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Abstract

Recent advances in neuroscientific experimental techniques have enabled us to
simultaneously record the activity of thousands of neurons across multiple brain
regions. This has led to a growing need for computational tools capable of analyzing
how task-relevant information is represented and communicated between several
brain regions. Partial information decompositions (PIDs) have emerged as one such
tool, quantifying how much unique, redundant and synergistic information two or
more brain regions carry about a task-relevant message. However, computing PIDs
is computationally challenging in practice, and statistical issues such as the bias and
variance of estimates remain largely unexplored. In this paper, we propose a new
method for efficiently computing and estimating a PID definition on multivariate
Gaussian distributions. We show empirically that our method satisfies an intuitive
additivity property, and recovers the ground truth in a battery of canonical examples,
even at high dimensionality. We also propose and evaluate, for the first time, a
method to correct the bias in PID estimates at finite sample sizes. Finally, we
demonstrate that our Gaussian PID effectively characterizes inter-areal interactions
in the mouse brain, revealing higher redundancy between visual areas when a
stimulus is behaviorally relevant.

1 Introduction
Neuroscientific experiments are increasingly collecting large-scale datasets with simultaneous record-
ings of multiple brain regions with single-unit resolution [1–3]. These experimental advances call
for new computational tools that can allow us to probe how multiple brain regions jointly process
relevant information in a behaving animal.

Partial Information Decompositions (PIDs) offer a new method for studying how different brain
regions carry task-relevant information: they provide measures to quantify the amount of unique,
redundant and synergistic information that one region has with respect to another. The information
itself could pertain to task-relevant variables such as stimuli, behavioral responses, or information
contained in a third region. For example, we may be interested in how much information about a
stimulus is communicated or shared (i.e., redundantly present) between two brain regions over time.
Or, we might be interested in the extent to which one region’s activity uniquely explains that of
another, while excluding information corresponding to spontaneous behaviors.

Ideas such as redundancy and synergy have a long history in neuroscience, having been proposed for
understanding noise correlations [4] and to understand differences in encoding complexity between
different brain regions [5]. PIDs have also been suggested for quantifying how much sensory
information is used to execute behaviors [6] and for tracking stimulus-dependent information flows
between brain regions [7, 8]. Outside of neuroscience, PID has been used to understand interactions
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between different variables in financial markets [9], to quantify the relevance of different features for
the purpose of feature selection in machine learning [10], and to define and quantify bias in the field
of fair Machine Learning [11].

An important constraint that has limited the broader adoption of PIDs in neuroscience is the com-
putational difficulty of estimating PIDs for high-dimensional data. Many PID definitions that are
operationally well-motivated involve solving an optimization problem over a space of probability
distributions: the number of optimization variables can thus be exponential in the number of neu-
rons [12]. This has led to the use of poorly motivated PID definitions that are easy to compute
(such as the “MMI-PID” of [13], in works such as [9, 14–16]), or limited analyses to very few
dimensions [17]. Furthermore, due to the limited exploration of estimators for PIDs, issues such as
the bias and variance of estimates have received no attention so far, to our knowledge.

In this paper, we make the following contributions:

1. We provide a new and efficient method for computing and estimating a well-known PID definition
called the ∼-PID or the BROJA-PID [18] on Gaussian distributions (Section 3). By restricting our
attention to Gaussian distributions, we are able to significantly reduce the number of optimization
variables, so that this is just quadratic in the number of neurons, rather than exponential.

2. We present a set of canonical examples for Gaussian distributions where ground truth is known,
and show that our method outperforms others (Section 4).

3. We also raise (for what we believe is the first time) the issue of bias in PID estimates, propose a
method for correcting the bias, and empirically evaluate its performance (Section 5).

4. Finally, we show that our Gaussian PID estimator closely agrees with ground truth, even on
non-Gaussian distributions, and show an example of its use on real neural data (Section 6).

Related work

Our method is based on our earlier work [12], where we also examined PIDs for Gaussian distributions.
Our current work differs in a few key aspects: (i) we estimate the PID of a different PID definition, the
∼-PID rather than the δ-PID, because the δ-PID does not satisfy a basic property called additivity [19]
(defined in Sec. 2); (ii) our current method provides an exact upper bound to the PID definition being
computed, rather than an approximate upper bound; (iii) we now consider the problem of estimation,
not just computation, and explore the issue of the bias of PID estimates; and (iv) our current method
is much faster, and we demonstrate agreement with ground truth at much higher dimensionality.

Several other studies have also considered methods for efficiently estimating PIDs: Banerjee et al.
[20] and Makkeh et al. [21] address computing discrete PIDs, but their method does not scale to
higher dimensions; Pakman et al. [17] estimate PIDs using copulas, but their method would also
potentially be computationally prohibitive at high dimensionalities; Liang et al. [22] use convex
optimization to directly estimate the ∼-PID for general high-dimensional distributions, but they do
not compare with ground truth at high dimensionality or examine bias in their estimates.

2 Background: An Introduction to PIDs and the ∼-PID
In this section, we provide an introduction to the concept of partial information decomposition along
with an illustrative example. Let M , X and Y be three random variables with joint distribution
PMXY . A PID decomposes the total mutual information between the message M and two constituent
random variables X and Y into a sum of four non-negative components that satisfy [18, 23]:
I
(
M ; (X,Y )

)
= UI(M : X \ Y ) + UI(M : Y \X) +RI(M : X;Y ) + SI(M : X;Y ) (1)

I(M ;X) = UI(M : X \ Y ) +RI(M : X;Y ) (2)
I(M ;Y ) = UI(M : Y \X) +RI(M : X;Y ) (3)

Here, I(A;B) is the Shannon mutual information [24] between the random variables A and B, and
the four terms in the RHS of (1) are respectively the information about M that is (i) uniquely present
in X and not in Y ; (ii) uniquely present in Y and not in X; (iii) redundantly present in both X and
Y and can be extracted from either; and (iv) synergistically present in X and in Y , i.e., information
which cannot be extracted from either of them individually, but can be extracted from their interaction.
For the sake of brevity, we may also refer to these partial information components as UIX , UIY , RI
and SI respectively. Notwithstanding notation, they should all properly be understood to be functions
of the joint distribution PMXY .
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Now, UIX , UIY , RI and SI consist of four undefined quantities, subject to the three equations
in (1)–(3). In addition, they are typically assumed to be non-negative, RI and SI are each constrained
to be symmetric in X and Y , and the functional forms of UIX and UIY should be identical when
exchanging X for Y . Despite the number of constraints, many definitions satisfy all of them, each
differing in its motivation and interpretation [18, 23, 25–27] (see [27, 28] for a review), and we need
to formally define one of these partial information components to determine the other three.

Example 1. Before we jump into a specific definition, we provide an intuition into what these terms
mean using a simple example. Suppose M = [A,B,C], X = [A,B,C⊕Z], and Y = [B,Z], where
A,B,C,Z ∼ i.i.d. Ber(0.5).1 Then, X has 1 bit of unique information about M , i.e., A; Y has
no unique information; X and Y both have 1 bit of redundant information, i.e., B, since it can be
obtained from eitherX or Y ; andX and Y have 1 bit of synergistic information, i.e., C, which cannot
be obtained from either X or Y individually (since C⊕Z ⊥⊥ C), but can only be recovered when
both X and Y are known. For more examples on binary variables, we refer the reader to [18].

In this manuscript, we consider a definition that we refer to as the ∼-PID2 [18, 25], which is defined
below. We chose to build an estimator for this definition for two reasons: (i) it is a Blackwellian
PID definition, i.e., it has well-defined operational interpretations based on concepts from statistical
decision theory (e.g., see [18, 27, 29] for details); and (ii) it satisfies many desirable properties (e.g.,
see [18, 30]), and in particular, a property that we call additivity of independent components.

Definition 1 (∼-PID [18]). The unique information about M present in X and not in Y is given by

ŨI(M : X \ Y ) := min
Q∈∆P

IQ(M ;X |Y ), (4)

where ∆P := {QMXY : QMX = PMX , QMY = PMY } and IQ( · ; · | ·) is the conditional mutual
information over the joint distribution QMXY . The remaining ∼-PID components, ŨI(M : Y \X),
R̃I(M : X;Y ) and S̃I(M : X;Y ), follow from equations (1)–(3).

Property 1 (Additivity of independent components). Suppose M = [M1,M2], X = [X1, X2], and
Y = [Y1, Y2], such that (M1, X1, Y1) ⊥⊥ (M2, X2, Y2). Then, additivity implies that

UI(M : X \ Y ) = UI(M1 : X1 \ Y1) + UI(M2 : X2 \ Y2), (5)
and similarly for the other three partial information components, UIY , RI and SI .

Property 1 stipulates that we should be able to compute the PIDs of two independent systems
separately, and then add the components across both systems. In effect, additivity implies that the
PID of an isolated system should not depend on the PID of another isolated system, making it an
intuitive and highly desirable property (see App. A.1 for concrete examples). Of the many PID
definitions examined by Rauh et al. [19], only the ∼-PID satisfied additivity (as proved in [18]).

3 Computing the ∼-PID for Gaussian Distributions
The first contribution of this paper is a method to efficiently compute bounds on the ∼-PID for jointly
Gaussian random vectorsM , X and Y . To be precise, our method computes an upper bound for ŨIX
and ŨIY , and lower bounds for R̃I and S̃I . Similar to our earlier work [12], we present a new PID
definition that we call the ∼G-PID, which characterizes an upper bound on the unique information of
the ∼-PID by restricting the optimization space to jointly Gaussian QMXY :

Definition 2 (∼G-PID). Let PMXY be jointly Gaussian. Then, the unique information about M
present in X and not in Y is given by

ŨIG(M : X \ Y ) := min
Q∈∆P

IQ(M ;X |Y ), (6)

where ∆P := {QMXY : QMXY jointly Gaussian, QMX = PMX , QMY = PMY } and IQ is the
conditional mutual information over the joint distribution QMXY .

