
Under review as submission to TMLR

Deep Unlearning: Fast and Efficient Training-free Class For-
getting

Anonymous authors
Paper under double-blind review

Abstract

Machine unlearning is a prominent and challenging field, driven by regulatory demands for
user data deletion and heightened privacy awareness. Existing approaches involve retraining
model or multiple finetuning steps for each deletion request, often constrained by computa-
tional limits and restricted data access. In this work, we introduce a novel class unlearning
algorithm designed to strategically eliminate specific classes from the learned model. Our
algorithm first estimates the Retain and the Forget Spaces using Singular Value Decompo-
sition on the layerwise activations for a small subset of samples from the retain and unlearn
classes, respectively. We then compute the shared information between these spaces and
remove it from the forget space to isolate class-discriminatory feature space. Finally, we
obtain the unlearned model by updating the weights to suppress the class discriminatory
features from the activation spaces. We demonstrate our algorithm’s efficacy on ImageNet
using a Vision Transformer with only ∼ 1.5% drop in retain accuracy compared to the orig-
inal model while maintaining under 1% accuracy on the unlearned class samples. Further,
our algorithm consistently performs well when subject to Membership Inference Attacks
showing 7.8% improvement on average across a variety of image classification datasets and
network architectures, as compared to other baselines while being ∼ 6× more computation-
ally efficient.

1 Introduction

Machine learning has automated numerous applications in various domains, including image processing,
language processing, and many others, often surpassing human performance. Nevertheless, the inherent
strength of these algorithms, which lies in their extensive reliance on training data, paradoxically presents
potential limitations. The literature has shed light on how these models behave as highly efficient data
compressors (Tishby & Zaslavsky, 2015; Schelter, 2020), often exhibiting tendencies toward the memorization
of full or partial training samples (Arpit, 2017; Bai et al., 2021). Such characteristics of these algorithms raise
significant concerns about the privacy and safety of the general population. This is particularly concerning
given that the vast training data, typically collected through various means like web scraping, crowdsourcing,
and more, is not immune to personal and sensitive information. The growing awareness of these privacy
concerns and the increasing need for safe deployment of these models have ignited discussions within the
community and, ultimately, led to some regulations on data privacy, such as Voigt & Von dem Bussche (2017);
Goldman (2020). These regulations allow the use of the data with the mandate to delete personal information
about a user if they choose to opt out from sharing their data. The mere deletion of data from archives
is not sufficient due to the memorization behavior of these models. This necessitates machine unlearning
algorithms that can remove the influence of requested data or unlearn those samples from the model. A
naive approach, involving the retraining of models from scratch, guarantees the absence of information from
sensitive samples but is often impractical, especially when dealing with compute-intensive state-of-the-art
(SoTA) models like ViT(Dosovitskiy et al., 2020). Further, efficient unlearning poses considerable challenges,
as the model parameters do not exhibit a straightforward connection to the training data (Shwartz-Ziv &
Tishby, 2017). Moreover, these unlearning algorithms may only have access to a fraction of the original
training data, further complicating the unlearning process.

1

Under review as submission to TMLR

-3.0 0.0 3.0
Feature 1

3.0

0.0

-3.0Fe
at

ur
e

2

(a) Original
-3.0 0.0 3.0

Feature 1

3.0

0.0

-3.0Fe
at

ur
e

2

(b) Unlearn Red
-3.0 0.0 3.0

Feature 1

3.0

0.0

-3.0Fe
at

ur
e

2

(c) Retrain without Red

Figure 1: Illustration of the unlearning algorithm on a simple 4 class classification problem. Figure shows the
decision boundary for (a) original model, (b) our unlearned model redistributing the space to nearby classes and (c)
retrained model without red class.

Our work focuses on challenging scenarios of class unlearning and multi-class unlearning (task unlearning)
(Golatkar et al., 2020a; 2021). For a class unlearning setup, the primary goal of the unlearning algorithm is
to eliminate information associated with a target class from a pretrained model. This target class is referred
to as the forget class, while the other classes are called the retain classes. The unlearning algorithm should
produce parameters that are functionally indistinguishable from those of a model retrained without the target
class. The key challenges in such unlearning are three folds (i) pinpointing class-specific information within
the model parameters, (ii) updating the weights in a way that effectively removes target class information
without compromising the model’s usability on other classes and (iii) demonstrating scalability on large
scale dataset with well trained models. In this work, we ask the question “Can we unlearn class (or multiple
classes) from a well-trained model given access to few samples from the training data on a large dataset?".
Having a few samples is particularly important if the unlearning algorithms have to efficiently scale to large
datasets having many classes to ensure fast and resource-efficient unlearning.

We draw insights from work by Saha et al. (2021) in the domain of continual learning, where the authors use
the Singular Value Decomposition (SVD) technique to estimate the gradient space essential for the previous
task and restrict future updates in this space to maintain good performance on previous tasks. This work
demonstrates a few samples (about 125 samples per task) are sufficient to obtain a good representation of the
gradient space. Our work proposes to strategically eliminate the class discriminatory information by updating
the model weights to maximally suppress the activations of the samples belonging to unlearn (forget) class. We
start by estimating the Retain and the Forget Spaces using Singular Value Decomposition on the layerwise
activations for the samples from the retain and unlearn classes, respectively. These spaces represent the
feature or activation basis vectors for samples from the retain and forget classes. We compute the shared
information between these spaces and remove it from the forget space to isolate class-discriminatory feature
space. Finally, we obtain the unlearned model by updating the weights to suppress the class discriminatory
features from the activation spaces. Our algorithm demonstrates SOTA performance in class unlearning
setup with access to very few samples from the training dataset (less than 4% for all our experiments). As
our algorithm relies on very few samples from the training dataset it efficiently scales to large datasets like
ImageNet (Deng et al., 2009), where we demonstrate the results using only ∼ 1500 samples (0.0012% of the
training dataset).

Contrary to our method, traditional unlearning methods (Tarun et al., 2023; Kurmanji et al., 2023) rely
heavily on gradients, leading to limitations in computational cost and samples required, especially for large
models and datasets. Our work addresses these limitations by introducing a novel and demonstrably supe-
rior solution for class-wise unlearning, outperforming state-of-the-art baselines. Our approach is radically
different for the current approaches in the following ways:

1. Training-Free: We eliminate the computational burden and potential instability of gradient based
unlearning.

2. Single-Step Weight Update: Our method achieves unlearning in a single update, surpassing the
iterative nature of many baselines.

2

Under review as submission to TMLR

3. Novel Weight Update: Our SVD-driven activation suppression mechanism stands out from traditional
update strategies.

4. Efficiency Benefits: We achieve exceptional sample and compute efficiency as compared to SoTA
approaches while improving the unlearning efficacy.

We demonstrate our algorithm on a simple 4-way classification problem with input containing 2 features as
shown in Figure 1. The decision boundary learned by the trained model is shown in Figure 1(a) while the
model unlearning the red class with our method exhibits the decision boundary depicted in Figure 1(b). The
decision boundary for a retrained model is shown if Figure 1(c). This illustration shows that the proposed
algorithm redistributes the input space of the unlearned class to the closest classes. See Appendix A.1 for
experimental details.

In summary, the contributions of this work are as follows:

• We propose a novel Singular Value Decomposition based class unlearning algorithm which (a) is Training
Free, (b) uses single step weight update, (c) has novel weight update mechanism, (d) is compute and
sample efficient and (e) improves the unlearning efficacy as compared to SoTA algorithms. To the best
of our knowledge, our work is the first to demonstrate class unlearning results on ImageNet for SoTA
transformer based models.

• Our algorithm achieves 7.8% superior unlearning performance measured by Membership Inference Attacks
on various datasets compared to SoTA methods, while demonstrating significantly lower computational
cost (6.6×) and reduced data requirements (> 6×). Further, we provide evidence that our model’s
behavior aligns with that of a model retrained without the forget class samples through membership
inference attacks, saliency-based feature analyses, and confusion matrix analyses. Additionally, we extend
our approach to multi-class unlearning or task unlearning to demonstrate the capability of processing
multiple unlearning requests.

2 Related Works

Unlearning: Many unlearning algorithms have been introduced in the literature, addressing various un-
learning scenarios, including item unlearning (Bourtoule et al., 2021), feature unlearning (Warnecke et al.,
2021), class unlearning (Tarun et al., 2023), and task unlearning (Parisi et al., 2019). Some of these solutions
make simplifying assumptions on the learning algorithm. For instance, Ginart et al. (2019) demonstrate un-
learning within the context of k-mean clustering, Brophy & Lowd (2021) present their algorithm for random
forests, Mahadevan & Mathioudakis (2021) and Izzo et al. (2021) propose an algorithm in the context of
linear/logistic regression. Further, there have been efforts in literature, to scale these algorithms for con-
volution layers Golatkar et al. (2020a;b). Note, however, the algorithms have been only demonstrated on
small scale problems. In contrast, other works, such as Bourtoule et al. (2021), suggest altering the training
process to enable efficient unlearning. This approach requires saving multiple snapshots of the model from
different stages of training and involves retraining the model for a subset of the training data, effectively
trading off compute and memory for good accuracy on retain samples. Unlike these works our proposed
algorithm does not make any assumptions on the training process or the algorithm used for training the
original model.

