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Abstract

Large vision-language models (VLMs) have
shown significant performance boost in vari-
ous application domains. However, adopting
them to deal with several sequentially encoun-
tered tasks has been limited because finetuning
a VLM on a task normally leads to reducing
its generalization power and the capacity of
learning new tasks. Enabling using VLMs in
multimodal continual learning (CL) settings
can help to address such scenarios. Hence,
we propose a novel prompt-based CL method
for VLMs, namely Cluster-based Modality
Fusion Prompt (CluMo). Our approach ad-
dresses catastrophic forgetting through con-
structing modality-specific prompts using k-
means clustering for selecting the best seman-
tically matched prompt, which also enables
benefiting from past experiences through for-
ward transfer. Experiments on two benchmarks
demonstrate that our method achieves SOTA
against existing alternatives.

1 Introduction

Visual Question Answering (VQA) is a compli-
cated task, where the goal is to answer questions
descibed in text based on a given image. Address-
ing VQA requires understanding and fusion of in-
formation from both the visual and textual domains
to generate accurate responses. Recently, signifi-
cant advancements in addressing VQA tasks have
emerged due to the development of pre-trained
large vision-langue models (VLMs) (Radford et al.,
2021; Kim et al., 2021). Despite these advances,
one of the persistent challenges in VQA tasks is
the ability to adapt a VLM in CL setting to learn
new tasks and continuously improve without for-
getting previously learned knowledge, also known
as catastrophic forgetting (French, 1999). To ad-
dress catastrophic forgetting, a group of CL algo-
rithms are deployed. Regularization-baesd meth-
ods (Kirkpatrick et al., 2017; Li and Hoiem, 2017)
constrain the drastic parameter shift when learning
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Figure 1: Comparison between existing prompt-based
CL methods and our proposed method: (a) Uni-modal
based methods use image feature to select prompts from
a prompt pool. (b) Multi-modal based methods use
image features to select image prompts and use text
features to select text prompts. (¢) We first train the
prompt key using a clustering algorithm to form a cluster
key and use the combination of the cluster key from both
modalities to select the fusion prompt.
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new tasks. Expansion-based methods (Douillard
et al., 2022; Cai et al., 2023) expand the model with
small portion of additional weights and use the ex-
panded weights to learn the new incoming tasks.
Rehearsal-based methods (Rebuffi et al., 2017; Rol-
nick et al., 2019) store a representative subset of
training dataset for each tasks into a small memory
buffer and replay them back during the learning of
the current task to maintain the encoded knowledge
of previous tasks. More recently, prompt-based
methods (Wang et al., 2022b,a) aim to use prompts
that contains task-specific or semantic-specific in-
formation which are attached to the embedded fea-
tures of the input to prevent catastrophic forgetting.

Most existing CL methods consider unimodal,
i.e., vision-only and language-only, settings and
hence are inapplicable to address VQA tasks. To
tackle this shortcoming, we propose a novel two-
stage prompt learning-based CL method, namely
cluster-based modality fusion prompt (CluMo).
Our method adopts a pre-trained VLM as its back-



bone and benefits from a clustering-based modal-
specific key strategy to boost forward transfer and
minimize catastrophic forgetting. More specifi-
cally, we use a clustering-based algorithm to train
visual-prompt keys and textual-prompt keys dur-
ing the first stage. During the second stage, we
assign each input image-question pair with well-
trained prompt keys to its corresponding visual key
and textual key. We then use the combination of
two modal-specific keys to find the best-matched
prompt. We also benefit from knowledge distilla-
tion during training to further improve the perfor-
mance. Our proposed method outperforms existing
alternative methods. Our specific contribution in-
cludes:

* We propose a novel clustering-based prompt
learning method for training VLMs in CL set-
tings to address VQA tasks.

* We use a two-stage training strategy to train
the prompt keys before training the whole
model to guarantee the optimal prompt se-
lection.

* We offer extensive experiments to demon-
strate that the proposed approach achieves
SOTA performance against existing methods.

2 Related Works

Visual Question Answering Visual Question
Answering (VQA) has been a pivotal task at the in-
tersection of computer vision and natural language
processing. Initially, VQA was formulated as a
classification task in which answers are selected
from a predefined set of answers (Agrawal et al.,
2016) and was solved by using CNNs for image
feature extraction and RNNs for text processing.
These models were too simple to be used in most
practical cases. With the development of trans-
former and BERT-like models (Lu et al., 2019; Li
et al., 2019), performance in VQA tasks has sig-
nificantly been improved due to the better capacity
of capturing the intricate relationship between two
modalities. Despite these advances, VQA tasks are
mostly studied in static environments (Goyal et al.,
2017; Johnson et al., 2016; Marino et al., 2019)
which makes existing methods inapplicable in dy-
namic environments and settings such as continual
learning (CL).