If the optimal QMXY in the unrestricted optimization of Definition 1 happens to be Gaussian for
some PMXY , then the ∼G-PID would be identical to the ∼-PID for that PMXY . We conjecture

1 i.i.d. stands for “independent and identically distributed”; X ⊥⊥ Y means X and Y are independent.
2This PID is also sometimes referred to as the BROJA PID (after the authors of [18]), or the minimum-synergy

PID in the literature. We prefer to use an author-agnostic nomenclature as introduced in our earlier work [12],
because this PID was also introduced contemporaneously by [25].
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that this happens whenever PMXY is Gaussian: for example, in a similar optimization problem
for computing the information bottleneck [31], the optimal distribution is Gaussian whenever P is
Gaussian [32, 33]. We provide empirical evidence in favor of this conjecture through a sequence of
examples with Gaussian P in Sec. 4, where we recover the ground truth even when Q is restricted to
be Gaussian. However, we leave a theoretical examination of this conjecture for future work.

In practical terms, restricting the search space to GaussianQMXY reduces the number of optimization
variables from being exponential in the dimensionality to quadratic (see Appendix A.2), allowing us
to compute the ∼G-PID for much higher dimensionalities of M , X and Y . In what follows, we show
how the optimization problem for the ∼G-PID can be written out in closed-form and then solved
using projected gradient descent.

3.1 Notation and Preliminaries

SupposeM ,X and Y are jointly Gaussian random vectors of dimensions dM , dX and dY respectively,
with a joint covariance matrix given by ΣMXY . We will make extensive use of the submatrices of
ΣMXY , so we explain their notation here:
• ΣXY will denote the (dX+dY )×(dX+dY ) joint (auto-)covariance matrix of the vector [XT, Y T]T.
• ΣX,Y (note the comma) will denote the dX × dY cross-covariance matrix between X and Y .
• ΣXY,M will denote the (dX + dY )× dM cross-covariance matrix between the concatenated vector
[XT, Y T]T and the vector M .

In general, groupings of vectors without commas represent joint covariance, while a comma represents
a cross-covariance between the groups on either side of the comma. The same notation will also be
used for conditional covariance matrices: for example, ΣXY |M is the conditional joint covariance of
(X,Y ) given M , while ΣX,Y |M is the conditional cross-covariance between X and Y given M .

We will also use an equivalent notation for the joint distribution [12], where PMXY is parameterized
as a “broadcast channel” [24, Ch. 15.6] from M to X and Y :

X = HXM +NX and Y = HYM +NY . (7)
Here, HX := ΣX,M and HY := ΣY,M represent channel gain matrices, while NX and NY represent
additive noise and are not necessarily independent of each other: [NT

X , N
T
Y ]

T ∼ N (0,ΣXY |M ).

Remark 1. Without loss of generality, we can assume that M , X and Y are all zero-mean, and that
ΣM = I . Further, we explicitly assume that the X and Y channels are individually whitened, i.e.,
that ΣX|M = I and ΣY |M = I . This assumption precludes deterministic relationships between M
and X or Y , and is required to ensure that information quantities remain finite [12].

3.2 Optimizing the Union Information

Bertschinger et al. [18] showed that the minimizer for the unique information is also the minimizer
for the “union information”, I∪(M : X;Y ) := UIX +UIY +RI . In other words, we can also solve
the following optimization problem, which yields simpler expressions for the objective and gradient:

Ĩ∪(M : X;Y ) := min
QMXY

IQ(M ;X,Y ) s.t. QMX = PMX , QMY = PMY (8)

Now, suppose PMXY is Gaussian with covariance ΣPMXY and the solution QMXY is also assumed
to be Gaussian with covariance ΣQMXY . Then, the constraint in (8) implies that ΣQMX = ΣPMX

and ΣQMY = ΣPMY . In other words, ΣM , ΣX , ΣY , and ΣM,XY are all constant across P and Q.
Therefore, the only part of ΣQMXY that is variable is ΣQX,Y , or equivalently, ΣQX,Y |M .3 In what
follows, we will drop the superscripts denoting the distribution, as this will be clear from context.
Generally speaking, we will discuss the optimization problem and thus the distribution will be Q.

Proposition 1. The union information for the ∼G-PID of Definition 2 is given by

Ĩ∪G := min
ΣX,Y |M

1

2
log det

(
I +Σ−1

M ΣT
XY,MΣ−1

XY |MΣXY,M
)

s.t. ΣXY |M ≽ 0 (9)

3We can use ΣX,Y |M in place of ΣX,Y because they differ by a constant: ΣX,Y |M −ΣX,Y is an off-diagonal
block in ΣXY − ΣXY |M , which is equal to ΣXY,MΣ−1

M ΣT
XY,M , which is constant across P and Q.
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where the optimization variable ΣX,Y |M is an off-diagonal block embedded within ΣXY |M ; all other
matrices in the objective are constants that are derived from ΣPMXY .

We solve the above optimization problem using projected gradient descent: we analytically derive
the gradient and the projection operator for the constraint set as shown below. Then, we use the
RProp algorithm [34, 35] for gradient descent, which independently adjusts the learning rates for each
optimization parameter (derivations, and details of implementation and complexity are in App. A).
Code for our implementation is available on GitHub [36], and details of the compute configuration
are given in App. E.

Proposition 2. The objective in Proposition 1 can be simplified to

f(ΣX,Y |M ) =
1

2
log det

(
I +HT

YHY +BTS−1B
)
, (10)

where B := (HX − ΣX,Y |MHY ) and S := (I − ΣX,Y |MΣT
X,Y |M ).

The gradient of the objective with respect to ΣX,Y |M is given by

∇f(ΣX,Y |M ) = S−1B
(
I +HT

YHY +BTS−1B
)−1(

BTS−1ΣX,Y |M −HT
Y

)
. (11)

A projection operator on to the constraint set ΣXY |M ≽ 0 can be obtained as follows: let ΣXY |M =:

V ΛV T be the eigenvalue decomposition of ΣXY |M , with Λ =: diag(λi). Let λi := max(0, λi)
represent the rectified eigenvalues, and Λ := diag(λi). Then, define

ΣXY |M := V ΛV T, (12)

Σproj
X,Y |M := Σ

−1/2
X|MΣX,Y |MΣ

−1/2
Y |M , (13)

where ΣX|M , ΣY |M and ΣX,Y |M are submatrices of ΣXY |M .

4 Canonical Gaussian Examples
In this section, we show how well our ∼G-PID estimator performs on a series of Gaussian examples
of increasing complexity, which have known ground truth. Barrett [13] showed that, for Gaussian
distributions, the ∼-PID reduces to the MMI-PID (defined below), whenever M is scalar. These also
happen to be cases when the optimal distribution QMXY is Gaussian [12], and thus the ∼G-PID
should recover the ground truth. We then leverage additivity (Property 1) to combine two or more
simple examples into complex ones, where ground truth continues to be known.

Definition 3 (Minimum Mutual Information (MMI) PID). Let the redundant information be defined
as the minimum of the two mutual informations:

RIMMI(M : X;Y ) = min{I(M ;X), I(M ;Y )}. (14)
The remaining MMI-PID components, UIMMI(M : X \ Y ), UIMMI(M : Y \ X) and SIMMI(M :
X;Y ), follow from equations (1)–(3).

We first provide a Gaussian analog of Example 1 in Examples 2–4 (for dM = dX = dY = 1). We
will use the channel notation described in Equation (7). Complete derivations for these examples
(and some nuances that are omitted here) are presented in App. B.

Example 2 (Pure uniqueness: variable A from Example 1). Suppose M ∼ N (0, 1), HX = 1 and
HY = 0, with NX , NY ∼ i.i.d. N (0, 1). Here, only X receives information about M , while Y
is pure noise. Thus, X has unique information about M (UIX = I(M ;X) > 0), with no unique
information in Y , and no redundancy or synergy (UIY = RI = SI = 0).

Example 3 (Pure redundancy: variable B from Example 1). Ideally, we would set M ∼ N (0, 1),
X = M and Y = M . However, for continuous random variables, I(M ;X) = ∞ when M = X .
So instead, we set M ∼ N (0, 1), HX = 1 and HY = 1, with NX ∼ N (0, 1) while NY = NX (i.e.,
X = Y , so they are both the same noisy version of M ). In this case, X and Y are fully redundant
since they both contain exactly the same information about M . Thus, RI = I(M ; (X,Y )) > 0,
while UIX = UIY = SI = 0.

Example 4 (Pure synergy: variable C from Example 1). We cannot replicate pure synergy for
Gaussian variables, but we can approach it in a limit. Let M ∼ N (0, 1), HX = 1 and HY = 0, with
NX ∼ N (0, σ2) andNY = NX (i.e.,X =M+Y ). Further, let σ2 → ∞. In this case, I(M ;Y ) = 0
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PIDs for Canonical Gaussian Examples

Figure 1: PID values for Examples 5, 6 and 7. The ∼G-PID and the δG-PID agree exactly with the
MMI-PID, which is known to be the ground truth, since M is scalar [13].
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Figure 2: Left and right panels respectively show PID values for Examples 8 and 9, which combine
two scalar examples with known ground truth, using Property 1. The middle panel shows the absolute
error between each PID definition and the ground truth. The ∼G-PID diverges from the δG- and
MMI-PIDs, and is the only one that agrees with the ground truth. The ∼G-PID maintains an error
less than 10−7 bits, whereas other definitions have errors greater than 0.1 bits.

and I(M ;X) → 0 as σ2 → ∞, so X and Y individually convey little to no information about M .
However, we can recover information about M from X and Y together by taking their difference,
since X − Y =M . Thus, SI > 0, while UIY = RI = 0 and UIX → 0.

Examples 2, 3 and 4 have been provided solely for intuition. Their PIDs can be inferred directly from
Equations (1)–(3). We next describe three one-dimensional examples that each have two non-zero
PID components. For lack of space, we only provide a brief description and defer details to App. B.
We estimate the ∼G-PID (as well as the δG-PID [12] and the ground-truth MMI-PID [13]) for these
examples and show that all three are equal (see Fig. 1).

Example 5 (Unique and redundant information). Let X be a noisy representation of M , and let Y be
a noisy representation of X with standard deviation σY |X . When Y = X (zero noise), this example
reduces to Example 3. As σY |X → ∞, RI reduces while UIX approaches I(M ;X).

