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Abstract

While Large Language Models (LLMs) demonstrate strong performance across
domains, their long-context capabilities are limited by transient neural activa-
tions causing information decay and unstructured feed-forward network (FFN)
weights leading to semantic fragmentation. Inspired by the brain’s working mem-
ory and cortical modularity, we propose PaceLLM, featuring two innovations: (1)
a Persistent Activity (PA) Mechanism that mimics prefrontal cortex (PFC) neurons’
persistent firing by introducing an activation-level memory bank to dynamically
retrieve, reuse, and update critical FFN states, addressing contextual decay; and (2)
Cortical Expert (CE) Clustering that emulates task-adaptive neural specialization
to reorganize FFN weights into semantic modules, establishing cross-token depen-
dencies and mitigating fragmentation. Extensive evaluations show that PaceLLM
achieves 6% improvement on LongBench’s Multi-document QA and 12.5-17.5%
performance gains on co-Bench tasks, while extending measurable context length
to 200K tokens in Needle-In-A-Haystack (NIAH) tests. This work pioneers brain-
inspired LLM optimization and is complementary to other works. Besides, it
can be generalized to any model and enhance their long-context performance and
interpretability without structural overhauls.

1 Introduction

Large Language Models (LLMs) have revolutionized natural language processing, achieving state-
of-the-art results in tasks ranging from open-ended text generation [3] to complex multi-step
reasoning [47]]. These advances have made LLMs the backbone of many real-world applica-
tions [43] [14} 41, 144] 42], from dialogue systems [24]] to knowledge-intensive tasks [19]]. As these
applications scale, there is a growing demand for models to handle longer input sequences, particu-
larly in scenarios such as multi-document question answering [50]], long-form summarization [30],
and conversational memory [36]. Modeling such extended contexts requires LLMs not only to retain
information over longer spans, but also to reason over distributed and interdependent content. This
has brought renewed attention to the internal mechanisms that govern context modeling and memory
persistence within LLMs.

Existing approaches to address long-context challenges generally fall into three categories. The first
enhances LLMs’ reasoning capacity through architectural or training improvements [27} 40,37, 32].
The second focuses on input compression, reducing redundancy while preserving key information [23|
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Figure 1: Schematic diagram of the PaceLLM (bottom) and its neuroscience counterpart (top). In this
case, which introduces James Chadwick’s character, the brain processes and retains key information
through working memory. When the content in working memory appears in the subsequent text, such
as "Britain", relevant neurons will persistently to be re-active. When the final question is input, the
neuron with the keyword "neutron” will also persist to be re-activated, connect with other relevant
neurons, and finally find the answer "Manhattan Project". Analogical to the mechanism of brain,
PacelLLM expertly clustered FFN weights, and designed an Activation Memory Bank (AMB) to
interact with activations.

20, 1311 1451 9]. The third introduces external components, such as memory modules [34} [7] and
retrieval-augmented generation (RAG) [49} 33| 38]], to compensate for limited attention spans.
However, these approaches often overlook a fundamental internal limitation: the role of feed-forward
networks (FFNs). Specifically, transient neural activations cause information to fade over time, and
unstructured FFN weights may fragment semantics across tokens, jointly undermining coherence in
long context understanding.

To alleviate this problem, we draw inspiration from neuroscience to explore the untapped potential of
FFN activations. Notably, the brain’s working memory [51]] and cortical modularity [1] demonstrate
remarkably effective mechanisms for long-context processing, as illustrated at the top of Figure|T]
Working memory refers to the brain’s ability to temporarily retain and manipulate task-relevant infor-
mation through persistent neural activity in the prefrontal cortex (PFC) [8]. When previously stored
information reappears, relevant PFC neurons remain active, helping preserve relevant content and
counteract information decay. Concurrently, the cerebral cortex [25] is functionally partitioned into
distinct regions [[13]], enabling specialized “neuron experts” to handle different tasks. This modular
organization improves semantic consistency and supports efficient long-context comprehension.

Inspired by above brain’s mechanisms, we propose PaceLLM, as illustrated at the bottom of Figure|T]
Our approach consists of two key components: (1) Activation Memory Bank (AMB) to emulate PFC
persistent activity (PA). This component flattens, retrieves, fuses, and stores intermediate activations.
Retrieval computes similarity between current and historical activations, allowing highly similar
representations to be reactivated and reused. (2) Cortical Expert (CE) via clustering and reordering.
We first cluster the gated projection matrix with equal experts per cluster. Then, the gated and upper
projection matrices are reordered by rows, and the lower projection matrix is reordered by columns,
yielding a structured FFN with expert-specialized layout.

We evaluate the proposed PaceLLM on LongBench [2]] and co-Bench [46] using Qwen-2-7B-
Instruct [39]] and Llama-2-7B-chat [28]] as base models. Under the training-free setting, our method
consistently outperforms baselines. When aligned with fine-tuning baselines, we achieve a 6%
improvement on the Multi-document QA task in LongBench. On oco-Bench, the performance of
En.Dialogue and En.Multi-Choice tasks is improved by 12.5% and 17.5%, respectively. In the
Needle-In-A-Haystack (NIAH)[[18]] test, our method handles contexts up to 200K tokens, substan-



tially surpassing Activation Beacon[45]]’s 128K limit. Our contributions can be summarized as
follows:

(1) A pioneering brain-inspired approach to enhance LLMs’ long-context understanding.
While prior efforts achieve great success, they overlook internal inefficiencies—specifically, fleeting
activations that weaken retention and disordered FFN weights that disrupt semantic continuity. We
propose the first brain-inspired solution targeting these core limitations.

