2
GNNP AT (λ = 50.0) 87.4±0.3 75.1±0.2 92.0±0.1 82.4±0.2 92.5±0.1 84.6±0.1
GNNP AT (λ = 75.0) 87.4±0.2 75.1±0.2 91.9±0.1 82.4±0.1 92.3±0.2 84.4±0.2

150 Track follower Pettersen et al. (2020) 75.6±0.0 67.2±0.0 80.1±0.1 72.2±0.0 82.5±0.0 74.6±0.0
RL-based Kortus et al. (2023)* 80.5±0.4 70.8±0.6 83.8±0.7 74.4±0.6 85.3±0.6 76.9±0.5
GNNP T T (BCE. edge score) 77.5±0.4 65.0±0.3 84.9±0.3 75.3±0.3 87.2±0.2 79.6±0.2
GNNP AT (λ = 25.0) 76.7±0.2 64.3±0.2 84.8±0.3 75.1±0.3 87.6±0.3 80.1±0.3
GNNP AT (λ = 50.0) 76.8±0.3 64.4±0.3 85.1±0.2 75.5±0.2 88.1±0.4 80.6±0.4
GNNP AT (λ = 75.0) 76.6±0.1 64.3±0.1 85.0±0.2 75.4±0.2 87.8±0.2 80.4±0.2

which we had to remove due to the amount of instability introduced by this mechanism. The replacement
of this mechanism with an equivalent, more stable mechanism is thus likely beneficial.

Further, Figure 4 demonstrates that the end-to-end differentiable versions with an interpolation factor λ of
50 and 75 can converge faster than the PTT variant. PAT (λ = 50) and (λ = 75) converges on average in
7000 ± 1512 and 4780 ± 1263 training steps, respectively, while PTT requires on average 7580 ± 1536 steps
to converge. In contrast, PAT (λ = 25) requires with 9080 ± 1151 more steps than PPT.

Additional performance results are provided in Table 5.1. Here, the performance of the trained models is
compared for different phantom and particle density configurations. In addition, the performance results of
a traditional track follower procedure, which was developed for the particular use-case of particle tracking
in the DTC prototype, are provided as a baseline. Similar to the results provided in Figure 4, all model
configurations, trained on the task- and the prediction-loss, demonstrate near identical reconstruction purity
and efficiency over all tested phantom and particle configurations. Analogous to Vlastelica et al. (2020), we
find that the exact choice of λ is not critical for the reconstruction quality and only impacts the trainings-
and convergence speed with larger λ (ref. Figure 4). Further, the graph neural networks outperform the
baseline algorithm in almost all performance metrics over all configurations, with only the configuration of
150 p+/F and 100 mm water phantom as a slight outlier in this tendency. Here, the track follower and RL-
based tracker demonstrate a higher reconstruction efficiency, while the reconstruction purity is still higher
for the GNN architectures.

5.2 Evaluation of Local and Global Loss Landscapes

To analyze and characterize the training and inference behavior of the end-to-end and two-step tracking
approaches and gain an understanding of the effects of end-to-end optimization and its hyperparameters, as
well as an intuition regarding the usability and effectiveness of the approach in a E2E-differentiable processing
pipeline (as discussed in Section 3.2), we visualize (Li et al., 2018) and characterize the loss landscape
structure, closely following the methodology and taxonomy by Yang et al. (2021). We specifically focus on
the global connectivity of the loss landscape, as it allows us to infer conclusions about the optimization
of particle tracking in an isolated setting as well as an integrated operation in a processing pipeline, also
considering gradient information from downstream task. We further augment the evaluation by additional
analysis of functional similarities (Klabunde et al., 2023) of the optimized models, allowing us to quantify the
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Figure 5: Two-dimensional loss surfaces of PAT framework in logarithmic scale with annotated contour lines.
Marked with ⋆ are the trained network parameters.

risk of predictive instabilities of the reconstruction network as well as potential opportunities for E2E fine-
tuning, gained by diverse but connected minima. All used algorithms are detailed in Section 3.3. Additional
implementation details are listed in Appendix E.

