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Abstract

Large vision-language models (VLMs) have001
shown significant performance boost in vari-002
ous application domains. However, adopting003
them to deal with several sequentially encoun-004
tered tasks has been limited because finetuning005
a VLM on a task normally leads to reducing006
its generalization power and the capacity of007
learning new tasks. Enabling using VLMs in008
multimodal continual learning (CL) settings009
can help to address such scenarios. Hence,010
we propose a novel prompt-based CL method011
for VLMs, namely Cluster-based Modality012
Fusion Prompt (CluMo). Our approach ad-013
dresses catastrophic forgetting through con-014
structing modality-specific prompts using k-015
means clustering for selecting the best seman-016
tically matched prompt, which also enables017
benefiting from past experiences through for-018
ward transfer. Experiments on two benchmarks019
demonstrate that our method achieves SOTA020
against existing alternatives.021

1 Introduction022

Visual Question Answering (VQA) is a compli-023

cated task, where the goal is to answer questions024

descibed in text based on a given image. Address-025

ing VQA requires understanding and fusion of in-026

formation from both the visual and textual domains027

to generate accurate responses. Recently, signifi-028

cant advancements in addressing VQA tasks have029

emerged due to the development of pre-trained030

large vision-langue models (VLMs) (Radford et al.,031

2021; Kim et al., 2021). Despite these advances,032

one of the persistent challenges in VQA tasks is033

the ability to adapt a VLM in CL setting to learn034

new tasks and continuously improve without for-035

getting previously learned knowledge, also known036

as catastrophic forgetting (French, 1999). To ad-037

dress catastrophic forgetting, a group of CL algo-038

rithms are deployed. Regularization-baesd meth-039

ods (Kirkpatrick et al., 2017; Li and Hoiem, 2017)040

constrain the drastic parameter shift when learning041

Figure 1: Comparison between existing prompt-based
CL methods and our proposed method: (a) Uni-modal
based methods use image feature to select prompts from
a prompt pool. (b) Multi-modal based methods use
image features to select image prompts and use text
features to select text prompts. (c) We first train the
prompt key using a clustering algorithm to form a cluster
key and use the combination of the cluster key from both
modalities to select the fusion prompt.

new tasks. Expansion-based methods (Douillard 042

et al., 2022; Cai et al., 2023) expand the model with 043

small portion of additional weights and use the ex- 044

panded weights to learn the new incoming tasks. 045

Rehearsal-based methods (Rebuffi et al., 2017; Rol- 046

nick et al., 2019) store a representative subset of 047

training dataset for each tasks into a small memory 048

buffer and replay them back during the learning of 049

the current task to maintain the encoded knowledge 050

of previous tasks. More recently, prompt-based 051

methods (Wang et al., 2022b,a) aim to use prompts 052

that contains task-specific or semantic-specific in- 053

formation which are attached to the embedded fea- 054

tures of the input to prevent catastrophic forgetting. 055

Most existing CL methods consider unimodal, 056

i.e., vision-only and language-only, settings and 057

hence are inapplicable to address VQA tasks. To 058

tackle this shortcoming, we propose a novel two- 059

stage prompt learning-based CL method, namely 060

cluster-based modality fusion prompt (CluMo). 061

Our method adopts a pre-trained VLM as its back- 062
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bone and benefits from a clustering-based modal-063

