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ABSTRACT

Standard training techniques for neural networks involve multiple sources of ran-
domness, e.g., initialization, mini-batch ordering and in some cases data augmenta-
tion. Given that neural networks are heavily over-parameterized in practice, such
randomness can cause churn — disagreements between predictions of the two mod-
els independently trained by the same algorithm, contributing to the ‘reproducibility
challenges’ in modern machine learning. In this paper, we study this problem of
churn, identify factors that cause it, and propose two simple means of mitigating it.
We first demonstrate that churn is indeed an issue, even for standard image classi-
fication tasks (CIFAR and ImageNet), and study the role of the different sources
of training randomness that cause churn. By analyzing the relationship between
churn and prediction confidences, we pursue an approach with two components for
churn reduction. First, we propose using minimum entropy regularizers to increase
prediction confidences. Second, we present a novel variant of co-distillation
approach (Anil et al.| 2018)) to increase model agreement and reduce churn. We
present empirical results showing the effectiveness of both techniques in reducing
churn while improving the accuracy of the underlying model.

1 INTRODUCTION

Deep neural networks (DNNs) have seen remarkable success in a range of complex tasks, and
significant effort has been spent on further improving their predictive accuracy. However, an
equally important desideratum of any machine learning system is stability or reproducibility in its
predictions. In practice, machine learning models are continuously (re)-trained as new data arrives,
or to incorporate architectural and algorithmic changes. A model that changes its predictions on a
significant fraction of examples after each update is undesirable, even if each model instantiation
attains high accuracy.

Reproducibility of predictions is a challenge even if the architecture and training data are fixed across
different training runs, which is the focus of this paper. Unfortunately, two key ingredients that help
deep networks attain high accuracy — over-parameterization, and the randomization of their training
algorithms — pose significant challenges to their reproducibility. The former refers to the fact that
NN typically have many solutions that minimize the training objective (Neyshabur et al., 2015}
Zhang et al.,|2017). The latter refers to the fact that standard training of NN involves several sources
of randomness, e.g., initialization, mini-batch ordering, non-determinism in training platforms and in
some cases data augmentation. Put together, these imply that NN training can find vastly different
solutions in each run even when training data is the same, leading to a reproducibility challenge.

The prediction disagreement between two models is referred to as churn (Cormier et al.| 2016ﬂ
Concretely, given two models, churn is the fraction of test examples where the predictions of the
two models disagree. Clearly, churn is zero if both models have perfect accuracy — an unattainable
goal for most of the practical settings of interest. Similarly, one can mitigate churn by eliminating all
sources of randomness in the underlying training setup. However, even if one controls the seed used
for random initialization and the order of data, inherent non-determinism in the current computation
platforms is hard to avoid (see §2.3). Moreover it is desirable to have stable models with predictions

!'Madani et al.| (2004) referred to this as disagreement and used it as an estimate for generalization error and
model selection
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unaffected by such factors in training. Thus, it is critical to quantify churn, and develop methods that
reduce it.

In this paper, we study the problem of churn in NNs for the classification setting. We demonstrate
the presence of churn, and investigate the role of different training factors causing it. Interestingly
our experiments show that churn is not avoidable on the computing platforms commonly used in
machine learning, further highlighting the necessity of developing techniques to mitigate churn. We
then analyze the relation between churn and predicted class probabilities. Based on this, we develop
a novel regularized co-distillation approach for reducing churn.

Our key contributions are summarized below:

(i) Besides the disagreement in the final predictions of models, we propose alternative soft metrics
to measure churn. We demonstrate the existence of churn on standard image classification
tasks (CIFAR-10, CIFAR-100, ImageNet, SVHN and iNaturalist), and identify the components
of learning algorithms that contribute to the observed churn. Furthermore, we analyze the
relationship between churn and model prediction confidences (cf. § [2).

(i) Motivated from our analysis, we propose a regularized co-distillation approach to reduce churn
that both improves prediction confidences and reduces prediction variance (cf. §3). Our approach
consists of two components: a) minimum entropy regularizers that improve prediction confidences
(cf. §[311), and b) anew variant of co-distillation (Anil et al., [2018]) to reduce prediction variance
across runs. Specifically, we use a symmetric KL divergence based loss to reduce model
disagreement, with a linear warmup and joint updates across multiple models (cf. §3.2).

(iii) We empirically demonstrate the effectiveness of the proposed approach in reducing churn and
(sometimes) increasing accuracy. We present ablation studies over its two components to show
their complementary nature in reducing churn (cf. §4).