(2) Training-free persistent activity (PA) and cortical expert (CE) clustering mechanisms. We
introduce a memory bank that mimics working memory by operating at the activation level, enabling
finer-grained retention than token-level storage. Our cortical modularity method structures FFNs to
better capture inter-token semantics. Our method is model-agnostic and plug-and-play.

(3) Strong performance across long-context benchmarks and NIAH. Our approach achieves over
10% gains on several tasks and extends the usable context length to 200K tokens, demonstrating both
improved reasoning capabilities and robust scalability.

2 Related Work

2.1 Modeling and Understanding Long Contexts with LLMs

Enhancing LLMs’ ability to process long contexts remains an active research challenge with three
mainstream directions. Input preprocessing techniques like prompt engineering [27, 48]], position
encoding [26l 6] and KV cache compression [22, |31} |45]] reduce input complexity and guide LLMs
to focus on key information; LLM structural optimizations, such as continual learning [37]] and
model editing [32]], adapt model parameters to better handle extended contexts. External augmenta-
tion methods, including memory banks [34, (7] and Retrieval-Augmented Generation [49} 33 38]],
supplement the model’s internal capabilities by storing historical information or retrieving relevant
content. Despite demonstrated improvements, these approaches have limitations: preprocessing
methods often operate at coarse granularity (token or embedding level), structural optimizations
incur significant computational costs, and external augmentations introduce system complexity and
operational overhead.

It has been increasingly recognized that feed-forward networks (FFNs) in Transformers operate as
key-value memories, where each neuron responds to specific input patterns and produces associated
outputs [[10]]. Our proposed PaceLLM differs from existing studies by focusing on the feed-forward
networks (FFNs) within transformer layers, an aspect largely overlooked in previous long-context
solutions. PaceLLM addresses two core issues: transient neural activations causing information
decay and unstructured FFN weights leading to semantic fragmentation. Our approach operates
at activation-level granularity and reorganizes FFN weights into semantic modules, providing a
complementary solution that can be integrated with existing methods to further enhance long-context
understanding.

2.2 Brain-Inspired Interpretability in LL.Ms

Brain-inspired approaches have emerged as a promising direction for improving LLLM interpretabil-
ity and performance. HippoRAG [17]] implements a retrieval system modeled after neocortex-
hippocampus interactions. HMT [11] introduces a three-level memory hierarchy mimicking human
memory processes. Larimar [5] augments LLMs with an external episodic memory module for
knowledge editing and long-context processing. NeuroMFA [35] quantifies emergent abilities in
LLMs by analyzing structural dynamics of neuron interaction networks. These approaches demon-
strate how mechanisms in the brain can enhance model architecture, processing mechanisms, and
interpretability, establishing valuable cross-disciplinary connections.

PaceLLM extends brain-inspired research by focusing on neural persistent activity (PA) and cortical
expert (CE), which are two underexplored yet fundamental neurobiological principles. In contrast to
prior work emphasizing external modules or attention layers, our method targets the FFNs, which
account for most model parameters but lack neuroscience-guided design. By embedding activation-
level memory and expert clustering into the computation flow, PaceLLM enhances long-context
performance with minimal architectural changes.
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Figure 2: The illustration of PaceLLM. The left of the figure is an overall pipeline. Note that
Activation Memory Bank (AMB) doesn’t interact with all FEN layers. The top right of the figure is
a detailed illustration of the modified FFN layer. The bottom right is a detailed processing flow of
AMB. @Lookup Memory shows the process of similarity retrieval, taking the topk, and adding noise.
@ shows the selection of reusing strategies by comparing similarity with threshold. @ shows three
strategies for updating the AMB.

3 Method

3.1 Preliminary

Modern LLMs are primarily built upon the Transformer architecture, which contains two core
components: the multi-head self-attention mechanism and the position-wise feed-forward network
(FFN). While attention modules enable dynamic global interactions, FFNs process token-level
information in parallel and contribute substantially to the model’s capacity and computational cost.

Multi-Head Self-Attention. It dynamically models global contextual dependencies between tokens
by computing attention scores across all positions in the sequence:

. QKT
Attention(Q, K, V) = softmax 1%
Vi,

MultiHead(Q, K, V) = Concat(head;, ..., head; )W

€]

where head; = Attention(QW®, KWK, VW),

Position-wise Feed-Forward Network. It applies non-linear transformations to refine individual
token representations, operating independently on each position. For an input token representation
x € R the FEN layer performs:

FFN(X) = W2 . U(W1X —+ bl) + bg (2)

where W, € R dmuel and W, € RmoeXdir gre learnable weights. dy typically set as 4dpodel
defines the expanded intermediate dimension. Activation function o (e.g., ReLU, GeLU) enables
non-linear feature interactions.



3.2 PaceLLM

Inspired by working memory and cortical processing in the brain, we propose PaceLLM (Persistent
Activity and Cortical Experts LLM) to enhance long-context understanding. As shown in Figure[2]
PaceLLLM integrates two biologically motivated components: (1) Activation Memory Bank (AMB),
which mimics persistent neural activity in working memory by caching and retrieving FFN activations;
and (2) Cortical Experts (CE) Clustering, which introduces a similarity-based expert selection
mechanism, inspired by specialized processing in the cerebral cortex. We describe each component
below.

3.2.1 Activation Memory Bank (AMB)

To simulate persistent neural activity, we augment the FFN with an Activation Memory Bank (AMB)
that stores and reuses intermediate activations. Specific FFN layers are equipped with a memory bank
M = {K,V,u} where K,V € RMXdir denote the memory keys and values, and u € RM tracks
usage frequency. The workflow consists of memory lookup, activation update, and memory update.