Class Unlearning: The current state-of-the-art (SoTA) for class unlearning is claimed by Tarun et al.
(2023). In their work, the authors propose a three stage unlearning process, where the first stage learns
a noise pattern that maximizes the loss for each of the classes to be unlearned. The Second stage (the
impair stage) unlearns the class by mapping the noise to the forget class. Finally, as the impair stage is
seen to reduce the accuracy on the retained classes, the authors propose to finetune the impaired model on
the subset of training data in the third stage (the repair stage). This work presents the results on small
datasets with undertrained models and utilizes up to 20% of the training data for the unlearning process.
Further, the work by Chundawat et al. (2023) proposes two algorithms which assumes no access to the
training samples. Additionally, authors of Baumhauer et al. (2022) propose a linear filtration operator to
shift the classification of samples from unlearn class to other classes. These works lose considerable accuracy
on the retain class samples and have been demonstrated on small scale datasets like MNIST and CIFAR10.

3

Under review as submission to TMLR

Our work demonstrates results on SoTA vision transformer models for the ImageNet dataset, showing the
effective scaling of our algorithm on large dataset with the model trained to convergence.

Other Related Algorithms : SVD is used to constrain the learning in the direction of previously learned
tasks in the continual learning setup Saha et al. (2021); Chen et al. (2022); Saha & Roy (2023). These
methods are sample efficient in estimating the gradient space relevant to a task. Recent work by Li et al.
(2023) proposes subspace based federated unlearning using SVD. The authors perform gradient ascent in the
orthogonal space of input gradient spaces formed by other clients to eliminate the target client’s contribution
in a federated learning setup. Such ascent based unlearning is generally sensitive to hyperparameters and
is susceptible to catastrophic forgetting on retain samples. As our proposed approach does not rely on such
gradient based training steps it is less sensitive to the hyperparameters. Moreover, such techniques could be
used on top of our method to further enhance the unlearning performance.

3 Preliminaries

Unlearning: Let the training dataset be denoted by Dtrain = {(xi, yi)}Ntrain
i=1 consisting of Ntrain training

samples where xi represents the network input and yi is the corresponding label. The test dataset be
Dtest = {(xi, yi)}Ntest

i=1 containing Ntest samples. Consider a function y = f(xi, θ) with the parameters θ that
approximates the mapping of the inputs xi to their respective labels yi. A well-trained deep learning model
with parameters θ, would have numerous samples (xi, yi) ∈ Dtest for which the relationship yi = f(xi, θ)
holds. For a class unlearning task aimed at removing the target class t, the training dataset can be split into
two partitions, namely the retain dataset Dtrain_r = {(xi, yi)}N

i=1;yi ̸=t and the forget dataset Dtrain_f =
{(xi, yi)}N

i=1;yi=t. Similarly, the test dataset can be split into these partitions as Dtest_r = {(xi, yi)}N
i=1;yi ̸=t

and Dtest_f = {(xi, yi)}N
i=1;yi=t. The objective of the class unlearning algorithm is to derive unlearned

parameters θ∗
f based on θ, a subset of the retain partition Dtrain_sub_r ⊂ Dtrain_r, and a subset of the

forget partition Dtrain_sub_f ⊂ Dtrain_f . The parameters θ∗
f must be functionally indistinguishable from a

network with parameters θ∗, which is retrained from scratch on the samples of Dtrain_r in the output space.
Mathematically, these parameters must satisfy f(xi, θ∗) ≃ f(xi, θ∗

f) for (xi, yi) ∈ Dtest.

SVD: A rectangular matrix A ∈ Rd×n can be decomposed using SVD as A = UΣV T where U ∈ Rd×d and
V ∈ Rn×n are orthogonal matrices and Σ ∈ Rd×n is a diagonal matrix containing singular values Deisenroth
et al. (2020). The columns of matrix U are the d dimensional orthogonal vectors sorted by the amount of
variance they explain for n samples (or the columns) in the matrix A. These vectors are also called the basis
vectors explaining the column space of A. For the ith vector in U , ui, the amount of the variance explained
is proportional to the square of the ith singular value σ2

i . Hence the percentage variance explained by a basis
vector ui is given by σ2

i /(
∑d

j=1(σ2
j)).

4 Unlearning Algorithm

Algorithm 1 presents the pseudocode of our approach. Consider lth linear layer of a network given by
xl

o = xl
i(θl)T , where θl signifies the parameters, xl

i stands for input activations and xl
o denotes output

activation. Our algorithm aims to suppress the class-discriminatory activations associated with forget class.
When provided with a class-discriminatory projection matrix P l

dis, suppressing this class-discriminatory
activation from the input activations gives us xl

i − xl
iP

l
dis. Post multiplying the parameters with (I − Pdis)T ,

is mathematically the same as removing class-discriminatory information from xl
i as shown in Equation 1.

This enables us to modify the model parameters to destroy the class-discriminatory activations given the
matrix P l

dis and is accomplished by the update_parameter() function in line 16 of pseudocode presented
in Algorithm 1. The next Subsection focuses on optimally computing this class-discriminatory projection
matrix, P l

dis.

xl
o = (xl

i − xl
iP

l
dis)︸ ︷︷ ︸

Activation Suppression

(θl)T = xl
i(I − P l

dis)(θl)T = xl
i(θl(I − P l

dis)T︸ ︷︷ ︸
updated parameter

)T

(1)

4

Under review as submission to TMLR

Algorithm 1 Proposed Unlearning Algorithm
Input: θ is the parameters of the original model; Xr and Xf is small set of inputs xi sampled indepen-
dently from Dtrain_r and Dtrain_f respectively; Dtrain_sub_r ⊂ Dtrain_r; Dtrain_sub_f ⊂ Dtrain_f ; and
alpha_r_list and alpha_f_list are is list of hyperparameters αr and αf respectively.
procedure Unlearn(θ, Xr, Xf , Dtrain_sub_r, Dtrain_sub_f , alpha_r_list, alpha_f_list)
1. best_score = get_score(θ, Dtrain_sub_r, Dtrain_sub_f)
2. θ∗

f = θ
3. Rr = get_representation(model, Xr)
4. Rf = get_representation(model, Xf)
5. for each linear and convolution layer l do
6. U l

r, Σl
r = SVD(Rl

r)
7. U l

f , Σl
f = SVD(Rl

f)
8. for each αr ∈ alpha_r_list do
9. for each αf ∈ alpha_f_list do
10. for each linear and convolution layer l do
11. Λl

r = scale_importance(Σl
r, αr)

12. Λl
f = scale_importance(Σl

f , αf)
13. P l

r = U l
rΛl

rtranspose(U l
r)

14. P l
f = U l

f Λl
f transpose(U l

f)
15. P l

dis = P l
f (I − P l

r)
16. θl

f =update_parameter(I − P l
dis, θl)

17. score = get_score(θf , Dtrain_sub_r, Dtrain_sub_f)
18. if score > best_score do
19. best_score = score; θ∗

f = θf

return θ∗
f

4.1 Class Discriminatory Space

We need to estimate the activation space for retain class samples and the forget class samples before comput-
ing Pdis. These spaces, also referred to as the Retain Space (U l

r) and the Forget Space (U l
f), are computed

using SVD on the accumulated representations for the corresponding samples as elaborated in Section 4.1.1.
Subsequently, we scale the basis vectors within their respective spaces using importance scores proportional
to the variance explained by each vector. This yields the scaled retain projection space P l

r and the scaled
forget projection space P l

f . Finally, we compute the shared information between these spaces and remove it
from the scaled forget space to isolate class-discriminatory feature space as explained in Subsection 4.1.2.

4.1.1 Space Estimation via SVD on Representations

This Subsection provides the details on Space Estimation given by lines 3-7 of Algorithm 1. We give an
in-depth explanation for obtaining the Retain Space, Ur. We use a small subset of samples from the classes
to be retained, denoted as Xr = {xi}Kr

i=1, where Kr represents the number of retain samples. Forget Space
(Uf) is estimated similarly on the samples from the class to be unlearned, denoted by Xf = {xi}

Kf

i=1 where
Kf represents the number of samples.

