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Abstract
Diffusion models are powerful generative models
but suffer from slow sampling, often taking 1000
sequential denoising steps for one sample. As
a result, considerable efforts have been directed
toward reducing the number of denoising steps,
but these methods hurt sample quality. Instead
of reducing the number of denoising steps (trad-
ing quality for speed), in this paper we explore
an orthogonal approach: can we run the denois-
ing steps in parallel (trading compute for speed)?
In spite of the sequential nature of the denois-
ing steps, we show that surprisingly it is possible
to parallelize sampling via Picard iterations, by
guessing the solution of future denoising steps and
iteratively refining until convergence. With this
insight, we present ParaDiGMS, a novel method
to accelerate the sampling of pretrained diffusion
models by denoising multiple steps in parallel.
ParaDiGMS is the first diffusion sampling method
that enables trading compute for speed and is
even compatible with existing fast sampling tech-
niques such as DDIM and DPMSolver. Using
ParaDiGMS, we improve sampling speed by 2-4x
across a range of robotics and image generation
models, giving state-of-the-art sampling speeds
of 0.2s on 100-step DiffusionPolicy and 16s on
1000-step StableDiffusion-v2 with no measurable
degradation of task reward, FID score, or CLIP
score.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021b) have demonstrated powerful mod-
eling capabilities for image generation (Vahdat et al., 2021;
Kingma et al., 2021; Rombach et al., 2022), molecular gen-
eration (Xu et al., 2022), robotic policies (Janner et al., 2022;
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Chi et al., 2023), and other applications. The main limitation
of diffusion models, however, is that sampling can be in-
conveniently slow. For example, the widely-used Denoising
Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020)
can take 1000 denoising steps to generate one sample. In
light of this, many works like DDIM (Song et al., 2021a)
and DPMSolver (Lu et al., 2022) have proposed to improve
sampling speed by reducing the number of denoising steps.
Unfortunately, reducing the number of steps can come at
the cost of sample quality.

We are interested in accelerating sampling of pretrained
diffusion models without sacrificing sample quality. We
ask the following question: rather than trading quality for
speed, can we instead trade compute for speed? That is,
could we leverage additional (parallel) compute to perform
the same number of denoising steps faster? At first, this
proposal seems unlikely to work, since denoising proceeds
sequentially. Indeed, naı̈ve parallelization can let us gen-
erate multiple samples at once (improve throughput), but
generating a single sample with faster wall-clock time (im-
proving latency) appears much more difficult.

We show that, surprisingly, it is possible to improve sample
latency of diffusion models by computing denoising steps in
parallel. Our method builds on the idea of Picard iterations
to guess the full denoising trajectory and iteratively refine
until convergence. Empirically, we find that the number of
iterations for convergence is much smaller than the number
of steps. Therefore, by computing each iteration quickly via
parallelization, we sample from the diffusion model much
faster.

Our method ParaDiGMS (Parallel Diffusion Generative
Model Sampling) is the first general method that allows
for the tradeoff between compute and sampling speed of
pretrained diffusion models. Remarkably, ParaDiGMS is
compatible with classifier-free guidance (Ho & Salimans,
2022) and with prior fast sampling methods (Song et al.,
2021a; Lu et al., 2022) that reduce the number of denoising
steps. In other words, we present an orthogonal solution
that can form combinations with prior methods (which we
call ParaDDPM, ParaDDIM, ParaDPMSolver) to trade both
compute and quality for speed.

We experiment with ParaDiGMS across a large range of
robotics and image generation models, including Robosuite



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Parallel Sampling of Diffusion Models

Square, PushT, Robosuite Kitchen, StableDiffusion-v2, and
LSUN. Our method is strikingly consistent, providing an
improvement across all tasks and all samplers (ParaDDPM,
ParaDDIM, ParaDPMSolver) of around 2-4x speedup with
no measurable decrease in quality on task reward, FID score,
or CLIP score. For example, we improve sample time of
100-step action-generation of DiffusionPolicy from 0.74s to
0.2s, and 1000-step image-generation of StableDiffusion-v2
on A100 GPUs from 50.0s to 16.2s. By enabling these faster
sampling speeds without quality degradation, ParaDiGMS
can enhance exciting applications of diffusion models such
as real-time execution of diffusion policies or interactive
generation of images.

2. Background
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) such as Denoising Diffusion Probabilistic Models
(DDPM) were introduced as latent-variable models with a
discrete-time forward diffusion process where q(x0) is the
data distribution, α is a scalar function, with latent variables
{xt : t ≤ T} defined as

q(xt|x0) = N (xt;
√
α(t)x0, (1− α(t))I).

