Towards Online 3D Bin Packing: Learning Synergies
between Packing and Unpacking via DRL

Shuai Song, Shuo Yang, Ran Song, Shilei Chu, Yibin Li, Wei Zhang*
Shandong University
{shuaisongss, shuoyang, slchu} @mail.sdu.edu.cn, {ransong, liyb, davidzhang} @sdu.edu.cn

Abstract: There is an emerging research interest in addressing the online 3D bin
packing problem (3D-BPP), which has a wide range of applications in logistics
industry. However, neither heuristic methods nor those based on deep reinforce-
ment learning (DRL) outperform human packers in real logistics scenarios. One
important reason is that humans can make corrections after performing inappro-
priate packing actions by unpacking incorrectly packed items. Inspired by such an
unpacking mechanism, we present a DRL-based packing-and-unpacking network
(PUN) to learn the synergies between the two actions for the online 3D-BPP. Ex-
perimental results demonstrate that PUN achieves the state-of-the-art performance
and the supplementary video shows that the system based on PUN can reliably
complete the online 3D bin packing task in the real world.

Keywords: Bin packing, robotics, deep reinforcement learning.

1 Introduction

The rapid growth of e-commerce has signifi-
cantly increased the burden of human packers
in logistics warehouses. Thus there is an emerg-
ing research interest in developing intelligent
robotic systems to replace human labors in the
repetitive work [1]. In a typical packing sce-
nario, the human packer is asked to pick the
items from a running conveyor belt one by one
and then pack them into a bin with as higher
space utilization as possible. To solve this task,
most researchers formulated it as the online 3D
bin packing problem (3D-BPP) and presented
algorithms to optimize the bin packing policy
[2, 3, 4]. However, as one of the most classic
combinatorial optimization problems, the on-
line 3D-BPP is notoriously NP-hard [5]. It is
nontrivial to find the optimal policy as only one
item is observable each time.

Early methods for the bin packing problem

Unpacking action

Packing action

Figure 1: Illustration of the synergies between packing
and unpacking actions. Our method can unpack the in-
appropriately placed items and repack them into the bin
to improve the overall space utilization.

mostly focus on designing reasonable bin packing heuristics [6, 7, 8]. Such heuristics are essen-
tially hand-designed rules abstracted from the experiences of human packers. Although this is an
intuitive way to solve the bin packing task and usually maintains good working efficiency, the expe-
riences of human packers are not always perfect. Moreover, without a learning process, the heuristic
algorithms are less likely to find the optimal bin packing policy in various scenarios.

Inspired by the recent advances in deep reinforcement learning (DRL) [9, 10, 11], researchers at-
tempt to solve the online 3D-BPP via DRL [12, 13, 14]. Although these methods have achieved
promising results in the bin packing task, they neglected the crucial human experience of unpacking
when the currently observed item cannot be packed into an appropriate position. The ability of un-

*Corresponding author

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



packing is thus particularly important for the online 3D-BPP, where the agent can only observe one
upcoming item and hence is less likely to learn the optimal bin packing policy.

Therefore, we introduce the unpacking mechanism for the online 3D-BPP as shown in Fig. 1. To
learn the synergies between packing and unpacking, we propose a packing-and-unpacking network
(PUN) based on DRL. Specifically, PUN is a two-branch architecture which generates the packing
and the unpacking actions and their corresponding state values. It then determines to perform either
the packing or the unpacking action based on the state values. Finally, the synergies between packing
and unpacking actions are learned via DRL. We also design packing and unpacking heuristics and
incorporate them into the DRL framework.

The main contributions of this paper are twofold: 1) we introduce the unpacking mechanism for
online 3D-BPP and propose to solve it with both the packing and unpacking actions; 2) we present
PUN to learn the synergies between packing and unpacking actions via DRL in the simulated envi-
ronment, seeking for the optimal bin packing policy. And a bin packing system developed based on
PUN is demonstrated in the real world.