5.2.1 Local Structure of the Task Loss Surfaces for Decision-focused Learning

Figure 5 visualizes the two-dimensional loss surfaces (Hamming loss) of the first four runs of all configurations
in terms of filled contour maps in logarithmic scale. Noticeably, all loss surfaces show similar and consistent
shape and patterns in the local 2D loss landscape around the found minima, both over both random initial-
izations and choices of the interpolation parameter λ. Projected onto two dimensions, the surfaces show a
mostly convex structure with wide and flat regions along the minima, supporting the previous findings of
good training performance of the E2E training configuration. This pattern also often coincides with good
generalization performance (Chaudhari et al., 2016). However, Dinh et al. (2017) demonstrates that the
notion of flatness is not sufficient to reason about the generalization ability itself. We, argue that in this
case, the large flat regions likely are conditioned and defined by the range of sensitivity of predictions along
various parameter configurations. We further strengthen this intuition by comparing the hamming loss with
the BCE loss surfaces in Section 5.2.2, demonstrating that the hamming loss surface strongly correlates with
a flattened version of the BCE-loss. While a significant amount of the projected loss surface is occupied by
a flat, low-loss area, all loss surfaces show a significant loss barrier near the trained network parameters,
demonstrating the convergence of the networks to outputs close to decision boundaries (see. Section 4.3).
Providing an alternative to cost margins, discussed in Section 4.3, may thus be helpful to improve the
generalization performance of the network.
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Figure 6: Visualization and comparison of task (top) and prediction loss (bottom) for trained models gener-
ated using models optimized with the predict-then-track (PTT) framework in logarithmic scale with anno-
tated contour lines. Marked with ⋆ are the trained network parameters.

5.2.2 Agreement of Prediction Loss and Task Loss Surfaces

While optimizing prediction and task loss use different loss functions on both intermediate and final outputs
that generally do not coincide Mandi et al. (2023), Figure 4 and Table 5.1 revealed substantial similarities
both during training and inference. Figure 5 indicates that the similarities directly translate, and thus are
most likely caused by the similar shape of the projected loss landscape of prediction and task loss. For all
tracking networks, trained minimizing the prediction loss, we find similar shapes and pattern for both the
prediction loss (BCE) and task loss surface (Hamming). We especially emphasize the existence of minima
in the loss surface with strongly correlated shapes, demonstrating the best agreement around the minimum
itself 7. While the overall shape of the loss surface suggests generally good agreement between the two
losses, the surfaces also show significant differences in relative loss for suboptimal solutions. While this did
not seem to be significant for our work, theoretical work indicates increasingly growing regrets for models
optimizing the prediction loss if the parametric model class is ill-posed and there is little data available
(Hu et al., 2022; Elmachtoub et al., 2023). For well-specified models, experimental results reported in Geng
et al. (2023) further strengthen our findings that regret for decision-focused learning strategies in matching
problems closely line up with the ones obtained with two-step training, minimizing the prediction loss.

5.3 Representational and Functional Similarities

The similar training and inference performance (Section 5.1) as well as the strong correlation of prediction
and task loss surfaces (Section 5.2) indicate strong connections between the E2E and two-step training
paradigms. However, previous results lack information about parameter and prediction level similarities and
differences, thus providing only limited information of the connectivity in the global loss landscape. We thus
continue analyzing the inherent similarities of the networks to get a more profound understanding of existing
structural differences in both training paradigms.

Figure 7 visualizes the representational similarities (measured as average CKA similarities between layer
representations) and functional similarities (measured as min-max normalized disagreement in predictions).

7The difference of prediction loss and task loss vanishes for perfect predictions of the two-step approach with perfect
confidences (either exactly zero or one).
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Figure 7: Representational and functional similarities, expressed in terms of CKA-similarities and min-max
normalized disagreement, measured for all combinations of training configuration and random initialization
(top row) with compressed representation aggregated over all random initializations (bottom row) (↑: higher
is better; ↓ lower is better)

Here, the first row shows all elementwise similarities with an empty diagonal, and the second row shows
group wise similarities across random initializations.