Memory Lookup. Given intermediate activations X, € R¢* %, we compute their cosine similarity
with stored keys K:
simy; = Ky [C).5 € [M] 3)
17 — 9 ) .
(111,
We then retrieve the top-k most similar historical entries and bottom-k’ least similar ones to introduce
diversity:

1P, S'P = TopK(sim, k), 4)
1", S"¢ = TopK(—sim, k). 5

Activation Update. The final output o; is computed by integrating current and retrieved activations
based on similarity confidence:

2+ ARE, if max(S;?) > Ohign
0; = AVg(Xia /J'Iims) + )\Nlileg» Ohow < maX(S;OP) < Hhigh ©)
X, otherwise

where pf™ and p;°® are mean vectors of top and bottom activations, and ) is a noise scaling factor.

Memory Update. After computing outputs, AMB is updated using a similarity-aware strategy:

* High similarity (S > 6y;en): No update; only increment usage counter u.

¢ Medium similarity (fioy < S < 6high): Update stored memory by merging current
activation:
K; < Avg(K;, p.), V<« Avg(Vj, ) (7

* Low similarity (S*P < 6,y ): Replace least-used slot using LRU policy [4].

While CAMELOT [12] uses similarity to trigger memory updates based on novelty, it replaces the
least recently used slot, ignoring semantic importance. In contrast, PaceLLM selectively retains
and updates memory based on both similarity and contextual relevance, mimicking persistent neural
activity in working memory. This mechanism allows PaceL.LM to persist and reuse relevant activation
traces dynamically across long contexts.

3.2.2 Cortical Expert (CE) Neuron Clustering

Inspired by the functional modularity of the brain cortex [1], where localized neuron groups are
activated by similar input signals, we reinterpret the FFN layer as an overparameterized neuron pool
that can be decomposed into semantically coherent cortical experts. This decomposition enables both
specialization and modularity in later decoding. We propose a two-stage transformation of pretrained
FFN weights: (1) expert discovery via balanced clustering, and (2) parameter reorganization to
form modular expert blocks. This design mirrors cortical specialization, where neurons with similar
activation properties co-locate and collaborate. This process does not require retraining.



Table 1: Performance comparison between PaceLLLM and baseline models on LongBench tasks in
training-free setting. CE denotes cortical expert neuron clustering and PA denotes persistent activity
memory mechanism.

Model Method SQA MQA Sum. FSL Cod.
Vanilla 37.76  49.03 28.93 7036 50.05

OQwen-2-7B-Instruct Vanilla + CE 37.68 48.80 28.85 70.61 50.36
e SUCL ™ Vanilla + PA 38.09 4936 28.86 70.92 49.60
Vanilla+ CE +PA 3849 50.28 29.02 70.96 49.95

Vanilla 23.92 2342 2443 63.02 5548

Llama.2-7B-chat Vanilla + CE 2449 2373 2438 6286 55.17
Vanilla + PA 24.65 23.15 24.18 6323 54.98

Vanilla+ CE+PA 2535 23.75 24.61 63.58 55.28

Expert Discovery via Constrained Clustering. Given FFN weight matrices W, € R Xl and
W, € RmoaXdre e treat the rows of W as candidate neurons and apply KMeansConstrained [21]]
clustering:

W
V’(’izil, V2€{1,7dff} (8)
S d
i W ff
min Z Z Wi — pil> st |C] = = ©)
{Cs} iDliec,

where K is the predefined number of experts and C; denotes the cluster for expert j.

Parameter Reorganization. Let 7 be the index permutation obtained by concatenating all cluster
memberships. We reorganize FFN weights as follows:

WIVEK : (i+ DK, ] = Wy[r[iK : (i + 1) K], ] (10)

WOV K : (i + 1) K] = Wo, n[iK : (i+ 1)K]] (11)
This expert-wise rearrangement preserves the integrity of each neuron cluster while maintaining
compatibility with the original FEN structure.

Implementation Details. Caching: Expert indices are cached per layer to avoid redundant clustering
during repeated runs. In-place Processing: Reordering is performed in-place to reduce memory
overhead. Inference Compatibility: Output shapes and computational graphs remain unchanged,
ensuring zero-cost integration.

4 Experiments

4.1 Settings

Datasets. We evaluate PaceLLM on three established long-context benchmarks: LongBench [2],
oo-Bench [46] and Needle-In-A-Haystack (NIAH) [18]]. To evaluate the generalization ability of our
method beyond long-context tasks, we also evaluate on MMLU [13]], which features shorter context
lengths.

Implementation. We apply PaceLLM to Llama-2-7B-chat [28] and Qwen-2-7B-Instruct [39] in
training-free and low-cost fine-tuning settings. For low-cost fine-tuning, we follow the setting of
Activation Beacon [45]]. All experiments are conducted with 4 x A100-40G GPUs.

Baselines. We compare PaceLLM with the original base models and several context compression
methods, including Longl.LLMLingua [16], SnapKV [20]], and Activation Beacon (AB) [45]. As
PacelLLM is orthogonal to these methods, we also integrate PaceLLM with Activation Beacon to
demonstrate complementary benefits.

4.2 Experimental Results

Results on LongBench. Table[l|presents training-free performance results. For both Qwen-2 and
Llama-2, the components of our method (cortical expert neuron clustering CE and persistent activity



Table 2: Performance comparison between PaceLLLM and baseline models on LongBench tasks in
low-cost fine-tuning setting. CE denotes cortical expert neuron clustering, and PA denotes persistent
activity memory mechanism.