Prompt-Based Learning Prompt learning is a
powerful technique for leveraging pre-trained lan-

guage models to frame downstream tasks in NLP.
It is more memory-efficient than using Adapters
(Pfeiffer et al., 2021) or LoRA (Hu et al., 2021)
and has been used successfully to guide responses
of VLMs for a particular task. Browon et al. 2020
introduced the concept of prompt for the natural
language instruction task to guide the model to-
wards desired outputs. Prompt learning is based on
providing a fixed function to condition a model so
that it gets extra information token which special-
izes it to perform the down-stream task. Prompts
are mostly considered as trainable parameters, task-
specific or domain-specific, to guide the model by
obtaining task-specific knowledge (Lester et al.,
2021; Li and Liang, 2021).

Prompt Learning for Continual Learning
Prompt learning has been used in CL to prevent
catastrophic forgetting when a large pre-trained
models is trained on a stream of sequentially en-
countered tasks. L2P (Wang et al., 2022b) pio-
neered to connect prompt-based learning and CL.
Instead of having a single shared prompt to learn
all tasks, L2P introduced the concept of “prompt
pool” to maintain prompts for different tasks in-
dependently from each other. DualPrompt (Wang
et al., 2022a) extended the idea of prompt pool in
12p by introducing E-prompt and G-prompt. While
E-prompt is task-specific, G-prompt encodes the
knowledge used for all tasks to further allow knowl-
edge sharing and transferring while mitigating neg-
ative transfer. S-Prompt (Wang et al., 2023) applied
clustering to build the prompt pool with domain-
specific prompts. These prompt learning methods
for CL only consider single-modality, i.e., vision-
only or text-only, and hence are sub-optimal for
tasks with multi-modal inputs such VQA. Our
method benefits from the specific properties of
multi-modal data to address VQA in CL settings
using prompt learning.

3 Problem Description

Consider a set of VQA tasks, {7;}Z_,, which are
encountered sequentially and each of them are
from different domain. For each of the tasks, a
labeled training dataset D = {((I Z] , Lg )Y, yi ) j\fzz 1}
is accessible, IV; denotes the size of dataset, I f €
RIXWXC denotes the input image, L{ e REXIVI
denotes the input text, and yi denotes the text-typed
discrete label. The order in which the VQA tasks
are observed is not known in advance and the train-
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Figure 2: Block diagram of the proposed approach: Left: the backbone contains a pre-trained frozen visual encoder,
a textual encoder, and a multimodal encoder. The answer decoder shares the same architecture as multimodal
encoder. During the training phase, a visual prompt key, a textual prompt key, and a prompt pool will be added for
each new task. Right: the procedure of visual prompt key training consists of training the modal-specific prompt
key by a sequence of randomly selected batches of training data from current task until convergence is reached.

Same procedure for textual prompt key.

ing data points are assumed to be drawn iid from
a task-specific joint distribution pi(-,-,-). Upon
learning each task, the model moves forward to
learn the next task. Since all the previously learned
tasks can be encountered at any time during testing
in the future, the model should learn new tasks such
that its knowledge of previously learned tasks is
maintained, i.e., by preventing catastrophic forget-
ting.

We formulate our problem in a domain-
incremental learning setting (Van de Ven and To-
lias, 2019) which assume each tasks is from dif-
ferent domains and the boundaries between them
are known during learning time. We consider that
each task can be learned individually by adapting a
pre-trained large multimodal transformer f},,(-, -)
via minimizing a suitable discrimination loss L,
e.g., cross entropy. In our approach, all the model
parameters, except the final classifier layer 0,
are frozen during training to preserve the gener-
alizability of the model. We benefit from prompt
learning to enable using a single model to learn all
tasks. To prevent catastrophic forgetting, a train-
able task-specific prompt pool is attached to the
model f},,(-,-) such that the best-semantically-
matched prompt is selected based on image and
text inputs for task specialization. The prompt is
then pre-pended to the input vectors so that the
output is generated based on specialization. Our
method is rehearsal-free and does not need any
memory buffer similar prior approaches (Lopez-

Paz and Ranzato, 2022; Rebuffi et al., 2017).

4 Proposed Architecture

Our architecture, named cluster-based modality fu-
sion prompt (CluMo), contains two task-specific
cluster-based keys for vision and text embeddings
and one prompt pool. The combination of the se-
lections from both keys is then used to select the
best matched prompt from prompt pool. In this
section, we first introduce the backbone model and
prompt pool-based method in 4.1, and modality
fusion prompt in Sec. 4.2, then the cluster-based
prompt key is described in Sec. 4.3, and the train-
ing and the inference strategy is discussed in Sec.
4.4.