2 Related Work

Existing methods for the 3D-BPP can be divided into two groups: heuristic and DRL-based methods.
We herein briefly review both of them.

Heuristic methods. The 3D bin packing problem (3D-BPP) focuses on packing a set of cubical
items into a confined 3D space (e.g. a shipping box) with a high rate of space utilization [15]. It
is a classic NP-hard optimization problem [5]. The online 3D-BPP assumes that only the current
item to be packed is observable while the upcoming items are unknown. Early work mostly de-
signed different heuristic algorithms [16, 17] such as Tabu Search [18], First-Fit [19] and Extreme
Point-Based Heuristics [7]. The heuristic algorithms are essentially the distillation of the real-world
packing experience of human packers, which are not always perfect for various scenarios.

DRL-based methods. Recently, DRL has been demonstrated effective to solve combinatorial op-
timization problems [20, 21, 22, 23]. Some researchers thus attempted to solve the 3D-BPP using
DRL [12, 13, 24, 14, 25]. For example, Zhao et al. [13] formulated the 3D-BPP as constrained
Markov decision process and first employed the DRL method to optimize the sequence of the items
to be packed into the bin. Verma et al. [24] developed a DRL algorithm to solve the online 3D-BPP
for an arbitrary number of bins with various sizes. More recently, Yang et al. [14] made the pri-
mary attempts to incorporate the heuristics into the DRL framework for learning more optimal bin
packing policy. However, such methods cannot perform comparably well with the human packers.

A neglected human experience is that human packers can unpack some item from the bin if packing
the current item is difficult. We thus incorporate the unpacking mechanism into the DRL framework
which learns the synergies between the packing and the unpacking actions.

3 Method

In an online bin packing task, the items are delivered from a running conveyor belt one by one and
then packed into a bin. Only the immediately incoming item is observable. We formulate the bin
packing task as a Markov Decision Process (MDP) [26] subject to the state S, the action A, the
transition P, and the reward R. We solve the MDP with an end-to-end DRL framework which seeks
for a policy 7(at|st; 0, ) to maximize the sum of the expected rewards, expressed as:

T
Try = méiX]Es’aNﬂg [Z 'ytflr (st,at)] . (1)

t=1
This section provides details of PUN and the implementation of a real-world logistics application.

3.1 Packing-and-Unpacking Network

The architecture of the proposed PUN is illustrated in Fig. 2 and elaborated as follows.

State representation. We model the state representation s; as the current configuration of the
bin and the current item to be packed. To parameterize the configuration of an L x W x H bin,



\ Packing Net l Packing position
1
! Packing-heuristics R
— - g Packing-actor | I(ais) ®
| (MLP)
1
1
. Packing-critic  [V(s))
! (MLP)
max
:—> T —— Packing / Unpacking
extractor
i Unpacking-critic
, MLP
; MED) | Vitsd
1
! Unpacking-actor
1 0 2 [Unpacking-heuristics| (MLP) IL 3
N (i3 i i i ! predictor I u (adsy)
I\ Ttem Size ,' UnPaCking Net Unpacking position

Figure 2: [llustration of the proposed PUN for learning synergies between packing and unpacking.

we discrete the state observation of the bin at the time ¢ as a heightmap H; € Z*LXW, where

Z* € [0,H]. The heightmap is an L x W discrete grid and the value at each cell represents
the height of the stacked items at that position. The state of the current item n with the size of
ln X wy X hy, is represented as an L x W x 3 map, the 3 channels of which are assigned with the
values of [,,, w,, and h,, respectively (see Fig. 2).

Action definition. We parameterize each action a; as a motion primitive behavior v (e.g. packing
or unpacking) executed at the position p projected from a cell ¢ of the heightmap representation of
the bin configuration:

ar = (v, p) | ¥ € {pack,unpack},p — ¢ € Hy. 2)

Each cell c in the heightmap of the bin configuration corresponds to a specific position to execute
the packing or unpacking action. We use the left-front-bottom corner of an item as its packing or
unpacking coordinates. The motion primitive behaviors are defined as below:

 Packing: p denotes putting the item at the cell c of the grid corresponding to the bin heightmap. We
use a 2D coordinates (,, ¥y ) to represent the position of c. The action (pack, p(,, ,.)) denotes
that the agent puts the item n at the position (x,,, y,,) of the heightmap.

