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ABSTRACT

The protein dynamics are common and important for their biological functions
and properties, the study of which usually involves time-consuming molecular
dynamics (MD) simulations in silico. Recently, generative models has been lever-
aged as a surrogate sampler to obtain conformation ensembles with orders of mag-
nitude faster and without requiring any simulation data (a ”zero-shot” inference).
However, being agnostic of the underlying energy landscape, the accuracy of such
generative model may still be limited. In this work, we explore the few-shot set-
ting of such pre-trained generative sampler which incorporates MD simulations in
a tractable manner. Specifically, given a target protein of interest, we first acquire
some seeding conformations from the pre-trained sampler followed by a number
of physical simulations in parallel starting from these seeding samples. Then we
fine-tuned the generative model using the simulation trajectories above to become
a target-specific sampler. Experimental results demonstrated the superior perfor-
mance of such few-shot conformation sampler at a tractable computational cost.

1 INTRODUCTION

Elucidating protein dynamics stands as a significant yet challenging problem during the study of
protein functionality and regulation. Such macromolecule can go through transitions between mul-
tiple conformational states for different length or time scales. For example, the SARS-Cov-2 spike
protein was found to have transitions between its open and closed states (Gur et al., 2020) for its
function. Experimental instruments including crystallographic B-factors and NMR spectroscopy
can be leveraged to probe such dynamics but only available to a limited spatial and temporal scale.

Traditionally, computational simulation methods especially molecular dynamics (MD) are used to
simulate the dynamic behavior of these biological molecules. MD operates by simply evolving the
Newtonian equation on the whole system of particles where the accelerations, or the gradients of
velocity, are determined by a pre-specified force field (energy, or unnormalized density). To study
the protein dynamics, the time scale of MD simulations can reach micro- to milli-seconds in order to
completely capture the behaviors such as the transition from unfolding to folding (Lindorff-Larsen
et al., 2011). However, simulating protein systems in such time scales is very computationally
intensive, which can take several hundreds of GPU days , depending on the size of the system.

With the emergence of accurate structure prediction models (Jumper et al., 2021; Baek et al., 2021;
Lin et al., 2023), deep generative models are developed to serve as efficient surrogate for MD simu-
lations, such as Str2Str (Lu et al., 2024). Str2Str learns to explore the conformation space by training
on protein structures from the Protein Data Bank (PDB) in an amortized way, and is ready to per-
form zero-shot conformation sampling for any unseen test proteins. The ability of direct sampling
makes such sampler become orders of magnitude more efficient than traditional MD simulations.
The inference of such diffusion sampler is based on successful transfer learning of the naturally
occurred protein geometries. However, training solely on PDB data can make it fail to take care of
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Figure 1: Illustrative diagram of fine-tuning the pre-trained diffusion sampler Str2Str (Lu et al.,
2024). Firstly, initial conformation samples of the target protein are generated from a pre-trained
network Sθ parameterized by θ, followed by parallel MD simulations respectively for each sample.
The production trajectories are leveraged to make a target-specific sampler Sθ∗ via fine-tuning.

the underlying energy landscape, which is, on the contrary, the fundamental consideration in MD
simulation to generate Boltzmann-distributed ensembles.

In this work, we aim to improve the diffusion sampler with tractable MD simulations via fine-tuning,
forming a ”few-shot”1 setting of Str2Str (Lu et al., 2024). To be specific, given a target protein dur-
ing inference, zero-shot samples are firstly generated from the pre-trained conformation sampler,
followed by a number of ”roll-out”, i.e. short MD simulations respectively initialized by each sam-
ple, which is highly parallelizable and thus efficient. Then the production trajectories are leveraged
to fine-tune the sampler ad hoc for the target protein and reinforce the sampling accuracy. Ex-
perimental results demonstrate that such process significantly improve the quality of conformation
sampling, at the cost of tractable computations compared to conventional simulations from scratch.