specific key strategy to boost forward transfer and064

minimize catastrophic forgetting. More specifi-065

cally, we use a clustering-based algorithm to train066

visual-prompt keys and textual-prompt keys dur-067

ing the first stage. During the second stage, we068

assign each input image-question pair with well-069

trained prompt keys to its corresponding visual key070

and textual key. We then use the combination of071

two modal-specific keys to find the best-matched072

prompt. We also benefit from knowledge distilla-073

tion during training to further improve the perfor-074

mance. Our proposed method outperforms existing075

alternative methods. Our specific contribution in-076

cludes:077

• We propose a novel clustering-based prompt078

learning method for training VLMs in CL set-079

tings to address VQA tasks.080

• We use a two-stage training strategy to train081

the prompt keys before training the whole082

model to guarantee the optimal prompt se-083

lection.084

• We offer extensive experiments to demon-085

strate that the proposed approach achieves086

SOTA performance against existing methods.087

2 Related Works088

Visual Question Answering Visual Question089

Answering (VQA) has been a pivotal task at the in-090

tersection of computer vision and natural language091

processing. Initially, VQA was formulated as a092

classification task in which answers are selected093

from a predefined set of answers (Agrawal et al.,094

2016) and was solved by using CNNs for image095

feature extraction and RNNs for text processing.096

These models were too simple to be used in most097

practical cases. With the development of trans-098

former and BERT-like models (Lu et al., 2019; Li099

et al., 2019), performance in VQA tasks has sig-100

nificantly been improved due to the better capacity101

of capturing the intricate relationship between two102

modalities. Despite these advances, VQA tasks are103

mostly studied in static environments (Goyal et al.,104

2017; Johnson et al., 2016; Marino et al., 2019)105

which makes existing methods inapplicable in dy-106

namic environments and settings such as continual107

learning (CL).108

Prompt-Based Learning Prompt learning is a109

powerful technique for leveraging pre-trained lan-110

guage models to frame downstream tasks in NLP. 111

It is more memory-efficient than using Adapters 112

(Pfeiffer et al., 2021) or LoRA (Hu et al., 2021) 113

and has been used successfully to guide responses 114

of VLMs for a particular task. Browon et al. 2020 115

introduced the concept of prompt for the natural 116

language instruction task to guide the model to- 117

wards desired outputs. Prompt learning is based on 118

providing a fixed function to condition a model so 119

that it gets extra information token which special- 120

izes it to perform the down-stream task. Prompts 121

are mostly considered as trainable parameters, task- 122

specific or domain-specific, to guide the model by 123

obtaining task-specific knowledge (Lester et al., 124

2021; Li and Liang, 2021). 125

Prompt Learning for Continual Learning 126

Prompt learning has been used in CL to prevent 127

catastrophic forgetting when a large pre-trained 128

models is trained on a stream of sequentially en- 129

countered tasks. L2P (Wang et al., 2022b) pio- 130

neered to connect prompt-based learning and CL. 131

Instead of having a single shared prompt to learn 132

all tasks, L2P introduced the concept of “prompt 133

pool” to maintain prompts for different tasks in- 134

dependently from each other. DualPrompt (Wang 135

et al., 2022a) extended the idea of prompt pool in 136

l2p by introducing E-prompt and G-prompt. While 137

E-prompt is task-specific, G-prompt encodes the 138

knowledge used for all tasks to further allow knowl- 139

edge sharing and transferring while mitigating neg- 140

ative transfer. S-Prompt (Wang et al., 2023) applied 141

clustering to build the prompt pool with domain- 142

specific prompts. These prompt learning methods 143

for CL only consider single-modality, i.e., vision- 144

only or text-only, and hence are sub-optimal for 145

tasks with multi-modal inputs such VQA. Our 146

method benefits from the specific properties of 147

multi-modal data to address VQA in CL settings 148

using prompt learning. 149

3 Problem Description 150

Consider a set of VQA tasks, {Ti}Ti=1, which are 151

encountered sequentially and each of them are 152

from different domain. For each of the tasks, a 153

labeled training dataset Di = {⟨(Ij
i ,L

j
i )

i, yji ⟩
Ni
j=1} 154

is accessible, Ni denotes the size of dataset, Ij
i ∈ 155

RH×W×C denotes the input image, Lj
i ∈ RL×|V | 156

denotes the input text, and yji denotes the text-typed 157

discrete label. The order in which the VQA tasks 158

are observed is not known in advance and the train- 159
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Figure 2: Block diagram of the proposed approach: Left: the backbone contains a pre-trained frozen visual encoder,
a textual encoder, and a multimodal encoder. The answer decoder shares the same architecture as multimodal
encoder. During the training phase, a visual prompt key, a textual prompt key, and a prompt pool will be added for
each new task. Right: the procedure of visual prompt key training consists of training the modal-specific prompt
key by a sequence of randomly selected batches of training data from current task until convergence is reached.
Same procedure for textual prompt key.