* Unpacking: p denotes removing the item from the cell ¢ of the grid corresponding to the bin
heightmap. We set a temporary item buffer to store at most B unpacked items. The action
(unpack, p(z,, y,.)) denotes that the agent removes the item m from the position (zy,, yrm) of
the heightmap and places it in the temporary item buffer.

Synergies between packing and unpacking actions. As illustrated in Fig. 2, PUN is designed
as a two-branch network to learn the synergies between packing and unpacking. It takes as input
the heightmap of the bin configuration and the sizes of the item, and outputs the motion primitive
behavior i (packing or unpacking) executed at the position p projected from a cell of the heightmap.
The state input is encoded into features by a shared feature extraction module which is implemented
with 5 fully-connected layers. Such features are then fed into to the packing and the unpacking
networks, respectively.

The packing and unpacking branches both consist of three major components: an actor network, a
critic network and a heuristic mask predictor. The actor network outputs the probability distribu-
tion of the motion primitive behavior (packing and unpacking) with the same resolution as that of
the state s;. The two critic networks predict the state values V,(s;) and V,,(s;) which measure the
cumulative reward of taking the two motion primitive behaviors in the state s, at the time ¢ respec-
tively [27]. The heuristic mask predictors generate the packing and the unpacking masks M,, and
M, to estimate valid packing and unpacking positions based on the heuristic rules. The probability
distribution output by the actor network is modulated by the heuristic mask.

For the state s; at the time step ¢, the network outputs two state values (V,(s;), Vi, (s¢)) and two
probability distributions (7, (a|s:), Ty (a:|s:)) corresponding to packing and unpacking actions.



Current item Current item Current item

| |

3 2 2

2 [ | 2 4 E ! 1 1

Comveyor () — O O — O O —1O O — O O — O
pack l'
¢ N A
Bin . i
,’/ unpack unpack “, pack\\\ Current item  Current item /',I pack

L O N B I ol A (S [ (R 7 o B B

Step t Step t+1 Step t+2 Step t+3 Step t+4

Figure 3: An example of the synergies between packing and unpacking. Current item indicates the item to be
packed at the current time step. The serial number on the item indicates the order in which it is to be packed.

One action is subject to the motion primitive behavior 1) and the position p. The final motion
primitive behavior is the one with the highest state value between the two primitive behaviors, which
means that the DRL agent will theoretically earn the highest rewards. The position is sampled from
the probability distribution corresponding to the final motion primitive behavior.

The synergistic process of packing and unpacking is elaborated as follows. For the item n to be
packed at the time step ¢, PUN takes its size and the heightmap of the bin as input to predict the
motion primitive behavior ¢/ and the target position p of the bin heightmap. If the packing action is
predicted, the agent will pick the item n from the conveyor belt and place it at the target position
p, and take the next item from the conveyor belt as the item to be packed at the time step ¢ + 1.
If the unpacking action is predicted, the agent will pick the item m from the target position p and
place it into the buffer zone to temporarily store it. The agent will continue to predict the packing or
unpacking action for the item n at the next time step until packing it into the bin. After packing the
item n, the item m in the temporary buffer will be used as the current item to be packed for predicting
the next action. If there are multiple items in the temporary buffer, the agent will select the target
item to be packed according to the order in which the items were unpacked into the temporary buffer
(first in last out). Only after all items in the temporary buffer are emptied can the robot select the
next item to be packed from the conveyor belt. Fig. 3 shows an example of the process of packing
and unpacking.