By setting α(T ) close to 0, q(xT ) converges to N (0, I),
allowing us to sample data x0 by using a standard Gaus-
sian prior and a learned inference model pθ(xt−1|xt).
The inference model pθ is parameterized as a Gaussian
with predicted mean and time-dependent variance σ2

t , and
can be used to sample data by sequential denoising, i.e.,
pθ(x0) =

∏T
t=1 pθ(xt−1|xt).

pθ(xt−1|xt) = N (xt−1;µθ(xt), σ
2
t I) (1)

Many works (Song et al., 2021b; Lu et al., 2022) alterna-
tively formulate diffusion models as a Stochastic Differen-
tial Equation (SDE) by writing the forward diffusion process
in the form

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q(x0), (2)

with the standard Wiener process wt, where f and g are
position-independent functions that can be appropriately
chosen to match the transition distribution q(xt|x0) (Lu
et al., 2022; Kingma et al., 2021). These works use an
important result from (Anderson, 1982) that the reverse
process of Eq. (2) takes on the form, with xT ∼ q(xT ),

dxt =
(
f(t)xt − g2(t)∇x log qt(x)

)︸ ︷︷ ︸
drift s

dt+ g(t)︸︷︷︸
σt

dw̄t (3)

where w̄t is the standard Wiener process in reverse time.
This perspective allows us to treat the sampling process
of DDPM as solving a discretization of the SDE where

the DDPM inference model pθ can be used to compute an
approximation pθ(xt−1|xt)−xt of the drift term in Eq. (3).

Since the focus of this paper is on sampling from a pre-
trained diffusion model, we can assume pθ is given. For our
purposes, we only need two observations about sampling
from the reverse process in Eq. (3): we have access to an
oracle that computes the drift at any given point, and the
SDE has position-independent noise. We will use the latter
observation in Section 3.

2.1. Reducing the number of denoising steps

DDPM typically uses a T = 1000 step discretization of
the SDE. These denoising steps are computed sequentially
and require a full pass through the neural network pθ each
step, so sampling can be extremely slow. As a result, pop-
ular works such as DDIM (Song et al., 2021a) and DPM-
Solver (Lu et al., 2022) have explored the possibility of
reducing the number of denoising steps, which amounts
to using a coarser discretization with the goal of trading
sample quality for speed.

Empirically, directly reducing the number of steps of the
stochastic sampling process of DDPM hurts sample quality
significantly. Therefore many works (Song et al., 2021a;b;
Lu et al., 2022) propose using an Ordinary Differential Equa-
tion (ODE) to make the sampling process more amenable
to low-step methods. These works appeal to the probability
flow ODE (Maoutsa et al., 2020), a deterministic process
with the property that the marginal distribution p(xt) at
each time t matches that of the SDE, so in theory sampling
from the probability flow ODE is equivalent to sampling
from the SDE, with xT ∼ N (0, I):

dxt =

(
f(t)xt −

1

2
g2(t)∇x log qt(x)

)
︸ ︷︷ ︸

drift s

dt.

By sampling from the ODE instead of the SDE, works
such as DDIM and DPMSolver (which have connections to
numerical methods such as Euler and Heun) can reduce the
quality degradation of few-step sampling (e.g., 50 steps).

As a summary, the current landscape of sampling from pre-
trained diffusion models is comprised of full-step DDPM or
accelerated sampling techniques such as DDIM and DPM-
Solver that trade quality for speed by reducing the number
of denoising steps.

Notation We write [a, b] to denote the set {a, a+1, . . . , b}
and [a, b) to denote the set {a, a+ 1, . . . , b− 1} for b > a.
We write xa:b to denote the set {xi : i ∈ [a, b)}. Since our
focus is on sampling, in the rest of the paper we denote
time as increasing for the reverse process.
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x0 x1 x2 xT. . .

Figure 1: Computation graph of sequential sampling by
evaluating pθ(xt+1|xt), from the perspective of reverse
time.
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Figure 2: Computation graph of Picard iterations, which
introduces skip dependencies.