ing data points are assumed to be drawn iid from160

a task-specific joint distribution pti(·, ·, ·). Upon161

learning each task, the model moves forward to162

learn the next task. Since all the previously learned163

tasks can be encountered at any time during testing164

in the future, the model should learn new tasks such165

that its knowledge of previously learned tasks is166

maintained, i.e., by preventing catastrophic forget-167

ting.168

We formulate our problem in a domain-169

incremental learning setting (Van de Ven and To-170

lias, 2019) which assume each tasks is from dif-171

ferent domains and the boundaries between them172

are known during learning time. We consider that173

each task can be learned individually by adapting a174

pre-trained large multimodal transformer f i
θM (·, ·)175

via minimizing a suitable discrimination loss L,176

e.g., cross entropy. In our approach, all the model177

parameters, except the final classifier layer θcls,178

are frozen during training to preserve the gener-179

alizability of the model. We benefit from prompt180

learning to enable using a single model to learn all181

tasks. To prevent catastrophic forgetting, a train-182

able task-specific prompt pool is attached to the183

model f i
θM (·, ·) such that the best-semantically-184

matched prompt is selected based on image and185

text inputs for task specialization. The prompt is186

then pre-pended to the input vectors so that the187

output is generated based on specialization. Our188

method is rehearsal-free and does not need any189

memory buffer similar prior approaches (Lopez-190

Paz and Ranzato, 2022; Rebuffi et al., 2017). 191

4 Proposed Architecture 192

Our architecture, named cluster-based modality fu- 193

sion prompt (CluMo), contains two task-specific 194

cluster-based keys for vision and text embeddings 195

and one prompt pool. The combination of the se- 196

lections from both keys is then used to select the 197

best matched prompt from prompt pool. In this 198

section, we first introduce the backbone model and 199

prompt pool-based method in 4.1, and modality 200

fusion prompt in Sec. 4.2, then the cluster-based 201

prompt key is described in Sec. 4.3, and the train- 202

ing and the inference strategy is discussed in Sec. 203

4.4. 204

4.1 Preliminary 205

Backbone The base multimodal transformer con- 206

tains three encoders: the visual encoder VE, the 207

textual encoder TE, and the multimodal fusion en- 208

coder FE. Given a visual input V, i.e., a single 209

image, and a textual input T, i.e., a question, the 210

data processing pipeline for the model is: 211

ŷ(V,T) = F(FE([VE(V);TE(T)])), (1) 212

where F(·) is the classifier to predict the answer. 213

Prompt Pool As an adoption of prompt learning 214

in continual learning, a prompt pool is a set of train- 215

able key-value (K-P ) pair, in which K ∈ R1×D 216

denotes the “prompt key”, and P ∈ RLp×D is the 217
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prompt. Lp and D denote the length and dimen-218