Model Method SQA MQA Sum. FSL Cod.
Vanilla-FT 41.00 40.60 26.80 68.50 66.10
LongLLML [16] 2470 2030 26.30 55.90 50.10
SnapKV [20] 38.70 37.60 26.20 67.10 60.30
Qwen-2-7B-Instruct ~ Activation Beacon [45] 40.50 40.30 26.80 68.40 66.40
Activation Beacon + PA 41.10 4280 27.90 69.31 67.51
Activation Beacon + CE 4090 4458 2736 68.98 67.26

Activation Beacon + CE + PA  42.62 4655 2874 70.56 67.52

Table 3: Results on co-Bench. Table 4: Results on MMLU.
\ En.Dia EnSum EnQA Zh.QA EnMC Code.Run \ STEM Social Sciences Humanities Others  Avg.
AB [45] 3.00 3.37 9.57 22.34 46.72 0.50 AB [45] | 61.891 79.780 72.724 70.530 70.250
Ours 15.5 4.11 1414 2484 64.19 2.50 Ours 61.974 80.047 72915 71.075 70.510

memory PA) individually improves the performance. When combined, they work synergistically
and achieve the best overall performance, with improvement up to 1.4% on certain subtasks without
any training. To ensure fairness compared to the fine-tuning method, Table [2] shows PaceLLM’s
low-cost fine-tuning performance. Applying our method to Activation Beacon [45] leads to significant
performance improvements across all task categories, especially the Multi-document QA task having
improved 6% performance. The consistent performance gains demonstrate that our brain-inspired
approach effectively enhances the model’s ability to process long-range contextual information. The
best performance is achieved by combining the two mechanisms.

Results on co-Bench. Table [3|shows the experimental results on co-Bench, another long-context
benchmark. Without any additional training, our method outperforms Activation Beacon significantly
across all tasks. For example, 12.5% on En.Dialogue task and 17.5% on En.Multi-Choice task.

Results on Needle-In-A-Haystack. We further evaluate on Needle-In-A-Haystack (NIAH) following
the official settings [[L8] and illustrate the results in Figure 3] The context length is expanded to 200K
for further evaluation. As can be concluded, our proposed PaceLLM consistently retrieves the needle
more precisely than Activation Beacon’s 128K context length.

Results on MMLU. As can be seen from Table 4] while our method is specially designed for long-
context scenarios, it maintains performance improvements on the short-context MMLU benchmark.
This indicates that PaceLLLM has not compromised in its general language understanding capabilities.

4.3 Discussion

The experimental results of each model on different datasets can prove the effectiveness of PaceLLM.
To further improve the interpretability of our method, we also design a visualization experiment. The
selected model is Qwen2-7B and the task is GovReport in LongBench. As shown in the Figure 4]
during model evaluation, we record activations from both current input and AMB at different moments
and convert them back to tokens with semantics. According to the semantic information, they are
drawn in a two-dimensional semantic figure, where points with similar distances indicate similar
semantics, the color of the points indicates the usage frequency according to the legend on the right,
and the red point indicates the activation corresponding to the current input.

The visualization shows that the current input activation form clusters with semantically similar
historical activations, while the historical activations in each cluster are fully reused. Therefore, it
can be inferred that PaceLLLM can retrieve the semantically similar historical activations stored in
AMB for different current activations, which can be re-activated and reused sufficiently many times
by analogy with working memory. This demonstrates that PaceLLM indeed has a mechanism highly
similar to the brain’s working memory, which effectively enhances the understanding of long contexts.
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Figure 3: Evaluation on Needle-In-A-Haystack. PaceLLM (bottom) can retrieve the needle up to
200K than Activation Beacon 128K (top).

4.4 Ablation Studies

To facilitate a fair and systematic comparison, we establish a base configuration using Qwen2-7B
on LongBench. In the base setting, the bank capacity M is set to 100, the fusion threshold ;g is
0.7 and By, is 0.3, with AMB applied to the 13" and 27" layers. Based on this setting, we conduct
ablation studies about deployment location, fusion thresholds, and the design of noise adding in
memory lookup as follows.

Ablation of deployment location. Since our approach is flexible and can be integrated into any
layer of the model, we examine the effect of applying our method at different network depth and
report the results in Table 5] (a). For single-document question answering (SQA) and code generation
(Cod.), sparse deployment (e.g., layers 13 and 27) performs better due to lower requirements for
long-range coherence and higher variability in input texts. For summarization (Sum.) and multi-
document question answering (MQA), which demand stronger global context modeling, denser
layer configurations (e.g., every other or fourth layer) yield better results. Deploying at all layers
consistently underperforms and increases computational cost. Therefore, we adopt different sparse
deployment locations for different tasks.

Ablation of fusion thresholds. Table (b) shows the impact of different fusion thresholds fpign and
B1ow across tasks. For complex tasks such as MQA, Sum., and few-shot learning (FSL), better results
are achieved with lower 0oy, (e.g., 0.1), indicating that direct reuse of high-similarity activations
from the AMB improves consistency and coherence in long-range context modeling. Among these,
MOQA particularly benefits from combining current and historical representations, suggesting its need
for both contextual understanding and knowledge retrieval. In contrast, for simpler tasks like SQA
or code generation, where input contexts are shorter and exhibit less inter-dependency, moderate
thresholds (e.g., 0.5) yield optimal performance. This suggests that excessive memory reuse may
introduce noise rather than useful information for such tasks.

Ablation of noise adding design. Results in Table [5| (c) confirm that adding negative entries
(Equation [3)) into activations consistently improves performance. This design draws inspiration
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Table 5: Performance comparison: (a) across different network layers, (b) under various fusion
threshold settings, and (c) with/without noise addition.