Representation Matrix: To obtain the basis vectors for the Retain Space through SVD, we collect the
representative information (activations) for each layer in the network and organize them into a representation
matrix denoted as Rl

r. We accumulate these representation matrices, Rl
r, for both linear and convolutional

layers in a list Rr = [Rl
r]Ll=1, where L is the number of layers. For the linear layer, this matrix is given by

Rl
r = [(xl

i)Kr
i=1], which stacks the input activations xl

i to obtain a matrix of size Kr × dl, where dl is the input
dimension of lth linear layer.

A convolutional layer has to be represented as a matrix multiplication to apply the proposed weight update
rule. This is done using the unfold operation (Liu et al., 2018) on input activation maps. Consider a
convolutional layer with Ci input channels and k as kernel size with the output activation, xl

o, having the

5

Under review as submission to TMLR

resolution of ho × wo, where ho and wo is the height and width of the output activations. There are howo

patches of size Ci × k × k in the input activation xl
i on which the convolution kernel operates to obtain

the values at the corresponding locations in the output map. The unfold operation flattens each of these
howo patches to get a matrix of size howo × Cikk. Now, if we reshape the weight as Cikk × Co where Co

is the output channels, we see that the convolution operation becomes a matrix multiplication between the
unfolded matrix and the reshaped weights achieving the intended objective. This is graphically presented
in Figure 1 of Saha et al. (2021). Hence, the representation matrix for the convolutional layer is given by
Rl

r = [(unfold(xl
i)T)Kr

i=1]. The representation matrix is obtained by get_representation() function in
lines 3-4 of the Algoithm 1.

Space Estimation: We perform SVD on the representation matrices for each layer as shown in lines 6-7 of
the Algorithm 1. SVD() function returns the basis vectors U l

r that span the activation of the retain samples
in Xr and the singular values Σl

r for each layer l. Retain Space Ur = [U l
r]Ll=1 is the list of these basis vectors

for all the layers.

4.1.2 Projection Space

The basis vectors in the Spaces obtained are orthonormal and do not capture any information about the
importance of the basis vector. The information of the significance of the basis vector is given by the
corresponding singular value. Hence, we propose to scale the basis vector in proportion to the amount of
variance they explain in the input space as presented below.

Importance Scaling: To capture the importance the ith basis vector in the matrix U (or the ith column of
U), we formulate an diagonal importance matrix Λ having the ith diagonal component λi given by Equation 2,
where d is the number of basis vectors.. Here σi represents the the ith singular value in the matrix Σ. The
parameter α ∈ (0, ∞) called the scaling coefficient is a hyperparameter that controls the scaling of the basis
vectors. When α is set to 1 the basis vectors are scaled by the amount of variance they explain. As α
increases the importance score for each basis vector increases and reaches 1 as α → ∞. Similarly, a decrease
in α decreases the importance of the basis vector and goes to 0 as α → 0. This operation is represented by
scaled_importance() function in lines 11-12 of the Algorithm 1. It is important to note that without the
proposed scaling approach the matrices Pr and Pf become identity matrices in lines 13-14 of Algorithm 1,
as U is an orthonormal matrix. This in turn makes Pdis a zero matrix, which means the weight update in
line 16 of Algorithm 1 projects weight on the identity matrix mathematically restricting unlearning. Hence
it is important to use scaling in lines 11-12 of Algorithm 1.

λi = ασ2
i

(α − 1)σ2
i +

∑d
j=1 σ2

j

(2)

Scaled Projection Matrix (P): Given the scaling coefficient αr and αf , we compute the importance
scaling matrix Λr and Λf as per Equation 2. The scaled retain projection matrix, which projects the input
activations to the retain space is given by P l

r = U l
rΛl

r(U l
r)T and the scaled forget projection matrix given by

P l
f = U l

f Λl
f (U l

f)T , see line 13-14 in Algorithm 1.

Class-Discriminatory Projection Matrix (Pdis): We obtain the class discriminatory projection matrix,
Pdis, by removing the shared space given by P l

f P l
r from the forget projection matrix. Mathematically, this

can also be written as P l
dis = P l

f −P l
f P l

r = P l
f (I−P l

r). Intuitively, this projects the forget space onto the space
that does not contain any information about the retain space, effectively removing the shared information
from the forget projection matrix to obtain Pdis. Our algorithm introduces two hyperparameters namely
αr and αf the scaling coefficients for the Retain Space and the Forget Space respectively. Subsection 4.2
presents a discussion on tuning these hyperparameters.

4.2 Hyperparameter Search

Grid Search: As seen in lines 8-9 of the Algorithm 1 we do a grid search over all the possible values of αr

and αf provided in alpha_r_list and alpha_f_list to obtain the best unlearned parameters θ∗
f . We observe

this search is necessary for our algorithm. One intuitive explanation for this is that the unlearning class

6

Under review as submission to TMLR

may exhibit varying degrees of confusion with the retain classes, making it easier to unlearn some classes
compared to others, hence requiring different scaling for the retain and forget spaces. Note, we observe that
increasing the value of αf decreases the retain accuracy accr and hence we terminate the inner loop (line 9)
to speed up the grid search and have not presented this in the Algorithm 1 for simplicity. We introduce a
simple scoring function given below to rank the unlearned models with different pairs of αr and αf .

score = accr(1 − accf /100) (3)

Score: The proposed scoring function given by Equation 3 returns penalized retain accuracy, where accr

and accf are the accuracy on the Dtrain_sub_r and Dtrain_sub_f respectively. This function returns a low
score for an unlearned model having a high value of accf or an unlearned model having low accr. The value
of the returned score is high only when accr is high and accf is low, which is the desired behavior of the
unlearned model.

4.3 Discussion

Compute and Sample Efficiency: The speed and efficiency of our approach can be attributed to the
design choices. Firstly our method runs inference for very few samples to get the representations R. This in
turn results in small size of the representation matrices ensuring the SVD is fast and computationally cheap.
Additionally, the SVD operation for each layer is independent and can be parallelized to further improve
speeds. Secondly, our approach only performs inference and does not rely on computationally intensive
gradient based optimization steps (which also require tuning the learning rates) and gets the unlearned
model in a single step for each grid search (over αr and αf) leading to a fast and efficient approach. Further,
our approach has fewer hyperparameters in comparison to the gradient-based baselines which are sensitive
to the choices of optimizer, learning rate, batch size, learning rate scheduler, weight decay, etc.

Scaling to Transformer Architecture: We can readily extended proposed approach to transformer
architectures by applying our algorithm to all the linear layers in the architecture. Note, that we do not
change the normalization layers for any architecture as the fraction of total parameters for these layers is
insignificant (see Table 3 in Appendix A.2).

Assumptions: Our algorithm assumes a significant difference in the distribution of forget and retain
samples for SVD to find distinguishable spaces from a few random samples. This is true in class unlearning
setup, where retain and forget samples come from different non-overlapping classes. However, in the case of
unlearning a random subset of training data (Kurmanji et al., 2023), we would require additional modification
for effective unlearning.

5 Experiments

Figure 2: Membership Inference Attack.

Dataset and Models : We conduct the class
unlearning experiments on CIFAR10, CIFAR100
(Krizhevsky et al., 2009) and ImageNet (Deng et al.,
2009) datasets. We use the modified versions of
ResNet18 (He et al., 2016) and VGG11 (Simonyan
& Zisserman, 2014) with batch normalization for the
CIFAR10 and CIFAR100 datasets. The training de-
tails for these models are provided in Appendix A.3.
For the ImageNet dataset, we use the pretrained
VGG11 and base version of Vision Transformer with
a patch size of 14 (Dosovitskiy et al., 2020) available
in the torchvision library. Our code available in sup-
plementary.

Comparisons: We benchmark our method against
5 unlearning approaches. Three of these approaches,
Retraining (Chundawat et al., 2023), NegGrad

7

Under review as submission to TMLR

Table 1: Single class Forgetting on CIFAR dataset. We bold font the method with highest value for ACCr × (100 −
ACCf) × MIA.