2 RELATED WORK

Protein conformation sampling Prior to this work, several methods have been proposed to sam-
ple protein conformations. Depending on the requirement of simulation data for training, these
methods can be divided into two categories: (1) Require simulation data. Boltzmann genera-
tor (Noé et al., 2019) uses normalizing flow to approach the underlying Boltzmann distribution by
learning from simulation data, which is one of the pioneer works among this research direction.
Arts et al. (2023) instead adopts the denoising diffusion model to learn such distribution over the
coarse-grained protein conformations. idpGAN (Janson et al., 2023) involves a conditional gener-
ative adversarial network trained on intrinsic disordered proteins. DiG (Zheng et al., 2023) trains
a conditional diffusion model with both PDB and in-house simulation data and can sample confor-
mations conditioned on input sequence. (2) Require no simulation data. AlphaFold2-RAVE (Vani
et al., 2023) injects stochasticity to the structure output by making modifications to the input channel
of AlphaFold2 (Jumper et al., 2021). EigenFold (Jing et al., 2023) revisits the structure prediction
(folding) problem in a generative view and is able to sample from the distribution over conforma-
tions given the input sequence. Str2Str (Lu et al., 2024) is an equivariant diffusion sampler trained
solely on PDB data and formulates the conformation sampling in a structure-to-structure manner.

De novo design of protein structure Despite different purpose, protein structure design methods
can also be relevant because of similar techniques used for modeling. Anand & Achim (2022) and
Shi et al. (2022) leverage the backbone architecture of AlphaFold2 but feed forward from the input
conditions such as contact map. Afterwards, generative models are applied to learn from PDB and de
novo design novel backbone structures: ProtDiff (Trippe et al., 2022), FoldingDiff (Wu et al., 2022),
RFDiffusion (Watson et al., 2023), Chroma (Ingraham et al., 2023), FrameDiff (Yim et al., 2023)
and FoldFlow (Bose et al., 2023) to name a few. These sequence-agnostic generative models can

1Here we define ”few-shot” in the sense that a limited quota of physical simulations for the test protein can
be acquired, in contrast to the zero-shot setting where no simulation sample is present.
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design non-native backbone structures, based on which de novo sequences can further be designed
by an inverse folding model, such as ProteinMPNN (Dauparas et al., 2022).

3 METHODOLOGY

3.1 PRELIMINARIES

Protein structure. Protein structure consists of a sequence of amino acids (or residues) which
respectively defines a set of atoms existing in three-dimension (3D) space. Formally, a protein with
L residues, while the residue i (1 ≤ i ≤ L) is composed of ni atoms, can be represented by the
Euclidean coordinates of atoms x ∈ RN×3, where N =

∑L
i=1 ni is the totally number of atoms.

Score-based generative models. Score-based generative models (SGMs) (Song et al., 2020) aim
to model the data distribution via a diffusion process defined by the Itô stochastic differential equa-
tion (SDE):

dx = f(x, t)dt+ g(t)dw, (1)
where continuous time t ∈ [0, T ], f(x, t) ∈ Rn and g(t) ∈ R. The w ≡ w(t) ∈ Rn represents
the standard Wiener process. Then, the corresponding backward SDE can be expressed as follow
(Anderson, 1982):

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw̄, (2)
where dt is negative timestep and w̄ is the standard Wiener process with time t flowing from T → 0.

Zero-shot conformation sampler. Str2Str (Lu et al., 2024) leveraged SGMs to sample protein
backbone conformation via a perturbation followed by an annealing process. Str2Str was trained
solely with the protein structures in PDB and requires no simulation data during both training and
inference. Str2Str demonstrated the effectiveness of SGMs for conformation sampling in a transfer
learning manner, which shows promise when long MD simulation data is not readily available.

Molecular dynamics simulation. Molecular dynamics (MD) simulations amount to evolve the
whole particle system through time T sim > 0 by the physical dynamics dx = v(x, τ)dτ , where
v ∈ RN×3 is the velocity field. With some force field defining U(x) as potential energy, the velocity
can be updated through some dynamics such as Newtonian equation2: dv(x, τ) = m̄∇xU(x) dτ ,
where m̄ is the inverse mass of atoms in the system. At each time step, the position and velocity can
be updated by an integrator such as Verlet (Verlet, 1967), yielding a simulation trajectory.