(a) Applied at different network layers

(b) Under various fusion threshold settings

Layer No. | SQA MQA Sum. FSL  Cod.
Baseline 4090 4458 27.36 6898 67.26
1,2,3,---,28 40.48 4494 2839 68.59 64.05
2,46, --,28 41.20 4549 28.78 68.02 6548
2,6,10,---,26 | 41.52 4534 2847 69.90 66.49
2,10,18,26 41.28 4484 28.02 69.96 66.81
2,27 4146 4541 2836 69.79 67.36
14,26 41.23 45.03 2834 69.52 66.64
13,27 (base) 41.62 44.68 28.19 69.41 66.71
1 41.53 45.12 2838 69.35 66.97
26 41.67 4497 28.17 69.16 66.98
14 41.21 4477 28.60 69.33 67.09

(Jhigh, 910W ‘ SQA MQA Sum. FSL Cod.
Baseline 40.90 44.58 2736 68.98 67.26
0.9,0.9 40.97 4498 2844 69.09 66.98
0.1,0.1 4143 4549 28.64 70.1 6694
0.5,0.5 41.58 45.13 2856 68.83 67.13
0.9,0.1 40.52 45.83 2857 69.71 65.64
0.7,0.3 (base) | 41.62 44.68 28.19 69.41 66.71

(c) Ablation results with and without noise addition

Setting

| SQA MQA Sum.

FSL

Cod.

with noise (b
w/o noise

ase)

41.62 44.68 28.19 69.41

66.71

40.70 4390 2790 6897 66.49

from human memory systems, where both relevant and contrasting information contribute to robust
decision-making. For each query, if all top-k samples are extremely similar, introducing a small
number of least-similar samples can serve multiple purposes, such as providing additional context or
counter-examples, preventing excessive repetition, and enhancing adaptability to diverse scenarios.

5 Conclusions & Limitations

Inspired by the prefrontal cortex’s working memory and cerebral modularity, we propose PaceLLM,
a brain-inspired framework to enhance long-context understanding in LLMs. Our method introduces
two key innovations: Persistent Activity Memory Mechanism (PA) dynamically retrieves and reuses
FFN activations through an external Activation Memory Bank (AMB), simulating the persistent
firing. By selectively storing high-value activations and employing similarity-based fusion strategies,
this mechanism mitigates context degradation in long sequences. Cortical Expert Neuron Clustering
(CE) reorganizes disordered FFN weights into task-specialized modules, establishing semantic links



between isolated token representations. This mimics the brain’s cortical modularity. Experimental
results demonstrate significant improvements across multiple benchmarks.

Our method has great highlights in performance, biological plausibility and interpretability of LLMs.
It is the first brain-inspired improvement in the FEN layer for solving long-context problems, which
is complementary to most existing methods and is plug-and-play. However, AMB is an additional
module based on the original model, which will introduce certain extra calculation and storage costs.
In addition, given that our method is orthogonal to most works, we believe that our method will not
be limited to the field of plain text understanding, and we can extend our method to multi-modal,
embodied intelligence and other fields in the future to fully realize the potential of brain-inspired Al
technology progress.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All major claims stated in the abstract and introduction are thoroughly substan-
tiated by the results and analyses presented in Experiments [4]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our work’s limitations are discussed in Conclusions&Limitations
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical results are included in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All of the necessary details to make our work reproducible are included in this
paper. Our methodology is described in detail in Method [3.2.1] [3.2.2] and our experimental
setup and implementation details are included in Experiments §.1| Additionally, all of our
code and data will be included in the submission and released upon acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All of the code and data used in this study as well as the necessary documenta-
tion to run it will be released upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All of the necessary details for testing in terms of experimental setup and
implementation details, including training splits and hyperparameter tuning can be found in

Experiments [4.1] {-4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our method is inherently training-free, meaning it does not involve stochastic
training processes (e.g., random initialization or data shuffling) that typically require multiple
runs to assess variability. Since the approach operates deterministically on fixed pretrained
models, identical inputs and configurations, as demonstrated in Experiments will always
produce the same outputs. Results are reproducible across identical hardware and software
environments.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the local computing resources we utilize in Experiments and
detailed time and costs will be put in Supplementary Materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics and made sure that our paper
conforms to it in every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.

12.

Justification: Our work promotes interdisciplinary research between Al and neuroscience.
This may positively impact future research on interpretable and cognitively aligned Al. As a
methodological contribution, it poses no foreseeable negative societal risks.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We release no models and the data we release is either already publicly
available or purely the output of an LLM doing OpenlE on such data. We believe that this
paper poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit the owners of all code, models and data used in this work. Much of
this information can be found in Experiments

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All of the code and data assets released alongside our paper are appropriately
documented for reproducibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper involves no crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Our paper involves no crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLMs used, such as ChatGPT, are limited to slight polishing and gram-
matical corrections of the paper language. They had no role in the design of core research
methods, data analysis, experimental procedures, or interpretation of results. Therefore, the
use of LLMs did not have an impact on the scientific rigor, originality or substance of the
study, so it was not necessary to make a formal declaration in the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Inference Efficiency Analysis

To quantitatively assess the computational overhead introduced by our proposed method PaceLLM,
we conduct a series of rigorous inference time measurements on the Qwen2-7B model using the
Qasper task from LongBench—a representative long-context question answering benchmark. Our
evaluation focuses on both absolute inference time and relative time increase compared to baseline
methods. The results are summarized in Table[6]

Table 6: Inference Time Comparison on Qwen2-7B (Qasper Task)

Method Sdpa Attention Flash Attention
Vanilla 7m31s 7mO03s
Activation Beacon 4m42s 4m19s
Ours 6m32s 6m09s

Controlled Time Overhead. Compared to the most efficient baseline (Activation Beacon), our
method introduces a moderate and controlled increase in inference latency. Specifically, the relative
time overhead is approximately x1.37 with SDPA and x1.32 with FlashAttention. However, com-
pared to the Vanilla baseline without any memory mechanism, our method achieves a significant
speedup—about 13.2% faster under SDPA and 13.4% faster under FlashAttention. This highlights that
our approach strikes a favorable balance between computational complexity and memory-enhanced
modeling capability.