Example 6 (Unique and synergistic information). Let M ∼ N (0, 1), HX = 1, HY = 0 and
NX , NY ∼ N (0, σ2) such that their correlation is ρ. When σ2 is finite and ρ = 0, this example
reduces to Example 2, since there can be no synergy between X and Y . As ρ→ 1, X − Y →M ; so
the total mutual information I(M ; (X,Y )) → ∞, driven by synergy growing unbounded, while the
unique component remains constant at I(M ;X).

Example 7 (Redundant and synergistic information). Let M ∼ N (0, 1), HX = HY = 1 and
NX , NY ∼ N (0, 1) such that their correlation is ρ. When ρ < 1, I(M ;X) and I(M ;Y ) are both
equal by symmetry, and thus equal to RI (see Def. 3 for the MMI-PID, which is ground truth
here). As ρ reduces, the two channels X and Y have noisy representations of M with increasingly
independent noise terms. Averaging the two, (X + Y )/2, will provide more information about M
than either one of them individually (i.e., synergy), and thus SI increases as ρ reduces.
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Figure 3: The first five plots on the left show PID values for Example 10. Different shadings represent
different values of gain in X1 (α) from Example 8. The ∼G-PID doubles every time d doubles as
seen by the constant 45° slope on the base-2 log-log plot, even when dM = dX = dY = 1024. The
right-most plot shows a timing comparison between the ∼G- and the δG-PIDs on this example. The
δG-PID failed for d > 64; the ∼G-PID’s timing performance up to d = 1024 is shown in App. B.4.

The next set of examples will use the examples presented above in different combinations. This
ensures that, where possible, the ground truth remains known in accordance with Property 1. These
examples are also designed to reveal the differences between the ∼-PID, the MMI-PID and the
δ-PID: in particular, they show how the MMI-PID and the δ-PID fail where the ∼-PID does not.
These examples use two-dimensional M , X and Y , i.e., (dM , dX , dY ) = (2, 2, 2). A diagrammatic
representation of Examples 8 and 9 is given in App. B.2.

Example 8. Let X1 = αM1 + NX,1, Y1 = M1 + NY,1, X2 = M2 + NX,2 and Y2 = 3M2 +
NY,2, where M1,M2, NX,i, NY,i ∼ i.i.d. N (0, 1), i = 1, 2. Here, (M1, X1, Y1) is independent
of (M2, X2, Y2), therefore using Property 1, we can add the PID values from their individual
decompositions (which each have known ground truth via the MMI-PID since M1 and M2 are
scalar). Fig. 2(l) compares the ∼G-PID, the δG-PID and the MMI-PID for the joint decomposition of
I(M ; (X,Y )), at different values of α, the gain in X1. Only the ∼G-PID matches the ground truth,
as it is the only definition here that is additive.

Example 9. Let M and Y be as in Example 8. Suppose X = HX R(θ)M , where HX is a diagonal
matrix with diagonal entries 3 and 1, and R(θ) is a 2× 2 rotation matrix that rotates M by an angle θ.
When θ = 0, X has higher gain for M1 while Y has higher gain for M2. When θ increases to π/2, X
and Y have equal gains for both M1 and M2 (barring a difference in sign). Since (M1, X1, Y1) is not
independent of (M2, X2, Y2) for all θ, we know the ground truth only at the end-points. Nonetheless,
the example shows a difference between the three definitions, as shown in Fig. 2(r).

Example 10. In this example, we test the stability of the ∼G-PID as the dimensionality, d :=
dM = dX = dY increases. By Property 1, if we take two i.i.d. systems of variables (M,X, Y ) at
dimensionality d and concatenate their respective variables, every PID component of the composite
system of dimensionality 2d should be double that of the original. This process can be repeated,
taking two independent 2d-dimensional systems and concatenating them to create a 4d-dimensional
system. Fig. 3 shows precisely this process starting with the system in Example 8 with d = 2,
and continually doubling its size until d = 1024. The ∼G-PID accurately matches ground truth by
doubling in value, and remains stable with small relative errors (shown in App. B.5). The ∼G-PID
also runs much faster than the δG-PID on this example, providing a speed-up of more than 1000× at
d = 64 (see right-most plot in Fig. 3, and extended results in App. B.4).

Remark 2. In the above examples, the ground truth referred to the ∼-PID of Def. 1, since it was
inferred using Def. 3 and additivity (Property 1). Since our method for computing the ∼G-PID
recovers the ground truth ∼-PID, we can infer that the distribution of the optimal QMXY for the
∼-PID is in fact Gaussian in these examples. This provides empirical evidence in support of the
conjecture stated in Sec. 3.

5 Estimation and Bias-correction for the ∼G-PID
Having discussed how to compute the ∼G-PID and shown that it agrees well with ground truth in
several canonical examples, we discuss how the ∼G-PID may be estimated from data. Given a sample
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Figure 4: Empirical evaluation of bias-corrected PID estimates with increasing sample size for two
configurations with dM = dX = dY = 10, as described in Section 5. Solid horizontal lines represent
ground truth (as computed from the true covariance matrix); dark colored bars represent biased PID
components and light colored bars represent bias-corrected PID components, as estimated from the
sample covariance matrix. Overlaid box plots indicate results from 100 random draws. Empirically,
we find our bias-corrected estimates are both unbiased and consistent.

of n realizations of M , X and Y drawn from PMXY , we may estimate the sample joint covariance
matrix Σ̂MXY . We therefore use the straightforward “plug-in” estimator for the ∼G-PID, by using
Σ̂MXY in place of ΣMXY in the optimization problem in equation (9).

However, it is well-known that estimators of information-theoretic quantities suffer from large biases
for moderate sample sizes [37]. Cai et al. [38] characterized the bias in the entropy of a d-dimensional
Gaussian random vector, for a fixed sample size n.

Proposition 3 (Bias in Gaussian entropy [38]). Suppose M ∈ RdM has an auto-covariance matrix
ΣM . The entropy of M is H(M) = 1

2 log det(2πeΣM ) when ΣM is known [24]. For the sample
covariance matrix Σ̂M , the bias is given by:

Bias
[
Ĥ(M)

]
=

dM∑
k=1

log(1− k/n). (15)

For a proof, we refer the reader to [38, Corollary 2]. This result may be naturally extended to compute
the bias of each of the mutual information quantities in the LHS of equations (1)–(3):

Corollary 4 (Bias in Gaussian mutual information). For the joint mutual information I(M ; (X,Y )),

Bias
[
Î
(
M ; (X,Y )

)]
=

dM∑
k=1

log(1− k/n) +

dX+dY∑
k=1

log(1− k/n) −
dM+dX+dY∑

k=1

log(1− k/n) (16)

This follows directly from the fact that I(M ; (X,Y )) = H(M)+H(X,Y )−H(M,X, Y ). Similarly,
we can compute the bias of Î(M ;X) and Î(M ;Y ). But this does not uniquely determine the bias
in the individual PID components, and as with defining PIDs, we need to decompose the bias in
Corollary 4 across the four PID components such that they agree with these constraints. We solve
this problem by defining a bias-corrected version of the union information from Proposition 1.

Definition 4 (Bias-corrected Union Information). We assign the bias in the union information to
be the same fraction as the bias in the joint mutual information I(M ; (X,Y )). This gives rise to a
bias-corrected estimate of the union information:

Ĩ∪G

∣∣∣
bias-corr

(M : X;Y ) := Ĩ∪G(M : X;Y )

(
1−

Bias
[
Î
(
M ; (X,Y )

)]
Î
(
M ; (X,Y )

) )
. (17)

We do not analyze theoretically whether the bias-corrected union information is consistent and
unbiased, thus, it may still have some residual bias relative to the true union information. However,
we find empirically that this bias correction process works reasonably well and appears both consistent
and unbiased, in a number of examples. Figure 4 shows biased and bias-corrected PID values for
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Figure 6: Bias-corrected redundancy estimates for information about VISp activity that is shared
between VISl and VISal: redundancy in bits (left) and redundancy as a fraction of total mutual
information (right). Data spread is across 40 mice. Statistical comparisons use a two-sided Mann-
Whitney-Wilcoxon test. Observe that there is greater and more sustained redundancy on flashes
corresponding to image changes, which are behaviorally relevant and linked to rewards in this task.

100 runs of two configurations called “Bit-of-all” (with a little bit of each PID component) and
“Fully-redundant” (which has predominantly redundancy), with dM = dX = dY = 10 (details and
additional setups in App. C). We find that bias correction brings the PID values closer to their true
values even at small sample sizes. In App. C.3, we also include a preliminary analysis of the variance
of PID estimates using bootstrap [39, Ch. 8].

6 Application to Simulated and Real Neural Data
So far, we have only considered the ∼G-PID when applied to Gaussian PMXY . Although Def. 2
strictly applies only to Gaussian PMXY , the estimation process in Sec. 5 relies only on a sample
covariance matrix, which is well-defined for a wide variety of non-Gaussian distributions. Many
applications where PIDs could be useful have non-Gaussian data. For instance, there is great interest
in applying PIDs in neuroscience (e.g., to understand how multiple brain regions jointly encode and
communicate information [6, 40]), but spike-count distributions are non-Gaussian.

Simulated neural data. To show that our ∼G-PID estimates provide reasonable results on non-
Gaussian spiking neural data, we first simulate spike-count data using Poisson random variables
(following [12]; described in App. D.1). We evaluate the ground truth ∼-PID for this distribution
using the discrete PID estimator of Banerjee et al. [20]. The ∼G-PID is estimated from a sample
covariance matrix using 106 realizations of M , X and Y . We find that the ∼G-PID closely matches
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the ground truth for a range of parameter values, despite the fact that the ∼G-PID is effectively
computed on a Gaussian approximation of a Poisson distribution (Fig. 5). More examples of the
∼G-PID applied to non-Gaussian data are provided in App. D.2 (also see App. A.2). We conclude
that it is reasonable to use and interpret the ∼G-PID on non-Gaussian spike count data.

Real neural data. We then applied our bias-corrected ∼G-PID estimator to the Visual Behavior
Neuropixels dataset collected by us at the Allen Institute [41]. We recorded over 80 mice using six
neuropixels probes targeting various regions of visual cortex, while the mice were engaged in a visual
change-detection task. In the task, images from a set of 8 natural scenes were presented in 250 ms
flashes, at intervals of 750 ms; the image would stay the same for a variable number of flashes after
which it would change to a new image. The mouse had to lick to receive a water reward when the
image changed. Thus, a given image flash could be a behaviorally relevant target if the previous
image was different, or not, if the previous image was the same.