3.2 NEIGHBORHOOD EXPLOITATION WITH SHORT MD

The dilemma in direct sampling and simulation. One disadvantage of Str2Str is that it has no
prior knowledge about what do good conformations of the test protein look like during inference.
On the other hand, MD simulations simply query a universal oracle (force field) at each time step,
being generalizable and training-free, but have a hard time sufficiently exploring the conformation
space within tractable computation for simulation. Previous methods, such as Arts et al. (2023),
proposed to train using the simulation trajectory of a target protein and sample like a generative
model. Although achieving good performance, such method however requires expensive simulation
data beforehand and cannot quickly generalize to other proteins beyond the training target, which in
practice may have restricted potential utility. Here arises an interesting question: how to organically
combine the advantages of both generative models and physical simulations?

Exploration-exploitation balance. To answer this question, we propose to sample protein en-
sembles via a two-stage sampling, or exploration-exploitation of the conformation space. Given a
target protein of interest, we firstly leverage the Str2Str to sample a set of plausible conformations
X ≡ {x(i)}mi=1, which can be seemingly good but not energy favorable. On top of that, a short
MD simulation can be run for each sample x(i) to produce (locally) equilibrated conformations.
The resulting ensemble X ′ will be the collection of conformations from each individual trajectory.

2Sometimes referred to as Hamiltonian dynamics. Besides, stochastic dynamics can also be applied such as
Langevin dynamics to update the velocity states.
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Figure 2: Illustration of the conformation sampling scenario of Str2Str. In (a), sampling is performed
in two steps to obtain independent samples of the target protein, where the energy landscape (or
information of the force field) is unknown and colored in gray. In (b), a hypothetical zoom-in
neighborhood of a sample is shown. Due to the complex conformation landscape, the samples
directly generated by Str2Str are probably not potential energy-optimal. Short MD simulation can
be run to obtain locally equilibrated samples which can be used to fine-tune the pre-trained sampler.

The short MD simulations in the second stage exploits the initial swarm explored by the pre-trained
diffusion sampler. The sampling with neighborhood exploitation (Str2Str-NE) enjoys (1) better ex-
ploration than conventional serial MD simulations under limited computation quota, as well as (2)
better exploitation than diffusion sampler alone due to the awareness of force field.

3.3 FINE-TUNING OF DIFFUSION SAMPLER

The two-stage sampling proposed above can itself serve as a good sampler. Alternatively, given the
refined conformations X ′ as dataset, one can incorporate the supervision from the force field of MD
simulation into the diffusion sampler Str2Str via fine-tuning (Str2Str-FT). In contrast to Arts et al.
(2023) which involves expensive long MD trajectory for training, the acquisition of the production
trajectories is very efficient: (1) The sampling (exploration) cost of diffusion sampler is negligible to
MD simulations; (2) The computation of the local exploitation from short simulations can be readily
paralleled according to the number of prior samples and enjoy perfect scalability.

LFT = Et∈[0,T ] Ex0∼p(x)

{
ω(t,x0)Ext∼p(xt|x0)

[
∥sθ(xt, t)−∇xt

log pt|0(xt|x0)∥2
]}

, (3)

where ω(t,x0) > 0 is a positive loss reweighting function depending both on time t and sample x0,
and xt ∼ pt|0(xt|x0) is defined by the corresponding perturbation kernel. Among them, ω(t,x0) is
a natural generalization of the importance sampling (IS) scheme for time in the training of diffusion
model (Song et al., 2020). The pseudo-code of the whole process is described in Algorithm 1.

Algorithm 1 Fine-tuning of a pre-trained conformation sampler.

1: Require: Target protein X, pre-trained diffusion sampler Sθ, MD simulator M, simulation
temperature β, simulation time T sim.

2: {x(i)}mi=1 ∼ Sθ(X) // Generate m initial samples
3: DX = ∅ // Initialize fine-tuning dataset
4: for i = 1 to m do
5: {x̂(i)