Compatibility with Attention Optimizations. All methods benefit from attention-level optimiza-
tion. Transitioning from SDPA to FlashAttention yields a consistent 6-7% speedup across all
setups. Importantly, our method is fully compatible with FlashAttention, demonstrating its practical
applicability to real-world, performance-critical environments.

Breakdown of Overhead Sources. The primary computational overhead in our method stems from
the activation memory mechanism, including dynamic activation storage, similarity-based lookup,
and selective activation reconstruction. These components are central to the model’s ability to capture
and reuse long-range dependencies. Nonetheless, they are designed to be lightweight, ensuring that
the overall throughput remains practical.

Efficiency—Performance Trade-off. The additional inference time is well justified by the perfor-
mance gains observed in multiple long-context tasks. Compared to the Vanilla baseline, our method
reduces latency while improving comprehension. Compared to the Activation Beacon, we achieve
stronger results with acceptable overhead. For latency-sensitive applications, the design of our system
offers a tunable trade-off between inference efficiency and accuracy.

Summary. PaceLLM maintains operational feasibility with predictable computational cost. It
integrates well with widely adopted acceleration techniques such as FlashAttention and provides
a favorable performance—efficiency trade-off, making it suitable for both research and real-world
deployment scenarios.

B Detailed Performance on LongBench

Table [7]reports the performance of PaceLLM on a variety of long-context understanding tasks from
LongBench in a training-free setting. We evaluate two major foundation models—Qwen-2 and
Llama-2—and progressively apply our brain-inspired mechanisms: cortical expert neuron clustering
(CE) and persistent activity memory (PA).

Component-wise Improvements. Individually, both CE and PA contribute positively across most
tasks. For Qwen-2, CE enhances performance particularly in Single-Document QA (e.g., NrtvQA
improves from 25.38 to 25.87) and Code tasks (e.g., RB-P rises from 46.47 to 46.71). PA, on
the other hand, is especially effective in Few-shot Learning (e.g., TREC from 76.00 to 78.00) and
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Table 7: Performance comparison between PaceLLLM and baseline models on LongBench tasks in
training-free manner. CE denotes cortical expert neuron clustering and PA means persistent activity
memory mechanism.

\ Single-Document QA Multi-Document QA Summarization Few-shot Learning Code
Method . N4 X o § & X s
o s & F = 59 O & g S QS(J’ & §’s I B
£ 3 A 3 $ N ~
& S S A .25 $\ S A (>°A IS g < & & 5 A & <
o Vanilla 2538 4275 4516 3776 5529 5491 36.88 49.03 36.68 2352 2660 2893 76.00 90.16 4491 7036 53.63 46.47 50.05
$ Vanilla+CE 25.87 4230 4486 37.68 54.15 5541 3683 4880 3630 2355 2639 2885 7650 89.91 4542 70.61 54.00 46.71 50.36
3 Vanilla+PA 2524 4386 45.17 38.09 55.62 55.61 36.84 4936 36.06 23.74 2677 2886 78.00 8941 4535 70.92 5290 4629 49.60
| Vanilla+PA+CE 2615 43.88 4545 3849 5653 5631 37.99 5028 3654 2359 2692 29.02 78.00 89.41 4546 70.96 5376 46.13 49.95
N Vanilla 16.65 19.77 3534 2392 3427 26.90 9.08 2342 2654 2085 2590 2443 6450 8334 4121 63.02 5859 52.38 5548
E Vanilla+CE 16.90 2030 3626 2449 3511 27.51 858 2373 2634 2111 2569 2438 64.00 8334 4124 62.86 58.07 52.27 55.17
=8 Vanilla+PA 17.76  20.82 3536 24.65 33.33 2731 8.81 2315 2599 2096 2560 24.18 65.00 8342 4128 63.23 5823 51.73 54.98
= Vanilla+PA+CE  18.34 21.26 36.44 2535 3437  27.57 932 2375 2651 21.08 2625 24.61 66.00 83.59 41.66 63.58 5833 5222 5528

Multi-Document QA (e.g., HotpotQA from 55.29 to 55.62), aligning with its role in preserving longer
contextual dependencies.

For Llama-2, the gains are also evident. CE improves complex QA tasks such as MF-en (from 35.34
to 36.26) and long-context comprehension tasks like 2WikiMQA. PA further boosts performance in
NrtvQA and TREC. These results demonstrate that each mechanism targets complementary cognitive
functions and boosts model reasoning in different ways.

Synergistic Combination. When CE and PA are combined, they consistently lead to the best overall
performance across all categories and both models. Notably:

» For Qwen-2, Multi-Document QA tasks show the most significant gains: HotpotQA improves
from 55.29 to 56.53, and Musique from 36.88 to 37.99. These tasks demand multi-hop
reasoning and long-span memory, where our dual mechanisms work jointly to capture
hierarchical and persistent context.

* In summarization tasks such as QMSum and MultiNews, CE+PA achieves or closely
approaches the best results (e.g., MultiNews from 26.60 to 26.92).

» Few-shot Learning tasks also benefit, where CE+PA maintains the highest scores in TREC
and SAMSum.

Cross-Model Robustness. Our approach generalizes well across architectures. Although Llama-2
starts from a lower baseline than Qwen-2, it benefits significantly from our enhancements:

* The CE+PA combination raises performance in NrtvQA by +1.69, Qasper by +1.49, and
MF-en by +1.10 over vanilla Llama-2.

* Multi-Document QA and Summarization also show consistent gains (e.g., 2WikiMQA from
26.90 to 27.57, MultiNews from 25.90 to 26.25).

» Few-shot tasks exhibit either improved performance, indicating the method’s stability.