We used our bias-corrected PID estimator to understand how information is processed along the
visual hierarchy during this task. We estimated the ∼G-PID to understand how information contained
in the spiking activity of primary visual cortex (VISp) was represented in two higher-order visual
cortical areas, VISl and VISal. We aligned trials to the onset of a stimulus flash, binned spikes in
50 ms intervals and considered the top 20 principal components (to achieve reasonable estimates at
these sample sizes; explained further in App. D.5) from each region in each time bin. We computed
the ∼G-PID on the sample covariance matrix of these principal components (shown in Fig. 6). We
found that there was a significantly larger amount of redundant information about VISp activity
between VISl and VISal for stimulus flashes corresponding to an image change, compared to flashes
that were not changes (Fig. 6(l)). The larger redundancy was also sustained slightly longer for flashes
corresponding to changes, than non-change flashes. Both of these effects were maintained even when
the redundancy was normalized by the joint mutual information, suggesting that the effect was not
purely due to an increase in the total amount of information (Fig. 6(r)). Our results suggest that the
visual cortex propagates information throughout the hierarchy more robustly when such information
is relevant for behavior.

7 Discussion
In this paper, we proposed a new and efficient method for estimating the ∼G-PID for Gaussian
distributions. We showed that our method recovers the ground truth and suitably corrects for bias
through a series of examples. In particular, Fig. 4 showed how large the biases can be at small sample
sizes, which makes bias correction particularly important in neuroscientific settings where sample
sizes are often small.

We focused on Gaussian distributions, as they have historically been a starting point for many estima-
tors (e.g., correlation is used as a measure of dependence, but zero correlation implies independence
only in the Gaussian case). We were able to show ground-truth validation for our ∼G-PID estimator
at high dimensionalities only thanks to the existence of closed-form results on scalar Gaussians.

While our central claims and results applied to Gaussian distributions, our method for computing
PIDs did not immediately break down for distributions close to Gaussian in some limit (e.g., Poisson).
The effective spiking rate used in our multivariate Poisson distribution was also not particularly large
(see App. D.1); we would expect our estimates to improve for higher firing rates, since the Poisson
distribution will then be more Gaussian.

Limitations. Our work has several limitations that require further theory and simulations to resolve,
the most important of which are: (1) Our estimator is technically a bound on the PID values because
we assume Gaussian optimality in Definition 2; (2) Our bias-correction method is heuristic: we do
not provide a rigorous theoretical characterization of the bias of PID values.

Broader impacts. Our work is mainly methodological, so the scope for negative impacts depends
on how the methods might be used. For example, incorrect interpretations drawn from the use of our
PID estimators may affect scientific conclusions. In particular, the PID is inherently a correlational
quantity and carries the same caveats: it may not be appropriate to make causal interpretations on
the basis of observed PID values. Also, despite our best efforts to explore a variety of systems, we
cannot tell how accurate our bias-correction method will be in novel configurations.
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Gaussian Partial Information Decomposition:
Bias Correction and Application to High-dimensional Data

Appendices

Praveen Venkatesh, Corbett Bennett, Sam Gale, Tamina K. Ramirez, Greggory Heller,
Séverine Durand, Shawn Olsen, Stefan Mihalas

A Supplementary Material for Sections 2 and 3
A.1 Implications of the Additivity Property

As mentioned in the main text, additivity states that the PID values of an isolated system should not
depend on the PID values of another isolated system. Without additivity, it is not possible to examine
independent systems in isolation, since broadening your view to include a different isolated system
could change the PID values of the first system.

Hypothetically, suppose we have two separate individuals (labeled 1 and 2) receiving completely
independent stimuli, and we examine the PID between the activity in brain regions M , X and Y in
each of their brains. Then the total unique information that X1 and X2 have about M1 and M2 with
respect to Y1 and Y2 should be equal to the sum of the unique information in each of the individuals
taken separately.

As another example, suppose we are trying to examine visual information flow and auditory informa-
tion flow in a multi-sensory integration task. We may want to understand the degree to which the
activity in the sub-regions of the visual and auditory systems depend on each other. A reasonable
null model of independence between the two systems would be that the PID values of the joint
system will be equal to the sum of the PID values in the two individual systems. Then, measuring the
actual degree to which the joint PID value is not equal to the sum will be a meaningful measure of
dependence between the systems. This would only be possible with a PID definition that guaranteed
additivity of independent sub-systems. However, since the δ-PID does not satisfy the additivity
(Property 1), we cannot guarantee that the aforementioned null would be the correct null model, and
we would not be able to perform such an analysis.

A.2 Explaining the Exponential Reduction in the Number of Optimization Variables

In Def. 2, we restrict QMXY to be jointly Gaussian. This reduces the number of optimization
variables from being exponential in the dimensionality to quadratic, as we show here.

Previous discrete ∼-PID estimators [20, 21] have found efficient methods to solve the optimization
problem of Def. 1 without reducing the number of optimization variables. If PMXY is discrete in
Def. 1, and each dimension of M , X and Y has a support of size K (i.e., Mi, Xi and Yi can each take
one of K discrete values), then the total number of degrees of freedom in ∆P is O(K(dM+dX+dY )).
This corresponds to the total support of a discrete QMXY , which can be an arbitrarily complex
discrete distribution.

In contrast, the ∼G-PID in Def. 2 reduces the dimensionality of the optimization space by assuming
that QMXY is Gaussian. QMXY is then completely parameterized by its covariance matrix, ΣQMXY .
In fact, given the additional constraints in Def. 2, the only part of ΣQMXY that is variable is ΣQX,Y , as
explained in Sec. 3.2. This matrix has only dX × dY variables. Thus, by restricting the optimization
space to jointly Gaussian distributions, we have reduced the number of variables from exponential in
the dimensionality to quadratic.

As a concrete example, consider a neuroscientific setting (as in Sec. 6) where M , X and Y represent
the spiking activity of neurons in three different brain regions, so that dM , dX and dY represent
the number of neurons, and K represents the maximum number of spikes. Makkeh et al. [21]
demonstrated their method for a maximum support size of K = 18 with dM = dX = dY = 1, for a
total support of approximately 183 − 1 = 5831 in QMXY . If we assume a single neuron can have at
most K = 10 spikes, then we get an effective dimensionality of log10(5831) < 4. In other words,
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these discrete ∼-PID estimators can handle around 4 neurons across all three regions M , X and Y
(which is also what we use in the simulation of Fig. 5 in Sec. 6), whereas our ∼G-PID estimator can
handle several hundreds if not thousands of neurons (as seen in Example 10).

A.3 Proofs of Propositions 1 and 2

Proof of Proposition 1. Firstly, the differential entropy of a Gaussian random variable M with
covariance matrix ΣM is given by [43, Thm. 8.4.1]:

h(M) =
1

2
log det(2πeΣM ). (18)

Secondly, for a joint Gaussian distribution PMXY parameterized by a covariance matrix ΣMXY , the
conditional covariance matrix can be written as [44, Sec. 8.1.3]:

ΣXY |M = ΣXY − ΣXY,MΣ−1
M ΣT

XY,M (19)

⇒ ΣXY = ΣXY |M +ΣXY,MΣ−1
M ΣT

XY,M (20)

Using these two equations, we can derive the mutual information between M and (X,Y ) as follows:

I(M ; (X,Y )) = h(X,Y )− h(X,Y |M) (21)
(a)
=

1

2
log det(2πeΣXY )−

1

2
log det(2πeΣXY |M ) (22)

=
1

2
log

(
(2πe)dM det(ΣXY )

)
− 1

2
log

(
(2πe)dM det(ΣXY |M )

)
(23)

=
1

2
log

(
det(ΣXY )

det(ΣXY |M )

)
(24)

(b)
=

1

2
log

(
det(ΣXY |M +ΣXY,MΣ−1

M ΣT
XY,M )

det(ΣXY |M )

)
(25)

=
1

2
log

(
det(ΣXY |M ) det(I +Σ−1

XY |MΣXY,MΣ−1
M ΣT

XY,M )

det(ΣXY |M )

)
(26)

=
1

2
log det(I +Σ−1

XY |MΣXY,MΣ−1
M ΣT

XY,M ) (27)

(c)
=

1

2
log det(I +Σ−1

M ΣT
XY,MΣ−1

XY |MΣXY,M ), (28)

where in (a) we used equation (18), in (b) we used equation (20), and in (c) we used the fact that
det(I +AB) = det(I +BA).

The remainder of the proof follows from the arguments presented below equation (8). The constraint in
Proposition 1 arises because, when optimizing over ΣX,Y |M , we require ΣMXY to be a valid positive
semidefinite covariance matrix, i.e., ΣMXY ≽ 0. This happens if and only if ΣM and its Schur
complement in ΣMXY are both positive semidefinite, i.e., ΣM ≽ 0 and ΣM−ΣM,XY Σ

−1
XY Σ

T
M,XY =

ΣXY |M ≽ 0.

Proof of Proposition 2. The proof is divided into three parts consisting of derivations for the objective,
the gradient and the projection operator.