sion of the prompt. Given an input image V, we219

compute vI = VE(V) ∈ RLv×D, where Lv is the220

dimension of the features, after passing the image221

through the visual encoder. vI0 = vI [0] is matched222

with all the keys K within prompt pool via co-223

sine similarity to find the most similar Ki. The224

corresponding Pi is selected and prepend to V as225

V′ = [Pi;V]. Parameters of K and P are updated226

through back-propagation.227

4.2 Modality Fusion Prompt228

Previous prompt-based CL methods such as L2P229

(Wang et al., 2022b) associate each prompt in the230

prompt pool with a single prompt key to form231

Key-Value pair. In practice, the prompt keys in232

prompt-based CL can be considered as cluster cen-233

ters. These cluster encode a notion of similarity234

between the prompts. The input feature vectors that235

form a cluster in the feature space can be assigned236

to these cluster centers. The intuition behind this237

idea is that feature vectors with small geometric dis-238

tance in the feature space are semantically similar239

(Wang et al., 2023).240

However, such a key-value pair design considers241

only single modality without tasks with multimodal242

inputs. The reason is that different input modali-243

ties contain different or complementary semantic244

information. Hence, having prompt keys that as-245

sociate with each modality help guiding prompt246

selection which is more representative of the input247

in term of semantic properties of each modality.248

Thus, we propose a task-specific prompt pool archi-249

tecture, namely Modality Fusion Prompt, which250

is composed of the visual prompt keys Kv, the251

textual prompt keys Kt, and the prompt pool P252

as following:253

Kt = [Kt1 ,Kt2 , ...,KtSt
],

Kv = [Kv1 ,Kv2 , ...,KvSv
],

P = [P1, P2..., PSp ],

Ktm ∈ RD,Kvn ∈ RD, Pl ∈ RLp×D,

(2)254

where St , Sv, and Sp are the sizes of textual255

prompt key, the visual prompt key, and the prompt256

pool, respectively. Lp is the length of each prompt257

and D is the hidden dimension of the transformer258

backbone. The prompt pool size Sp is then deter-259

mined as Sp = Sv ×St. Each prompt is associated260

with the unique combination of one visual prompt261

key and one textual prompt key. Given a specific vi-262

sual prompt key Kvm and a specific textual prompt263

key Ktn , the Key-Key-Value pair is defined as the 264

following: 265

(Kvm ,Ktn) → Pm∗Sv+n. (3) 266

As modality fusion prompt is task-specific, new vi- 267

sual prompt keys, textual prompt keys and a prompt 268

pool will be initialized for each of the new coming 269

task. The previous ones are frozen during training. 270

4.3 Cluster-based Prompt Key 271

Even though the data from single task belong to the 272

same domain, they can still be further divided into 273

sub-domains based on the semantic property. To 274

make each prompt key be the semantically cluster 275

center of the sub-domains for both vision and text 276

inputs, we adopt mini-batch K-means clustering 277

algorithm on prompt keys of Kv and Kt to make 278

each prompt key diverse and representative. Let 279

B = (I, T ) be the random batch from the training 280

dataset. We extract the image feature vector vI and 281

the text feature vector vT as follows: 282

vI = V E(I), vT = TE(T ), (4) 283

where vI ∈ RB×LI×D and vT ∈ RB×LT×D, B is 284

the batch size, LI and LT are the length of vectors 285

for image and text features, represent the embed- 286

ded image and text input respectively. For visual 287

prompt key clustering, each image feature vector, 288

vIn , is set by taking mean along second the dimen- 289

sion such that v̂In ∈ RB×D, and v̂In is used to 290

compare with every prompt key in Kv: 291

similarity(n,m) = ||v̂In −Kvm ||2, (5) 292

and the prompt key with highest similarity is as- 293

signed to match vIn . After calculation of the whole 294

batch B, the prompt keys are then updated by cal- 295

culating the mean of all v̂In assigned to the specific 296

image prompt key. The procedure of updating the 297

text prompt key Kt is similar to updating the im- 298

age prompt keys. Algorithm 1 summarizes our 299

approach for prompt key training. 300

4.4 Training and Inference 301

During training, we adopt a two-stage training 302

strategy to ensure that the prompt keys are correctly 303

settled before learning the current task. In the first 304

stage of learning each task Ti, we random select 305

batches from the current task’s dataloader to train 306

minibatch k-means Cluster on the visual and the 307

textual prompt key Kv and Kt until reaching the 308
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Algorithm 1 Prompt Key Training
Require: Dataset D, Image Prompt Key Pool PI , Text

Prompt Key Pool PT , Image Prompt Size SI , Text Prompt
Size ST

while Not Converge do
Random Select batch of image I , text T from D
v̂I = mean(VE(I), dim = 1)
v̂T = mean(VT(T ), dim = 1)
ClusterI = dictionary()
ClusterT = dictionary()
for i, t in vImean , vTmean do

Keyimg = image key with top similarity(i, PI)
Keytxt = text key with top similarity(t, PT )
ClusterI [Keyimg].append(i)
ClusterT [Keytxt].append(t)