Heuristics-based action constraint. We incorporate three heuristic rules into the DRL framework
to guide the reinforcement learning. The first one is physics heuristics. It defines the actions that
lead to failure as invalid actions. For example, the packing actions that pack the items beyond the bin
boundaries and the unpacking actions that execute on the positions without items. The second one
is packing heuristics. It consists of four popular packing heuristic algorithms which are described as
follows: The Extreme Point algorithm [7] that calculates all extreme points in the bin and packs
item based on extreme point rule. The Empty Maximal Space algorithm [8] that packs item in the
position which can produce the largest empty orthogonal spaces in the bin. The First Fit algorithm
[19] that packs item in the first feasible position. The Floor Building algorithm [28] that packs item
in the lowest feasible position. The last one is unpacking heuristics. Since there are fewer heuristic
algorithms for unpacking at present, we design two rules for unpacking. We define the positions of
the items on the top layer of the bin (the first rule) and whose volume is less than a certain threshold
(the second rule) as the valid positions.

To incorporate the heuristics into the DRL framework, we design two predictors to generate the
binary feasibility mask M, indicating the valid and invalid actions. Only the actions that satisfy the
heuristics are valid. Next, we use the feasibility masks to modulate the outputs of the packing and
unpacking branches [29]. In our DRL framework, the actor network outputs the unnormalized scores
I (logits) which are then converted into an action probability distribution by a softmax operation. For
the invalid actions, we replace their corresponding logits with a large negative value —10%. Thus
the probability of the invalid actions output by the softmax layer is virtually zero. We consider the
action constraint as the renormalized probability distribution 7 (a¢|s;):

—ooli) - Ar— Prye
71-(a't|575) = Softmax(fcons(li)) = Zi\] exp(l;)’ ‘ 3)
0, M; = False



where N is the number of the valid actions, and

B li7 MZ = TTUB
fcons(ll) - {—108, M; = False ' @

Reward function. We design a step-wise reward for the bin packing

task. It contains two parts: the volume utilization ratio r, and the 12
wasted space ratio r,,. 7, is defined as the ratio of the volume of the ‘
items contained in the bin to the total bin volume:
_ Z? ll‘ X w; X hz

Ty =

“ |
LxWxH ) i
T 18 defined as the ratio of the wasted space volume to the bin volume ‘
and denotes the free space where the items cannot be packed under
the current bin state. Fig. 4 shows an example of the wasted spaces
highlighted as the red dotted cuboids. We encourage the unpacking
action to reduce the wasted spaces. The whole reward is defined as:

X

Figure 4: An example of the
wasted spaces.

Rt(St, a, St-‘rl) =Ty — QTy), (6)

where « is a weighting parameter.

3.2 Implementation of Real-world Logistics Application

To validate the actual bin packing perfor-
mance, we set up a real-world system to de- e
ploy the policy learned in the simulation.

On-conveyor RGBD | On-bin

System configuration. Fig. 5 shows the —

developed practical bin packing system.
The URS robotic arm equipped with a suc-
tion gripper performs picking and placing
actions. There are three workspaces: the
conveyor belt for transporting items, the bin
for holding the items and the buffer zone
for temporarily storing items. RGB-D im-
ages of resolution 1280 x 720 are captured
from two Intel RealSense D435i cameras
mounted on two fixed tripods overlooking
the conveyor belt and the bin.

. . Figure 5: The developed bin packing system based on PUN.
Sim-to-real transfer strategy. Since the

bin packing policy is learned in the simu-

lated environment, we need a transfer strategy to apply it into the real world. The PUN takes as
input two types of state representations, the bin heightmap and the item size map. To obtain the bin
heightmap, we filter the observation captured by the camera and map it onto a discrete orthogonal
grid using bilinear interpolation [30]. The mapped grid has the same resolution as the size of the bin
(i.e. L x W x H). To obtain the item size map, we perform boundary detection on the image of the
item on the conveyor belt and calculate its 3D sizes. To ensure the safety of the bin packing process,
the item sizes are rounded up to discrete values as the final state representations.

4 Experimental Results

In this section, we conduct experiments and ablation studies to evaluate the proposed method. We
also provide a supplementary video to demonstrate a real robotic system for the online 3D-BPP.