Objective. After whitening the PX|M and the PY |M channels, and assuming that ΣM = I (see
Remark 1), without loss of generality we have that

ΣX,M = E
[
(HXM +NX)MT

]
= HXE[MMT] = HX (29)

ΣXY |M =

[
I ΣX,Y |M

ΣT
X,Y |M I

]
(30)

⇒ Σ−1
M ΣT

XY,MΣ−1
XY |MΣXY,M =

[
HT
X HT

Y

] [ I ΣX,Y |M
ΣT
X,Y |M I

]−1 [
HX

HY

]
(31)
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For the sake of brevity, let Σ represent the optimization variable ΣX,Y |M , and let S be its Schur
complement in ΣXY |M , I − ΣΣT. Then, the inverse of ΣXY |M can be written as [44, Sec. 9.1.5]:

Σ−1
XY |M =

[
S−1 −S−1Σ

−ΣTS−1 I +ΣTS−1Σ

]
(32)

Therefore, we get:

Σ−1
M ΣT

XY,MΣ−1
XY |MΣXY,M =

[
HT
X HT

Y

] [ S−1 −S−1Σ
−ΣTS−1 I +ΣTS−1Σ

] [
HX

HY

]
(33)

= HT
YHY + (HX − ΣHY )

TS−1(HX − ΣHY ) (34)

Thus, setting B := HX − ΣHY , the optimization problem in Proposition 1 reduces to

min
Σ

1

2
log det

(
I +HT

YHY +BTS−1B
)

s.t. ΣXY |M ≽ 0
(35)

Gradient. Let the objective derived in the previous section be called f(Σ), where Σ := ΣX,Y |M as
before. We can compute the gradient of f with respect to Σ using standard identities from matrix
calculus. First, note that the gradient of a scalar function with respect to a matrix is itself a matrix
with entries as follows:

∇f(Σ)
∣∣∣
ij
=

∂f

∂Σij
(Σ). (36)

Considering each element of this matrix:

∂f

∂Σij
(Σ) =

1

2

∂

∂Σij
log det(I +HT

YHY +BTS−1B)

∣∣∣∣
Σ

(37)

(a)
=

1

2
Tr

{
(I +HT

YHY +BTS−1B)−1 ∂

∂Σij
(I +HT

YHY +BTS−1B)
}∣∣∣∣

Σ

(38)

(b)
=

1

2
Tr

{
(I +HT

YHY +BTS−1B)−1 ∂

∂Σij
(BTS−1B)

}∣∣∣∣
Σ

, (39)

where in (a), we have used the identity ∂ log det(X) = Tr{X−1∂(X)} [44, Sec. 2], while in (b), we
use the fact that only B and S depend on Σ implicitly, with the other terms being constants.

Expanding the partial derivative alone, we get:

∂

∂Σij
(BTS−1B)

∣∣∣
Σ
=

[
∂

∂Σij
(BT) ·S−1B + BT · ∂

∂Σij
(S−1) ·B + BTS−1 · ∂

∂Σij
(B)

]
Σ

, (40)

wherein
∂

∂Σij
(B)

∣∣∣
Σ
=

∂

∂Σij
(HX − ΣHY )

∣∣∣
Σ

(41)

(b)
= −J ijHY , (42)

∂

∂Σij
(S−1)

∣∣∣
Σ

(c)
= −S−1 ∂S

∂Σij
S−1

∣∣∣
Σ

(43)

= −S−1 ∂

∂Σij
(I − ΣΣT)S−1

∣∣∣
Σ

(44)

(d)
= −S−1(−J ijΣT − ΣJ ijT)S−1, (45)

where J ij is the single-entry matrix, containing a 1 at location (i, j) and 0’s everywhere else; in
(b) and (d), we use the fact that ∂X/∂Xij = J ij [44, Sec. 9.7.6]; and in (c) we use the identity
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∂(X−1) = X−1∂(X)X−1. Therefore, (40) becomes

∂

∂Σij
(BTS−1B)

∣∣∣
Σ

(46)

= −(J ijHY )
TS−1B + BTS−1(J ijΣT + ΣJ ijT)S−1B + BTS−1(−J ijHY ) (47)

= −HT
Y J

ijTS−1B + BTS−1J ijΣTS−1B + BTS−1ΣJ ijTS−1B − BTS−1J ijHY .
(48)

Putting it all together, and letting A := (I +HT
YHY +BTS−1B), (39) becomes

∂f

∂Σij
(Σ) =

1

2
Tr

{
A−1

(
− HT

Y J
ijTS−1B + BTS−1J ijΣTS−1B

+ BTS−1ΣJ ijTS−1B − BTS−1J ijHY

)}
(49)

=
1

2

[
− Tr

{
A−1HT

Y J
ijTS−1B

}
+ Tr

{
A−1BTS−1J ijΣTS−1B

}
+ Tr

{
A−1BTS−1ΣJ ijTS−1B

}
− Tr

{
A−1BTS−1J ijHY

}]
(50)

(e)
=

1

2

[
− Tr

{
S−1BA−1HT

Y J
ijT

}
+ Tr

{
ΣTS−1BA−1BTS−1J ij

}
+ Tr

{
S−1BA−1BTS−1ΣJ ijT

}
− Tr

{
HYA

−1BTS−1J ij
}]
, (51)

where in (e), we have used the fact that the trace of a matrix product is invariant under cyclic
permutations of the matrices within the product.

Finally, using the fact that Tr{WTJ ij} = Tr{WJ ijT} =Wij for any matrix W [44, Sec. 9.7.5],

∂f

∂Σij
(Σ) =

1

2

[
−2

(
S−1BA−1HT

Y

)
ij

+ 2
(
S−1BA−1BTS−1Σ

)
ij

]
(52)

=
[
S−1BA−1

(
BTS−1Σ−HT

Y

)]
ij

(53)

⇒ ∇f(Σ) = S−1BA−1
(
BTS−1Σ−HT

Y

)
(54)

= S−1B
(
I +HT

YHY +BTS−1B
)−1(

BTS−1Σ−HT
Y

)
. (55)

Projection operator. Recall that the optimization variable, Σ := ΣX,Y |M is an off-diagonal block
of ΣXY |M , which is the matrix upon which the constraint is defined:

ΣXY |M =

[
I Σ
ΣT I

]
, (56)

wherein the diagonal blocks are identity due to Remark 1. For the purposes of this section, let
us suppose ΣXY |M is a function of Σ, ΣXY |M =: g(Σ), so that the constraint may be written
as g(Σ) ≽ 0. A suitable projection operator, therefore, will accept a value Σ0 (that may violate
g(Σ0) ≽ 0) and find a point Σproj close to it that satisfies the constraint, i.e., g(Σproj) ≽ 0.

We do not find the “orthogonal” projection operator, which has the minimum distance ∥Σproj − Σ0∥
in some norm. Instead, we propose a simple heuristic to find a Σproj which satisfies the constraint.

If Σ0 satisfies the constraint, then we are done, so let us assume that g(Σ0) /≽ 0. Then, we can find
a matrix ΣXY |M which is close to g(Σ0) and satisfies ΣXY |M ≽ 0 as follows: let the eigenvalue
decomposition of g(Σ0) be given by V ΛV T, with Λ =: diag(λi) being the diagonal matrix consisting
of its eigenvalues λi. Then, since g(Σ0) is not positive semidefinite, ∃ i s.t. λi < 0. We set λi := 0
for all such i; effectively, λi = max{0, λi} ∀ i. We then reconstruct the matrix using these “rectified”
eigenvalues and set it to be ΣXY |M := V ΛV T, where Λ = diag(λi).

Now, we need to find Σ such that g(Σ) = ΣXY |M . However, ΣXY |M may not have identity matrices
on its diagonal blocks, i.e., it might not correspond to a whitened channel. We therefore whiten
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ΣXY |M as follows:

Σwhitened
XY |M =

[
Σ

−1/2
X|M 0

0 Σ
−1/2
Y |M

]
ΣXY |M

[
Σ

−1/2
X|M 0

0 Σ
−1/2
Y |M

]
, (57)

where ΣX|M and ΣY |M are the diagonal blocks of ΣXY |M . Crucially, since the matrix multiplying
ΣXY |M on either side is itself (the inverse square-root of) a covariance matrix (and hence positive
semidefinite), Σwhitened

XY |M is also positive semidefinite.

Now, the off-diagonal block of Σwhitened
XY |M will satisfy g(·) = Σwhitened

XY |M ≽ 0. This off-diagonal block
forms the output of our projection operation and can be written as

ΣprojX,Y |M = Σ
−1/2
X|MΣXY |MΣ

−1/2
Y |M , (58)

which comes directly from equation (57).

A.4 Details of ∼G-PID Optimization and RProp Implementation

The optimization problem for the ∼G-PID, using projected gradient descent with RProp (mentioned
in Section 3), is implemented as follows:

1. Let Σ := ΣX,Y |M be shorthand for the optimization variable, and let Proj(·) represent the
projection operator defined in Prop. 2. Let Σ(i) represent the value of Σ at iteration i of the
optimization. Initialize Σ(0) = Proj(HXH

+
Y ), where H+

Y is the pseudoinverse of HY .

2. Evaluate the objective and the gradient as defined in Prop. 2, at the current value of Σ(i).
Compute the sign of (each element of) the gradient,

ψ(Σ(i)) := Sgn
(
∇f(Σ(i))

)
. (59)

When computing the objective and the gradient, add a small regularization term to the computa-
tion of S−1 (as defined in Prop. 2): S−1 =

(
(1 + ϵ)I − ΣΣT

)−1
, where we take ϵ = 10−7.

3. Update:
Σ(i+1) = Proj

(
Σ(i) − αiη(i) ⊙ ψ(Σ(i))

)
, (60)

where Proj is the projection operator defined in Prop. 2; η(i) is a time-varying learning rate
vector of the same dimension as Σ, describing the learning rate for each element of Σ; ⊙
represents an element-wise (or Hadamard) product between vectors; and α := 0.999 is a
constant, which when raised to the power of i, imposes a slow overall decay of the learning rate
to promote convergence.
The matrix inverses embedded in the projection operator are also regularized by modifying
Equation (58) as follows:

ΣprojX,Y |M =
(
γI +Σ

1/2
X|M

)−1
ΣXY |M

(
γI +Σ

1/2
Y |M

)−1
, (61)

where γ is slowly increased from 10−12, by a factor of 10 in each step, until g(ΣprojX,Y |M ) ≽ 0.

4. η(0) is initialized to 10−3 and η(i) is updated as follows:

η(i+1) = η(i) ⊙ β−ψ(Σ(i+1))⊙ψ(Σ(i)), (62)

where β := 0.9 is a constant that determines how fast the learning rate increases or decreases;
and all operations are carried out element-wise. Note that when some element of the gradient
changes in sign, that element of −ψ(Σ(i+1))⊙ ψ(Σ(i)) will be positive, resulting in a decrease
in that element of η(i). On the other hand, if the sign of some element of the gradient remains
the same, then the learning rate for that component will increase by a factor of 1/0.9.

5. Stop when the absolute differences between the current objective and the previous objectives
from the last 20 consecutive iterations are all less than 10−6 (“patience”), or when the maximum
number of iterations is exceeded (set to 104 iterations).
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A.5 Computational Complexity of the ∼G-PID

Suppose for simplicity that M , X and Y all have the same dimensionality d := dM = dX = dY .
Then, ΣMXY and all its submatrices have a side of dimensionality O(d). Thus, the computational
complexity of each gradient descent iteration is determined by the complexity of the matrix operations
in equations (10)–(13). These operations include matrix multiplication, matrix inverses, log det(·)
and eigenvalue decomposition, which have a worst case complexity of O(d3).