j }
ni
j=1 ∼M(x(i);β, T sim) // Run short MD simulation starting from xi

6: DX ← DX ∪ {x̂(i)
j }

ni
j=1 // Update dataset with the trajectory of size ni

7: Update θ → θ∗ based on DX by training on Eq. 3.
8: return sθ∗

4 EXPERIMENTS

Setup. To validate the effectiveness of the proposed fine-tuning pipeline, we evaluate the sampling
performance on the fast-folding protein set (Lindorff-Larsen et al., 2011). For baselines, we compare
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the fine-tuned Str2Str (namely Str2Str-FT) against: MSA subsampling (Del Alamo et al., 2022),
EigenFold (Jing et al., 2023), idpGAN (Janson et al., 2023), and Str2Str (pre-trained only) (Lu et al.,
2024). The size of sampled ensembles is aligned to be 1,000 to make fair comparison. We follow
the evaluation metrics used in Lu et al. (2024) and list them as below: (1) Validity: Val-Clash, Val-
Bond evaluates whether the conformations obey basic geometric constraints w.r.t. steric clash and
bonding association. These metrics are the higher the better (↑). (2) Distance: JS-PwD, JS-TIC,
JS-Rg assess the distance between the model distribution and reference distribution, which includes
the pairwise distance (PwD), time-lagged independent components (TIC) (Naritomi & Fuchigami,
2011; Pérez-Hernández et al., 2013) and radius of gyration (Rg), which are the lower the better (↓).

Benchmark results. In this study, we limit the few-shot budget of MD production simulations
to be 100ns in total, which is computationally tractable and lasts only several GPU hours. Under
this budget, we firstly sample for each target 100 conformations from a pre-trained Str2Str followed
by 100 short simulations per 1 ns long. As shown in Table 1, both the sampler with neighbor-
hood exploitation (Str2Str-NE) and the fine-tuned version (Str2Str-FT) achieve the state-of-the-art
performance across all three distance metrics while keeping good validity.

Table 1: Benchmark results of conformation sampling methods on fast folding proteins (Lindorff-
Larsen et al., 2011). Metrics are averaged across all fast-folding targets for each method. The results
of Str2Str is reproduced by running the open-source code, while the results of other baselines are
taken from Lu et al. (2024). The best result for each section is bolded.

Methods Val-Clash(↑) Val-Bond(↑) JS-PwD(↓) JS-TIC(↓) JS-Rg (↓)
MSA subsampling 0.999 0.997 0.634 0.624 0.656

EigenFold 0.812 0.874 0.530 0.497 0.666
idpGAN 0.960 0.032 0.480 0.517 0.661
Str2Str 0.977 0.982 0.348 0.400 0.365

Str2Str-NE (ours) 0.990 1.000 0.294 0.369 0.331
Str2Str-FT (ours) 0.966 0.948 0.303 0.366 0.350

Ablation study. To better demonstrate the effectiveness of the proposed Str2Str-FT, we also con-
sider ablation experiments. The base model is the (1) Str2Str-FT sampler which is fine-tuned by
samples from Str2Str-NE. We (2) replace the fine-tune data with conventional MD simulation of
100ns; and (3) (4) ablate the pre-training from both settings. The results are shown in Table 2.

Table 2: Ablation results on different strategies of training. ”NE” indicates the training set is from
the samples of Str2Str-NE introduced above while ”MD” from the conventional MD simulations.
”FT” means model parameters are initialized from the PDB pre-trained checkpoint (i.e. Str2Str).

Settings PDB MD NE Val-Clash(↑) Val-Bond(↑) JS-PwD(↓) JS-TIC(↓) JS-Rg (↓)

FT on NE data ✓ ✗ ✓ 0.966 0.948 0.303 0.366 0.350
FT on MD data ✓ ✓ ✗ 0.999 0.961 0.538 0.570 0.544

NE data ✗ ✗ ✓ 0.227 0.562 0.398 0.406 0.473
MD data ✗ ✓ ✗ 0.835 0.632 0.549 0.534 0.603

5 CONCLUSION

In this work, we explore the few-shot settings of protein conformation sampling by combining score-
based generative models and physical MD simulations. Generative models explore the conforma-
tion space efficiently while the physical force field refine the unreasonable samples, achieving good
exploration-exploitation balance. The fine-tuned diffusion sampler has shown significant improve-
ment on conformation sampling, which exemplified the domain adaption of Str2Str with efficient
short simulations. Future works can focus on the study of more effective fine-tuning strategies to
enable sampling approximately from Boltzmann distribution.
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A EXPERIMENTAL DETAILS