4.1 Preliminary

Backbone The base multimodal transformer con-
tains three encoders: the visual encoder VE, the
textual encoder TE, and the multimodal fusion en-
coder FE. Given a visual input V, i.e., a single
image, and a textual input T, i.e., a question, the
data processing pipeline for the model is:

9(V,T) = F(FE([VE(V); TE(T)])), (1)

where F () is the classifier to predict the answer.

Prompt Pool As an adoption of prompt learning
in continual learning, a prompt pool is a set of train-
able key-value (K-P) pair, in which K €¢ R'*P
denotes the “prompt key”, and P € RF»*P is the



prompt. L, and D denote the length and dimen-
sion of the prompt. Given an input image V, we
compute vy = VE(V) € RF**P where L, is the
dimension of the features, after passing the image
through the visual encoder. vy, = v;[0] is matched
with all the keys K within prompt pool via co-
sine similarity to find the most similar K;. The
corresponding F; is selected and prepend to V as
V' = [P;; V]. Parameters of K and P are updated
through back-propagation.

4.2 Modality Fusion Prompt

Previous prompt-based CL methods such as L2P
(Wang et al., 2022b) associate each prompt in the
prompt pool with a single prompt key to form
Key-Value pair. In practice, the prompt keys in
prompt-based CL can be considered as cluster cen-
ters. These cluster encode a notion of similarity
between the prompts. The input feature vectors that
form a cluster in the feature space can be assigned
to these cluster centers. The intuition behind this
idea is that feature vectors with small geometric dis-
tance in the feature space are semantically similar
(Wang et al., 2023).

However, such a key-value pair design considers
only single modality without tasks with multimodal
inputs. The reason is that different input modali-
ties contain different or complementary semantic
information. Hence, having prompt keys that as-
sociate with each modality help guiding prompt
selection which is more representative of the input
in term of semantic properties of each modality.
Thus, we propose a task-specific prompt pool archi-
tecture, namely Modality Fusion Prompt, which
is composed of the visual prompt keys K, the
textual prompt keys K, and the prompt pool P
as following:

Ky = [Kiy, Ky ooy Kt ],
Ky = Ky, Ky ooy Ko |, o
P =[P, P,..., Ps,),

K, € RP K, € RP P e Rb»*D,

where S; , Sy, and S, are the sizes of textual
prompt key, the visual prompt key, and the prompt
pool, respectively. L, is the length of each prompt
and D is the hidden dimension of the transformer
backbone. The prompt pool size S), is then deter-
mined as S, = S, X S;. Each prompt is associated
with the unique combination of one visual prompt
key and one textual prompt key. Given a specific vi-
sual prompt key K, and a specific textual prompt

m

key K, , the Key-Key-Value pair is defined as the
following:

(K'Um7Ktn> — Pm*&,-&-n- (3)

As modality fusion prompt is task-specific, new vi-
sual prompt keys, textual prompt keys and a prompt
pool will be initialized for each of the new coming
task. The previous ones are frozen during training.

4.3 Cluster-based Prompt Key

Even though the data from single task belong to the
same domain, they can still be further divided into
sub-domains based on the semantic property. To
make each prompt key be the semantically cluster
center of the sub-domains for both vision and text
inputs, we adopt mini-batch K-means clustering
algorithm on prompt keys of K, and K; to make
each prompt key diverse and representative. Let
B = (I,T) be the random batch from the training
dataset. We extract the image feature vector vy and
the text feature vector v as follows:

vy = VE(I),vr = TE(T), (4)

where v; € RBXLixD gnd vp € RBXLrxD B g
the batch size, Ly and L7 are the length of vectors
for image and text features, represent the embed-
ded image and text input respectively. For visual
prompt key clustering, each image feature vector,
vy, , 18 set by taking mean along second the dimen-
sion such that 9;, € RP*P and 7y, is used to
compare with every prompt key in K,,:

similarity(n,m) = ||or, — Ky, |l2, (5)

and the prompt key with highest similarity is as-
signed to match vy, . After calculation of the whole
batch B, the prompt keys are then updated by cal-
culating the mean of all 07, assigned to the specific
image prompt key. The procedure of updating the
text prompt key K is similar to updating the im-
age prompt keys. Algorithm 1 summarizes our
approach for prompt key training.