Matrix multiplication can potentially be performed at lower complexity for large matrix sizes (e.g.,
see Strassen [42]), which has downstream implications for each of the other operations as well.
However, for our purposes, we take the computational complexity of the objective, the gradient and
the projection operator to all be O(d3).

B Supplementary Material for Section 4
First, observe that by subtracting equation (2) from equation (1), we have

I(M ; (X,Y ))− I(M ;X) = UIY + SI

⇒ I(M ;Y |X) = UIY + SI.
(63)

Similarly, subtracting equations (1) and (3), we get that I(M ;X |Y ) = UIX + SI . These two
equations hold in general, and will be used in what follows.

B.1 Details and Derivations for Examples in Section 4

Example 2 (Pure uniqueness).

M ∼ N (0, 1) (64)
X =M +NX NX , NY ∼ i.i.d. N (0, 1) (65)
Y = NY (NX , NY ) ⊥⊥M (66)

Derivation of PID values in Example 2.

Y ⊥⊥M ⇒ I(M ;Y ) = 0 (67)
⇒ UIY +RI = 0 (68)

UIY , RI ≥ 0 ⇒ UIY = RI = 0 (69)
⇒ UIX = I(M ;X) (70)
⇒ SI = I(M ; (X,Y ))− I(M ;X) (71)

= I(M ;X)− I(M ;X) = 0. (72)

Example 3 (Pure redundancy).

M ∼ N (0, 1) (73)
X =M +NX NX ∼ N (0, 1) (74)
Y =M +NX NX ⊥⊥M (75)

Derivation of PID values in Example 3.

I(M ;X |Y ) = 0 ⇒ UIX + SI = 0 (76)
I(M ;Y |X) = 0 ⇒ UIY + SI = 0 (77)

⇒ RI = I(M ; (X,Y )) = I(M ;X). (78)

Example 4 (Pure synergy).

M ∼ N (0, 1) (79)

X =M +NX NX ∼ N (0, σ2) (80)
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Figure 7: Diagrams explaining Examples 8 and 9. See App. B.2 for details.

Y = NX NX ⊥⊥M (81)

Derivation of PID values in Example 4.

Y ⊥⊥M ⇒ I(M ;Y ) = 0 (82)
⇒ UIY +RI = 0 (83)

UIY , RI ≥ 0 ⇒ UIY = RI = 0 (84)
⇒ UIX = I(M ;X) (85)
⇒ SI = I(M ; (X,Y ))− I(M ;X) (86)

= ∞− I(M ;X) = ∞. (87)

It should be noted that certain nuances have been omitted in discussing Examples 2–4 above. For
instance, in Example 3, ΣXY |M is rank deficient and hence non-invertible, which would be an issue
when computing the objective in Equation (9). Also, in Example 4, I(M ; (X,Y )) = ∞, however
this could be corrected by adding some noise to either X or Y so that their difference is a noisy
representation of M .

Example 5 (Unique and redundant information).

M ∼ N (0, 1) (88)
X =M +NX NX ∼ N (0, 1) NX ⊥⊥M (89)

Y =M +NX +N ′
Y N ′

Y ∼ N (0, σ2) N ′
Y ⊥⊥ (NX ,M) (90)

Derivation of PID values in Example 5. Essentially, X is a noisy representation of M , while Y is a
noisy representation of X . Since M—X—Y forms a Markov chain, I(M ;Y |X) = 0, and hence
UIY = SI = 0. When σ2 = 0, this example reduces to Example 3 with only redundancy being
present. For any finite non-zero value of σ2, both RI and UIX are present and are non-zero. Since
M is scalar, the redundancy for the ∼-PID is identical to the MMI-PID’s redundancy [13]:

RI = min{I(M ;X), I(M ;Y )} = I(M ;Y ), (91)

since I(M ;Y ) < I(M ;X), by the data processing inequality. At the limit when σ2 → ∞,
I(M ;Y ) → 0, and therefore RI → 0, while UIX will become equal to I(M ;X).

Example 6 (Unique and synergistic information).

M ∼ N (0, 1) (92)

X =M +NX NX , NY ∼ N (0, σ2), (NX , NY ) ⊥⊥M (93)
Y = NY Corr(NX , NY ) = ρ (94)

Derivation of PID values in Example 6. When ρ = 1 and σ2 → ∞, this example reduces to Exam-
ple 4, with only synergy being present. In general, Y ⊥⊥M , therefore, I(M ;Y ) = UIY +RI = 0,
meaning UIY = RI = 0. For any finite value of σ2, X will have some unique information
about M given by UIX = I(M ;X) > 0. Correspondingly, SI = I(M ;X |Y ) − UIX =
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Figure 8: A comparison of the ∼G- and δG-PIDs at a dimensionality of d = 64. The plot is virtually
identical to that in Fig. 2 (which uses d = 2), except that the y-axis is scaled up by a factor of 32.

I(M ;X |Y ) − I(M ;X). When ρ = 0, I(M ;X |Y ) = I(M ;X) and therefore SI = 0. As
ρ → 1, X − Y → M ; so the total mutual information I(M ; (X,Y )) → ∞, driven by synergy
growing unbounded, while the unique component remains finite at I(M ;X).

Example 7 (Redundant and synergistic information).

M ∼ N (0, 1) (95)
X =M +NX NX , NY ∼ N (0, 1), (NX , NY ) ⊥⊥M (96)
Y =M +NY Corr(NX , NY ) = ρ (97)

Derivation of PID values in Example 7. When ρ = 1, we once again reduce to Example 3 with only
redundancy. When ρ < 1, we cannot infer the PID values using Equation (1) and non-negativity
alone, since none of the individual mutual information values (or conditional mutual information
values) go to zero. Instead, we can determine the redundancy using the MMI-PID since M is scalar.
Note that I(M ;X) and I(M ;Y ) are both equal by symmetry, and thus equal to RI . This also
implies that both UIX and UIY must be equal to zero. As ρ reduces, the two channels X and Y
have noisy representations of M with increasingly independent noise terms. Therefore, their average,
(X + Y )/2 will be more informative about M than either one of them individually, meaning that
X and Y jointly contain more information than any one individually. This extra information about
M is synergistic, given by SI = I(M ;X |Y ), and increases as ρ decreases, attaining its maximum
possible value at ρ = 0.

B.2 Diagrams Explaining Examples 8 and 9

Examples 8 and 9 can be understood diagrammatically as shown in Fig. 7(l) and Fig. 7(r), respectively.
In both diagrams, we represent the two-dimensional plane describing M , with axes m1 and m2.
The colored vectors shown on this plane represent HX and HY , i.e., the gain with which X and
Y represent each value of M . For example, Y2 captures only M2, with a gain corresponding to
its length. The gains are directly representative of the signal-to-noise ratio (and hence the amount
of information) in each variable, since the noise in each variable is i.i.d., with unit variance. In
Example 8, the gain in X1 is variable, while in Example 9, the angle at which X1 and X2 sample M1

and M2 is variable.

B.3 Comparison of the ∼G- and δG-PIDs in Example 8 at Higher Dimensionality

For completeness, we also present a comparison between the ∼G- and δG-PIDs for Example 8 at a
higher dimensionality of d = 64. The results can be found in Fig. 8, and show that both PIDs scale
proportionally. We use a gain of α = 0.99 in place of α = 1, since a gain of unity causes certain
matrices to become ill-conditioned.

Although the δG-PID does not obey the additivity property in general (which is why it does not agree
with the ∼G-PID at gains of α > 1), it appears to double along with the ∼G-PID (i.e., additivity
across identical independent copies appears to hold, at least in this specific example).

20



2 4 8 16 32 64 128 256 512 1024
d, Dimension of M, X and Y

10 1

100

101

102

Ti
m

e 
ta

ke
n 

(s
ec

on
ds

)

Timing analysis of the ∼ G-PID
for the doubling example

Figure 9: A plot showing the time taken to compute the ∼G-PID at different dimensionalities in
Example 10. This plot extends what is shown in the right-most plot of Fig. 3 for the ∼G-PID.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

10-15

10-13

10-11

10-9

10-7

10-5

I(M ; (X, Y ))

2 4 8 16 32 64 12
8

25
6

51
2

10
24

UIX

2 4 8 16 32 64 12
8

25
6

51
2

10
24

UIY

2 4 8 16 32 64 12
8

25
6

51
2

10
24

RI

2 4 8 16 32 64 12
8

25
6

51
2

10
24

SI

Absolute error in the ∼ G-PID over increasing dimensionality

Dimension of each of M, X and Y

Ab
s. 

er
ro

r i
n 

PI
D 

va
lu

e 
(b

its
)

2 4 8 16 32 64 12
8

25
6

51
2

10
24

10-14

10-12

10-10

10-8

I(M ; (X, Y ))

2 4 8 16 32 64 12
8

25
6

51
2

10
24

UIX

2 4 8 16 32 64 12
8

25
6

51
2

10
24

UIY

2 4 8 16 32 64 12
8

25
6

51
2

10
24

RI
2 4 8 16 32 64 12
8

25
6

51
2

10
24

SI

Relative error in the ∼ G-PID over increasing dimensionality

Dimension of each of M, X and Y

Re
l. 

er
ro

r i
n 

PI
D 

va
lu

e

Figure 10: Absolute (top) and relative (bottom) errors in computed PID values from Example 10.

B.4 Run Time Analysis of the ∼G-PID in Example 10

In Fig. 9, we present a complete picture of the time taken to compute the ∼G-PID, as a function
of dimensionality d, in Example 10. Note that we cannot compare with the δG-PID beyond a
dimensionality of d = 64, because the computation for the δG-PID failed in our setup for d > 64.
Neither the δG-PID nor the ∼G-PID were carefully profiled and optimized, therefore, the runtime
analysis in both Fig. 9 and Fig. 3 should be considered preliminary. We leave a more thorough
comparison of the run time of both these methods to future work.