Noticeably, PAT-based models reveal consistently moderate to high functional similarities in all network
modules. Especially the first two network layers, representing the message passing and aggregation steps of
the GNN architecture, show significantly higher similarities compared to their two-step counterpart. This
effect is consistent both across random initialization and different combinations of interpolation factors λ.
The representational similarities in the final network module are comparable for both decision-focused and
two-step learning, despite the two-step models exhibiting lower similarities in the preceding layers.

Overall, combinations of PTT and PAT demonstrate the lowest representational similarities, indicating
that both E2E and two-step training can find similar performing network parameters, that, however, show
significantly larger differences in their internal representation compared to models trained using the same
optimization paradigm.

While the average reconstruction performance across multiple readout frames is unaltered by changes in
the learned network representations (ref. Table 5.1), subtle prediction instability caused by different learned
prediction mechanisms can have a noticeable impact on downstream tasks. Especially for medical applica-
tions such as pCT, robustness and stability of the classifier is essential to assure reproducibility and avoid
unpredictable changes in the following downstream tasks. To avoid comparing the outcome of downstream
tasks, which is computationally expensive and depends on multiple intermediate steps, we analyze functional
similarities or prediction instability of the tracking as a helpful proxy, complementing the previous results.

As illustrated in Figure 7, both PTT and PAT-based models show substantial functional disagreement in a
similar range, with median disagreement rates around 15%. We want to specifically point out the increase
in disagreement for models with higher interpolation values (see Appendix G for the statistical significance
analysis), suggesting choosing smaller λ values for improved stability of the model. Further, the experiments
demonstrate, similar to the representational similarity results, a significant increase in disagreement for
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combinations containing both PAT and PTT variants. Here, we can observe median disagreement rates of
approximately 20%, corresponding to an increase in prediction instability of approximately 33%.

Interpretation: We find that the substantial degree of prediction instability and different levels of similar-
ity in the learned representations pose a considerable risk, potentially influencing the overall performance,
effectiveness, and reliability of entire component-based processing pipelines (see Section 3.2) in the applica-
tion domain. While we do not expect significant effects on, e.g., the average reconstruction results of pCT,
especially for homogeneous materials, the prediction instability could have a measurable impact on the con-
trast and spatial resolution. The instability in downstream reconstruction remains unquantified and is left for
future work to maintain the conciseness of this initial study. By propagating information from a downstream
task, E2E optimization provides an important tool to restrict the solution set and thus control the quality
of learned solutions. While some of the instabilities can be avoided to improve reproducibility, other sources
of randomness introduced by processing hardware and implementation, e.g., nondeterministic scatter opera-
tion of PyTorch Geometric (Klabunde & Lemmerich, 2023) still remain and display a noteworthy source of
uncertainty and unreliability, propagated throughout the entire processing pipeline.

5.4 Global Connectivity of Local Minima

Given the findings of Section 5.3, demonstrating substantial disagreements in model predictions, we now aim
to quantify the global shape and connectivity of the loss landscape. Table 2 and Table 3 summarize the mode
connectivity, comparing connecting Bézier curves between model parameters as specified in Section 5.2. To
get a more profound understanding of the global landscape for prediction and task loss, we generate curves
using both the BCE-loss on the predicted edge-scores and the Hamming loss on the assigned edges. Here,
we take advantage of our findings in Section 5.2.1, suggesting a strong agreement between Hamming-loss
and BCE-loss for low-loss values. In addition, we provide the linear connectivity between two models as a
baseline. Further, Neyshabur et al. (2020); Juneja et al. (2022) and Lubana et al. (2023) demonstrate in
their work that trained models deficient in linear connectivity, are mechanistic dissimilar8. This allows us
to gain further insides on the stability of the trained models from a loss landscape perspective, supporting
the results in Section 5.3.