4.4 Training and Inference

During training, we adopt a two-stage training
strategy to ensure that the prompt keys are correctly
settled before learning the current task. In the first
stage of learning each task 7T;, we random select
batches from the current task’s dataloader to train
minibatch k-means Cluster on the visual and the
textual prompt key K, and K; until reaching the



Algorithm 1 Prompt Key Training

Require: Dataset D, Image Prompt Key Pool P, Text
Prompt Key Pool Pr, Image Prompt Size S7, Text Prompt
Size ST
while Not Converge do

Random Select batch of image I, text T' from D

o1 = mean(VE(I), dim = 1)

O = mean(VI(T), dim = 1)

Clustery = dictionary()

Clustery = dictionary()

fori,tinvr,, ons Vean 4O
Keyimg = image key with top similarity(i, Pr)
Keyiz: = text key with top similarity(t, Pr)
Cluster [ Keyimg].append(i)
Clusterr[Keyiqt].append(r)

end for

foriin Sy do
P[i] = mean(Cluster;[i])

end for

foriin ST do
Pr[i] = mean(Clusterr[i])

end for

end while

convergence of the clustering algorithm. During
the second stage, the trained K, and K; are frozen.
Within the iteration of training dataloader, each
training instance is assigned to its nearest prompt
key using k-nearest neighbor (KNN) algorithm to
find the best match prompt P, from the prompt
pool P. Py is then attached to the model pipeline:

9(V,T) = F(FE([Py; VE(V); TE(T)])) ~ (6)

During the second stage, we also use knowledge
distillation to further boost the performance. Be-
fore the training of task 7', we keep a frozen copy
of model after finishing 7" — 1, denoted as Mp_1.
To prevent significant parameter shift, we pass the
input to both M7 and M7 _; and add the differ-
ence between the two model’s output to the loss:

£KD(V7 T) = MSE(:&MT (V7 T>7 gMT—l (V7 T))
(7

The final objective loss function would be:
L=Lee(§(V,T),y) + LkD ®)

Where L. is the same cross entropy loss.

During inference, the model is frozen and we
follow a procedure similar to the second stage of
training. For every training image-text pair, the im-
age input is aligned with the best-matched image
prompt key while the text input is aligned with the
best-matched text prompt key. The combination of
prompt keys is deployed to find the corresponding
prompt, which is pre-pend to the output of multi-
modal encoder.

S Experiments

5.1 Experiment Setup

Backbone We used the public pre-trained large
multimodal transformer, ALBEF (Li et al., 2021)
as our backbone for VQA task. It consists of an
image encoder, a text encoder, a multimodal en-
coder, which uses cross-attention between the two
modalities, and a answer decoder, which has same
architecture as multimodal encoder.

Baselines for comparison We use seven meth-
ods for comparison. We include algorithms
from major CL approaches. We include two
regularization-based methods: EWC (Kirkpatrick
et al., 2017) and LwF (Li and Hoiem, 2017), two
rehearsal-based methods: ER (Rolnick et al., 2019)
and GEM (Su et al., 2021). We also include three
prompt-based continual learning methods, L2P
(Wang et al., 2022b), DualPrompt (Wang et al.,
2022a), and S-Prompt (Wang et al., 2023). We
also include finetuning to demonstrate the positive
effect of CL. Following the original setting of each
method, we leave the whole backbone model un-
frozen for non-prompt-based methods and freeze
the whole backbone model for prompt-based meth-
ods except for the classifier. To make the fair com-
parison, we fit all the continual learning methods
into our backbone, ALBEF, instead of using the
original model proposed in each method.

Metrics for comparison we use the average ac-
curacy on all tasks and the forgetting rate to evalu-
ate the performance of our method and its ability
to tackle catastrophic forgetting.

CL Tasks We evaluate our method on tasks
built using the CLOVE (Lei et al., 2022) dataset
which is a VQA-based continual learning dataset.
The benchmark contains both scene-incremental
setting benchmark, CLOVE-scene, and function-
incremental setting benchmark, CLOVE-function,
and each of the task sets contains six tasks which
are domain-specific and diverse from each other.
For more details about CLOVE and the tasks we
use, please refer to the Appendix.

For details about the optimization and implemen-
tation processes, please refer to the Appendix.