Method VGG11_BN ResNet18
ACCr(↑) ACCf (↓) MIA(↑) ACCr(↑) ACCf (↓) MIA(↑)

C
IF

A
R

10

Original 91.58 ± 0.52 91.58 ± 4.72 0.11 ± 0.08 94.89 ± 0.31 94.89 ± 2.75 0.03 ± 0.03
Retraining 92.58 ± 0.83 0 100 ± 0 94.81 ± 0.52 0 100 ± 0
NegGrad 81.46 ± 5.67 0.02 ± 0.04 0 69.89 ± 10.23 0 0
NegGrad+ 89.79 ± 1.49 0.13 ± 0.16 99.93 ± 0.15 89.91 ± 1.41 0.94 ± 1.87 98.68 ± 1.42
Tarun et al. (2023) 89.21 ± 0.84 0 0 92.20 ± 0.72 10.89 ± 8.79 61.5 ± 25.86
Kurmanji et al. (2023) 46.18 ± 35.376 0 0 80.28 ± 7.31 6.4 ± 19.074 0
Ours 91.77 ± 0.69 0 98.28 ± 5.43 94.19 ± 0.50 0.03 ± 0.09 95.5 ± 14.23

C
IF

A
R

10
0 Original 69.22 ± 0.29 67 ± 15.23 0.2 ± 0.25 76.64 ± 0.13 74.3 ± 13.27 0.08 ± 0.1

Retraining 68.97 ± 0.40 0 100 ± 0 76.81 ± 0.50 0 100 ± 0
NegGrad 51.21 ± 6.37 0 0 60.32 ± 7.03 0 29.98 ± 48.27
NegGrad+ 58.66 ± 3.91 0 0 71.37 ± 2.78 0 100 ± 0
Tarun et al. (2023) 53.94 ± 1.22 0 0 63.387 ± 0.50 3.1 ± 5.65 0
Kurmanji et al. (2023) 67.073 ± 0.41 10.5 ± 18.32 84.3 ± 26.76 72.54 ± 0.43 10.2 ± 16.90 89.28 ± 17.18
Ours 65.94 ± 1.21 0.3 ± 0.48 99.92 ± 0.10 73.60 ± 1.41 0.3 ± 0.48 100 ± 0

Table 2: Single class forgetting on ImageNet-1k dataset.

Method Total VGG11_BN ViT_B_16
samples ACCr(↑) ACCf (↓) MIA(↑) ACCr(↑) ACCf (↓) MIA(↑)

Original - 68.61 ± 0.02 72.6 ± 25.92 22.72 ± 22.59 80.01 ± 0.037 80.6 ± 19.87 13.36 ± 12.94
NegGrad+ 32000 66.37 ± 1.27 8.8 ± 11.48 96.58 ± 4.40 73.76 ± 1.46 0 99.98 ± 0.05
Tarun et al. (2023) 9990 43.5618 ± 0.59 0 98.96 ± 3.26 56.00 ± 3.47 38.8 ± 34.074 66.67 ± 50
Kurmanji et al. (2023) 10000 67.29 ± 0.34 0 99.92 ± 0.15 79.23 ± 0.19 56 ± 21.56 45.47 ± 20.62
Ours 1499 66.41 ± 0.60 0.6 ± 1.35 99.33 ± 0.90 78.47 ± 0.84 0.2 ± 0.63 99.98 ± 0.05

(Tarun et al., 2023) and NegGrad+ Kurmanji et al. (2023) are the baselines used in the literature. Re-
training involves training the model from scratch using the retain partition of the training set, Dtrain_r, and
serves as our gold-standard model. A detailed explanation of NegGrad and NegGrad+ with psuedocodes
is presented in Appendix A.4 and A.5 respectively. Additionally, we compare our work with two SoTA
algorithms (Tarun et al., 2023; Kurmanji et al., 2023) to demonstrate the effectiveness of our approach.
Discussion on hyperparameters is presented in Appendix A.6.

Evaluation: In our experiments we evaluate the model with the accuracy on retain samples ACCr and
the accuracy on the forget samples ACCf . In addition, we implement Membership Inference Attack (MIA)
to distinguish between samples in Dtrain_r (Member class) and Dtest_r(Nonmember class) as shown in
Figure 2. We use the confidence scores for the target class and train a Support Vector Machine (SVM)
(Hearst et al., 1998) classifier. In our experiments, MIA scores represent the average model prediction
accuracy for Dtrain_f classified as Nonmember. A high value of MIA score for a given model indicates the
failure of MIA model to detect Dtrain_f as a part of training data. An unlearned model is expected to match
the MIA score of the Retrained model. See Appendix A.7 for more details on MIA setup.

6 Results and Analyses

Class Forgetting: We present the results for single class forgetting in Table 1 for the CIFAR10 and
CIFAR100 dataset. The table presents results that include both the mean and standard deviation across 10
different target unlearning classes. CIFAR10 dataset is accessed for unlearning on each class and CIFAR100
is evaluated for every 10th starting from the first class. The Retraining approach matches the accuracy of
the original model on retain samples and has 0% accuracy on the forget samples, which is the expected upper
bound. The MIA accuracy for this model is 100% which signifies that MIA model is certain that Dtrain_f

does not belong to the training data. The NegGrad method shows good forgetting with low ACCf , however,
performs poorly on ACCr and MIA metrics. The NegGrad algorithm’s performance on retain samples is
expected to be poor because it lacks information about the retain samples required to protect the relevant
features. Further, this explains why NegGrad+ which performs gradient descent on the retain samples along

8

Under review as submission to TMLR

100 101 102 103

r

0

20

40

60

80

100
Ac

cu
ra

cy

Retain
Forget

(a) Varying αr (αf = 3)

100 101 102 103

f

0

20

40

60

80

100

Ac
cu

ra
cy

(b) Varying αf (αr = 100)

Figure 3: Effect of varying (a) αr and (b) αf for Cat class of CIFAR10
dataset on VGG11 network.

1 2 3 4 5 6 7 8 9 1011
Layer

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

No
rm

al
ize

d
W

ei
gh

t
Di

st
an

ce

Figure 4: Layer-wise weight change
for VGG11 on cifar10 dataset.

Figure 5: Effect of applying un-
learning to the later layers for VGG11
model on CIFAR10 dataset.

(a) Original (b) Unlearned (c) Retrain

Figure 6: GradCAM-based heatmaps for (a) Original, (b) Retrained, and
(c) Unlearned VGG11 model on the CIFAR10 with a cat as the target class,
demonstrating that the unlearned model does not highlight any features
specific to the cat.

with NegGrad can maintain impressive performance on retain accuracy with competitive forget accuracy.
In some of our experiments, we observe that the NegGrad+ approach outperforms the SoTA benchmarks
(Tarun et al., 2023) and (Kurmanji et al., 2023) which suggests the NegGrad+ approach is a strong baseline
for class unlearning. Our proposed training free algorithm achieves a better tradeoff between the evaluation
metrics when compared against all the baselines. Further, we observe the MIA numbers for our method
close to the retrained model and better than all the baselines for most of our experiments. We demonstrate
our algorithm easily scales to ImageNet without compromising its effectiveness, as seen in Table 2. Due
to the training complexity of the experiments, we were not able to obtain retrained models for ImageNet.
We observe that the results on CIFAR10 and CIFAR100 datasets consistently show ACCf to be 0 and the
MIA performance to be 100%. We, therefore, interpret the model with high ACCr, MIA, and low ACCf

as a better unlearned model for these experiments. We conduct unlearning experiments on the ImageNet
dataset for every 100th class starting from the first class. Our algorithm shows less than 1.5% drop in
ACCr as compared to the original model while maintaining less than 1% forget accuracy for a well trained
SoTA Transformed based model. The MIA scores for our model are nearly 100% indicating that model the
MIA model fails to recognize Dtrain_f as part of training data. We observe that (Kurmanji et al., 2023)
outperforms our method for a VGG11 model trained on ImageNet, however, requires access to 6× more
samples and computationally expensive than our approach. Further, we also explore 2 alternative variants of
our algorithm in Appendix A.8. Due to their inferior performance in terms of ACCr and ACCf , we decided
not to further evaluate them in this work.

Effect of α: Figure 3 shows the impact of varying αr and αf for unlearning the cat class from CIFAR10
dataset using VGG11 network. In Figure 3(a), we set αf = 3 and vary αr in [0.3, 1, 3, 10, 30, 100, 300, 1000].
Similarly, in Figure 3(b), we keep αr = 100 and vary αf in [0.3, 1, 3, 10, 30, 100, 300, 1000]. Note, here
αr = 100 and αf = 3 are the optimal hyperparameter for unlearning the cat class. We observe that ACCr

increases with increase in αr and decreases with increase in αf . Similarly, ACCf increases with increase
in αr and decreases with increase in αf , however, the ACCf = 0 for αr < 100 and αf > 1. We observed
similar trends for other classes. These trends can be understood by analysing the overall update equation

9

Under review as submission to TMLR

air
p
au

to bir
d catde

er do
g
fro

g
ho

rsshi
p
tru

c

Predicted Labels

air
p

au
to

bir
d

cat

de
er

do
g

fro
g

ho
rs

shi
p

tru
c

Tr
ue

 L
ab

le
s

944 4 14 6 3 0 1 3 20 5
8 960 0 1 0 0 1 0 4 26
20 0 886 21 22 18 18 10 4 1
8 2 31 823 19 80 20 8 3 6
6 1 17 25 920 10 12 8 0 1
6 0 17 92 21 850 5 7 2 0
3 1 17 22 7 2 944 0 2 2
8 0 4 16 15 15 1 939 0 2
18 3 2 6 1 1 1 1 958 9
11 40 1 4 0 1 1 0 8 934