4.1 Data Generation and Implementation Details

To train and test the proposed network, we create three bin packing datasets based on previous works
[13, 14], namely DATA-1, DATA-2 and DATA-3. To generate DATA-1, we cut a bin of size .S 4 with



Table 1: Comparative results of different bin packing methods.

DATA-1 DATA-2 DATA-3
Method
Uti. Num. Sta. Uti. Num. Sta. Uti. Num. Sta.

Heuristic

Random 0.363 1566 0.131 0348 9.61 0.134 0.366 10.16 0.127
Column Building [31] 0.629 2575 0.125 0566 1476 0.124 0.571 1526 0.127
Floor Building [28] 0.634 2591 0.127 0.557 14.52 0.139 0.568 15.17 0.136
First Fit [19] 0.611 2492 0.129 0571 1494 0.132 0572 1523 0.136
Corner point [2] 0.662 2676 0.121 0.654 17.05 0.139 0.641 17.10 0.124
Extreme Point [7] 0.667 27.73 0.126 0.584 1520 0.115 0.586 15.62 0.129

Empty Maximal Space [§] 0.669 27.79 0.114 0.652 1699 0.118 0.649 1731 0.124

Learning-based

Zhao et al. [13] 0.687 28.61 0.103 0.632 1639 0.114 0.642 1697 0.111
Yang et al. [14] 0.704 29.13 0.097 0.667 1731 0.104 0.675 18.05 0.105
Zhao et al. [25] 0.834 3291 0.084 0.819 2093 0.087 0.813 21.37 0.092
Ours 0.855 3434 0.061 0.826 21.11 0.073 0.830 21.82 0.071

d € {z,y,z} into items of different sizes along the directions of length, width and height. The
volume sum of all items is equal to the bin volume, and each item size s¢ € Z¥ is not larger than
S?/2. The item sequence is randomly shuffled to increase data diversity. To generate DATA-2 and
DATA-3, we first predefine 64 items of different sizes, and then cut a bin of size S 4 into different
items with the predefined sizes. When cutting the bin into items, we record the size of each item and
its position in the bin. Then the items are sorted into a new sequence according to different rules
designed in [13]. Note that either DATA-2 or DATA-3 contains fewer items than DATA-1 while the
average item volume is larger, which inevitably affects the performance.

In our implementation, the PUN is built based on actor-critic framework and we extend the frame-
work to a two-branch architecture. We create 10 parallel virtual environments for collecting on-
policy training samples. In each iteration, the packing and unpacking samples are used to update
the packing and unpacking branches respectively. When one branch is active for gradient update,
the other one is fixed and its gradient is set to 0. We train PUN for 10000 epochs and collect 5120
episodes in every epoch. Our models are developed using PyTorch and trained with an NVIDIA
2080Ti and an Intel 19-9900K CPU @ 3.60GHz. The hyperparameter settings that we used in the
experiments are as follows: the discount factor  is 0.95, the learning rate [, is 0.003, the value
function coefficient « is 0.5 and the entropy coefficient 3 is 0.01.

4.2 Bin Packing Performance Evaluation

Baseline Methods. We compare the proposed method with 10 baseline methods for the online 3D-
BPP, which can be classified into two groups. The first group contains a random packing policy and
6 heuristic methods. The second group contains 3 state-of-the-art DRL-based methods. For these
DRL-based methods, the agent would terminate an episode when there is no available space for
packing the current item in the bin. Note that the method proposed by Zhao et al. [25] has different
variants and we select the one with the best performance as the baseline (i.e. PCT&EV in [25]).

Results. We use 3 metrics to evaluate the bin packing performance. The metric Uti. is the space
utilization defined as the average volume ratio of all packed items to the bin. The metric Num. is the
average number of all packed items. The metric Sta. is the standard deviation of Uti.