5.2 Comparative Results

We conduct the comparison experiments on both
the CLOVE-scene and CLOVE-function task



CLOVE-scene CLOVE-function

Method abcdef dbafec bdcafe oarlks skaolr ksoarl
AT \ Fl AT \ Fl AT \ Fl AT \ Fl H A1 \ Fl H AT \ Fl
Finetune H 34.03 \ 34.28 H 34.89 \ 34.99 H 38.83 \ 21.65 H 24.09 \ 62.79 H 16.34 \ 74.82 H 17.50 \ 84.46
EWC 37.49 | 28.04 || 37.00 | 29.10 || 37.95 | 27.46 || 40.74 | 33.89 || 37.53 | 37.22 || 40.85 | 32.32
LwF 38.18 | 26.82 || 35.03 | 32.84 || 37.31 | 29.11 || 36.81 | 41.29 || 30.49 | 53.11 || 29.17 | 55.84
ER 41.05 | 19.92 || 42.09 | 17.12 || 42.37 | 18.09 || 37.14 | 33.38 || 33.41 | 48.99 || 38.23 | 38.01
GEM 41.52 | 18.33 || 43.14 | 14.73 || 42.89 | 17.43 || 39.81 | 28.77 || 36.88 | 39.14 || 40.26 | 31.87
L2P 43.01 | 18.22 || 45.84 | 15.03 || 44.64 | 17.41 || 42.54 | 19.18 40.4 | 31.92 || 43.37 | 24.19
DualPrompt || 45.51 | 15.86 || 46.58 | 13.49 || 45.83 | 16.48 || 43.69 | 1531 || 39.32 | 34.78 || 45.65 | 20.54
S-Prompt 4573 | 14.11 || 4593 | 14.17 || 46.17 | 13.86 || 4298 | 20.20 || 42.85 | 25.82 || 44.09 | 22.32
CluMo H 48.73 \ 10.76 H 48.8 \ 10.25 H 48.83 \ 9.73 H 45.95 \ 9.15 H 45.66 \ 19.89 H 46.89 \ 17.41

Table 1: Comparative experimental results: the accuracy and forgetting rate for different task order are reported. For
each task sequence, A 1 indicates the accuracy of the method, while F | is the forgetting rate of each.

sets with a randomly selected task order. In ta-
ble 1, the task order abcedf represents the CL
tasks: ShopAndDining, WorkPlace, HomeOrHotel,
Transportation, SportAndLeisure Outdoors in se-
quence. The oarlks in CLOVE-function repre-
sents tasks: ObjectRecognition, AttributeRecogni-
tion, RelationReasoning, LogicReasoning, Knowl-
edgeReasoning and ScenelextRecognition.

We observe in Table 1 that our method outper-
forms all the baselines across all task order sets
in terms of both accuracy and forgetting rates.
We also observe that the performance of different
method within the same group tend to be similar.
The regularization-based methods, EWC and LwF,
obtain the sub-optimal accuracy and forgetting rate
besides. The reason is that the domain for each
task in the dataset is significantly different from
the rest of tasks and hence regularization methods
fail to capture the common space of the parame-
ter distribution. This challenge makes it difficult
to maintain the accuracy of the current task and
previous tasks at the same time using regulariza-
tion. The replay methods, ER and GEM, achieve
better performance than regularization-based meth-
ods. This can be explained by the fact tha replaying
the data from previous task is an efficient way to
remind the model and adjust its parameter distribu-
tion not too diverse from previous ones. However,
because we need to rely on a memory buffer to store
samples for replay, these methods are memory-
consuming and thus not space-efficient. Moreover,
replay-based methods are still limited by the upper-
bound of joint training, as they generally can only
reduce catastrophic forgetting without boosting the
accuracy of individual tasks. On the other hand, the
prompt-based methods, namely L2P, DualPrompt,

and SPrompt, achieve superior performances com-
pared to more traditional CL methods. Rather than
tune the whole model with regularization, prompt-
based methods store the prior knowledge in train-
able prompts, which are smaller and more efficient
than memory buffer, and keep the main body of
backbone model frozen. With the combination
of generalizability of pre-trained model and spe-
cific previous knowledge stored in prompt, prompt-
based method can outperform the replay and regu-
larization methods. Our method is the best method
in this group.

Compared with the baseline prompt-based learn-
ing which only considers visual modality for
prompt selecting and updating, CluMo takes care
of both the visual and textual modalities, as well
as the fusion of the two for selecting the prompt
which deploys the given information more com-
prehensively to process the prompt. Our design
thus fits better in multimodal learning scenario than
other existing continual learning methods.

Table 2: Ablative Experiments

Methods H Accuracy ‘ Forgetting
Full Method || 4873 | 10.76
Ablative KD 47.36 11.25
Ablative Clustering 46.08 12.86
Ablative Textual Key 46.16 12.49
Ablative Visual Key 46.53 12.22

5.3 Ablation Experiments

To offer a better insight about our method, we
perform an ablation study for each component of
CluMo to study the positive contribution of each
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Figure 3: Cluster distribution on all training image data of CLOVE-Scene’s six sub-tasks before and after applying
mini-batch k-means clustering algorithm with image prompt key size of 3 using PCA.

component. We study the effect of the following:

* Visual Prompt Key, key to separate the inner-
task image features by their semantic property.