3. Parallel computation of denoising steps
Rather than investigating additional techniques for reducing
the number of denoising steps, which can lead to quality
degradation, we look towards other approaches for accel-
erating sampling. In particular, we investigate the idea of
trading compute for speed: can we accelerate sampling by
taking denoising steps in parallel? We clarify that our goal
is not to improve sample throughput – that can be done
with naı̈ve parallelization, producing multiple samples at
the same time. Our goal is to improve sample latency – min-
imize the wall-clock time required for generating a single
sample by solving the denoising steps for a single sample
in parallel. Lowering sample latency without sacrificing
quality can greatly improve the experience of using dif-
fusion models, and enable more interactive and real-time
generation applications.

Parallelizing the denoising steps, however, seems challeng-
ing due to the sequential nature of existing sampling meth-
ods. The computation graph has a chain structure (Fig. 1),
so it is difficult to propagate information quickly down the
graph. To make headway, we present the method of Picard
iteration, a technique for solving ODEs through fixed-point
iteration. An ODE is defined by a drift function s(x, t) with
position and time arguments, and initial value x0. In the
integral form, the value at time t can be written as

xt = x0 +

∫ t

0

s(xu, u)du.

In other words, the value at time t must be the initial value
plus the integral of the derivative along the path of the
solution. This formula suggests a natural way of solving
the ODE by starting with a guess of the solution {xk

t : 0 ≤
t ≤ 1} at initial iteration k = 0, and iteratively refining by
updating the value at every time t until convergence:

(Picard Iteration)

xk+1
t = xk

0 +

∫ t

0

s(xk
u, u)du. (4)

Under mild conditions on s, such as continuity in time
and Lipschitz continuity in position as in the well-known

Picard-Lindelöf theorem, the iterates form a convergent
sequence, and by the Banach fixed-point theorem, they con-
verge to the unique solution of the ODE with initial value x0

(?)cf.][]coddington1956theory. To perform Picard iterations
numerically, we can write the discretized form of Eq. (4)
with step size 1/T , for t ∈ [0, T ]:

xk+1
t = xk

0 +
1

T

t−1∑
i=0

s(xk
i ,

i

T
). (5)

Examining the iterative update rule in Eq. (5), we see that an
update at time t depends on all previous timesteps instead of
just the previous timestep t−1. This amounts to introducing
skip dependencies in the computation graph (Fig. 2), which
enables information to propagate quickly down the chain
and accelerate sampling.

The key property of interest is that each Picard iteration can
be parallelized by performing the expensive computations
{s(xk

i ,
i
T ) : i ∈ [0, T )} in parallel and then, with negligible

cost, collecting their outputs into prefix sums. Given enough
parallel processing power, the sampling time then scales
with the number of iterations K until convergence, instead
of the number of denoising steps T .

The number of iterations until convergence depends on the
drift function s. More concretely, sequential evaluation
can be written as a nested evaluation of functions x⋆

t+1 =
ht(. . . h2(h1(x0))) on the initial value x0 where hi(x) =
x+ s(x, i/T )/T . If, for all timesteps, the drift at the true
solution can be accurately obtained using the drift at the
current guess, then the parallel evaluation will converge in
one step.

Proposition 1. (Proof in Appendix A)

s(xk
i ,

i

T
) = s

(
hi−1(. . . h2(h1(x0))),

i

T

)
∀i ≤ t

=⇒ xk+1
t+1 = x⋆

t+1

It is also easy to see that even in the worst case, exact con-
vergence happens in K ≤ T iterations since the first k
points x0:k must equal the sequential solution x⋆

0:k after k
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(a) Compute the drift of xk
t:t+p on a batch

window of size p = 4, in parallel
(b) Update the values to xk+1

t:t+p using the
cumulative drift of points in the window

(c) Determine how far to slide the win-
dow forward, based on the error ∥xk+1

i −
xk

i ∥2.

Figure 3: ParaDiGMS algorithm: accelerating an ODE solver by computing the drift at multiple timesteps in parallel. During
iteration k, we process in parallel a batch window of size p spanning timesteps [t, t+ p). The new values at a point xk+1

t+j are
updated based on the value xk

j at the left end of the window plus the cumulative drift 1/T
∑t+j−1

i=t s(xk
i , i/T ) of points in

the window. We then slide the window forward until the error is greater than our tolerance, and repeat for the next iteration.

iterations. In practice, the number of iterations until (ap-
proximate) convergence is typically much smaller than T ,
leading to a large empirical speedup.