Table 2: Comparison of minimum, maximum, and average hamming loss and true positive rate for models
sampled alongside low-energy connecting linear and Bézier curve (three anchor points; minimizing hamming
or binary-cross-entropy loss) between two modes of same model type. (↑: higher is better; ↓ lower is better)

Hamming loss [×1e−3] (↓) True positive rate [%] (↑)
Model Curve Min Max Mean Min Max Mean
PAT (λ = 25) Linear 6.64±0.09 228.58±110.62 37.73±19.92 75.01±11.77 99.32±0.01 95.80±2.16
PAT (λ = 25) Bézier (Ham.) 6.64±0.07 8.14±0.53 7.11±0.10 99.12±0.09 99.32±0.01 99.26±0.01
PAT (λ = 25) Bézier (BCE) 6.65±0.11 7.78±0.13 7.35±0.06 99.18±0.02 99.32±0.01 99.24±0.01
PAT (λ = 50) Linear 6.47±0.12 251.09±102.46 43.46±22.46 71.57±10.24 99.34±0.01 95.01±2.39
PAT (λ = 50) Bézier (Ham.) 6.46±0.12 8.01±0.40 7.00±0.09 99.15±0.05 99.34±0.01 99.28±0.01
PAT (λ = 50) Bézier (BCE) 6.47±0.08 7.76±0.12 7.35±0.05 99.18±0.02 99.34±0.01 99.24±0.01
PAT (λ = 75) Linear 6.49±0.04 345.56±133.60 82.49±44.28 63.04±13.58 99.34±0.00 91.13±4.60
PAT (λ = 75) Bézier (Ham.) 6.47±0.05 8.22±0.79 7.02±0.16 99.11±0.12 99.34±0.00 99.27±0.02
PAT (λ = 75) Bézier (BCE) 6.51±0.04 8.12±0.72 7.40±0.08 99.16±0.05 99.34±0.00 99.23±0.01
PTT Linear 6.70±0.07 332.39±116.90 107.24±42.20 63.67±11.94 99.32±0.01 87.59±4.31
PTT Bézier (Ham.) 6.70±0.07 15.33±5.54 9.56±1.07 97.98±0.94 99.32±0.01 98.91±0.18
PTT Bézier (BCE) 6.69±0.07 7.60±0.21 7.07±0.06 99.21±0.03 99.32±0.01 99.28±0.01

Supplemented by the results in Table 2, we find that connecting curves with consistently low-loss values
and high true positive rates are existent for models with the same training configurations. However, despite
the existence of the excellent connectivity with Bézier curves, the linear connectivity is associated with

8Trained models using different mechanisms or representations for predictions.
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Table 3: Comparison of minimum, maximum, and average hamming loss and true positive rate for models
sampled alongside low-energy connecting linear and Bézier curve (three anchor points; minimizing hamming
or binary-cross-entropy loss) between PTT and PAT modes. (↑: higher is better; ↓ lower is better)

Hamming loss [×1e−3] (↓) True positive rate [%] (↑)
Model Curve Min Max Mean Min Max Mean
GNNP T T → GNNP AT Linear 6.60±0.13 337.23±169.20 117.42±76.26 63.90±17.66 99.33±0.01 87.12±8.06
GNNP T T → GNNP AT Bézier (Ham.) 6.60±0.13 11.32±3.25 8.06±0.58 98.65±0.52 99.33±0.01 99.13±0.08
GNNP T T → GNNP AT Bézier (BCE) 6.59±0.12 7.75±0.36 7.19±0.09 99.19±0.03 99.33±0.01 99.26±0.01

persistently high losses indicating low mechanistic similarity. Analogous to the functional similarity results in
Figure 7, we report increasing losses for higher interpolation values, strengthening the findings in Section 5.3
pointing towards the importance of the interpolation factor despite similar reconstruction performances.

Despite the lack of linear connectivity, given the marginal difference in non-linear connecting curves between
all PAT-trained models, all parameter configurations seem to be strongly interlinked with globally well-
connected minima. This property also holds for the PTT configuration; however, we were only able to find
low-loss connecting curves by using the BCE-loss as the optimization criterion. Optimizing the Hamming-
loss, in contrast, yielded substantially worse results, which we cannot explain.

We find similar results demonstrating strong nonlinear connectivity between trained models of PAT and
PTT mixtures, indicating a good global connectivity of the modes without noticeable loss barriers that could
indicate more pronounced differences in the optimization process (see Table 3). However, the high loss values
of the linear connectivity (meanP T T →P AT : 117.42±76.26, vs. e.g., meanP T T : 107.24±42.2) demonstrate a
noticeable impact of mixing the training paradigms on the mechanistic similarity. In addition, we find similar
to the connecting curves of PTT minimizing the Hamming-loss noticeable higher loss values compared to
the BCE-loss.