Summary. Overall, the experimental results underscore the effectiveness of our brain-inspired design.
The CE mechanism enhances specialized, local processing by routing to expert neuron clusters, while
PA extends the temporal memory span. Their integration leads to robust performance improvements
across 15+ diverse tasks without any parameter update, setting a new standard for training-free long-
context understanding. Notably, these results are achieved with minimal computational overhead (as
discussed in Section [A), ensuring practical deployment feasibility.

C Detailed Methodology of PaceLLM

C.1 Persistent Activity (PA)-Activation Working Memory Bank Operations

Algorithm [T|describes the working memory mechanism of PaceLLM, which dynamically enhances
current FFN activations using a memory bank. It consists of three key phases: retrieval, enhancement,
and memory update.

« Input: Activation tensor X € REXLXdr (where B is batch size, L is sequence length, and
dgr is FEN dimension), and a memory bank {K, V,u} storing previous activation keys,
values, and usage counters.
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Algorithm 1 Persistent Activity (PA)-Activation Working Memory Bank Operations

Require: Current activation X € RZ*LXdi memory bank {K, V, u}
Ensure: Enhanced activation O, Updated memory bank

1: X < Flatten(X) {Xg € R(BxL)xdn)

2: Initialize Oqy <+ O

3: for chunk X, € Partition(Xgy, C) do

4:  Retrieval .
5. Compute similarity matrix: sim % {sim € RE*M}
6:  S'™P I'P + TopK(sim, k) {k nearest}
7. St I8 « TopK(—sim, k') {k’ negative}
8:  Enhancement
9: fori< 1toCdo
10 e £ VI )]
e e 3 VI
12: if max(S'P[i,:]) > Oyion then
13: 0; <+ P + ApucE
14: else if 6., < maX(S“’p [i, ]) < Ghigh then
15: 0; + Avg(uPs, X [4]) + A"
16: else
17: 0; < XC[Z]
18: end if
19: Oﬂat [Z] — 0;
20:  end for
21:  Update Phase
22:  Compute chunk mean: 1, + & ZZC:l X.[d]
23:  Sopk Tork ¢ TopK(sim, k)
24: if % Z?:l Stork >, Hhigh then
25: Update usage: u[I'P¥] <— u[T'PK] + 1
26:  elseif Oy < £ 37| S < Gy then
27: K[IPK] +— Avg(K[IP], )
28: V[IPK] < Avg(V[IP°], u,.)
29:  else
30: Find LRU slots: j* « argmin(u)
J
31 Replace: K[j*] + X, V[j*] + Ogy
32:  endif
33: end for

34: O < Reshape(Oyy, B, L, dg)
35: return O,{K,V, u}

This algorithm enables low-overhead, context-sensitive memory usage for LLMs, simulating short-

¢ Output: Enhanced activations O and updated memory bank.

term working memory consolidation and reuse mechanisms.

C.2 Cortical Expert Clustering (CE)

Algorithm [2 shows how PaceLLM leverages cortical-like modularity by clustering FFEN neurons

across layers into interpretable experts using a constrained KMeans method.

* Input: Pretrained model M and target number of experts K.
* Output: Updated model M’ with clustered and reordered FFN weights.

Explanation of key steps:

1. For each layer, extract FFN weights ng) (input projection) and Wél) (output projection).
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Algorithm 2 Cortical Expert Clustering (CE)

Require: Pretrained model M, Number of experts K
1: Initialize empty state dictionary S
2: forlayer! € {1,...,L} do
3:  Extract FFN weights ng) , ng)

4:  if cluster indices 7(*) not cached then .

5 Compute 7() KMeansConstrained(Wg ) K )
6: Cache 7 to disk

7.  endif l

8 WiV Rearrange(Wg ), 7))

9: WV  Rearrange(W), 7))

10:  Update S with WiV, WHEW

11: end for

12: return Model with updated weights M’

2. If the clustering result () is not cached, apply constrained KMeans to group neurons into
K expert clusters. This ensures load balance and specialization.

3. Rearrange the weight matrices according to cluster assignments 7(", so that expert-based
routing can be implemented efficiently during inference.

4. Update the model’s weight state dictionary with the new clustered weights.

This modularization allows PaceLLM to activate specific "experts" during computation and aligns
with the cognitive hypothesis of cortical column specialization.

D Detailed Explanation of KMeans-Constrained Clustering and LRU Update
Strategy

D.1 KMeans and Constrained KMeans Clustering for Expert Partitioning

D.1.1 Standard KMeans Clustering

Given N data points {x;}V, C R¢, KMeans aims to find K clusters {C; } 2, and centroids {p;, } 1,
minimizing the intra-cluster variance:

K
. 1

?élgz Z %; — pelly . where py, = 1Cel Z Xi- (12)
k

k=1x,;€Cg k

Iterative procedure:

Assignment: Cj, < {xi : k= argmin||x; — p,ng} (13)
J
1
Update: — — X; (14)
p e x;k

Repeat until convergence.

D.1.2 Constrained KMeans Clustering

To prevent cluster imbalance, we impose cardinality constraints:

Lmin S |Ck| S Lmaxa Vk S {17 > aK} (15)

Special cases:
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* Equal-size constraint: |C| = %
 Upper-bound constraint: |C;| < U

Heuristic optimization: Let d;;, = ||x; — p;,||2. We define the cluster assignment function as:
7(i) = arg ]?611‘1‘1 dir, A; ={k:|Ck| < Limax} (16)
That is, each x; is assigned to the nearest cluster among those with remaining capacity.

D.1.3 Application in PaceLLM
In FFN layers, each neuron corresponds to a row w; € R« of the weight matrix W € R%r> dmoset,

To enable sparse expert routing, we perform constrained clustering:

di

{Wi }ff:fl Constrained KMeans {gk }i{:h where |5;€ | _ &

a7
Each expert &, serves as a functional block activated conditionally during inference.
Why clustering in PaceLLM?