1.1 RELATED WORK

Reproducibility in machine learning. There is a broad field studying the problem of reproducible
research (Buckheit & Donoho) [1995; |Gentleman & Lang} 2007} Sonnenburg et al., 2007} [Kovacevic|
2007; Mesirov}, [2010; [Pengl [2011; [McNutt, 2014} [Braun & Ong| 2014} [Rule et al., [2018)), which
identifies best practices to facilitate the reproducibility of scientific results. [Henderson et al.| (2018)
analysed reproducibility of methods in reinforcement learning, showing that performance of certain
methods is sensitive to the random seed used in the training. While the performance of NNs
on image classification tasks is fairly stable (Table [2)), we focus on analyzing and improving the
reproducibility of individual predictions. Thus, churn can be seen as a specific technical component
of this reproducibility challenge.

Cormier et al.|(2016)) defined the disagreement between predictions of two models as churn. They
proposed an MCMC approach to train an initial stable model A so that it has a small churn with its
future version, say model B. Here, future versions are based on slightly modified training data with
possibly additional features. In|Goh et al.|(2016);|Cotter et al.[(2019), constrained optimization is
utilized to reduce churn across different model versions. In contrast, we are interested in capturing
the contribution of factors other than training data modification that cause churn.

More recently. [Madhyastha & Jain| (2019) study instability in the interpretation mechanisms and
average performance for deep NNs due to change in random seed, and propose a stochastic weight
averaging (Izmailov et al.| [2018)) approach to promote robust interpretations. In contrast, we are
interested in robustness of individual predictions.

Ensembling and online distillation. Ensemble methods (Dietterichl 2000; |[Lakshminarayanan
et al.| 2017) that combine the predictions from multiple (diverse) models naturally reduce the churn
by averaging out the randomness in the training procedure of the individual models. However,
such methods incur large memory footprint and high computational cost during the inference time.
Distillation (Hinton et al., 2015} Bucilua et al.,|2006) aims to train a single model from the ensemble
to alleviate these costs. Even though distilled model aims to recover the accuracy of the underlying
ensemble, it is unclear if the distilled model also leads to churn reduction. Furthermore, distillation is
a two-stage process, involving first training an ensemble and then distilling it into a single model.

To avoid this two-stage training process, multiple recent works |Anil et al.| (2018)); Zhang et al.| (2018));
Lan et al.| (2018));\Song & Chai (2018));/Guo et al.|(2020) have focused on online distillation, where
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multiple identical or similar models (with different initialization) are trained while regularizing the
distance between their prediction probabilities. At the end of the training, any of the participating
models can be used for inference. Notably, Anil et al.| (2018), while referring to this approach
as co-distillation, also empirically pointed out its utility for churn reduction on the Criteo Ad
dataseﬂ In contrast, we develop a deeper understanding of co-distillation framework as a churn
reduction mechanism by providing a theoretical justification behind its ability to reduce churn. We
experimentally show that using a symmetric KL divergence objective instead of the cross entropy
loss for co-distillation (Anil et al.,[2018)) leads to lower churn and better accuracy, even improving
over the expensive ensembling-distillation approach.

Entropy regularizer. Minimum entropy regularization was earlier explored in the context of
semi-supervised learning (Grandvalet & Bengio, 2005). Such techniques have also been used to
combat label noise (Reed et al.L[2015)). In contrast, we utilize minimum entropy regularization in fully
supervised settings for a distinct purpose of reducing churn and experimentally show its effectiveness.

1.2 NOTATION

Multi-class classification. We consider a multi-class classification setting, where given an instance
x € X, the goal is to classify it as a member of one of K classes, indexed by the set Y = [K]. Let W
be the set of parameters that define the underlying classification models. In particular, for w € W, the
associated classification model f(-;w): X — Aj maps the instance x € X in the K -dimensional
simplex A = RX. Given f(z;w), z is classified as element of class .., such that

Yo = argmax;ey f(z;w);. (D

This gives the misclassification error £y; (y, ;L]m;w) = 1y(y,..,#y}» Where y is the true label for 2. Let

Px v be the joint distribution over the instance and label pairs. We learn a classification model

by minimizing the risk for some valid surrogate loss ¢ of the misclassification error £y; : L(w) =

Ex,v[£(Y, f(X;w))]. In practice, since we have only finite samples S € (X x Y)™, we minimize the
corresponding empirical risk.