The idea of Picard iterations is powerful because it enables
the parallelization of denoising steps. Remarkably, Picard
iterations are also fully compatible with prior methods for
reducing the number of denoising steps. Recall that the
drift term s(xt, t/T )/T can be written as ht(xt)− xt and
approximated using Euler discretization as pθ(xt+1|xt)−
xt, but it can also be readily approximated using higher-
order methods on pθ. In our experiments, we demonstrate
the combination of the two axis of speedups to both reduce
the number of denoising steps and compute the steps in
parallel.

3.1. Practical considerations

Implementing Picard iteration on diffusion models presents
a few practical challenges, the most important being that of
GPU memory. Performing an iteration requires maintaining
the entire array of points x0:T over time, which can be
prohibitively large to fit into GPU memory. To address this,
we devise the technique of (mini-)batching which performs
Picard iteration only on points xt:t+p inside a window of
size p that can be chosen appropriately to satisfy memory
constraints. Moreover, instead of iterating on xt:t+p until
convergence of the full window before advancing to the next
window, we use a sliding window approach to aggressively
shift the window forward in time as soon as the starting
timesteps in the window converge.

One other issue is the problem of extending Picard iteration
to SDEs, since we rely on the determinism of ODEs to
converge to a fixed point. Fortunately, since the reverse SDE
(Eq. (3)) has position-independent noise, we can sample the
noise up-front and absorb these fixed noises into the drift of
the (now deterministic) differential equation. Note that the
resulting ODE is still Lipschitz continuous in position and

continuous in time, guaranteeing the convergence of Picard
iteration.

Finally, we need to choose a stopping criterion for the fixed-
point iteration, picking a low tolerance to avoid degradations
of sample quality. A low enough tolerance ensures that the
outcome of parallel sampling will be close to the outcome of
the sequential sampling process in total variation distance.

Proposition 2. (Proof in Appendix B) Assuming the itera-
tion rule in Eq. (5) has a linear convergence rate with a fac-
tor ≥ 2, using the tolerance ∥xK

t − xK−1
t ∥2 ≤ 4ϵ2σ2

t /T
2

ensures that samples of xK
T are drawn from a distribution

with total variation distance at most ϵ from the DDPM
model distribution of Eq. (1).

The above is based on a worst-case analysis, and in our
experiments, we find that using a much more relaxed toler-
ance such as1 1

D∥x
k+1
i − xk

i ∥2 ≤ τσ2
i , with τ = 0.1 and

D being the dimensionality of data, gives reliable speedups
without any measurable degradation in sample quality.

In Algorithm 1 we present the complete procedure of
ParaDiGMS, incorporating sliding window over a batch,
up-front sampling of noise, and tolerance of Picard iter-
ations (Fig. 3). The loop starting on Line 4 performs a
sliding window over the batch of timesteps [t, t + p) in
each iteration. Line 5 computes the drifts, which is the
most compute-intensive part of the algorithm, but can be
efficiently parallelized. Line 6 obtains their prefix sums
in parallel to run the discretized Picard iteration update,
and Lines 7-8 check the error values to determine how far
forward we can shift the sliding window.

The ParaDiGMS algorithm is directly compatible with ex-
isting fast sequential sampling techniques such as DDIM
and DPMSolver, by swapping out the Euler discretization

1For ODE methods (DDIM, DPMSolver) we still pick a toler-
ance value relative to the noise variance of the corresponding SDE
of DDPM.
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Parallel Sampling of Diffusion Models

Algorithm 1: ParaDiGMS: parallel sampling via Picard iteration over a sliding window

Input: Diffusion model pθ with variances σ2
t , tolerance τ , batch window size p, dimension D

Output: A sample from pθ
1 t, k ← 0, 0
2 zi ∼ N (0, σ2

i I) ∀i ∈ [0, T ) // Up-front sampling of noise (for SDE)
3 xk

0 ∼ N (0, I), xk
i ← xk

0 ∀i ∈ [1, p] // Sample initial condition from prior
4 while t ¡ T do
5 yt+j ← pθ(x

k
t+j , t+ j)− xk

t+j ∀j ∈ [0, p) // Compute drifts in parallel

6 xk+1
t+j+1 ← xk

t +
∑t+j

i=t yi +
∑t+j

i=t zi ∀j ∈ [0, p) // Discretized Picard iteration

7 error← { 1
D∥x

k+1
t+j − xk

t+j∥2 : ∀j ∈ [1, p)} // Store error value for each timestep

8 stride← min
(
{j : errorj > τσ2

j } ∪ {p}
)

// Slide forward until we reach tolerance

9 xk+1
t+p+j ← xk+1

t+p ∀j ∈ [1, stride] // Initialize new points that the window now covers
10 t← t+ stride, k ← k + 1
11 p← min(p, T − t)

Return: xk
T

in Lines 5-6 for other solvers, such as higher-order methods
like Heun. As we see in our experiments, the combination
of reducing the number of steps and solving the steps in
parallel leads to even faster sample generation.