* Reduces redundant neuron computation via routing.
* Ensures fair expert load balancing, avoiding expert collapse.

 Enables structure-aware specialization, as neurons with similar semantic roles are grouped.

D.2 Least Recently Used (LRU) Update Strategy for Memory Management

D.2.1 Mathematical Formulation

Let memory bank M = {(k;, v;,u;)}}, store key-value pairs and their usage counters. At each
time step ¢:

1= (L, e
When writing a new memory (Kpew, Vnew ), We check similarity:
max sim(Kyew, K;) < 6low = need replacement (19)
We replace the least recently used slot:
1F = arg max u;, (kix, vix) < (Knew, View), Uix < 0 (20)

D.2.2 Application in PaceLLM

To model human-like memory with decay, PaceLLM uses a bounded-size memory M and LRU
strategy for updates:

* Prevents unbounded memory growth.
* Automatically decays outdated context.

* Encourages dynamic adaptation to new content.
Why LRU in PaceLLM?

* Emulates neural memory fading (forgetting).

* Reduces retrieval noise by replacing stale keys.
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 Aligns with human working memory dynamics, where recent tokens dominate attention.

Together, constrained KMeans and LRU form the foundation of PaceLLM’s architecture:

Expert Routing + Working Memory Adaptation = Efficient and Continual Inference

E Extra Experiments on More Models

Table 8: Performance comparison between PaceLLM and Mistral-7B-Instruct-v0.3 on LongBench
tasks in training-free manner. CE denotes cortical expert neuron clustering and PA means persistent
activity memory mechanism.

‘ Single-Document QA Multi-Document QA Summarization Few-shot Learning Code
\od I &
Method X Iy & OV' o o S S A o ol s
S FL e § g e d s s s oy
o S N 3 'S
£ & & 3 & & 3 & F
_ | Vanilla 20.82 41.12 53.75 41.56 49.87  39.51 2834 3924 3588 2555 27.85 29.76 760 88.89 4732 70.74 5920 60.67 59.94
E£| Vanilla+CE 26.15 4346 4545 3835 5591 5631 3542 4921 3553 2344 2678 2858 78.0 89.41 4503 70.81 5376 46.13 49.95
-é Vanilla+PA 29.30 41.16 53.76 41.41 50.61  39.84 2896 39.80 3640 2564 27.27 29.77 760 89.56 4727 70.94 59.74 60.85 60.30
Vanilla+PA+CE  30.10 43.68 54.06 42.61 5697 5631 35.63 49.64 36.63 26.65 27.63 3030 78.0 89.41 48.03 71.81 59.76 60.89 60.33

Table 9: Performance comparison of more baseline models and our method (CE + PA) on LongBench,
aggregated into major task categories. Results show consistent improvements across architectures in
a training-free manner.

Model | SQA' MQA  Sum. FSL Cod.
Qwen2.5-14B-Instruct 17.18  12.15 2335 7146  32.30
Qwen2.5-14B-Instruct+Ours | 18.48  12.97 2349 7232 3341

Llama-3.1-8B-Instruct 24.22 15.04  28.21 69.49 58.44
Llama-3.1-8B-Instruct+Ours 24.31 15.80 2847  69.85 59.59

Results on LongBench with Mistral. Table [§]reports the training-free evaluation results of the
Mistral model across different LongBench tasks. We observe that both the cortical expert neuron
clustering (CE) and persistent activity memory (PA) modules individually enhance the base Mistral
model in different task categories.

Specifically, CE brings notable improvements in multi-document QA, with performance in
2WikiMQA and Musique boosted by up to 16.8% and 7.1% respectively compared to the vanilla
model. This confirms CE’s effectiveness in capturing complex cross-document reasoning patterns.
On the other hand, PA contributes consistently across all categories, particularly maintaining or even
slightly improving the base performance in summarization and few-shot tasks, while preserving high
accuracy in code reasoning.

When both mechanisms are combined (CE+PA), the model achieves the best overall results, out-
performing the vanilla baseline in 13 out of 16 subtasks. Notably, the average accuracy in Single-
Document QA improves from 41.56% to 42.61%, and in Multi-Document QA from 39.24% to
49.64%, representing a 10.4% absolute gain. Summarization and code tasks also benefit from the
combination, indicating that the two brain-inspired components are complementary.

These results demonstrate that our proposed architecture not only generalizes well across task types
but also significantly strengthens the model’s long-range reasoning capability in a fully training-free
setting.

Results on LongBench with Qwen2.5 and Llama3.1. Table [J] presents the performance of our
method when applied to two state-of-the-art LLMs — Qwen2.5-14B-Instruct and Llama-3.1-8B-
Instruct — under the same training-free setup. Despite their different architectures and training
corpora, both models exhibit consistent improvements across all task categories after integrating our
brain-inspired mechanisms.

For Qwen2.5-14B-Instruct, the integration of CE and PA leads to gains in every domain, with
particularly notable improvements in multi-document QA (+0.82) and code reasoning (+1.11). The
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model also achieves higher accuracy in few-shot learning, suggesting that our memory mechanism
enhances its ability to leverage contextual demonstrations without retraining.

Similarly, on Llama-3.1-8B-Instruct, our method consistently boosts performance across all five
categories, even though the base model already performs strongly in code and single-document
QA. The most significant gains occur in multi-document QA (+0.76) and summarization (+0.26),
indicating that CE and PA help compensate for limitations in long-context integration, especially in
models with smaller context windows or less optimized retrieval capabilities.

These results demonstrate that PaceLLM’s design is not only effective but also highly generalizable,
delivering consistent benefits across diverse model families and scales. The fact that both a heavily
optimized commercial-grade model (Qwen) and a compact open-weight model (Llama) benefit from
our approach underscores its potential as a universal, plug-and-play enhancement for long-context
understanding.
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