Interpretation: While analyzing the global connectivity of loss landscape does not replace the analysis of
E2E-differentiability in an entire processing pipeline, we argue that good global connectivity of local loss basins
which are interconnected via a low-loss non-linear path is a good initial indication that E2E particle tracking
can be efficiently augmented by gradients originated from a downstream reconstruction or analysis loss.
Finding a parameter configuration in the low-loss region that minimizes the performance of the downstream
task is thus likely effective without getting stuck in local regions, that are separated by high loss barriers.
Further, the low mechanistic, representational and functional similarities (see Section 5.3 and 5.4) suggests
that a diverse set of reconstruction policies can be reached in those interconnected regions.

6 Discussion and Conclusion

In this work, we propose and present first studies on E2E differentiable neural charged particle tracking
using graph neural networks. We integrate combinatorial optimization mechanisms used for generating
disconnected track candidates from predicted edge scores directly into the training pipeline by leveraging
mechanisms from decision-focused learning. By optimizing the whole track reconstruction pipeline in an
E2E fashion, we obtain comparable results to two-step training, minimizing the BCE-loss of raw edge scores.
However, we demonstrate the predict-and-track approach can provide gradient information that can be
propagated throughout the reconstruction process. While the usage for simply optimizing the reconstruction
performance of the network is limited, providing gradient information is highly valuable for various use-
cases such as uncertainty propagation, reconstruction pipeline optimization and allows the construction of
complex, multistep architectures, potentially allowing to reduce the combinatorial nature of particle tracking
by ensuring unique hit assignment.

By examining the global loss landscape, we observe that, despite similar training behaviors leading to globally
well-connected minima with comparable reconstruction performance, there are discernible differences in the
learned representations leading to substantial prediction instability. This instability is evident across random
initializations and is further exacerbated by comparing models optimized for prediction- and task loss,

18



Under review as submission to TMLR

respectively. The observed prediction instability highlights the importance of E2E differentiable solutions,
given that the impact of model instability on separate downstream tasks, such as image reconstruction in
pCT, is unpredictable and thus especially crucial for safety-critical applications. Therefore, incorporating the
functional requirements of downstream tasks through an additional loss term appears to be highly beneficial.
Given the strong training performance of the E2E architecture as well as the mostly convex shape of the
two-dimensional loss surfaces with globally well-connected minima, the combined optimization of tracking
and downstream task loss promises to be feasible and effective. However, as this would have exceeded the
scope of this paper, we leave this for future work.

Our analysis demonstrates, beside the similar reconstruction results obtained for different interpolation values
and the general understanding that the exact choice of the hyperparameter is non-critical (Vlastelica et al.,
2020), a coupling of the choice of λ on the prediction stability of the network and an inverse dependency
on the convergence speed. Thus, selecting large interpolation constants, improves the informativeness of
gradient information, resulting in faster convergence. The gain in convergence speed, however, comes at
the cost of decreased robustness. Selecting lower values for lambda is thus especially important in critical
applications where a consistency of outputs is desirable or even essential.

Moving forward, we plan to expand the framework by integrating E2E tracking into reconstruction code
incorporating auxiliary losses for downstream tasks, especially for the use-case of pCT. Additionally, we
will continue extending our studies to explore the out-of-distribution robustness and general robustness to
distribution shifts introduced by simulation to reality gaps. Further, we plan extending our work to other
potential combinatorial solvers for generating disconnected track candidates from predicted edge scores, as
well as investigating additional network architectures to gain a more profound understanding of the impact
of end-to-end optimization on charged particle tracking.
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A Edge Filter Results