4. Experiments
We experiment with our method ParaDiGMS on a suite of
robotic control tasks (Chi et al., 2023) including Square (Zhu
et al., 2020), PushT, Franka Kitchen (Gupta et al., 2019),
and high-dimensional image generation models includ-
ing StableDiffusion-v2 (Rombach et al., 2022) and LSUN
Church and Bedroom (Yu et al., 2015). We observe a con-
sistent improvement of around 2-4x speedup relative to the
sequential baselines without measurable degradation in sam-
ple quality as measured by task reward, FID score, or CLIP
score.

4.1. Diffusion policy

Recently, a number of works have demonstrated the advan-
tages of using diffusion models in robotic control tasks for
flexible behavior synthesis or robust imitation learning on
multimodal behavior (Janner et al., 2022; Chi et al., 2023;
Pearce et al., 2023; Wang et al., 2023). We follow the setup
of DiffusionPolicy (Chi et al., 2023), which is an imitation
learning framework that models action sequences. More
specifically, DiffusionPolicy first specifies a prediction hori-
zon h and a replanning horizon r. At each environment step
l, DiffusionPolicy conditions on a history of observations
and predicts a sequence of actions {al:l+h}. Then, the pol-
icy executes the first r actions {al:l+r} of the prediction.
Therefore, for an episode of length L and scheduler with
T steps, executing a full trajectory can take T × L/r de-
noising steps over a dimension of |a| × h, which can be

inconveniently slow.

We examine our method on the Robosuite Square, PushT,
and Robosuite Kitchen tasks. Each environment uses a
prediction horizon of 16, and replanning horizon 8. The
Square task uses state-based observations with a maximum
trajectory length of 400 and a position-based action space
of dimensionality 7. This means the diffusion policy takes
50 samples per episode, with each sample being a series of
denoising steps over a joint action sequence of dimension
112. The PushT task also uses state-based observations and
has a maximum trajectory length of 300 and action space of
2, which results in 38 samples with denoising steps over a
joint action sequence of dimension 32. Lastly, the Kitchen
task uses vision-based observations and has a maximum
trajectory length of 1200 with an action space of 7, giving
150 samples per episode and denoising steps over a joint
action sequence of dimensionality 112. For all three tasks
we use a convolution-based architecture.

The DDPM scheduler in DiffusionPolicy (Chi et al., 2023)
uses 100 step discretization, and the DDIM/DPMSolver
schedulers use 15 step discretization. For example, a tra-
jectory in the Kitchen task requires 1200/8 = 150 samples,
which amounts to 150× 100 = 15000 denoising steps over
an action sequence of dimensionality 112 with the DDPM
scheduler.

In Table 1, we present results on DDPM, DDIM, DPM-
Solver and their parallel variants (ParaDDPM, ParaDDIM,
ParaDPMSolver) when combined with ParaDiGMS. We
plot the model evaluations (number of calls to the diffusion
model pθ), the task reward, and the sampling speed reported
in time per episode. Although parallelization increases the
total number of necessary model evaluations, the sampling
speed is more closely tied to the number of parallel itera-
tions, which is much lower. We see that ParaDDPM gives a
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speedup of 3.7x, ParaDDIM gives a speedup of 1.6x, and
ParaDPMSolver gives a speedup of 1.8x, without decrease
in task reward. Table 2 presents similar findings on the
PushT task, where we see speedups on all three methods
with up to 3.9x speedup on ParaDDPM.

The final robotics task we study is FrankaKitchen, a harder
task with predicted action sequences of dimension 112 and
an episode length of 1200. In Table 3 we notice some de-
cline in performance when sampling with a reduced number
of steps using DDIM and DPMSolver. On the other hand,
ParaDDPM is able to maintain a high task reward. Simi-
lar to before, ParaDiGMS consistently achieves a speedup
across all 3 sampling methods, giving a speedup of 3.4x with
ParaDDPM, 1.8x with ParaDDIM, and 2.0x with ParaDPM-
Solver. These improvements translate to a significant de-
crease in the time it takes to roll out an episode in the
Kitchen task from 112s to 33.3s.