end for
for i in SI do

PI [i] = mean(ClusterI [i])
end for
for i in ST do

PT [i] = mean(ClusterT [i])
end for

end while

convergence of the clustering algorithm. During309

the second stage, the trained Kv and Kt are frozen.310

Within the iteration of training dataloader, each311

training instance is assigned to its nearest prompt312

key using k-nearest neighbor (KNN) algorithm to313

find the best match prompt Pk from the prompt314

pool P . Pk is then attached to the model pipeline:315

ŷ(V,T) = F(FE([Pk;VE(V);TE(T)])) (6)316

During the second stage, we also use knowledge317

distillation to further boost the performance. Be-318

fore the training of task T , we keep a frozen copy319

of model after finishing T − 1, denoted as MT−1.320

To prevent significant parameter shift, we pass the321

input to both MT and MT−1 and add the differ-322

ence between the two model’s output to the loss:323

LKD(V,T) = MSE(ŷMT
(V,T), ŷMT−1

(V,T)).
(7)324

The final objective loss function would be:325

L = Lce(ŷ(V,T), y) + LKD (8)326

Where Lce is the same cross entropy loss.327

During inference, the model is frozen and we328

follow a procedure similar to the second stage of329

training. For every training image-text pair, the im-330

age input is aligned with the best-matched image331

prompt key while the text input is aligned with the332

best-matched text prompt key. The combination of333

prompt keys is deployed to find the corresponding334

prompt, which is pre-pend to the output of multi-335

modal encoder.336

5 Experiments 337

5.1 Experiment Setup 338

Backbone We used the public pre-trained large 339

multimodal transformer, ALBEF (Li et al., 2021) 340

as our backbone for VQA task. It consists of an 341

image encoder, a text encoder, a multimodal en- 342

coder, which uses cross-attention between the two 343

modalities, and a answer decoder, which has same 344

architecture as multimodal encoder. 345

Baselines for comparison We use seven meth- 346

ods for comparison. We include algorithms 347

from major CL approaches. We include two 348

regularization-based methods: EWC (Kirkpatrick 349

et al., 2017) and LwF (Li and Hoiem, 2017), two 350

rehearsal-based methods: ER (Rolnick et al., 2019) 351

and GEM (Su et al., 2021). We also include three 352

prompt-based continual learning methods, L2P 353

(Wang et al., 2022b), DualPrompt (Wang et al., 354

2022a), and S-Prompt (Wang et al., 2023). We 355

also include finetuning to demonstrate the positive 356

effect of CL. Following the original setting of each 357

method, we leave the whole backbone model un- 358

frozen for non-prompt-based methods and freeze 359

the whole backbone model for prompt-based meth- 360

ods except for the classifier. To make the fair com- 361

parison, we fit all the continual learning methods 362

into our backbone, ALBEF, instead of using the 363

original model proposed in each method. 364

Metrics for comparison we use the average ac- 365

curacy on all tasks and the forgetting rate to evalu- 366

ate the performance of our method and its ability 367

to tackle catastrophic forgetting. 368

CL Tasks We evaluate our method on tasks 369

built using the CLOVE (Lei et al., 2022) dataset 370

which is a VQA-based continual learning dataset. 371

The benchmark contains both scene-incremental 372

setting benchmark, CLOVE-scene, and function- 373

incremental setting benchmark, CLOVE-function, 374

and each of the task sets contains six tasks which 375

are domain-specific and diverse from each other. 376

For more details about CLOVE and the tasks we 377

use, please refer to the Appendix. 378

For details about the optimization and implemen- 379

tation processes, please refer to the Appendix. 380

5.2 Comparative Results 381

We conduct the comparison experiments on both 382

the CLOVE-scene and CLOVE-function task 383
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CLOVE-scene CLOVE-function
Method abcdef dbafec bdcafe oarlks skaolr ksoarl

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

Finetune 34.03 34.28 34.89 34.99 38.83 21.65 24.09 62.79 16.34 74.82 17.50 84.46

EWC 37.49 28.04 37.00 29.10 37.95 27.46 40.74 33.89 37.53 37.22 40.85 32.32
LwF 38.18 26.82 35.03 32.84 37.31 29.11 36.81 41.29 30.49 53.11 29.17 55.84

ER 41.05 19.92 42.09 17.12 42.37 18.09 37.14 33.38 33.41 48.99 38.23 38.01
GEM 41.52 18.33 43.14 14.73 42.89 17.43 39.81 28.77 36.88 39.14 40.26 31.87

L2P 43.01 18.22 45.84 15.03 44.64 17.41 42.54 19.18 40.4 31.92 43.37 24.19
DualPrompt 45.51 15.86 46.58 13.49 45.83 16.48 43.69 15.31 39.32 34.78 45.65 20.54

S-Prompt 45.73 14.11 45.93 14.17 46.17 13.86 42.98 20.20 42.85 25.82 44.09 22.32

CluMo 48.73 10.76 48.8 10.25 48.83 9.73 45.95 9.15 45.66 19.89 46.89 17.41

Table 1: Comparative experimental results: the accuracy and forgetting rate for different task order are reported. For
each task sequence, A ↑ indicates the accuracy of the method, while F ↓ is the forgetting rate of each.