In Section 4.1 we mentioned the necessity of performing edge filtering, minimizing the size of both the hit- and
line graph representations, improving reconstruction speeds and minimizing memory requirements during
training and inference. Selecting sufficient thresholds, given the stochastic nature of particle scattering in
material, requires a trade-off between reduced graph size and the number of illegitimately removed true edges.
Figure 8 shows the fraction of removed number of edges in the graph opposed to the fraction of removed true
edges, generated for 100 graphs of the train dataset selected uniformly over all phantom thicknesses. Based
on the results in Figure 8 we select the thresholds θd = 400 mrad for the edges in the calorimeter layer and
θt = 200 mrad for all edges contained in the tracking layer, significantly reducing the number of total edges,
while limiting the impact on the final reconstruction quality to a minimum. Error rates for both θt and θd

are presented in Figure 8.
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Figure 8: Fraction of total and true edges removed from GH given the edge filter θd and θt. Measured for
100 sampled graphs from the training dataset with 100p+/F and 100, 150 and 200 mm water phantoms.

B Hyperparameters

Table 4: Selected hyperparameters used in the studies in Section 5. All hyperparameters, except λ are kept
consistent across training runs for PAT and PTT. λ is selected based on the value ranges in (Vlastelica et al.,
2020; Rolínek et al., 2020b) as we consider it as one of the main parameters for E2E training.

Name Value Description
θd 400 mrad Filter threshold for edges in the calorimeter layers.
θt 200 mrad Filter threshold for edges in the tracking layer.
nhidden(R1) 3 Number of network layers
nhidden(O) 3 Number of network layers
nhidden(R2) 3 Number of network layers
dhidden 16 Hidden size of the network layer
scaling 0.001 Scaling factor of the sinusoidal encoding (see Section 4.1)
batch size 32 Number of reconstructed graphs in a single batch
lr 1e-3 Learning rate used for parameter updates with RMSProp
λ {25, 50, 75} Interpolation factor for blackbox differentiation of LSA layer
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C Reconstructed Particle Tracks
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Figure 9: Reconstructed particle tracks generated for multiple readout frames with 100mm water phantom
and 100 p+/F using PAT (λ = 25) model. Marked in green are correctly reconstructed track segments,
marked in red are incorrectly reconstructed track segments and marked in orange are correct reconstructions
(same particle ID) following the wrong primary particle.

D Ablation Study: Hit-graph and Line-graph Representations

While demonstrating good training performance, utilizing a line-graph representation for particle tracking
comes at the cost of increased graph size and thus computational overhead over the original hit-graph rep-
resentation. This section provides additional ablation results comparing hit- and line-graph representations
in terms of convergence behavior, reconstruction performance and inference speed.

Reference results are generated for all model configurations outlined in Section 5 by replacing the modified
architecture by the original interaction-network implementation used in DeZoort et al. (2021). For every
interaction-network configuration operating on a hit-graph, the same hyperparameters from Appendix B
are utilized except for the hidden dimension dhidden, which is increased to 64. While we found that the
interaction network operating on the hit-graph benefits from the increased hidden dimensionality, we find
similar to DeZoort et al. (2021) that the model saturates around the selected value and further increase in
parameter count does not yield any noteworthy improvement.
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Figure 10: True positive and false positive rate of assignments, as well as purity and efficiency of track
reconstruction, evaluated for PAT and PTT with hit-graph representation on validation set as a function of
optimisation steps.

Table 5: Reconstruction performance for hit- and line-graph representations, measured in terms of purity p
and efficiency ϵ for water phantoms of 100, 150 and 200 mm thickness and 50, 100 and 150 primaries per
frame p+/F . (↑: higher is better; ↓ lower is better)

100 mm Water Phantom 150 mm Water Phantom 200 mm Water Phantom
p+/F Repr. Algorithm p [%] (↑) ϵ [%] (↑) p [%] (↑) ϵ [%] (↑) p [%] (↑) ϵ [%] (↑)
50 GH GNNP T T (BCE. edge score) 81.9±5.8 71.6±5.3 89.9±0.8 80.9±0.7 92.3±0.1 84.8±0.1