The comparative results reported in Table 1 show that our method outperforms all baseline methods
in terms of all evaluation metrics. Such results indicate that PUN utilizes the bin space more suffi-
ciently and performs more robustly than other competitors. Besides, due to the difference in the size
and the number of the items in the 3 datasets as mentioned in Section 4.1, the bin packing meth-
ods performs generally better on DATA-1 than on DATA-2 and DATA-3. We also visualize the bin
packing results for a qualitative comparison where we create 6 test sets by changing the item order
of DATA-1. The visualization results in Fig. 6 show that our method outperforms the baselines.



#Test 1 #Test 2 #Test 3 #Test 4 #Test 5 #Test 6

Zhao et al. [25] EMS [8]

Ours

Figure 6: Visualization results of different methods. The values beside each sub-figure are the space utilization.

4.3 Ablation Studies

Evaluation of PUN variants. To demonstrate the designing choice of PUN, we create 3 variants
for it and perform a series of ablation studies: Packing-only where only the packing branch of PUN
is retained, PUN-random-unpacking where the unpacking branch of PUN randomly selects items
to be unpacked, PUN-no-constraint where PUN is trained without heuristics-based constraints.

The comparative experiments are Uti.

Num.
conducted on DATA-1, and the o 3
results are shown in Fig. 7, ~
leading to several observations. °7% 31
First, PUN outperforms its vari- 074 2
ants in terms of both Uri. and o070
Num., indicating the effectiveness (6 //Mw:m 27
of the proposed network design. o IM M M aM sM L e A TR PR
Second, compared to the vari- Training steps Training steps

ant without the unpacking action == PUN (Ours) === PUN-no-constraint === PUN-random-unpacking === Packing-only
Etljgill;l;agc-l(;ﬂ?écgl:n\Ealsrl?lgfnggl} Figure 7: Learning curves of different PUN variants.
no-constraint, and PUN-random-

unpacking) achieve better performance in terms of both U#i. and Num.. Such results show that
the introduction of the unpacking mechanism effectively improves the bin packing performance,
which demonstrate the proposed idea of introducing the unpacking action for online 3D-BPP. Third,
for the 3 variants with the unpacking action, the learning-based ones (PUN and PUN-no-constraint)
perform better than the one based on the random policy (PUN-random-unpacking). It demonstrates
the significance of the proposed DRL framework for learning the synergies between packing and un-
packing. Finally, PUN outperforms the variant without any heuristic constraint (PUN-no-constraint),
which indicates that the heuristics-based action constraints provides useful guidance for the training
of PUN and improves the bin packing performance.

Exploration of different reward functions. Table 2: Comparison of different reward functions
To investigate the effect of different settings of

the reward function, we design 3 reward func- Reward Uti. Num. Sta.
tions and compare them with the proposed one Constant reward 0742 2996  0.085
on DATA-1. The first one is a constant value re- Final-vol reward  0.745  30.07  0.091
ward, defined as 1 if the packing action is suc- Item-num reward 0771 31.84 0.087
cessfully performed, 0.5 if the unpacking ac- Our reward 0.855 3434  0.061

tion is successfully performed, and O otherwise.
The second reward is the final volume ratio of
all packed items to the bin, which we record after all steps and assign to each step of bin packing.



4

Figure 8: Results of the real-world bin packing tests produced by our method.

Table 3: Effect of different buffer capacities

Buffer capacity 2 4 6 8 10 12 14 No limit
Uti. 0.739 0.791 0.815 0.834 0.852 0.855 0.854 0.855
Num. 29.21 30.74 32.57 33.19 34.21 34.32 34.31 34.34

The last one is the item number reward, defined as the number of the packed items in the bin. Ac-
cording to the results listed in Table 2, our method outperforms the competing methods in terms of
the space utilization and the number of packed items, which demonstrates the effectiveness of the
designed reward.

Exploration of buffer capacity. We conduct the ablation study on DATA-1 to investigate the effect
of different capacity B of the item buffer. For this experiment, the terminal condition of an episode
is that the number of items in the buffer zone exceeds the buffer capacity or there is no position
for packing and unpacking in the bin. The results reported in Table 3 show that a larger B results
in better bin packing performance. However, when the buffer capacity exceeds 12, there is no
significant performance gain.