0

200

400

600

800

(a) Original

air
p
au

to bir
d catde

er do
g
fro

g
ho

rsshi
p
tru

c

Predicted Labels

air
p

au
to

bir
d

cat

de
er

do
g

fro
g

ho
rs

shi
p

tru
c

Tr
ue

 L
ab

le
s

953 5 11 0 1 0 1 3 22 4
9 963 0 0 0 0 0 0 4 24
25 0 907 0 21 13 20 7 4 3
96 19 150 0 122260146 53 87 67
10 1 27 0 933 6 11 10 1 1
17 4 41 0 31 833 22 35 7 10
7 1 18 0 6 2 955 2 5 4
9 0 4 0 17 6 2 956 0 6
17 3 1 0 1 1 1 2 966 8
11 41 1 0 0 0 0 0 13 934

0

200

400

600

800

(b) Unlearned

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p
tru

ck

Predicted Labels

air
pla

ne

au
tom

ob
ile

bir
d

cat

de
er

do
g

fro
g

ho
rse

shi
p

tru
ck

Tr
ue

 L
ab

le
s

933 3 12 0 4 4 6 3 24 11

4 956 0 0 1 1 2 0 7 29

20 0 891 0 32 29 14 9 2 3

36 4 80 0 97 573 127 35 23 25

1 1 23 0 931 15 12 13 3 1

11 1 12 0 23 926 8 13 0 6

3 1 20 0 9 13 950 1 0 3

3 0 9 0 20 15 1 942 1 9

20 3 1 0 1 2 1 4 956 12

7 26 1 0 0 3 1 2 7 953
0

200

400

600

800

(c) Retrain

Figure 7: Confusion Matrix for original VGG11 model and model unlearning cat class, showing redistribution of
cat samples to other classes in proportion to the confusion in original model.

of our algorithm (combining lines 11-16) given by Equation 4 (see Appendix A.9 for the explanation).

θf = (I − Pf (I − Pr))θ (4)

Layer-wise analysis: We plot the layerwise weight difference between the parameters of the unlearned
and the original model for VGG11 on the CIFAR10 dataset in Figure 4. We observe that the weight change
is larger for the later layers. This suggests that the class discriminatory features are more prominent in
the later layers of the network. This is expected as the later layers are expected to learn complex class
discriminatory information while the initial layers learn edges and simple textures (Olah et al., 2017). In
Figure 5, we plot ACCr and ACCf when our algorithm is applied to top few layers for CIFAR10 dataset
on VGG11 model. The x-axis in the plot represents the number of initial layers n we do not apply the
unlearning algorithm. A value of n on x-axis represents a case where we do not change the initial layers
0 − n(including n) in unlearning and apply our unlearning algorithm to the rest of the layers. We observe
that the effect of removing the projections is minimal on ACCr. The forget accuracy keeps increasing as we
sequentially remove the projections starting from the initial layers. We observe that applying our algorithm
to all the layers ensures low mean and standard deviation for ACCf .

Saliency-based analysis : We test this VGG11 model unlearning the cat class with GradCAM-based
feature analysis as presented in Figure 6, and we see that our model is unable to detect class discriminatory
information which validates unlearning. This behavior is similar to the retrained VGG11 model shown in
Figure 6(c).

Confusion Matrix analysis: We plot the confusion matrix showing the distribution of true labels and
predicted labels for the original VGG11 model and VGG11 model unlearning cat class with our algorithm for
CIFAR10 in Figure 7. Interestingly, we observe that a significant portion of the cat samples are redistributed
across the animal categories. The majority of these samples are assigned to the dog class, which exhibited
the highest level of confusion with the cat class in the original model. This aligns with the illustration shown
in Figure 1 where the forget space gets redistributed to the classes in the proximity of the forget class. In
the confusion matrix of the retrained model shown in Figure 7(c), we similarly observe a high number of cat
samples being assigned to the dog class.

Compute analysis: We analytically calculate the computational cost for different unlearning algorithms
for a Vision Transformer (ViT) model trained on ImageNet, as illustrated in Figure 8, see Appendix A.10
for details. This figure shows the percentage of compute cost in comparison to a single epoch of retraining
baseline on y-axis. It’s important to note that we exclusively consider the computation of the linear layer
ignoring the compute costs for self-attention and normalization layers. This inherently works in favor of the
gradient based approaches as our algorithm has significantly low overhead for these layers as we only do

10

Under review as submission to TMLR

Our

Neg
Grad

+
[Ta

run
]

[Ku
rm

an
ji]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

%
 o

f a
 R

et
ra

in

 E
po

ch
 (I

m
ag

eN
et

)

1.0x

6.6x 7.3x
8.8x

Figure 8: Compute comparison
for single linear layer of ViT.

101 102 103 104 105
hidden size

0

20

40

60

80

%
 o

f a
 R

et
ai

n
 E

po
ch

(Im
ag

eN
et

)

Figure 9: Change in compute
with an increase in hidden size for
a transformer architecture.

102 103

of Samples (log scale)
0

2

4

6

8

Ac
cu

ra
cy

Forget Acc

0.7

0.8

0.9

1.0

%
 o

f a
 R

et
ai

n
 E

po
ch

(Im
ag

eN
et

)

Compute

Figure 10: Change in compute
with an increase in hidden size for
a transformer architecture.

forward pass on a few samples while representation collection. Our approach demonstrates more than 6×
compute reduction than any other baseline.

Impact of increasing hidden size on Compute: Since Singular Value Decomposition (SVD) is com-
putationally expensive, increasing the hidden layer size of the network is likely to significantly impact the
computational cost of our algorithm. We leverage the analytical framework described above to investigate
this relationship in Figure 9. The figure plots the normalized computational cost (relative to 1 epoch of
retraining) of our approach on the x-axis, for different hidden layer sizes shown on the y-axis. As expected,
the figure demonstrates a positive correlation between the computational cost and the hidden layer size.
Impressively, even for a hidden layer size of 100, 000, our method’s computational cost remains lower than
that of a single retraining epoch. In practice, for the widest know vision transformer model, ViT_G Zhai
et al. (2022), with a hidden size of 1280, our method achieves a computational cost of 1.17% of a single
retraining epoch.

Number of Samples analysis: In Figure 10 we plot the change in in model performance with sample
set size. The sample set size for Retain Set and the Forget Set is kept the same in this experiment. We
vary the number of samples as [90, 225, 450, 900, 2250, 4500] and present the accuracy on the forget set and
the compute cost on . We observe that we need around 900 samples of retain and forget set each to obtain
ACCf=0. This translates to around 100 samples pre retain class which is similar to what is used in Saha
et al. (2021).

One-Shot Multi Class Forgetting: The objective of Multiclass removal is to remove more than one
class from the trained model. In multi task learning a deep learning model is trained to do multiple tasks
where each of the tasks is a group of classes. The scenario of One-Shot Multi-Class where the unlearning
algorithm is expected to remove multiple classes in a single unlearning step has a practical use case in
such task unlearning. Our algorithm estimates the Retain Space Ur and the Forget Space Uf based on the
samples from Xr and Xf . It is straightforward to scale our approach to such a scenario by simply changing
the retain sample Xr and Xf to represent the samples from class to be retained and forgotten respectively.

VGG11_BN ResNet180

20

40

60

80

100

Re
ta

in
 A

cc
.

(a) Retain Accuracy.

VGG11_BN ResNet180
20
40
60
80

100
120

Fo
rg

et
 A

cc
.

Original Model
1 class removal
5 class removal

(b) Forget Accuracy

VGG11_BN ResNet180

20

40

60

80

100

M
IA

 A
cc

ur
ac

y

(c) MIA Accuracy

Figure 11: One-shot Multi-Class Unlearning for CIFAR100 dataset.

11

Under review as submission to TMLR

0 2 4 6 8
of Classes Unlearnt

90
92
94
96
98

100

Re
ta

in
 S

et
 A

cc
.

VGG11_BN
ResNet18

Figure 12: Sequential class removal on CIFAR10
dataset.

We demonstrate multi class unlearning on removing 5
classes belonging to a superclass on CIFAR100 dataset
in Figure 11. We observe our method is able to retain
good accuracy on Retain samples and has above 95%
MIA accuracy while maintaining a low accuracy on for-
get set under this scenario. When compared with Tarun
et al. (2023) under this unlearning setting (see Table 8
in Appendix A.11) we see our method has significantly
better performance. We also present results of multiclass
unlearning on CIFAR10 in Appendix A.11, which shows
similar trends.