4.2. Diffusion image generation

Next, we apply parallel sampling to diffusion-based im-
age generation models, both for latent-space and pixel-
space models. For latent-space models, we test out
StableDiffusion-v22 (Schuhmann et al., 2022; Rombach
et al., 2022), which generates 768x768 images using a
diffusion model on a 4x96x96 latent space. For pixel-
space models, we study pretrained models on LSUN
Church3/Bedroom4 from Huggingface (Ho et al., 2020; von
Platen et al., 2022), which run a diffusion model directly
over the 3x256x256 pixel space.

4.2.1. LATENT-SPACE DIFFUSION MODELS

Even with the larger image models, there is no issue fit-
ting a batch size of 20 on a single GPU for parallelization.
However, the larger model requires more compute band-
width, so the parallel efficiency quickly plateaus as the batch
size increases, as the single GPU becomes bottlenecked by
floating-point operations per second (FLOPS). Therefore,
for image models we leverage multiple GPUs to increase
FLOPS and improve the wall-clock sampling speed.

In Fig. 4 we examine the net speedup of ParaDDPM relative
to DDPM on StableDiffusion-v2 using 1000-step diffusion
on A100 GPUs. The net speedup is determined by the
interplay between algorithm inefficiency and hardware effi-
ciency. Algorithm inefficiency refers to the relative number
of model evaluations of ParaDDPM compared to DDPM,
which arises from the parallel algorithm taking multiple iter-
ations until convergence. We see in Fig. 4a that as the batch
size grows, ParaDDPM can require 2-3x more model evalu-

2https://huggingface.co/stabilityai/stable-diffusion-2
3https://huggingface.co/google/ddpm-ema-church-256
4https://huggingface.co/google/ddpm-ema-bedroom-256

ations. On the other hand, hardware efficiency refers to the
relative empirical speedup of performing a batch of model
evaluations. For example, in Fig. 4a we see that evaluating
a batch size of 80 on 4 GPUs (20 per GPU) is roughly 5x
faster than performing 80 model evaluations sequentially. In
Fig. 4b, we divide the hardware efficiency by the algorithm
inefficiency to obtain the net relative speedup of ParaDDPM
over DDPM. We observe over 3x speedup by using a batch
size of 80 spread across 8 A100s. Finally, in Table 4 we
verify that ParaDiGMS increases sampling speed for ParaD-
DPM, ParaDDIM, and ParaDPMSolver without degrada-
tion in sample quality as measured by CLIP score (Hessel
et al., 2021) on ViT-g-14 (Radford et al., 2021; Ilharco et al.,
2021).

One important consideration is that the algorithm ineffi-
ciency is agnostic to the choice of GPU. Therefore, as the
parallel efficiency of GPUs in the future improve for large
batch sizes, we will see an even larger gap between hard-
ware efficiency and algorithm inefficiency. With enough
hardware efficiency, the wall-clock time of sampling will
be limited only by the number of parallel iterations, leading
to much larger net speedup. For example, observe that in
Table 4 the number of parallel iterations of ParaDDPM is
> 20x smaller than the number of sequential steps.

4.2.2. PIXEL-SPACE DIFFUSION MODELS

Next we test out ParaDiGMS on pretrained diffusion models
on LSUN Church and Bedroom, which perform diffusion di-
rectly on a 3x256x256 pixel space. In Fig. 6 in Appendix C,
we plot the net speedup of 1000-step ParaDDPM by divid-
ing the hardware efficiency by the algorithm inefficiency.
We observe a similar trend of around 3x speedup when
using multiple GPUs. Finally, we verify in Table 5 that
ParaDiGMS maintains the same sample quality as the base-
line methods as measured by FID score on 5000 samples of
LSUN Church5.

We highlight that 500-step DDIM gives noticeably worse
FID score than 1000-step DDPM, whereas using ParaD-
DPM allows us to maintain the same sample quality as
DDPM while accelerating sampling (to be even faster than
500-step DDIM). The ability to generate an image without
quality degradation in 8.2s as opposed 24.0s can signifi-
cantly increase the viability of interactive image generation
for many applications.

4.3. Related work

Apart from DDIM (Song et al., 2021a) and DPMSolver (Lu
et al., 2022), there are additional fast sampling techniques
of pretrained models such as PNDM (Liu et al., 2022). Sim-

5DPMSolver is not yet integrated with the LSUN model in the
Diffusers library, so we omit its comparison.
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Table 1: Robosuite Square with ParaDiGMS using a tolerance of τ = 0.1 and a batch window size of 20 on a single A40
GPU. Reward is computed using an average of 200 evaluation episodes, with sampling speed measured as time to generate
400/8 = 50 samples.