» Textual Prompt Key, prompt key to separate
the inner-task text features.

* Minibatch k-means Clustering which train
the prompt keys as centers of clustering algo-
rithm to better fit the semantic meaning.

* Knowledge Distillation, to prevent the drastic
parameter shift of unfrozen classifier.

We conduct ablation experiment on CLOVE-scene
dataset with the task order abcdef. We set the
size for both the visual prompt key and the textual
prompt key to be three. For ablative text experi-
ments, we change the size of textual prompt key
to 9 to achieve the same prompt size. We also re-
moved the visual prompt key which is the same
for ablative image experiments. Results for this
experiment is presented in Table 2. We observe
that despite having the same number of prompts,
the performance values of Ablative Textual Key
and Ablative Visual Key are lower than our full
pipeline. This result verifies our hypothesis that
both modalities should be used to guide the prompt
selection and the missing of any will cause infor-
mation lost and lead to sub-optimal performance.
In other words, current approaches for unimodal
settings do not use all the information we have in
multimodal scenarios. We also observe that with-
out the clustering algorithm, the performance of

ablative clustering is the lowest among all the set-
tings which indicate the significance of doing clus-
ter training for learning the prompt keys.

5.4 Analytic Experiments

CLOVE-Scene
50

45

40

Accuracy

35

30 U ——

25
task 1 task 2 task 3 task 4 task 5 task 6

©® DualCluster 4 DualPrompt SPrompt W L2P % ER GEM EWC LwF

Figure 4: Accuracy on the first task after running task
sequence.

Table 3: Accuracy with different clustering error

E. Image | £. Text H Accuracy

15.40 10.72 48.73
15.74 12.22 48.03
17.21 12.53 47.94
42.38 42.8 47.32

Effect of clustering To show the effect of cluster-
ing algorithm, we empirically show the correlation
between the clustering error and the downstream
accuracy. As we apply Euclidean distance as metric



to learn the clusters, we record the average distance
between each point to its assigned cluster center for
every task, and take the average for all the tasks:

N M
&= Avg(z Avg(z llz; —ckll2))  (9)
i=1 j=1

where 7 represent the number of tasks, j represent
the training data from task i and k is the k" cluster
center. We consider both the visual prompt key
training and the textual prompt key training in this
experiment. Table 3 presents the results. We ob-
serve a negative correlation between the clustering
error and the performance accuracy, i.e., lower £
for image and text prompt keys leads to a higher
accuracy. Without the clustering component, we
observe &£ to be as high as 42.38 and 42.8 for im-
age prompt key and text prompt key, respectively.
After applying clustering algorithm, £ drops below
20 for both modalities and the accuracy improves
2.97%.

Cluster Visualization To show the effect of
clustering on prompt key more intuitively, we vi-
sualize the visual prompt key selection distribu-
tion on the visual portion of the training data for
CLOVE-Scene in Figure 3. Since we use three vi-
sual prompt keys for each task, the visual training
data are split into three groups, which are the green,
blue and red points in Figure 3. We observe that
without using clustering, visual data are more likely
to overlap on the same cluster center which means
they would lead to select the same visual prompt
key. After performing clustering, we observe that
the distribution becomes more evenly, and every
cluster of data is diverse and separated from the
others which means that the visual data can be
separated explicitly. Due to space limitations, we
include the cluster visualization for text prompt key
in Appendix. It indicates similar observation.

Table 4: Accuracy with different prompt pool size

Simg X Stat H Accuracy

2x2 48.51
3x3 48.73
4 x4 48.32
5x5 48.32
10 x 10 48.51

Tracking the Accuracy for the First Task To
take a closer look in the effect on preventing catas-

trophic forgetting and increasing the accuracy in
CL, we track the accuracy of the first task while
learning the task sequence. The result is shown
in Figure 4. We see that the accuracy drops until
task 4, and then slightly increases until task 6. This
behavior is an indication of forward transfer be-
tween the tasks. Among all the baseline methods,
we notice that prompt-based methods, SPrompt,
DualPrompt and L2P, significantly outperform
other methods which verifies the SOTA status of
prompt learning in CL and its success in preventing
catastrophic forgetting. Our method CluMo, on the
other hand, still outperform all prompt-based base-
line methods. We observe that using the cluster-
based prompts, the accuracy on the first task is
superior compared to the other methods at the very
beginning. Similar to other prompt-based method,
our method’s accuracy slightly drops until task 4
and improves subsequently. As the accuracy of our
proposed method is higher than others at all time
steps, our method has the leading performance in
terms of both accuracy and backward transfer.