Sequential Multi Class Forgetting: This scenario of
multiclass unlearning demonstrates another practical use
case of our algorithm where different unlearning requests
come at different instances of time. In our experiments,
we sequentially unlearn classes 0 to 9 in order from the
CIFAR10 dataset on VGG11 and ResNet 18 model. The retain accuracy of the unlearned model is plotted in
Figure 12. The forget accuracy for all the classes in the unlearning steps was zero. We observe an increasing
trend in the retain accuracy for both the VGG11 and ResNet18 models which is expected as the number of
classes reduces or the classification task simplifies.

7 Conclusion

In this work, we present a novel class and multi-class unlearning algorithm based on Singular Value Decom-
position (SVD). This approach eliminates the need for computationally expensive and potentially unstable
gradient-based methods, which are prevalent in existing unlearning techniques. We demonstrate the effec-
tiveness of our SVD-based method across various image classification datasets and network architectures.
Our analysis using saliency-based explanations confirms that no class-discriminatory features are retained
after unlearning. Additionally, confusion matrix analysis verifies the redistribution of unlearned samples
based on their confusion with other classes.

Traditional unlearning methods rely heavily on gradients, leading to limitations in computational cost and
sample size requirements, especially for large models and datasets. Our work addresses these limitations
by introducing a novel and demonstrably superior solution for class-wise unlearning, outperforming state-
of-the-art baselines. Our approach is radically different for the current approaches as our algorithm (a) is
Training-Free, (b) uses Single-step weight update, (c) has novel weight update machanism and (d) is compute
and sample efficient. Our in-depth analyses, including investigations into layer importance, hyperparameters,
scalability, and output distributions, were driven by the novelty and potential of our approach. We believe
this work has the potential to revolutionize the field of efficient unlearning, inspiring future explorations
across diverse domains and expanding the breadth of this research area.

8 Impact Statement

This research addresses crucial ethical aspects and societal consequences in the domain of machine learning,
specifically focusing on the emerging need for unlearning algorithms in the context of data privacy. By using
few samples for unlearning, the study not only pushes the boundaries of machine unlearning but also sticks
to ethical principles about privacy and user rights. The proposed algorithm changes how we unlearn data
from a learned model, making it scalable, especially for huge datasets like ImageNet. This energy-efficient
approach marks a substantial step in minimizing overall environmental impacts, representing progress to-
wards more sustainable machine learning practices. In essence, this work guides us toward responsible and
privacy-conscious machine learning, making sure our futuristic technology respects both societal values and
regulations.

12

Under review as submission to TMLR

References
Devansh et. al. Arpit. A closer look at memorization in deep networks. In International conference on

machine learning, pp. 233–242. PMLR, 2017.

Ching-Yuan Bai, Hsuan-Tien Lin, Colin Raffel, and Wendy Chi-wen Kan. On training sample memorization:
Lessons from benchmarking generative modeling with a large-scale competition. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2534–2542, 2021.

Thomas Baumhauer, Pascal Schöttle, and Matthias Zeppelzauer. Machine unlearning: Linear filtration for
logit-based classifiers. Machine Learning, 111(9):3203–3226, 2022.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In International Conference on
Machine Learning, pp. 1092–1104. PMLR, 2021.

Cheng Chen, Ji Zhang, Jingkuan Song, and Lianli Gao. Class gradient projection for continual learning. In
Proceedings of the 30th ACM International Conference on Multimedia, pp. 5575–5583, 2022.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine un-
learning. IEEE Transactions on Information Forensics and Security, 2023.

Alan Kaylor Cline and Inderjit S Dhillon. Computation of the singular value decomposition. In Handbook
of linear algebra, pp. 45–1. Chapman and Hall/CRC, 2006.

Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for Machine Learning. Cambridge
University Press, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009. doi: 10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data deletion in
machine learning. Advances in neural information processing systems, 32, 2019.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective
forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9304–9312, 2020a.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep
networks of information accessible from input-output observations. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16, pp. 383–398.
Springer, 2020b.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto. Mixed-
privacy forgetting in deep networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 792–801, 2021.

Eric Goldman. An introduction to the california consumer privacy act (ccpa). Santa Clara Univ. Legal
Studies Research Paper, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

13

Under review as submission to TMLR

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector
machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion from
machine learning models. In International Conference on Artificial Intelligence and Statistics, pp. 2008–
2016. PMLR, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. CIFAR, 2009.

Meghdad Kurmanji, Peter Triantafillou, and Eleni Triantafillou. Towards unbounded machine unlearning.
arXiv preprint arXiv:2302.09880, 2023.

Guanghao Li, Li Shen, Yan Sun, Yue Hu, Han Hu, and Dacheng Tao. Subspace based federated unlearning.
arXiv preprint arXiv:2302.12448, 2023.

Zhenhua Liu, Jizheng Xu, Xiulian Peng, and Ruiqin Xiong. Frequency-domain dynamic pruning for convo-
lutional neural networks. Advances in neural information processing systems, 31, 2018.

Ananth Mahadevan and Michael Mathioudakis. Certifiable machine unlearning for linear models. arXiv
preprint arXiv:2106.15093, 2021.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2(11):e7, 2017.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Gobinda Saha and Kaushik Roy. Continual learning with scaled gradient projection. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(8):9677–9685, Jun. 2023. doi: 10.1609/aaai.v37i8.26157.
URL https://ojs.aaai.org/index.php/AAAI/article/view/26157.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In In-
ternational Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
3AOj0RCNC2.

Sebastian Schelter. Amnesia-a selection of machine learning models that can forget user data very fast.
suicide, 8364(44035):46992, 2020.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and
momentum in deep learning. In International conference on machine learning, pp. 1139–1147. PMLR,
2013.

Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective machine
unlearning. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015 ieee
information theory workshop (itw), pp. 1–5. IEEE, 2015.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical Guide,
1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning of features
and labels. arXiv preprint arXiv:2108.11577, 2021.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12104–12113,
2022.

14

https://ojs.aaai.org/index.php/AAAI/article/view/26157
https://openreview.net/forum?id=3AOj0RCNC2
https://openreview.net/forum?id=3AOj0RCNC2

Under review as submission to TMLR

A Appendix

A.1 Demonstration with Toy Example

-3.0 -1.0 1.0 3.0
Feature 1

3.0

1.5

0.0

-1.5

-3.0

Fe
at

ur
e

2

(a) original model

-3.0 -1.0 1.0 3.0
Feature 1

3.0

1.5

0.0

-1.5

-3.0

Fe
at

ur
e

2
(b) model forgetting Red Class

-3.0 -1.0 1.0 3.0
Feature 1

3.0

1.5

0.0

-1.5

-3.0

Fe
at

ur
e

2

(c) Retrained model

Figure 13: Illustration of the unlearning algorithm on a simple 4 class classification problem. Figure shows the
decision boundary for (a) original model, (b) our unlearned model redistributing the space to nearby classes and (c)
Retrained model without red class. Note - This figure is same as Figure 1 and duplicated here for ease of reference.

In Figure 13 we demonstrate our unlearning algorithm on a 4 way classification problem, where the original
model is trained to detect samples from 4 different 2-dimensional Gaussian’s centered around (1,1), (-1,1),
(-1, -1) and (1, -1) respectively with a standard of (0.5,0.5). The training dataset has 10000 samples per class
and the test dataset has 1000 samples per class. The test data is shown with dark points in the decision
boundaries in Figure 13. We use a simple 5-layer linear model with ReLU activation functions. All the
intermediate layers have 5 neurons and each layer excluding the final layer is followed by BatchNorm. We
train this network with stochastic gradient descent for 10 epochs with a learning rate of 0.1 and Nestrove
momentum of 0.9. The decision boundary learned by the original model trained on complete data is shown
in Figure 13(a) and the accuracy of this model on test data is 95.60%. In Figure 13(b) we plot the decision
boundary for the model obtained by unlearning the class with mean (1,1) with our algorithm. This decision
boundary is observed to be close to the decision boundary of the model retrained without the data points
from class with mean (1,1) as shown in Figure 13(c). The accuracy of the unlearned model is 97.43% and
retrained model is 97.33%. This illustration shows that the proposed algorithm redistributes the input space
of the class to be unlearned to the closest classes.

A.2 Parameters in different layers

The majority of trainable parameters in CNNs (e.g., VGG, ResNets) and the key components of transformer
architectures like ViTs reside within linear and convolutional layers (see Table 3. We focus on these layers
for unlearning as they likely hold the most significant memorized information. *Other model parameters
such as the normalization layers and the positional embeddings (in ViTs) are not updated in our algorithm.

Type of Layer VGG11_BN (CIFAR10) ResNet18(CIFAR10) ViT_B_16(ImageNet1k)
Conv/Linear 9750922 (99.94%) 11164362 (99.91%) 86377192 (99.78%)

Others 5504 (0.06%) 9600 (0.09%) 190464 (0.22%)
Total Parameters 9756426 11173962 86567656

Table 3: Fraction of parameters in Linear and Convolutional layers.