Sequential ParaDiGMS
Robosuite

Square
Model
Evals Reward Time per

Episode
Model
Evals

Parallel
Iters Reward Time per

Episode Speedup

DDPM 100 0.85 ± 0.03 37.0s 392 25 0.85 ± 0.03 10.0s 3.7x
DDIM 15 0.83 ± 0.03 5.72s 47 7 0.85 ± 0.03 3.58s 1.6x

DPMSolver 15 0.85 ± 0.03 5.80s 41 6 0.83 ± 0.03 3.28s 1.8x

Table 2: PushT task with ParaDiGMS using a tolerance of τ = 0.1 and a batch window size of 20 on a single A40 GPU.
Reward is computed using an average of 200 evaluation episodes, with sampling speed measured as time to generate
⌈300/8⌉ = 38 samples.

Sequential ParaDiGMS

PushT Model
Evals Reward Time per

Episode
Model
Evals

Parallel
Iters Reward Time per

Episode Speedup

DDPM 100 0.81 ± 0.03 32.3s 386 24 0.83 ± 0.03 8.33s 3.9x
DDIM 15 0.78 ± 0.03 4.22s 46 7 0.77 ± 0.03 2.54s 1.7x

DPMSolver 15 0.79 ± 0.03 4.22s 40 6 0.79 ± 0.03 2.15s 2.0x

Table 3: FrankaKitchen with ParaDiGMS using a tolerance of τ = 0.1 and a batch window size of 20 on a single A40
GPU. Reward is computed using an average of 200 evaluation episodes, with sampling speed measured as time to generate
1200/8 = 150 samples.

Sequential ParaDiGMS
Franka
Kitchen

Model
Evals Reward Time per

Episode
Model
Evals

Parallel
Iters Reward Time per

Episode Speedup

DDPM 100 0.85 ± 0.03 112s 390 25 0.84 ± 0.03 33.3s 3.4x
DDIM 15 0.80 ± 0.03 16.9s 47 7 0.80 ± 0.03 9.45s 1.8x

DPMSolver 15 0.79 ± 0.03 17.4s 41 6 0.80 ± 0.03 8.89s 2.0x

Table 4: Evaluating CLIP score of ParaDiGMS on StableDiffusion-v2 over 1000 random samples from the COCO2017
captions dataset, with classifier guidance w = 7.5. CLIP score is evaluated on ViT-g-14, and sample speed is computed on
A100 GPUs.

Sequential ParaDiGMS

StableDiffusion-v2 Model
Evals

CLIP
Score

Time per
Sample

Model
Evals

Parallel
Iters

CLIP
Score

Time per
Sample Speedup

DDPM 1000 32.1 50.0s 2040 44 32.1 16.2s 3.1x
DDIM 200 31.9 10.3s 425 16 31.9 5.8s 1.8x

DPMSolver 200 31.7 10.3s 411 16 31.7 5.8s 1.8x

Table 5: Evaluating FID score (lower is better) of ParaDiGMS on LSUN Church using 5000 samples. Sample speed is
computed on A100 GPUs.

Sequential ParaDiGMS

LSUN Church Model
Evals

FID
Score

Time per
Sample

Model
Evals

Parallel
Iters

FID
Score

Time per
Sample Speedup

DDPM 1000 12.8 24.0s 2556 42 12.9 8.2s 2.9x
DDIM 500 15.7 12.2s 1502 42 15.7 6.3s 1.9x
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(a) Hardware efficiency overtakes algorithm inefficiency as number
of GPUs increase.

(b) Over 3x net wall-clock speedup for 1000-step ParaDDPM

Figure 4: StableDiffusion-v2 generating text-conditioned 768x768 images by running ParaDDPM over a 4x96x96 latent
space for 1000 steps, on A100 GPUs. In Fig. 4a algorithm inefficiency in gray denotes the relative number of model
evaluations required as the parallel batch size increases. The colored lines denote the hardware efficiency provided by
the multi-GPUs. As the batch size increases, the hardware efficiency overtakes the algorithm inefficiency. In Fig. 4b we
normalize the algorithm inefficiency to 1, to show the net wall-clock speedup of parallel sampling.

ilar to DPMSolver, PNDM is based on higher-order ODE
solving techniques and should also be compatible with par-
allelization using ParaDiGMS. Other lines of work focus
on distilling a few-step model (Meng et al., 2022; Song
et al., 2023) or learning a sampler (Watson et al., 2022), but
these methods are more restrictive as they require additional
training.