GNNP AT (λ = 25.0) 73.5±4.1 64.0±3.8 83.9±2.0 75.6±1.8 88.8±2.1 81.7±2.0
GNNP AT (λ = 50.0) 74.9±5.7 65.2±5.6 83.0±2.8 74.7±2.6 87.5±2.5 80.4±2.3
GNNP AT (λ = 75.0) 74.8±3.1 65.3±2.7 81.3±3.9 73.1±3.5 84.9±4.5 77.9±4.3

GL GNNP T T (BCE. edge score) 94.9±0.1 83.8±0.0 96.2±0.2 86.9±0.2 96.4±0.0 88.7±0.1
GNNP AT (λ = 25.0) 94.9±0.1 83.8±0.1 96.2±0.1 87.0±0.1 96.5±0.1 88.9±0.1
GNNP AT (λ = 50.0) 95.0±0.2 83.9±0.2 96.3±0.2 87.1±0.2 96.5±0.1 89.0±0.1
GNNP AT (λ = 75.0) 95.0±0.2 83.9±0.2 96.3±0.1 87.1±0.1 96.5±0.0 89.0±0.0

100 GH GNNP T T (BCE. edge score) 66.2±7.8 56.0±6.9 79.8±1.4 71.1±1.3 83.8±0.1 76.2±0.1
GNNP AT (λ = 25.0) 53.5±3.8 45.2±3.5 70.3±2.6 62.7±2.4 77.0±3.3 70.2±3.1
GNNP AT (λ = 50.0) 55.7±6.8 46.8±6.4 70.1±3.7 62.5±3.4 75.2±3.9 68.5±3.6
GNNP AT (λ = 75.0) 54.9±3.3 46.4±2.9 66.5±5.5 59.2±5.0 71.4±6.7 64.9±6.2

GL GNNP T T (BCE. edge score) 87.4±0.3 75.2±0.2 91.9±0.3 82.4±0.3 91.7±0.2 83.8±0.1
GNNP AT (λ = 25.0) 87.3±0.2 75.0±0.2 91.7±0.2 82.1±0.3 92.2±0.2 84.4±0.2
GNNP AT (λ = 50.0) 87.4±0.3 75.1±0.2 92.0±0.1 82.4±0.2 92.5±0.1 84.6±0.1
GNNP AT (λ = 75.0) 87.4±0.2 75.1±0.2 91.9±0.1 82.4±0.1 92.3±0.2 84.4±0.2

150 GH GNNP T T (BCE. edge score) 52.6±7.8 43.1±6.7 69.2±2.0 60.8±1.8 75.8±0.4 68.7±0.4
GNNP AT (λ = 25.0) 40.0±3.4 32.7±3.1 57.1±2.8 50.2±2.5 67.1±3.8 61.1±3.5
GNNP AT (λ = 50.0) 42.0±5.7 34.2±5.3 56.9±4.0 50.1±3.6 65.6±4.5 59.7±4.2
GNNP AT (λ = 75.0) 41.0±2.8 33.6±2.5 53.5±5.4 47.1±4.8 61.5±7.5 55.8±6.9

GL GNNP T T (BCE. edge score) 77.5±0.4 65.0±0.3 84.9±0.3 75.3±0.3 87.2±0.2 79.6±0.2
GNNP AT (λ = 25.0) 76.7±0.2 64.3±0.2 84.8±0.3 75.1±0.3 87.6±0.3 80.1±0.3
GNNP AT (λ = 50.0) 76.8±0.3 64.4±0.3 85.1±0.2 75.5±0.2 88.1±0.4 80.6±0.4
GNNP AT (λ = 75.0) 76.6±0.1 64.3±0.1 85.0±0.2 75.4±0.2 87.8±0.2 80.4±0.2

Training performance: Figure 10 visualizes analogous to Figure 4 the performance metrics on training
and validation set as a function of training steps. We find that restricting the readout representation to
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a hit-graph severely impedes training performance. Across all model configurations, we find a significant
drop across all measured quantities. Especially, end-to-end optimization strategies suffer from the reduced
information density encoded in the line-graph representation. This results both in decreased convergence
speed and stability, as well as reduced reconstruction quality.