Effect of Prompt Key Size We also conduct an
experiment to study the effect of prompt pool size
to show the stability of our method with respect to
this hyperparameter. In Table 4, we choose differ-
ent visual prompt key and textual prompt key sizes,
2x2,3x3,4x4, 5x5, 10 x 10, corresponding
to 4,9, 16, 25, 1and 00 prompt pool sizes. We ob-
serve minor changes in accuracy in Table 4 when
prompt pool size changes, i.e., between 48.32 and
48.73. This observations means that our method is
not sensitive to the change of the prompt pool size
and hence we don’t need to tune it.

6 Conclusion

We introduced a novel prompt-based continual
learning method for learning multimodal tasks.
While most of existing methods apply single
prompts on a single modality, our method proposes
modal-specific prompt key pool and train it to cap-
ture the semantic properties of the training dataset
using a clustering algorithm. We use the combina-
tion of both the visual prompt key and the textual
prompt key to select prompts, which enable the
prompt to better boost the performance. Our ex-
periments show that our method achieves the state-
of-the-art performance in continual VQA tasks in
different domains compared to other regularization-
based, rehearsal-based and prompt-based CL meth-
ods.



7 Limitations

Due to limited computational resources, all of our
experiments are done using a single GPU and we
haven’t explored the performance of our method
in a distributed system setting. We will embed dis-
tributed training in our code to boost the training
speed and further analyze the performance within
multi-GPU settings. Moreover, in our setting we
may have single-modal inputs due to occlusions
in one of the modalities. In such cases, our per-
formance may suffer and we may need a new
technique to address this challenge. Meanwhile,
although CluMo is designed for visual question
answering, it has the potential to be expanded to
other multimodal tasks such as image captioning,
speech emotion recognition, cross-modal retrieval,
etc. We will further explore such possibility with
corresponding experiments. Furthermore, CluMo
is designed for domain incremental learning where
each task is diverse from the others. We haven’t
tested its performance on other CL experiment set-
tings such as class-incremental or task-incremental,
which will be in our exploration plan in the future.
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A Appendix

A.1 Hardware Setup and Hyper-parameter

All the experiments are done on single Nvidia A40
GPU. For all the experiments, we use AdamW op-
timizer with cosine scheduler and we set learning
rate [r= 3e-4. We set the training epoch = 5 and
training batch size = 16.

For CluMo, we set visual prompt key size S, =
3, text prompt key size S; = 3 and prompt length
L, = 10. For DuamPrompt, we insert G-Prompt to
[0,1] layers of visual encoder, and insert E-Prompt
to [2,3,4] layers of the visual encoder. For all the
prompt-based baselines, L, = 10.

For all the prompt-based methods such as L2P,
DualPrompt and SPrompt, we freeze the whole
backbone model except the last classifier layer. For
the rest of the baseline methods, we don’t freeze
any parameters.
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A.2 More Experiment Result

We present more comparison experiments with
different task order for CLOVE-scene and
CLOVE-function here in table 5 and table 6. Sim-
ilar as what we present in main paper, our method
outperforms other baseline methods in all tasks.
Among all the continual learning methods, the
accuracy of regularization-based methods, EWC
and LwF is significantly lower than other meth-
ods, which indicates that the regularization-based
method may not be the state-of-the-art contin-
ual learning method regarding large multimodal
model with incoming tasks from different domain.
Prompt-based methods, on the other hand, are the
state-of-the-art methods regarding both forgetting
rate and accuracy. Without the need of memory
buffer and finetune the whole model, prompt-based
methods are memory-efficient than replay-based
methods and time-efficient than regularization-
based methods, which makes them the most pre-
ferred choice in current condition. Our method,
which is prompt-based method, further improve the
accuracy and forgetting rate on the top of exiting
prompt-based baselines, while keep the advantage
of prompt-based method.

A.3 CLOVE dataset detail description

For all the 12 tasks in CLOVE-Scene and CLOVE-
Function, except Scenel ext Recognition which
has 16.8K training data and 2.4K testing data, all
the other tasks have 20K training data and 3K test-
ing data. We present more detail about CLOVE
dataset here. To visualize the dataset and explicitly
show that each task is from different domain, we
present two samples for each dataset in Figure 5
and Figure 6. From the samples, we can see that
the image in CLOVE-scene are diverse from each
other between different tasks, while the questions
are similar with each other with the only difference
regarding the content of the pictures. However, for
CLOVE-function dataset, we cannot tell the im-
age from different tasks are from different domain,
as they are mixed up. But we can see that the type
of questions that each task asks is quite diverse for
different purposes of reasoning.