Parallelization techniques similar to Picard iteration have
been explored in theoretical works for sampling from log-
concave (Shen & Lee, 2019) and determinantal distribu-
tions (Anari et al., 2023). Our work is the first application
of parallel sampling on diffusion models, enabling a new
axis of trading compute for speed.

5. Conclusion
Limitations Since our parallelization procedure requires
iterating until convergence, the total number of model eval-
uations increases relative to sequential samplers. Therefore,
our method is not suitable for users with limited compute
who wish to maximize sample throughput. Nevertheless,
sample latency is often the more important metric. Trad-
ing compute for speed with ParaDiGMS makes sense for
many practical applications such as generating images inter-
actively, executing robotic policies in real time, or serving
users who are insensitive to the cost of compute.

Our method is also an approximation to the sequential sam-

plers, since we iterate until the errors fall below some tol-
erance. However, we find that using ParaDiGMS with the
reported tolerances results in no measurable degradations
of sample quality in practice across a range of tasks and
metrics. In fact, on more difficult metrics such as FID score
on LSUN Church, ParaDDPM gives both higher sample
quality and faster sampling speed than 500-step DDIM.

Discussion We present ParaDiGMS, the first accelerated
sampling technique for diffusion models that enables the
trade of compute for speed. ParaDiGMS improves sam-
pling speed by using the method of Picard iterations, which
computes multiple denoising steps in parallel through iter-
ative refinement. Remarkably, ParaDiGMS is compatible
with existing sequential sampling techniques like DDIM
and DPMSolver, opening up an orthogonal axis for opti-
mizing the sampling speed of diffusion models. Our ex-
periments demonstrate that ParaDiGMS gives around 2-4x
speedup over existing sampling methods across a range of
robotics and image generation models, without sacrificing
sample quality. As GPUs improve, the relative speedup of
ParaDiGMS will also increase, paving an exciting avenue
of trading compute for speed that will enhance diffusion
models for many applications.
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A. Proof of Proposition 1
Proof. Assume by induction that xk+1

t = x⋆
t . Then
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B. Proof of Proposition 2
Proof. A linear convergence rate with factor ≥ 2 ensures our error from the solution x⋆

t given by sequential sampling at
each timestep t is bounded by the chosen tolerance.

∥xK
t − x⋆

t ∥2 ≤ lim
n→∞

n∑
j=K+1

∥xj
t − xj−1

t ∥2 ≤ lim
n→∞

n∑
j=K+1

1

2j−K
∥xK

t − xK−1
t ∥2 ≤ ∥xK

t − xK−1
t ∥2

Then, for each timestep t, since the inference model samples from a Gaussian with variance σ2
t , we can bound the total

variation distance.

DTV(N (xK
t , σ2

t I) || N (x⋆
t , σ

2
t I)) ≤

√
1

2
DKL(N (xK

t , σ2
t I) || N (x⋆

t , σ
2
t I))

=
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t − x⋆
t ∥2

4σ2
t

≤

√
∥xK

t − xK−1
t ∥2

4σ2
t

≤ ϵ

T

Finally, we make use of the data processing inequality, that DTV(f(P ) || f(Q)) ≤ DTV(P || Q), so the total variation
distance dt between the sample and model distribution after t timesteps does not increase when transformed by pθ. Then by
the triangle inequality we get that dt ≤ dt−1 + ϵ/T . giving a total variation distance dT of at most Tϵ/T = ϵ for the final
timestep T .
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(a) “a beautiful castle, matte
painting”

(b) “a batter swings at a pitch dur-
ing a baseball game”

(c) “several sail boats in the water
at night”

(d) “a grey suitcase sits in front
of a couch”

Figure 5: Samples of images generated by StableDiffusion-v2 using ParaDDPM.

C. Additional Experiments

(a) LSUN Church, close to 3x net wall clock speedup with 1000-
step ParaDDPM

(b) LSUN Bedroom, over 3x net wall clock speedup with 1000-step
ParaDDPM

Figure 6: Unconditional generation of 256x256 images on diffusion models prtrained on the LSUN Church and Bedroom
dataset, running ParaDDPM for 1000 steps on A100 GPUs. We plot the net speedup after dividing the hardware efficiency
by the algorithm inefficiency as the batch size increases.