Reconstruction performance: Table D further confirms the previous finding, presenting a substantial
drop in reconstruction purity and efficiency across all tested phantom geometries and particle densities.
The transformation of the commonly used hit-graph transformation to a line-graph is thus indispensable for
the particle date generated for pCT. Additional results on the usefulness of encoding scatter information
into feature representations (edge features of line graph representations) are presented for a single-agent
reinforcement learning approach in Kortus et al. (2023).
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Figure 11: Average runtime of edge-classification charged particle tracking (predictive stage and full recon-
struction.) operating on hit-graph (GH) and line-graph (GL) representation for readout frames of various
water phantom geometries and particle densities.

Computational complexity: Ultimately, Figure 11 presents and compares the average reconstruction
times of readout frames for both hit-graph and line-graph representation to quantify the runtime penalty
of line-graph representations. Both runtimes for the interaction-network prediction (including the line-
graph transform) and total reconstruction are presented for various water phantom geometries and particle
densities. All results are generated on an NVIDIA A100 GPU for all readout frames in the test set, with 10
evaluations for each readout frame.

We find across all configurations that the line-graph interaction-network noticeably impedes the runtime
of the predictive phase. Yet, the overall impact on the total reconstruction runtime is manageable for the
defined scope, outweighing the increase in runtime by the significant gain in reconstruction quality.

E Implementation Details for Loss Landscape Evaluations in Section 5.2

This section is intended to provide additional implementation details, specifying the implementation and
evaluation of the approaches for evaluating the loss landscape in Section 5.2 and all its subsections.

General remarks: As all experiments require a significant amount of network evaluations, often including
tens or hundreds of iterations over the data in the training set, we select for Sections 5.2.2,5.2.1,5.3 and 5.4
a subset of 100 uniformly selected graphs from the train set to remain with feasible runtimes, while still
providing enough data.

Loss surfaces: We generate the loss surfaces following the implementation details described in Yang et al.
(2021). This includes especially the usage of fixed batch normalization parameters across all sampled α, β
configurations. We generate the eigenvectors of the hessian used as the spanning vectors for the loss landscape
using an implementation based on the PyHESSIAN framework (Yao et al., 2020), adapted for our use case.
All loss surfaces are generated using 50 x 50 parameter values and parallelized on a single machine with
multiple GPUs using the Ray software framework (Moritz et al., 2018).
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Representational and functional similarities Our implementation for quantifying representational
and functional similarities matches the description of (Nguyen et al., 2020) and (Klabunde & Lemmerich,
2023). However, given the large cardinality and connectivity of the line graph representations, we sample
each iteration of the CKA algorithm only a subset of 80 × 1024 features to remain with feasible runtimes.
Each combination of networks is evaluated as individual jobs using the SLURM resource manager on the
Elwetritsch HPC cluster of the University of Kaiserslautern-Landau.

Mode connectivity: We closely follow the implementation details for generating connecting, curves pro-
vided by (Garipov et al., 2018). However, instead of updating the batch normalization parameters for every
t, we follow a similar approach used for generating the loss landscapes in Yang et al. (2021). We use constant
parameters determined by the first curve anchor, providing us with reasonable normalization values. Each
curve is optimized using 1000 iterations with a batch size of 8 graphs. We found that increasing the training
iterations resulted with worse connectivity results for PTT-based combinations, minimizing the hamming
loss. We use the same parallelization strategy as used for calculating representational and functional simi-
larities.

F Reproducibility

We analyze in this work several trained models as well as results based on various evaluation mechanisms,
each requiring a significant amount of computing resources. We thus provide for transparency all trained
models together with the evaluation results and data under (Removed for review). Additionally, we
provide all the source code for generating the tables and figures used throughout this work, which can be
re-run without regenerating any of the required result data. All source code that supports the findings of
this study will be openly available open source after paper acceptance under (Removed for review).

G Statistical Testing for Similarity Scores

Given the seemingly increasing predictive instability of the tracking network with increasing interpolation
factor λ, we suspect a dependency between those two dependencies. We verify this hypothesis, using Welch’s
t-test, demonstrating that the prediction instability decreases with smaller λ values (see. Figure 12).
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Figure 12: p-values and t-statistic generated for functional similarity values of various model combinations
under the hypothesis a (x-axis) < b (y-axis).
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