15

Under review as submission to TMLR

A.3 Training Details for CIFAR10/100 Models

All CIFAR10 and CIFAR100 models are trained for 350 epochs using Stochastic Gradient Descent (SGD)
with the learning rate of 0.01. We use Nesterov (Sutskever et al., 2013) accelerated momentum with a value
of 0.9 and the weight decay is set to 5e-4.

A.4 NegGrad Algorithm

In the NegGrad approach, we finetune the model for a few steps using gradient ascent on the forget partition
of the train set Dtrain_f with a gradient clipping threshold set at 1.0. Pseudocode for NegGrad is presented
in Algorithm 2. The algorithm initialized the unlearn parameters θ∗

f to the original parameters θ and does
500 steps of gradient ascent on the forget subset of the training data. After every 100 steps, we evaluate
the model accuracy on Dtrain_sub_f and exit ascent when accf becomes lower than 0.1. This restricts the
gradient ascent from catastrophically forgetting the samples in the retain partition.

Algorithm 2 NegGrad Algorithm
Input: θ is the parameters of the original model, L is the loss function, Dtrain_sub_f is the subset of the
forget partition of the train dataset; and η is the learning rate

1. procedure Unlearn(θ, L, Dtrain_sub_f , η)
2. θ∗

f = θ
3. for step = 1,...., 500 do
4. input, target = get_batch(Dtrain_sub_f)
5. g = get_gradients(θ∗

f , L, input, target)
6. g = gradient_clip(g,1.0)
7. θ∗

f = θ∗
f + ηg

8. if step multiple of 100 do
9. accf = get_accuracy(θ, Dtrain_sub_f)
10. breakif accf < 0.1
11. return θ∗

f

A.5 NegGrad+ Algorithm

This algorithm does gradient ascent on the forget samples and gradient descent on the retain samples for
500 steps. NegGrad+ is a superior gradient ascent unlearning algorithm as compared to the NegGrad.
Algorithm 3 outlines the pseudocode for the NegGrad+ unlearning approach. The algorithm initializes the
unlearn parameters θ∗

f to the original parameters θ and gets the model accuracy on the forget partition accf .
The gradients ga are computed on the forget partition if the accf is greater than 0.1 otherwise ga is set to
0. The gradient on the retain batch denoted by gd is computed at every step and the unlearn parameters
are updated in the descent direction for the retain samples and ascent direction for the forget samples. The
values of accf is updated after every 100 steps. This algorithm mitigates the adverse effect of Naive descent
on the retain accuracy. Once the model achieves the forget accuracy less than 0.1 the algorithm tries to
recover the retain accuracy by finetuning on the retain samples.

A.6 Hyperparameter Discussion

Our approach introduces four key hyperparameters: the list of αr values (alpha_r_list), the list of αf values
(alpha_f_list), and the number of samples used to estimate the Retain Space and Forget Space. The values
for these hyperparameters are dependent on the dataset and are presented in Table 4 of Appendix A.6. The
NegGrad and NegGrad+ require tuning of the learning rate η for atleast 1 unlearning class and a list of the
learning rates is presented in Table 5 in Appendix A.6. We tune this hyperparameter for unlearning the
first class on each model-dataset pair. Once determined, these hyperparameters remain fixed for unlearning
all other classes. The SoTA (Tarun et al., 2023) baseline introduces 2 learning rates for the impair and the
repair stages represented by ηimpair and ηrepair. Similar to the other baselines these hyperparameters are

16

Under review as submission to TMLR

Algorithm 3 NegGrad+ Algorithm
Input: θ is the parameters of the original model; L is the loss function; Dtrain_sub_f and Dtrain_sub_f are
the subset of the retain and forget partition of the train dataset respectively; and η is the learning rate.

1. procedure Unlearn(θ, L, Dtrain_sub_r, Dtrain_sub_f , η)
2. accf = get_accuracy(θ, Dtrain_sub_f); θ∗

f = θ
3. for step = 1,...., 500 do
4. if accf > 0.1 do
5. input, target = get_batch(Dtrain_sub_f)
6. ga = get_gradients(θ∗

f , L, input, target)
7. ga = gradient_clip(ga,1.0)
8. else
9. ga = 0
10. input, target = get_batch(Dtrain_sub_r)
11. gd = get_gradients(θ∗

f f , L, input, target)
12. θ∗

f = θ∗
f + ηga - ηgd

13. if step multiple of 100 do
14. accf = get_accuracy(θ, Dtrain_sub_f)
15. return θ∗

f

only tuned on one class for each model-dataset pair. For (Kurmanji et al., 2023) we use all the suggested
hyperparameters given in the work for Large scale experiments on CIFAR10 for class unlearning-type (Table
3) and tune the batch sizes (forget-set bs and retain-set bs) as given in Table 6 The Retraining method
does not add any additional hyperparameters and is trained with the same hyperparameters as the original
model.

Table 4: Hyperparameters for our approach with single class unlearning or sequential multi-class unlearning.

Dataset alpha_r_list alpha_f_list samples/class samples/class class
in Xr in Xf

CIFAR10 [10, 30, 100, 300, 1000] [3] 100 900
CIFAR100 [100, 300, 1000] [3, 10, 30, 100] 10 990
ImageNet [30, 100, 300, 1000, 3000] [3, 10, 30, 100, 300] 1 500

Table 5: Hyperparameter tuning space for NegGrad, NegGrad+ and (Tarun et al., 2023) benchmarks.

Method η or ηrepair or ηimpair

NegGrad [1e-4, 2e-4,5e-4,1e-3,2e-3,5e-3,1e-2]
NegGrad+ [1e-4, 2e-4,5e-4,1e-3,2e-3,5e-3,1e-2]
Tarun et al. (2023) [1e-4, 2e-4,5e-4,1e-3,2e-3,5e-3,1e-2]

Table 6: Hyperparameters for our approach with single class unlearning or sequential multi-class unlearning.

Dataset forget-set batch size retain-set batch size
CIFAR10 and CIFAR100 [32, 64, 128, 256, 512] [32, 64, 128, 256, 512]
ImageNet [32, 64, 128, 256] [32, 64, 128, 256]

A.7 MIA Attack Details

The goal of the MIA experiment was to demonstrate how the unlearned models behave as compared to the
Retrained model and the original model. Below we mention the details of MIA experiments.

Training - We train a Support Vector Machine (SVM) classifier as a MIA model to distinguish between
Dtrain_r(as class 1 or member class) and Dtest_r(as class 0 or nonmember class).

17

Under review as submission to TMLR

Table 7: Location of Projection. Experiments on CIFAR10 dataset similar to Table 1

Method VGG11_BN ResNet18
accr accf accr accf

Original 91.58 94.89
input activation suppression (main paper) 91.77 ± 0.69 0 94.19 ± 0.50 0.03 ± 0.09
output activation suppression 90.73 ± 1.28 0.15 ± 0.38 91.44 ± 1.22 1.05 ± 1.13
both 91.51 ± 0.68 0 93.96 ± 0.60 0.21 ± 0.45

Testing - We show this SVM model Dtrain_f to check if the MIA model classifies it as a member or
nonmember. When the MIA model classifies it class 0 (Nonmember) then the MIA model believes that the
samples from Dtrain_f do not belong to the Train set. This is what is meant by having a high accuracy on
Dtrain_f .

Interpretations of MIA scores- We use the training and testing procedures mentioned above for all the
models. Below we present interpretation for different models

• Original model - We see that the original model has a low MIA score (nearly 0) which means the
SVM model classifies Dtrain_f as member samples. This is expected as Dtrain_f belonged to the
training samples.

• Retrained model - We see that the Retrained model has a high MIA score (100%) which means the
SVM model classifies Dtrain_f as nonmembers. This is expected as Dtrain_f does not belong to the
training samples.

• Unlearned model - By these experiments of MIA we wanted to see how MIA scores of unlearned
models perform. We observe the model unlearned with our algorithm consistently performs close to
the retrained model as compared to other baselines.

A.8 Variants of Our algorithm

This section presents two variants of the algorithm depending on the location of the activation suppression.
Consider the linear layer ao = ai × θT , where ao and ai are the input activation and output activations of
a linear layer. The algorithm presented in the main paper focuses on activations before the linear layer,
i.e. the input activations ai. We could also suppress the output activations. This activation suppression
meant projecting the parameters on the orthogonal discriminatory projection space (I − Pdis), which is post
multiplying the parameters θ with (I −Pdis)T . Now if we were to suppress the output activations ao it would
be the same as pre-multiplying the parameters θ with (I − Pdis)T . (Note, for suppressing ao the output
activations are used to compute Pdis). This variant of our approach is capable of removing the information
in the bias and normalization parameters of the network. The other variant suppresses both the input and
output activations using their respective projection matrices. The results for these variants are presented
in Table 7. We observe that the performance of these two variants is lower than the algorithm in the main
paper and hence do not analyze it further.