sets with a randomly selected task order. In ta-384

ble 1, the task order abcedf represents the CL385

tasks: ShopAndDining, WorkPlace, HomeOrHotel,386

Transportation, SportAndLeisure Outdoors in se-387

quence. The oarlks in CLOVE-function repre-388

sents tasks: ObjectRecognition, AttributeRecogni-389

tion, RelationReasoning, LogicReasoning, Knowl-390

edgeReasoning and SceneTextRecognition.391

We observe in Table 1 that our method outper-392

forms all the baselines across all task order sets393

in terms of both accuracy and forgetting rates.394

We also observe that the performance of different395

method within the same group tend to be similar.396

The regularization-based methods, EWC and LwF,397

obtain the sub-optimal accuracy and forgetting rate398

besides. The reason is that the domain for each399

task in the dataset is significantly different from400

the rest of tasks and hence regularization methods401

fail to capture the common space of the parame-402

ter distribution. This challenge makes it difficult403

to maintain the accuracy of the current task and404

previous tasks at the same time using regulariza-405

tion. The replay methods, ER and GEM, achieve406

better performance than regularization-based meth-407

ods. This can be explained by the fact tha replaying408

the data from previous task is an efficient way to409

remind the model and adjust its parameter distribu-410

tion not too diverse from previous ones. However,411

because we need to rely on a memory buffer to store412

samples for replay, these methods are memory-413

consuming and thus not space-efficient. Moreover,414

replay-based methods are still limited by the upper-415

bound of joint training, as they generally can only416

reduce catastrophic forgetting without boosting the417

accuracy of individual tasks. On the other hand, the418

prompt-based methods, namely L2P, DualPrompt,419

and SPrompt, achieve superior performances com- 420

pared to more traditional CL methods. Rather than 421

tune the whole model with regularization, prompt- 422

based methods store the prior knowledge in train- 423

able prompts, which are smaller and more efficient 424

than memory buffer, and keep the main body of 425

backbone model frozen. With the combination 426

of generalizability of pre-trained model and spe- 427

cific previous knowledge stored in prompt, prompt- 428

based method can outperform the replay and regu- 429

larization methods. Our method is the best method 430

in this group. 431

Compared with the baseline prompt-based learn- 432

ing which only considers visual modality for 433

prompt selecting and updating, CluMo takes care 434

of both the visual and textual modalities, as well 435

as the fusion of the two for selecting the prompt 436

which deploys the given information more com- 437

prehensively to process the prompt. Our design 438

thus fits better in multimodal learning scenario than 439

other existing continual learning methods. 440

Table 2: Ablative Experiments

Methods Accuracy Forgetting

Full Method 48.73 10.76

Ablative KD 47.36 11.25
Ablative Clustering 46.08 12.86

Ablative Textual Key 46.16 12.49
Ablative Visual Key 46.53 12.22

5.3 Ablation Experiments 441

To offer a better insight about our method, we 442

perform an ablation study for each component of 443

CluMo to study the positive contribution of each 444
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Figure 3: Cluster distribution on all training image data of CLOVE-Scene’s six sub-tasks before and after applying
mini-batch k-means clustering algorithm with image prompt key size of 3 using PCA.

component. We study the effect of the following:445

• Visual Prompt Key, key to separate the inner-446

task image features by their semantic property.447

• Textual Prompt Key, prompt key to separate448

the inner-task text features.449

• Minibatch k-means Clustering which train450

the prompt keys as centers of clustering algo-451

rithm to better fit the semantic meaning.452

• Knowledge Distillation, to prevent the drastic453

parameter shift of unfrozen classifier.454

We conduct ablation experiment on CLOVE-scene455

dataset with the task order abcdef. We set the456

size for both the visual prompt key and the textual457

prompt key to be three. For ablative text experi-458

ments, we change the size of textual prompt key459

to 9 to achieve the same prompt size. We also re-460

moved the visual prompt key which is the same461

for ablative image experiments. Results for this462

experiment is presented in Table 2. We observe463

that despite having the same number of prompts,464

the performance values of Ablative Textual Key465

and Ablative Visual Key are lower than our full466

pipeline. This result verifies our hypothesis that467

both modalities should be used to guide the prompt468

selection and the missing of any will cause infor-469

mation lost and lead to sub-optimal performance.470

In other words, current approaches for unimodal471

settings do not use all the information we have in472

multimodal scenarios. We also observe that with-473

out the clustering algorithm, the performance of474

ablative clustering is the lowest among all the set- 475

tings which indicate the significance of doing clus- 476

ter training for learning the prompt keys. 477

5.4 Analytic Experiments 478

Figure 4: Accuracy on the first task after running task
sequence.

Table 3: Accuracy with different clustering error

E . Image E . Text Accuracy

15.40 10.72 48.73
15.74 12.22 48.03
17.21 12.53 47.94
42.38 42.8 47.32

Effect of clustering To show the effect of cluster- 479

ing algorithm, we empirically show the correlation 480

between the clustering error and the downstream 481

accuracy. As we apply Euclidean distance as metric 482
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to learn the clusters, we record the average distance483