4.4 Real-World Bin Packing Demonstration

We also demonstrate the proposed method in a real logistics scenario where the implementation
details can be found in Section 3.2. In this task, the robotic arm packs items from the conveyor
belt into the bin one by one through the learned synergies between packing and unpacking. Fig. 8
shows some testing results produced by our method. It can be seen that various items are packed
into different bins with high space utilization. The full bin packing process can be found in the
supplementary video, which demonstrates that our method reliably completes the real-world online
3D bin packing task in different logistics scenarios.

4.5 Limitation

Due to the measurement error of the vision sensors, the estimated item size and bin heightmap
may have some deviations. The policy takes as input inaccurate state observations of the scene
and consequently predicts inappropriate packing or unpacking actions. A possible solution is to
introduce a “re-packing” strategy to reposition the inappropriately packed/unpacked items. Besides,
the proposed method focuses mainly on packing cuboid items while it cannot handle the irregularly
shaped items. This is because the state representations of PUN are unable to precisely represent the
3D geometry of irregularly shaped items. Consequently, an irregularly shaped item will be regarded
as the cuboid one which tightly circumscribes it by PUN. Thus, future work is to extend PUN to the
items with diverse shapes by designing more powerful state representations of the item and the bin.

5 Conclusion

We introduce the idea of unpacking for the online 3D-BPP. Based on it, we propose the packing-
and-unpacking network (PUN) which learns the synergies between packing and unpacking actions
via DRL. We also incorporate the heuristics which formulate the packing and unpacking experiences
of human packers into PUN to further improve the bin packing performance. The results of both
simulated and real-world experiments demonstrate the effectiveness of the proposed method.



Acknowledgments

This work was supported in part by the National Key Research and Development Plan of China
under Grant 2021ZD0112002 and Grant 2018 AAA0102504, in part by the National Natural Science
Foundation of China under Grant 61991411 and Grant U1913204, in part by the Natural Science
Foundation of Shandong Province for Distinguished Young Scholars under Grant ZR2020JQ29, and
in part by Project for Self-Developed Innovation Team of Jinan City under Grant 2021GXRC038.

References

[1] F. Wang and K. Hauser. Robot packing with known items and nondeterministic arrival order.
IEEE Transactions on Automation Science and Engineering, 18(4):1901-1915, 2020.

[2] S.Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing problem. Operations
research, 48(2):256-267, 2000.

[3] M. Hifi, I. Kacem, S. Negre, and L. Wu. A linear programming approach for the three-
dimensional bin-packing problem. Electronic Notes in Discrete Mathematics, 36:993—1000,
2010.

[4] F. Gzara, S. Elhedhli, and B. C. Yildiz. The pallet loading problem: Three-dimensional bin
packing with practical constraints. European Journal of Operational Research, 287(3):1062—
1074, 2020.

[5] E. C. man Jr, M. Garey, and D. Johnson. Approximation algorithms for bin packing: A survey.
Approximation algorithms for NP-hard problems, pages 46-93, 1996.

[6] O. Faroe, D. Pisinger, and M. Zachariasen. Guided local search for the three-dimensional
bin-packing problem. INFORMS J Comput, 15(3):267-283, 2003.

[7] T. G. Crainic, G. Perboli, and R. Tadei. Extreme point-based heuristics for three-dimensional
bin packing. INFORMS J Comput, 20(3):368-384, 2008.

[8] C. T. Ha, T. T. Nguyen, L. T. Bui, and R. Wang. An online packing heuristic for the three-
dimensional container loading problem in dynamic environments and the physical internet. In
European Conference on the Applications of Evolutionary Computation, pages 140-155, 2017.

[9] L. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization
with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[10] S. Yang, W. Zhang, R. Song, J. Cheng, and Y. Li. Learning multi-object dense descriptor for
autonomous goal-conditioned grasping. IEEE Robotics and Automation Letters, 6(2):4109—
4116, 2021. doi:10.1109/LRA.2021.3062300.