A.9 Explaining Trends in Hyperparameter Variation

Equation 2 in the paper helps us understand how α directly controls the importance of basis vectors. In-
creasing α amplifies their significance while decreasing alpha diminishes it. The overall update equation of
our algorithm for layer weights θ can presented in Equation 4. We explain the conclusions of Figure 3 in
this Subsection.

18

Under review as submission to TMLR

A.9.1 Trends in Figure 3(a) (varying αr)

Retrain Accuracy: If we assume Pf is Identity when we are studying the effect of αr in Equation 4
simplifies to θf = Prθ. Now, decreasing αr weakens(or scales down) basis vectors in Ur. This translates
to reduced retrain accuracy as Pr shrinks towards zero, leading to catastrophic unlearning of the retain
partition.

Forget Accuracy: Expanding Equation 4 we get, θf = (I − Pf + Pf Pr)θ. Increasing αr amplifies all
basis vectors, including those overlapping between Ur and Uf (due to Pf Pr). This effectively boosts forget
accuracy for high enough αr.

A.9.2 Trends in Figure 3(b) (varying αf)

Retrain Accuracy: Expanding Equation 4 we get, θf = (I − Pf + Pf Pr)θ. A decrease in αf decreases
all the basis vectors in Uf , including the ones overlapping with Ur (due to Pf Pr). This effectively reduces
retain accuracy for high enough αf .

Forget Accuracy: If we assume that Pr is a zero matrix for studying the effect of αf , Equation 4 would
simplify to θf = (I −Pf)θ. Increasing αf diminishes the importance of basis vectors within the forget dataset
(due to I − Pf), resulting in the observed decrease in forget accuracy.

A.10 Compute Analysis for Single Layer of ViT on ImageNet dataset.

A.10.1 Linear Layer Compute Equations

Here we analyze the compute required for a linear layer. Say we have a linear layer of size fin × fout, where
fin is the input features and fout is the output features. Let the retain set have nr samples. The input
activation for this layer will hence be of size nr × fin. Below we analyze the compute required by various
algorithms in this setting. We substitute all the parameters in the equation to obtain the compute in terms
of fin and fout.

Retraining: The compute required for this method will be nrfinfout for forward pass and 2nrfinfout for
backward resulting in total compute given by Equation 5. For the ImageNet experiments, nr is approximately
128000. Note this is the compute for the single epoch.

CLinear
retrain(fin, fout) = 3nrfinfout = 3840000finfout (5)

NegGrad/NegGrad+: The NegGrad and NegGrad+ algorithm make sng ascent/descent steps with a
batchsize of bng. The compute for this would be given by Equation 6. For ImageNet runs on Vit sng = 500
and bng = 64.

CLinear
neggrad(fin, fout) = 3sngbngfinfout = 96000finfout (6)

(Tarun et al., 2023): For this baseline the authors generate the noise distribution for each forget class.
This is done through gradient ascent on the model for snoise steps starting with a random noise with a batch
size of bnoise. In the impair step, the algorithm performs gradient descent on nimpair samples and nT arun_r

retain samples to remove the forget samples for simpair steps. In the repair steps the model does gradient
descent on nT arun_r samples to gain performance on retain samples for srepair steps. The compute equation
is given by Equation 7 The parameters values are snoise = 40, bnoise = 256, nimpair = 5120, simpair =
1, nT arun_r = 9990, srepair = 1.

CLinear
T arun(fin, fout) =3(snoisebnoise︸ ︷︷ ︸

Noise Generation

+ simpair(nimpair + nT arun_r)︸ ︷︷ ︸
Impair Steps

+ srepairnT arun_r︸ ︷︷ ︸
Repair Steps

)finfout

= 106020finfout

(7)

(Kurmanji et al., 2023): The author perform smax number of maximization steps on nscrub_f samples
and smin number of maximization steps on nscrub_r. Further, this work uses distillation loss which requires

19

Under review as submission to TMLR

VGG11_BN ResNet1890
92
94
96
98

100
102

Re
ta

in
 A

cc
.

Original Model
1 class removal
2 class removal
5 class removal

(a) Retain Accuracy.

VGG11_BN ResNet180.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Fo
rg

et
 A

cc
.

1 class removal
2 class removal
5 class removal

(b) Forget Accuracy

Figure 14: One-Shot Multi-Class Unlearning for CIFAR10 dataset.

additional forward passes for every step of minimization and maximization. This is given by Equation 8.
The values of hyperparameters are smax = 2, nscrub_f = 1000, smin = 3, nscrub_r = 10000. Note the scaling
factor of 4 in the equation accounts for the forward pass in the distillation step.

CLinear
scrub (fin, fout) =4(smaxnscrub_f︸ ︷︷ ︸

Maximization Step

+ sminnscrub_r︸ ︷︷ ︸
Minimization Step

)finfout

= 128000finfout

(8)

Ours: We have access to nour_r and nour_f retain and forget samples in our algorithm and for ImageNet
these are 999 and 500 respectively. Our approach can be broken into 4 compute steps, namely representation
collection, SVD, Space Estimation, and weight projection. Representation collection requires forward pass
on a few samples and can be compute cost can be computed as mentioned before. For a matrix of size m × n
SVD has a compute of mn2 Cline & Dhillon (2006) where m > n. Space Estimation and weight projection
steps involve matrix multiplication. For a matrix A of size m × n and matrix B of size n × p the compute
costs of matrix multiplication A × B is mnp.

CLinear
our (fin, fout) = (nour_r + nour_f)finfout︸ ︷︷ ︸

Representation Matrix

+ (nour_r + nour_f)f2
in︸ ︷︷ ︸

SVD

+ 2f3
in︸︷︷︸

Pdis Computation

+ f2
infout︸ ︷︷ ︸

Weight Projection

= 1499finfout + 1499f2
in + 2f3

in + f2
infout

(9)

A.10.2 Compute for a layer of ViT

A layer of ViTBase has 4 layers of size 768, namely Key weights, Query weights, value weights, and output
weights in the Attention layer. The MLP layer consists of a layer of size 768 × 3072 and 3072 × 768. The
total compute for a layer of Vit would be given by Equation 10. Note this ignores the compute of the
attention and normalization layers. Adding compute for the attention mechanism would only benefit our
method as we only compute this for representation collection, whereas the baseline methods would have this
computation at every forward and backward pass. These equations are used to obtain the numbers for each
of the methods in Figure 8.

CViT_Layer = 4CLinear(768, 768) + CLinear(768, 3072) + CLinear(3072, 768) (10)

20

Under review as submission to TMLR

Table 8: Results for Multi class Forgetting on CIFAR100 dataset.

Method VGG11_BN ResNet18
ACCr(↑) ACCf (↓) MIA(↑) ACCr(↑) ACCf (↓) MIA(↑)

NegGrad+ 57.75 ± 1.40 0.2 ± 0.2 0 70.55 ± 1.045 0.7 ± 0.12 99.86 ± 0.11
Tarun et al. (2023) 54.31 ± 1.09 0 0 64.16 ± 1.18 1.34 ± 2.33 60.2 ± 52.14
Ours 65.94 ± 1.89 4.6 ± 1.44 94.8 ± 2.2 69.74 ± 3.12 2.33 ± 1.61 95.7 ± 2.67

A.11 Multi class Unlearning

We run experiments for this scenario on the CIFAR10 dataset with VGG11 and ResNet18 models. Figure 14
presents the mean and standard deviations for retain accuracy and the forget accuracy for 5 runs on each
configuration. The set of classes to be removed is randomly selected for each of these 5 runs. These results
show our algorithm scales to this scenario without losing efficacy. Additionally we present the comparisons
with baselines on the CIFAR100 dataset for unlearning a superclass in Table 8.

21

	Introduction
	Related Works
	Preliminaries
	Unlearning Algorithm
	Class Discriminatory Space
	 Space Estimation via SVD on Representations
	Projection Space

	Hyperparameter Search
	Discussion

	Experiments
	Results and Analyses
	Conclusion
	Impact Statement
	Appendix
	Demonstration with Toy Example
	Parameters in different layers
	Training Details for CIFAR10/100 Models
	NegGrad Algorithm
	NegGrad+ Algorithm
	Hyperparameter Discussion
	MIA Attack Details
	Variants of Our algorithm
	Explaining Trends in Hyperparameter Variation
	Trends in Figure 3(a) (varying r)
	Trends in Figure 3(b) (varying f)

	Compute Analysis for Single Layer of ViT on ImageNet dataset.
	Linear Layer Compute Equations
	Compute for a layer of ViT

	Multi class Unlearning