B.5 Absolute and Relative Errors in Example 10

Figure 10 shows how the absolute and relative errors in PID values scale with increasing dimensional-
ity in Example 10. The absolute errors increase in proportion to dimensionality, starting under 10−7
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at d = 2 and remaining under 10−4 at d = 1024. The relative errors are all roughly constant, and
remain under 10−6.

C Supplementary Material for Section 5
C.1 Implementation Details for Bias-correction

We use a number of different setups based on sampling from random connectivity matrices for bias
correction in Section 5. All of these setups assume that dX = dY .

The both-unique, fully-redundant and high-synergy setups have the following in common:

ΣM = I (98)
ΣX|M = I (99)

ΣY |M = I (100)

ΣMXY =

 I HT
X HT

Y

HX HXH
T
X +ΣX|M HXH

T
Y +ΣW

HX HYH
T
X +ΣT

W HYH
T
Y +ΣY |M

 . (101)

Also, the elements of HX are either zero or one, HX(i, j) ∼ i.i.d. Ber(0.1). These three setups differ
in their definitions of HY (the channel gain from M to Y ) and ΣW (which controls the extent of
correlation between X and Y ).

The both-unique setup draws HY (i, j) ∼ i.i.d. Ber(0.1), with all elements of HY independent of the
elements of HX , and sets ΣW = 0.

The fully-redundant setup is similar to Example 7, by setting HY = HX and ΣW = 0.9I (note that
ΣW is square, since dX = dY ). By keeping ΣW close to the identity matrix, we are effectively in the
regime with high correlation ρ in Example 7. This allows us to come close to emulating Example 3,
without suffering from the issue of non-invertibility of ΣXY |M , mentioned in App. B.

The high-synergy setup is similar to Example 6, by setting HY = 0 and ΣW = 0.8I . As with the
fully-redundant setup, by keeping ΣW close to the identity matrix, we are in the high-ρ regime. This
allows us to come close to emulating Example 4, while not making the synergy or the total mutual
information infinite.

The zero-synergy setup is similar to Example 5, and uses the following setup:

ΣM = ΣX|M = I (102)

ΣX = HXH
T
X +ΣX|M (103)

ΣY |X = I (104)

ΣMXY =

 I HT
X HT

Y

HX ΣX ΣXH
′T
Y

HX H ′
Y Σ

T
X H ′

Y ΣXH
′T
Y +ΣY |X

 . (105)

Here, HX(i, j) ∼ i.i.d. Ber(0.1), while HY = H ′
YHX , with H ′

Y (i, j) ∼ i.i.d. Ber(0.1), H ′
Y ⊥⊥ HX .

Defined this way, M—X—Y form a Markov chain, ensuring that I(M ;X |Y ) = 0, so that SI = 0
(Refer equation (63)).

The bit-of-all setup is a combination of equal parts of the high-synergy and zero-synergy setups.
The variables X and Y are swapped in the zero-synergy setup, so that both X and Y can have some
unique information.

Remark 3 (Rectification). In practice, we observed that the bias correction procedure prescribed
in Definition 4 could lead to negative values for certain PID quantities. This occurred because the
bias-corrected union information was not guaranteed to satisfy certain bounds, which we enforce
below. To prevent the occurrence of negative PID values after bias-correction, we require a form of
rectification:

Ĩ∪G

∣∣∣(1)
rect

:= max
{
Ĩ∪G

∣∣
bias-corr , Î(M ;X)

∣∣
bias-corr , Î(M ;Y )

∣∣
bias-corr

}
(106)
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Ĩ∪G

∣∣∣(2)
rect

:= min
{
Ĩ∪G

∣∣(1)
rect , Î(M ;X)

∣∣
bias-corr + Î(M ;Y )

∣∣
bias-corr , Î(M ; (X,Y ))

∣∣
bias-corr

}
, (107)

where Î(·)|bias-corr represents a bias-corrected mutual information estimate. After the second rectifica-
tion equation above, the union information is bounded from below by the individual (bias-corrected)
mutual information values, and bounded from above by the sum of the individual mutual information
values, and by the total mutual information.

C.2 Bias-correction Performance in Additional Setups and at Higher Dimensionality

Plots showing bias correction performance for all setups described in App. C.1 are shown in Fig. 11
for 10-dimensional, and in Fig. 12 for 20-dimensional M , X and Y .

Of the setups we examine, only the case with bothX and Y having purely unique information appears
to have somewhat poor performance, where our bias-correction method appears to over-correct the
bias in unique information, while insufficiently correcting the bias in redundancy and synergy.

C.3 A Preliminary Analysis of the Variance of PID Estimates

In Figures 13 and 14, we present a preliminary analysis of the variance of our PID estimates using
bootstrap. The figures represent the true distribution of the PID estimates over multiple sample draws,
or over multiple bootstrap sample draws, in the form of box plots. In what follows, we colloquially
refer to these box plots as “confidence intervals”. The true “confidence intervals” were estimated
using 100 runs of bias-corrected PID estimates, i.e., by drawing 100 different samples, each of size n.
The bootstrap “confidence intervals” were estimated using 100 bootstrap samples that were resampled
from a single randomly drawn sample of size n.

When correcting for bias in the PID estimates on bootstrap samples, we use the number of unique
data points in each bootstrap sample in place of n (refer Corollary 4), rather than the total sample
size. This leads to more stable bootstrap-PID estimates.

The quality of the bootstrap “confidence interval” is affected greatly by the quality of the individual
sample used for bootstrap resampling. Nevertheless, we observe a reasonable degree of qualitative
agreement between the true “confidence interval” and the bootstrap “confidence interval”, particularly
as the sample size increases. Future work will assess confidence intervals with greater care, using
well-defined metrics, and assess how well these confidence intervals are calibrated.

D Supplementary Material for Section 6
D.1 Details Regarding the Multivariate Poisson Spike-count Simulation

We follow our previous paper [12], where this analysis was first presented. In this simulation, M is
two-dimensional, consisting of two independent and identically distributed Poisson random variables,
M1 and M2. X and Y are each generated through a linear combination of Binomially thinning M1

and M2, along with some Poisson noise:

M1,M2 ∼ Poiss(2) (108)
X ∼ Binom(M1, α) + Binom(M2, 0.5) + Poiss(1) (109)
Y ∼ Binom(M1, 0.5) + Binom(M2, 0.5) + Poiss(1) (110)

While our results in Fig. 5 show that our ∼G-PID estimator comes closest to obtaining the same
values as the estimator of Banerjee et al. [20], several remarks are warranted:

1. The method of Banerjee et al. [20] estimates the ∼-PID and not the δ-PID. Since there is no
discrete estimator for the δ-PID, it is entirely possible that the δG-PID is equally (or more)
accurate with respect to its own true value. That is, the difference between the δG-PID and the
Banerjee et al. [20] estimator is entirely due to a difference in definitions;

2. We stated in the introduction that the δG-PID estimates an approximate upper bound, whereas
our ∼G-PID estimates an exact upper bound. The difference due to the approximate nature
of the δG-PID upper bound is also not captured here, nor in Examples 8 and 9. In all these
examples, we cannot tell how much of the difference is due to the difference in definitions and
the approximate nature of the estimators.
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Figure 11: Bias correction for various setups described in App. C.1 with d := dM = dX = dY = 10.
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Figure 12: Bias correction for various setups described in App. C.1 with d := dM = dX = dY = 20.
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Figure 13: Bootstrap “confidence intervals” for various setups described in App. C.1 with d := dM =
dX = dY = 10. Note that these are not true confidence intervals, but box-plot representations of the
true variance of the estimator (over 100 runs) and the bootstrap estimate of the estimate’s variance
(from 100 bootstrap resamplings of a single random sample).
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Figure 14: Bootstrap “confidence intervals” for various setups described in App. C.1 with d := dM =
dX = dY = 20. Note that these are not true confidence intervals, but box-plot representations of the
true variance of the estimator (over 100 runs) and the bootstrap estimate of the estimate’s variance
(from 100 bootstrap resamplings of a single random sample).
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3. Finally, we do not know how accurate the “ground truth” itself is, since this is also assessed
using the estimator of Banerjee et al. [20]. Differences between the various estimators could
also be due to a poor estimate produced by the discrete PID estimator.

D.2 Additional Simulations on Non-Gaussian Data

In order to evaluate how the ∼G-PID performs on a greater variety of non-Gaussian distributions, we
considered three more setups similar to the one described in App. D.1.

The first additional setup is a multivariate Binomial distribution:

M1,M2 ∼ Binom(4, 0.5) (111)
X ∼ Binom(M1, α) + Binom(M2, 0.5) + Binom(2, 0.5) (112)
Y ∼ Binom(M1, 0.5) + Binom(M2, 0.5) + Binom(2, 0.5) (113)

This setup has the same mean as the multivariate Poisson distribution, but has a smaller variance
and is therefore more peaked, further from zero. The multivariate Binomial distribution is closer to
Gaussian than the multivariate Poisson, and indeed, we see good agreement between the ∼G-PID
and the “ground truth”, as assessed by the estimator of Banerjee et al. [20] (see Fig. 15, top panels).

The next two setups are “zero-inflated” versions of the multivariate Poisson and Binomial distributions,
which are produced by passing each of the aforementioned variables through a “Z-channel”, with
zero-out probability 0.3. That is,

M ′
1 =M1 × ZM1

X ′ = X × ZX (114)

M ′
2 =M2 × ZM2

Y ′ = Y × ZY (115)

where Zi ∼ i.i.d. Ber(0.7), i ∈ {M1,M2, X, Y }. The primed versions of these variables have
an additional probability mass at zero, with a probability of 0.3. This is said to better reflect the
statistics of Calcium imaging [45], although we use a different base distribution than the one in the
cited paper. The zero-inflated versions of the Poisson and Binomial distributions are bimodal, with
one of the peaks at zero, and the Binomial version having more well separated peaks. For both
zero-inflated versions, the ∼G-PID performs poorly at recovering the absolute ∼-PID values (Fig. 15,
middle-left and bottom-left panels). However, the relative PID values (normalized by the total mutual
information) are closer to their true values (Fig. 15, middle-right and bottom-right panels), providing
hope that a better mutual information estimate (e.g., [46, 47]) could correct the absolute PID values
to some extent.