between each point to its assigned cluster center for484

every task, and take the average for all the tasks:485

E = Avg(

N∑
i=1

Avg(

M∑
j=1

||xj − ck||2)) (9)486

where i represent the number of tasks, j represent487

the training data from task i and k is the kth cluster488

center. We consider both the visual prompt key489

training and the textual prompt key training in this490

experiment. Table 3 presents the results. We ob-491

serve a negative correlation between the clustering492

error and the performance accuracy, i.e., lower E493

for image and text prompt keys leads to a higher494

accuracy. Without the clustering component, we495

observe E to be as high as 42.38 and 42.8 for im-496

age prompt key and text prompt key, respectively.497

After applying clustering algorithm, E drops below498

20 for both modalities and the accuracy improves499

2.97%.500

Cluster Visualization To show the effect of501

clustering on prompt key more intuitively, we vi-502

sualize the visual prompt key selection distribu-503

tion on the visual portion of the training data for504

CLOVE-Scene in Figure 3. Since we use three vi-505

sual prompt keys for each task, the visual training506

data are split into three groups, which are the green,507

blue and red points in Figure 3. We observe that508

without using clustering, visual data are more likely509

to overlap on the same cluster center which means510

they would lead to select the same visual prompt511

key. After performing clustering, we observe that512

the distribution becomes more evenly, and every513

cluster of data is diverse and separated from the514

others which means that the visual data can be515

separated explicitly. Due to space limitations, we516

include the cluster visualization for text prompt key517

in Appendix. It indicates similar observation.518

Table 4: Accuracy with different prompt pool size

Simg × Stxt Accuracy

2 × 2 48.51
3 × 3 48.73
4 × 4 48.32
5 × 5 48.32

10 × 10 48.51

Tracking the Accuracy for the First Task To519

take a closer look in the effect on preventing catas-520

trophic forgetting and increasing the accuracy in 521

CL, we track the accuracy of the first task while 522

learning the task sequence. The result is shown 523

in Figure 4. We see that the accuracy drops until 524

task 4, and then slightly increases until task 6. This 525

behavior is an indication of forward transfer be- 526

tween the tasks. Among all the baseline methods, 527

we notice that prompt-based methods, SPrompt, 528

DualPrompt and L2P, significantly outperform 529

other methods which verifies the SOTA status of 530

prompt learning in CL and its success in preventing 531

catastrophic forgetting. Our method CluMo, on the 532

other hand, still outperform all prompt-based base- 533

line methods. We observe that using the cluster- 534

based prompts, the accuracy on the first task is 535

superior compared to the other methods at the very 536

beginning. Similar to other prompt-based method, 537

our method’s accuracy slightly drops until task 4 538

and improves subsequently. As the accuracy of our 539

proposed method is higher than others at all time 540

steps, our method has the leading performance in 541

terms of both accuracy and backward transfer. 542

Effect of Prompt Key Size We also conduct an 543

experiment to study the effect of prompt pool size 544

to show the stability of our method with respect to 545

this hyperparameter. In Table 4, we choose differ- 546

ent visual prompt key and textual prompt key sizes, 547

2×2, 3×3, 4×4, 5×5, 10×10, corresponding 548

to 4, 9, 16, 25, 1and 00 prompt pool sizes. We ob- 549

serve minor changes in accuracy in Table 4 when 550

prompt pool size changes, i.e., between 48.32 and 551

48.73. This observations means that our method is 552

not sensitive to the change of the prompt pool size 553

and hence we don’t need to tune it. 554

6 Conclusion 555

We introduced a novel prompt-based continual 556

learning method for learning multimodal tasks. 557

While most of existing methods apply single 558

prompts on a single modality, our method proposes 559

modal-specific prompt key pool and train it to cap- 560

ture the semantic properties of the training dataset 561

using a clustering algorithm. We use the combina- 562

tion of both the visual prompt key and the textual 563

prompt key to select prompts, which enable the 564

prompt to better boost the performance. Our ex- 565

periments show that our method achieves the state- 566

of-the-art performance in continual VQA tasks in 567

different domains compared to other regularization- 568

based, rehearsal-based and prompt-based CL meth- 569

ods. 570
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7 Limitations571

Due to limited computational resources, all of our572

experiments are done using a single GPU and we573

haven’t explored the performance of our method574

in a distributed system setting. We will embed dis-575

tributed training in our code to boost the training576

speed and further analyze the performance within577

multi-GPU settings. Moreover, in our setting we578

may have single-modal inputs due to occlusions579

in one of the modalities. In such cases, our per-580

formance may suffer and we may need a new581

technique to address this challenge. Meanwhile,582

although CluMo is designed for visual question583

answering, it has the potential to be expanded to584

other multimodal tasks such as image captioning,585

speech emotion recognition, cross-modal retrieval,586

etc. We will further explore such possibility with587

corresponding experiments. Furthermore, CluMo588

is designed for domain incremental learning where589

each task is diverse from the others. We haven’t590

tested its performance on other CL experiment set-591

tings such as class-incremental or task-incremental,592

which will be in our exploration plan in the future.593
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A Appendix706