A.1 SIMULATION PROTOCOL

The short molecular dynamics (MD) simulations were respectively initiated from each sample from
the diffusion sampler. The sampled protein models are firstly pre-processed by the PDBFixer of
OpenMM (Eastman et al., 2023) before simulation. Hydrogen atoms are added under neutral envi-
ronment pH=7.0. All simulations were run on the NVIDIA Tesla V100-SXM2-32GB GPU using
the Amber ff14SB force field (Maier et al., 2015) and the TIP3P water model (Jorgensen et al.,
1983) compatible with the corresponding Amber 14 force field. Na+ and Cl− ions were added to
achieve the electrical neutrality of the solvent. The particle mesh Ewald (PME) method (Darden
et al., 1993) was used to evaluate the long-range electrostatic interaction. Each system was locally
energy minimized using the L-BFGS algorithm (Liu & Nocedal, 1989) followed by equilibration in
the NVT (canonical) ensemble for 1 ns. Langevin Middle Integrator (Zhang et al., 2019) with a fric-
tion coefficient of 1 ps−1 was adopted as the thermostat (same below). Simulation temperatures for
each benchmark target follows the original setting in Lindorff-Larsen et al. (2011), specifically, unit
in Kelvin (K): Chignolin: 340K, Trp-cage: 290K, BBA: 325K, Villin: 360K, WW domain: 360K,
NTL9: 355K, BBL: 298K, Protein B: 340K, Homeodomain: 360K, Protein G: 350K, α3D: 370K
and lambda-repressor: 350K. Then the system was equilibrated in the NPT (isothermal-isobaric)
ensemble for 1 ns while coupled with the Monte Carlo barostat at constant 1 bar pressure. All
production simulations were performed using OpenMM v8.0.0 (Eastman et al., 2023) in the NPT
ensemble integrated with time step of 2.5 fs and trajectory frames were saved per 10 ps of simulation.

A.2 FINE-TUNING DATASET

To acquire the fine-tuning dataset (ES) for each target, we firstly generate the seeding structure
using ESMFold (Lin et al., 2023) with default configuration and ran Str2Str as described in Lu
et al. (2024) to generate 100 conformations from the seeding structure. Then MD simulations was
performed in parallel initialized respectively from these conformations according to the protocol
above in Appendix A.1. We ignored those simulation threads failed due to possible bad initial
geometries. The resulting conformations as well as their associated potential energies were saved to
construct the fine-tuning dataset. We randomly split the dataset into training and validation set with
ratio 0.95 : 0.05 while the latter is used for early stopping of training.

A.3 SETUP OF TRAINING AND INFERENCE

To optimize the network parameters of the pre-trained Str2Str, the Adam optimizer (Kingma &
Ba, 2014) was used with lr = 10−4 and β1 = 0.9, β2 = 0.999. As scheduler, the learning rate
was reduced in the factor of 0.1 when the loss has stopped decreasing for 10 epochs. The training
process was set to be at least 100 epochs and mediated the early stopping strategy by monitoring the
validation loss with 10 epochs patience. The fine-tuning time for different targets was on-average
∼ 2 GPU hours on the NVIDIA Tesla V100-SXM2-32GB GPU. For simplicity, we use uniform
weighting in this study for the training objective, i.e. ω(x, t) ≡ 1. Other model configurations and
evaluation pipelines were kept the same as in Lu et al. (2024). After fine-tuning, we sampled the
target protein from the prior distribution pT (x) with discretization of 1,000 timesteps by reversing
the diffusion process via Langevin dynamics. In practice, a minimum time tϵ = 0.01 instead of zero
is used for numerical stability. The SDE mode of sampling was used for both Str2Str and Str2Str-FT.