A4 Text Prompt Key Cluster Visualization

We put the visualization of text prompt key clus-
ter here as the supplementary material of image
prompt key cluster visualization in main paper. By
observing the figures of "W/O Clustering", we find
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CLOVE-scene

Method acbefd caefdb bafedc
At \ Fl AT \ Fl AT \ Fl
Finetune H 34.45 \ 35.14 H 34.42 \ 34.47 H 33.95 \ 35.67
EWC 37.99 | 29.68 || 37.13 | 28.63 || 37.83 | 27.97
LwF 37.85 | 29.87 || 37.94 | 28.15 || 38.21 | 27.48
ER 4191 | 20.28 || 41.11 | 19.65 || 42.08 | 20.52
GEM 42.54 | 20.13 || 41.90 | 20.88 || 43.11 | 19.86
L2P 45.63 | 1496 || 4478 | 17.99 || 46.58 | 14.85
DualPrompt || 46.27 | 1545 || 46.21 | 15.89 || 47.01 | 13.16
S-Prompt 46.99 | 14.38 || 46.68 | 14.77 || 47.53 | 12.19
Ours H 48.94 \ 10.29 H 48.26 \ 11.04 H 48.98 \ 10.23

Table 5: More Comparative Experiment with different task sequence order of CLOVE-scene dataset.

CLOVE-function

Method soarkl caefdb bafedc
AT \ F|l AT \ Fl AT \ Fl
Finetune H 31.55 \ 53.76 \ 37.34 \ 39.64 H 23.34 \ 57.32
EWC 3570 | 47.92 || 37.82 | 41.55 || 38.92 | 40.48
LwF 37.18 | 46.86 || 36.81 | 44.12 || 39.21 | 39.81
ER 42.22 | 32.97 || 39.78 | 38.62 || 41.22 | 35.79
GEM 44.58 | 30.87 || 41.43 | 29.46 || 40.87 | 32.98
L2P 44.80 | 16.38 || 43.39 | 21.26 || 43.27 | 21.97
DualPrompt || 45.01 | 15.90 || 44.26 | 17.43 || 44.66 | 18.50
S-Prompt 4545 | 1347 || 45.01 | 14.76 || 45.27 | 14.29
Ours H 46.18 \ 10.62 H 45.36 \ 11.69 H 46.34 \ 10.22

Table 6: More Comparative Experiment with different task sequence order of CLOVE-scene dataset.
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Q: Is there a sandwich on the tray?
A: No.

Q: Which room is it?
A: Office.

Q: Does the blanket look red?
A: Yes.

A: Runway.

Q: Is the man on the right of frisbee
wearing a hat?
A: Yes.

Q: Does the zebra nose have the
white color?
A: No.

Workplace

Hotel

Q: What is the plane behind the man?

Transportation

Outdoors

SportAndLeisure

o

Q; Is the bottle on the couch?
A: Yes.

Q: Is a laptop to the left of her?
A: Yes.

Q: What toy on the top of sink?
A: Rubber Duck.

Q: What are the letters on?
A: Stairs.

Q: What is the man playing?
A: Frisbee.

Q: What is flying in the sky?
A: Kite.

Figure 5: CLOVE-scene dataset sample

that most of the tasks’ text input, b, ¢, e, f, are con-
centrating to single text prompt key, and the text
input of task a and d are distributed into two text
prompt keys while the boundary is blurred and
not explicit. After applying clustering algorithm,
the text inputs are more evenly distributed among
three different text prompt keys. However, com-
pared with the clustering of image prompt key, the
distribution of text input does not show apparent
diversity among different text prompt keys, which
indicate that the clustering of text, which is the
question in VQA setting, is more difficult than the
clustering of images, and thus offer us new field to
further explore.
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Q: What color is the helmet in the middle

of the image? Q: Is it indoor or outdoor

A: Blue. A:Yes.
Attribute Recognition
Q: Which red object behind the black @+ Q: What food is next to the object that
piano can keep light out of the room? | can use to for making toast?
A: Curtain. A: Bread.

Knowledge Reasoning

Q: What do the marker and the post have
in common?
A: Color.

Q: Is the color of pillow different than
that of counter?
A: Yes.

Q: What place is it?
A: Harbor.

Q: What is this, a couch or a table?
A: Table.

Object Recognition

Q: What color is the jersey the boy Q: Who is wearing goggles?

is wearing? A: Woman.
A: Black.
Relation Reasoning
Q: What is the brand of this camera? @] Q: What is the brand of the phone?

A: Dakota. A: Nokia.

Scene Text Recognition

Figure 6: CLOVE-function dataset sample

W/ Clustering W/O Clustering W/ Clustering W/O0 Clustering

b
f ‘/“‘ﬁl

wsm,. e

Figure 7: Text prompt key clustering visualization
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