A.1 Hardware Setup and Hyper-parameter707

All the experiments are done on single Nvidia A40708

GPU. For all the experiments, we use AdamW op-709

timizer with cosine scheduler and we set learning710

rate lr= 3e-4. We set the training epoch = 5 and711

training batch size = 16.712

For CluMo, we set visual prompt key size Sv =713

3, text prompt key size St = 3 and prompt length714

Lp = 10. For DuamPrompt, we insert G-Prompt to715

[0,1] layers of visual encoder, and insert E-Prompt716

to [2,3,4] layers of the visual encoder. For all the717

prompt-based baselines, Lp = 10.718

For all the prompt-based methods such as L2P,719

DualPrompt and SPrompt, we freeze the whole720

backbone model except the last classifier layer. For721

the rest of the baseline methods, we don’t freeze722

any parameters.723

A.2 More Experiment Result 724

We present more comparison experiments with 725

different task order for CLOVE-scene and 726

CLOVE-function here in table 5 and table 6. Sim- 727

ilar as what we present in main paper, our method 728

outperforms other baseline methods in all tasks. 729

Among all the continual learning methods, the 730

accuracy of regularization-based methods, EWC 731

and LwF is significantly lower than other meth- 732

ods, which indicates that the regularization-based 733

method may not be the state-of-the-art contin- 734

ual learning method regarding large multimodal 735

model with incoming tasks from different domain. 736

Prompt-based methods, on the other hand, are the 737

state-of-the-art methods regarding both forgetting 738

rate and accuracy. Without the need of memory 739

buffer and finetune the whole model, prompt-based 740

methods are memory-efficient than replay-based 741

methods and time-efficient than regularization- 742

based methods, which makes them the most pre- 743

ferred choice in current condition. Our method, 744

which is prompt-based method, further improve the 745

accuracy and forgetting rate on the top of exiting 746

prompt-based baselines, while keep the advantage 747

of prompt-based method. 748

A.3 CLOVE dataset detail description 749

For all the 12 tasks in CLOVE-Scene and CLOVE- 750

Function, except SceneTextRecognition which 751

has 16.8K training data and 2.4K testing data, all 752

the other tasks have 20K training data and 3K test- 753

ing data. We present more detail about CLOVE 754

dataset here. To visualize the dataset and explicitly 755

show that each task is from different domain, we 756

present two samples for each dataset in Figure 5 757

and Figure 6. From the samples, we can see that 758

the image in CLOVE-scene are diverse from each 759

other between different tasks, while the questions 760

are similar with each other with the only difference 761

regarding the content of the pictures. However, for 762

CLOVE-function dataset, we cannot tell the im- 763

age from different tasks are from different domain, 764

as they are mixed up. But we can see that the type 765

of questions that each task asks is quite diverse for 766

different purposes of reasoning. 767

A.4 Text Prompt Key Cluster Visualization 768

We put the visualization of text prompt key clus- 769

ter here as the supplementary material of image 770

prompt key cluster visualization in main paper. By 771

observing the figures of "W/O Clustering", we find 772
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CLOVE-scene
Method acbefd caefdb bafedc

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

Finetune 34.45 35.14 34.42 34.47 33.95 35.67

EWC 37.99 29.68 37.13 28.63 37.83 27.97
LwF 37.85 29.87 37.94 28.15 38.21 27.48

ER 41.91 20.28 41.11 19.65 42.08 20.52
GEM 42.54 20.13 41.90 20.88 43.11 19.86

L2P 45.63 14.96 44.78 17.99 46.58 14.85
DualPrompt 46.27 15.45 46.21 15.89 47.01 13.16

S-Prompt 46.99 14.38 46.68 14.77 47.53 12.19

Ours 48.94 10.29 48.26 11.04 48.98 10.23

Table 5: More Comparative Experiment with different task sequence order of CLOVE-scene dataset.

CLOVE-function
Method soarkl caefdb bafedc

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

Finetune 31.55 53.76 37.34 39.64 23.34 57.32

EWC 35.70 47.92 37.82 41.55 38.92 40.48
LwF 37.18 46.86 36.81 44.12 39.21 39.81

ER 42.22 32.97 39.78 38.62 41.22 35.79
GEM 44.58 30.87 41.43 29.46 40.87 32.98

L2P 44.80 16.38 43.39 21.26 43.27 21.97
DualPrompt 45.01 15.90 44.26 17.43 44.66 18.50

S-Prompt 45.45 13.47 45.01 14.76 45.27 14.29

Ours 46.18 10.62 45.36 11.69 46.34 10.22

Table 6: More Comparative Experiment with different task sequence order of CLOVE-scene dataset.
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Figure 5: CLOVE-scene dataset sample

that most of the tasks’ text input, b, c, e, f , are con-773

centrating to single text prompt key, and the text774

input of task a and d are distributed into two text775

prompt keys while the boundary is blurred and776

not explicit. After applying clustering algorithm,777

the text inputs are more evenly distributed among778

three different text prompt keys. However, com-779

pared with the clustering of image prompt key, the780

distribution of text input does not show apparent781

diversity among different text prompt keys, which782

indicate that the clustering of text, which is the783

question in VQA setting, is more difficult than the784

clustering of images, and thus offer us new field to785

further explore.786
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Figure 6: CLOVE-function dataset sample

Figure 7: Text prompt key clustering visualization
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