Further validation on non-Gaussian data is necessary to understand the impact of non-Gaussianity on
∼G-PID estimates. However, a more extensive evaluation of non-Gaussian distributions (especially
at higher dimensionalities) is made difficult by the unavailability of ground truth. The “ground truth”
in these examples is obtained using the discrete ∼-PID estimator of Banerjee et al. [20] (which we
assume is more accurate for discrete variables). Our method provides a better result than the δ-PID
and the MMI-PID in Fig. 5, at least part of which is probably due to the difference in definitions.
Nevertheless, we believe these examples demonstrate that applying our method to non-Gaussian data
need not be ruled out, although care should always be taken in interpreting results.

D.3 Implementation Details of the Analysis Pipeline

The Visual Behavior Neuropixels data was analyzed as follows:

1. We selected mice that had at least 20 units in each brain region of interest. Only mice with both
familiar and novel sessions were selected.

2. From each region we selected units of ‘good’ quality, with SNR at least 1, and with fewer than 1
inter-spike interval violations.

3. Trials were aligned to the start of each stimulus flash, and spikes were counted in bins of 50 ms,
between 0 and 250 ms after stimulus onset (0-50 ms, 50-100 ms, etc.).

4. Trials corresponding to a non-change flash were defined as those that occurred between 4 and 10
flashes after the start of a behavioral trial, such that the image remained the same as the original
image in this behavioral trial. Flashes corresponding to an omission, flashes after an omission,
and flashes during which the animal licked, were all removed. Only flashes that occurred while
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Figure 15: PID values and normalized PID values for three different non-Gaussian distributions, as
described in App. D.2. The top, middle and bottom panels are respectively for a multivariate Binomial,
a zero-inflated Poisson, and a zero-inflated Binomial distribution. The left column represents the
PID values in bits, while the right column represents the PID values normalized by the total mutual
information. All values are plotted as a function of the gain from M1 to X (α) on the x-axis. An
explanation of the results can be found in the text.

29



0 50 100 150 200
Time after stimulus onset (ms)

0

2

4

6

8

10

12

Re
du

nd
an

cy
, R

I(
V

IS
p

:V
IS

l;
V

IS
al

) (
bi

ts
)

****

ns

****
****

****

***

****
****

****

ns
**

ns

****

Redundancy betw 3 visual cortical areas
(top 10 principal components)

Change
Non-change

0 50 100 150 200
Time after stimulus onset (ms)

0.2

0.4

0.6

0.8

1.0

R
I(

V
IS

p
:V

IS
l;

V
IS

al
)/
I(

V
IS

p
;(

V
IS

l,
V

IS
al

))

***

ns **** ns
ns

*

****
*

****

ns
ns

ns

****

Redundancy fraction betw 3 visual cortical areas
(top 10 principal components)

Change
Non-change

Figure 16: Redundancy about VISp activity between VISl and VISal, as a function of time, for flashes
corresponding to an image change (blue) and flashes corresponding to a non-change (orange). Data
points are across 41 mice. The plot on the left shows the raw redundancy in bits, while the plot on the
right shows the redundancy normalized by the total mutual information.
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Figure 17: Redundancy about VISp activity between VISl and VISam, as a function of time, for
flashes corresponding to an image change (blue) and flashes corresponding to a non-change (orange).
Data points are across 38 mice. The plot on the left shows the raw redundancy in bits, while the plot
on the right shows the redundancy normalized by the total mutual information.
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Figure 18: All PID components—about VISp activity, between VISl and VISal—in bits (top), and
as a fraction of total mutual information (bottom), at various times after stimulus onset, for change
and non-change flashes. Here, the label IMXY in the x-axis of the top plot refers to I(M ; (X,Y )).
These plots show that redundancy is the primary driver of mutual information.
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Figure 19: All PID components—about VISp activity, between VISl and VISam—in bits (top), and
as a fraction of total mutual information (bottom), at various times after stimulus onset, for change
and non-change flashes. Here, the label IMXY in the x-axis of the top plot refers to I(M ; (X,Y )).
These plots show that redundancy is the primary driver of mutual information.
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the animal was engaged (as measured by an average reward rate of at least 2 rewards/min) were
selected.

5. Trials corresponding to a change flash were defined as those during which an image change
occurred, and the animal was engaged (as above).

6. The top 10 or 20 principal components of neural activity were selected at each time bin, and for
each brain region under consideration. Principal component analysis was carried out using the
Scikit-learn [48] package in Python.

7. ∼G-PID estimates were computed on the covariance matrix between principal components
across regions, for each time bin.

8. Data were aggregated across 40 or 41 mice for the figures with VISal, and across 38 mice for
the figures with VISam.

9. Statistical significance was assessed using a two-sided unpaired Mann-Whitney-Wilcoxon test.

D.4 Additional Results

Fig. 16 shows the redundancy about VISp activity, between VISl and VISal. It is identical to Fig. 6,
except that it uses only the top-10 PCA components in each of the three visual cortical regions. This
figure shows that the result presented in Fig. 6 gracefully degrades with a reduction in the number of
PCA components. When using fewer PCA components, the increase in redundancy on change trials
is still statistically significant, but the effect size is not as large, and not as sustained, as it is in Fig. 6.

Fig. 17 shows the redundancy about VISp activity between VISl and VISam, the latter of which is a
different higher-order cortical region (see, e.g., [49]). This figure shows that the result in Fig. 6 can
also be seen for another choice of higher-order cortical region (i.e., VISam rather than VISal).

Figures 18 and 19 show all PID components, not just the redundancy, for the same settings as in
Figures 6 and 17 respectively. These show that redundancy is the dominant partial information
component, and appears to be the main driver of changes in the overall mutual information. This
justifies why we include only a plot of redundancy in Figs. 6, 16 and 17.

D.5 The Necessity for PCA, and Maximizing Dimensionality

In our analysis of real neural data in Sec. 6, we used principal components analysis to reduce
dimensionality, despite the fact that our method could scale to much larger dimensionalities. As
mentioned briefly in Sec. 6, this was due to the limited number of trials we had. For many mice, there
were a larger number of neurons in each region than trials with which to compute the covariance
matrix. In other words, directly computing the covariance of the neural activity would have resulted
in a covariance matrix that was rank-deficient. We used PCA to reduce dimensionality and ensure
that we obtained a reasonable estimate of the covariance matrix, and to minimize the error in our PID
estimate, which would naturally be higher with a greater number of PCA dimensions.

For completeness, we analyze here what would happen if we used the maximum possible number of
PCA components for each mouse, while ensuring that the covariance matrix is not rank deficient. We
also ensure that we had the same number of components across all regions and across both change
and non-change conditions (within each mouse), so as to perform a fair comparison. This gives us on
average 53±16 PCA components, with a minimum of 22 and a maximum of 84 PCA components.
We find that the results of higher and more sustained redundancy on change flashes continues to
hold when using the maximum possible number of PCA components for each mouse (see Fig. 20).
However, as expected, there is much greater variance across mice, possibly due to variability in the
number of PCA components chosen across mice, and due to greater errors in our PID estimates. For
the main results presented in Fig. 6, in order to be consistent across mice, we rounded down from the
minimum and used the top 20 PCA components for all mice.

D.6 Differences between Change and Non-change Conditions are not an Artifact of
Bias-correction

The number of trials corresponding to change flashes is much smaller than the number of trials
corresponding to non-change flashes. Accordingly, the sample size used to estimate the covariance
matrix is different in each of the two conditions. Bias correction was performed using the appropriate
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Figure 20: Redundancy about VISp activity between VISl and VISal, using the maximum possible
number of PCA components for each mouse. Data points are across 42 mice, however, not all mice
are represented at all points in time and for both conditions, since individual data points may not
have converged due to ill-conditioned matrices. The plot on the left shows the raw redundancy in bits,
while the plot on the right shows the redundancy normalized by the total mutual information. The
increase in redundancy on change trials is still statistically significant, however, the errorbars have a
greater spread for reasons described in the text.
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Figure 21: Redundancy about VISp activity between VISl and VISal, as a function of time, for
flashes corresponding to an image change (blue) and flashes corresponding to a non-change (orange)
with an equal number of samples. Data points are across 41 mice. The plot on the left shows the
raw redundancy in bits, while the plot on the right shows the redundancy normalized by the total
mutual information. The observations made in the other figures continue to hold; the differences seen
between the two conditions are, therefore, not a result of differences in sample size.
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sample size; however, as noted in Section 5, our bias correction process is not perfect, and may leave
some residual bias.

In order to show that the results we observed were not an artifact of differences in residual bias caused
by different sample sizes, we randomly subsampled the non-change flashes to produce a dataset with
equal numbers of trials for change and non-change flashes. Repeating the analysis as before, we
found that our conclusions continued to hold even in the setting where both conditions have equal
sample sizes, as shown in Figure 21.

D.7 A Note on Inhomogeneous Poisson Processes

Inhomogeneous Poisson processes are those whose mean firing- (or “emission-”) rates change with
time. Our method for estimating the PID does not consider the temporal characteristics of the original
signal. Rather, the data analyst can choose the random variables M , X and Y to span some time
range (or different time ranges) as they please.

In our analysis of real neural data in Sec. 6, we counted the number of spikes in a 50-125 ms window
after stimulus onset. Even if the underlying spiking process was an inhomogeneous Poisson process,
this spike count would be Poisson distributed, with a mean given by the integral of the emission rate
over the fixed window. In general, while analyzing data and computing PID values, one will have
to be aware of severe inhomogeneities (e.g., if the distribution changes not just in the same way in
each trial, but changes across trials), and account for them separately. For example, in our analysis,
we excluded time periods when the mice were not “engaged” in the task, as defined by not actively
consuming rewards at a rate of at least 2 rewards per minute.

E Compute Configuration Used and Code Availability
All analyses were performed on a workstation equipped with an Intel Core i7-10700KF CPU with
8 cores (16 threads), 48 GiB of RAM and data stored on a 1 TB PCIe NVMe solid state drive.

Analysis of the Visual Behavior Neuropixels data (for 84 sessions) with d = 20 took approximately
9 minutes to run. This included loading data for each session and computing 840 PID values on
60 × 60 covariance matrices, implying an average run-time of about 0.64s for each PID estimate
(including amortized data-load time).

All code used to compute and estimate the ∼G-PID and correct for bias, including all examples in
this paper and code for neural data analysis, is available on GitHub [36].
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