[11] Z.Rao, Y. Wu, Z. Yang, W. Zhang, S. Lu, W. Lu, and Z. Zha. Visual navigation with multiple
goals based on deep reinforcement learning. [EEE Transactions on Neural Networks and
Learning Systems, 32(12):5445-5455, 2021.

[12] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu. Solving a new 3d bin packing problem with
deep reinforcement learning method. arXiv preprint arXiv:1708.05930, 2017.

[13] H. Zhao, Q. She, C. Zhu, Y. Yang, and K. Xu. Online 3d bin packing with constrained deep
reinforcement learning. In AAAI volume 35, pages 741-749, 2021.

[14] Z. Yang, S. Yang, S. Song, W. Zhang, R. Song, J. Cheng, and Y. Li. Packerbot: Variable-sized
product packing with heuristic deep reinforcement learning. In /ROS, pages 5002-5008.

[15] S.S. Seiden. On the online bin packing problem. Journal of the ACM (JACM), 49(5):640-671,
2002.

[16] J. Egeblad. Placement of two-and three-dimensional irregular shapes for inertia moment and
balance. International Transactions in Operational Research, 16(6):789-807, 2009.


http://dx.doi.org/10.1109/LRA.2021.3062300

[17] C. Voudouris, E. P. Tsang, and A. Alsheddy. Guided local search. In Handbook of metaheuris-
tics, pages 321-361. Springer, 2010.

[18] A.Lodi, S. Martello, and D. Vigo. Heuristic algorithms for the three-dimensional bin packing
problem. Eur. J. Oper. Res., 141(2):410-420, 2002.

[19] E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of heuristics, 2
(1):5-30, 1996.

[20] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
nature, 550(7676):354-359, 2017.

[21] W. Kool, H. Van Hoof, and M. Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

[22] A. Laterre, Y. Fu, M. K. Jabri, A.-S. Cohen, D. Kas, K. Hajjar, T. S. Dahl, A. Kerkeni, and
K. Beguir. Ranked reward: Enabling self-play reinforcement learning for combinatorial opti-
mization. arXiv preprint arXiv:1807.01672, 2018.

[23] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takac. Reinforcement learning for solving the
vehicle routing problem. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, NeurIPS, volume 31, 2018.

[24] R. Verma, A. Singhal, H. Khadilkar, A. Basumatary, S. Nayak, H. V. Singh, S. Kumar, and
R. Sinha. A generalized reinforcement learning algorithm for online 3d bin-packing. arXiv
preprint arXiv:2007.00463, 2020.

[25] H. Zhao, Y. Yu, and K. Xu. Learning efficient online 3d bin packing on packing configuration
trees. In ICLR, 2021.

[26] M. L. Puterman. Markov decision processes. Handbooks in operations research and manage-
ment science, 2:331-434, 1990.

[27] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska. A survey of actor-critic reinforcement
learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(6):1291-1307, 2012.

[28] S. Sweep. Three dimensional bin-packing issues and solutions. University of Minnesota, 2003.

[29] S.Huang and S. Ontafién. A closer look at invalid action masking in policy gradient algorithms.
arXiv preprint arXiv:2006.14171, 2020.

[30] E.J. Kirkland. Bilinear interpolation. In Advanced Computing in Electron Microscopy, pages
261-263. 2010.

[31] B. Mahvash, A. Awasthi, and S. Chauhan. A column generation-based heuristic for the three-
dimensional bin packing problem with rotation. Journal of the Operational Research Society,
pages 1-13,2017.

10



	Introduction
	Related Work
	Method
	Packing-and-Unpacking Network
	Implementation of Real-world Logistics Application

	Experimental Results
	Data Generation and Implementation Details
	Bin Packing Performance Evaluation
	Ablation Studies
	Real-World Bin Packing Demonstration
	Limitation

	Conclusion