A.4 FAST-FOLDING TARGETS

The fast-folding targets with the reference MD trajectories are listed as follows (Lindorff-Larsen
et al., 2011): Chignolin, Trp-cage, BBA, Villin, WW domain, NTL9, BBL, Protein B, Home-
odomain, Protein G, α3D and Lambda-repressor. The reference MD trajectories for evaluation were
obtained by sending requests to the authors of Lindorff-Larsen et al. (2011).
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B EVALUATION METRICS

In this section, we elaborate the definition of the evaluation metrics. For validity, the Val-Clash is
defined by the ratio of samples in the predicted ensemble of size 1,000 which do not contain any
clash. Clash is detected by examining whether there exists pairwise distance between Cα atoms less
than a distance threshold of δc = 3.0Å; the Val-Bond is defined similarly as the ratio of samples
having no (pseudo) bond dissociation. The dissociation is counted if there is any distance between
adjacent Cα atoms that exceeds certain threshold δb, where δb is defined by the maximum value of
distances between adjacent Cα in the reference MD trajectory of the target system. For distribution
divergence metrics, we calculate three features including pairwise distance (PwD), time-lagged in-
dependent component (TIC) coordinates, and radius of gyration (Rg) for each conformation in the
predict ensemble. To transform the continuous feature values into distribution, histograms are built
with Nbin = 50 bins to represent the categorized distribution over which the JS divergence is cal-
culated. For each channel of histogram, a pseudo-count value of ϵ = 10−6 was added to offset zero
frequencies and slightly smooth the distribution. The pairwise distance is computed by enumerat-
ing all pairs of Cα atoms with an offset three; the TICA dimension reduction is performed using
the Deeptime library (Hoffmann et al., 2021) and the first two slowest dimensions are selected for
evaluation; and the radius of gyration is defined by the root mean square distance of each Cα atoms
relative to the center of mass of the protein. All of three distributions are compared respective to the
reference long MD simulation to calculate the Jensen-Shannon (JS) divergence metrics.

C EXTENDED EXPERIMENTAL RESULTS

Compare neighborhood exploitation with MD simulation We demonstrate the effectiveness of
the neighborhood exploitation (NE) over conventional MD simulation in Table 3. The exploration
over conformation space of MD simulation (under limited budget) can be strongly enhanced by
firstly sampling from a pre-trained diffusion sampler. The simulation protocol of both Str2Str-NE
and MD are kept the same as described in A.1.

Table 3: Comparison between samples obtained from neighborhood exploitation (parallel short sim-
ulations) and computation-equivalent conventional MD simulation.

Setting Val-Clash(↑) Val-Bond(↑) JS-PwD(↓) JS-TIC(↓) JS-Rg (↓)
MD (100 ns) 1.000 1.000 0.518 0.547 0.523
Str2Str-NE 0.990 1.000 0.294 0.369 0.331

Runtime Analysis To illustrate the efficiency of proposed few-shot sampling over conventional
MD simulation, we here profile the wall clock running time of each type of ”sampler” for each
benchmark target, shown in Table 3. Note that the runtime can vary from different proteins due to
the different number of atoms. The profiling results are all reported as the wall clock hours based on
4× NVIDIA Tesla V100-SXM2-32GB GPUs.

D LIMITATIONS AND DISCUSSION

Similar to Str2Str (Lu et al., 2024), the proposed methods cannot guarantee the sampled ensemble
are Boltzmann distributed (Noé et al., 2019) due to the nature of local simulation. It is not designed
for replacing canonical MD simulations for the study of protein dynamics. Incorporating short MD
simulations in the Str2Str sampler takes the advantages from both physical and neural sides: the neu-
ral sampler (eg., diffusion) is good at proposing data-like conformation hypothesis very efficiently
in the vast conformation space while the physical simulation can equilibrate the samples onto some
local minima. Both neighborhood exploitation (NE) and fine-tuning (FT) provide a simple yet ef-
fective way to refine the resulting conformations sampled from a neural sampler.

From another perspective, neighborhood exploitation coincides with the purpose of enhanced sam-
pling methods. Enhanced sampling methods aim to overcome the energy barrier and accelerate the
exploration of long MD simulations. For example, the umbrella sampling (Torrie & Valleau, 1977),
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Figure 3: The runtime profile of different samplers across each fast folding target used in this study.

and parallel tempering (synonymous replica exchange molecular dynamics, REMD) (Hansmann,
1997; Sugita & Okamoto, 1999; Swendsen & Wang, 1986). The neural sampler such as Str2Str can
provide diverse conformation seeds to augment the exploration of MD simulation similar to Vani
et al. (2023). We find it a promising research direction to develop the neural enhanced sampling
methods in the future.
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