A1
L(w;S) & EZW)GSE(% f (x5 w)). )

2 CHURN: MEASUREMENT AND ANALYSIS

In this section we define churn, and demonstrate its existence on CIFAR and ImageNet datasets. We
also propose and measure alternative soft metrics to quantify churn, that mitigate the discontinuity of
churn. Subsequently, we examine the influence of different factors in the learning algorithm on churn.
Finally, we present a relation between churn and prediction confidences of the model.

We begin by defining churn as the expected disagreement between the predictions of two models
(Cormiuer et al . [2016).

Definition 1 (Churn between two models). Let wy,ws € W define classification models
Fwy), f(;we): X — AKX, respectively. Then, the churn between the two models is

Churn(wl, ’LUQ) = ]EX[]]'{\A(x;wl ;é\”(x;wz}] = PX [VX;wl # VX;wz]a (3)
where Y ..., £ arg max;cy f(z;wi); and Yo, 2 arg max;cy f(z;w2);.

Note that if the models have perfect test accuracy, then their predictions always agree with the true
label, which corresponds to zero churn. In practice, however, this is rarely the case. The following
rather straightforward result shows that churn is upper bounded by the sum of the test error of the
models. See Appendix [B]for the proof. We note that a similar result was shown in Theorem 1 of
Madani et al.| (2004).

Lemma 1. Let Py, = Pxy[Y # YX;wl] and Py w, = Pxv[Y # Yx;wg] be the misclassifica-
tion error for the models wy and w,, respectively. Then, Churn(wy, w2) < Prrrow, + PErrows-

2https://www.kaggle.com/c/criteo-display-ad-challenge
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Remove augmentation
Identical minibatch order

v

v ' v v

Identical initialization v v
93.88+ 0.17 93.86 + 0.24
5.96 + 0.26 579 +0.18

6.77 £ 0.18 6.56 + 0.17

' v v
v

94.02 + 0.09 94.00 + 0.18
5.81 +0.08 5.56 +0.12
6.55 +0.12 6.32 + 0.09

v

89.24 £ 0.06 89.00 4+ 0.16
11.08 £ 0.10 11.20 +0.23
13.07 £ 0.13 13.04 £ 0.24

87.67 +0.25 87.05+ 0.01
12.36 + 0.16 12.20 + 0.29
1425 £ 0.14 14.11 £ 0.17

Accuracy
Churn(%)
SChurny (%)

Table 1: Ablation study of churn across 5 runs on CIFAR-10 with a ResNet-56. Holding the
initialization constant across models always decreases churn, but using identical mini-batch ordering
and completely removing augmentation can increase churn with a decrease in accuracy.

Despite the worst-case bound in Lemma [I] imperfect accuracy does not preclude the absence of
churn. As the best-case scenario, two imperfect models can agree on the predictions for each
example (whether correct or incorrect), causing the churn to be zero. For example, multiple runs of a
deterministic learning algorithm produce models with zero churn, independent of their accuracy.

This shows that, in general, one cannot infer churn from test accuracy, and understanding churn of an
algorithm requires independent exploration.

2.1 DEMONSTRATION OF CHURN

In principle, there are multiple sources of randomness in standard training procedures that make NNs
susceptible to churn. We now verify this hypothesis by showing that, in practice, these sources indeed
result in a non-trivial churn for NNs on standard image classification datasets.

Table [Z] reports churn over CIFAR-10, CIFAR-100 and ImageNet, with ResNets (He et al.l 2016aZb)
as the underlying model architecture. As per the standard practice in the literature, we employ SGD
with momentum and step-wise learning rate decay to train ResNets. Note that the models obtained in
different runs indeed disagree in their predictions substantially. To measure if the disagreement comes
mainly from misclassified examples, we measure churn on two slices of examples, correctly classified
(Churn correct) and misclassified (Churn incorrect). We notice churn even among the examples that
are correctly classified, though we see a relatively higher churn among the misclassified examples.

This raises two natural questions: (i) do the prediction probabilities differ significantly, or is the
churn observed in Table 2| mainly an artifact of the argmax operation in (), when faced with small
variation in prediction probabilities across models?, and (ii) what causes such a high churn across
runs? We address these questions in the following sections.

2.2  SURROGATE CHURN

Churn in Table 2] could potentially be a manifestation of applying the arg max operation in (T,
despite the prediction probabilities being close. To study this, we consider the following soft metric
to measure churn, which takes the models’ entire prediction probability mass function into account.

Definition 2 (Surrogate churn between two models). Let f(+;wy), f(+;wz): X — AK be two models
defined by w1, w2 € W, respectively. Then, for o € R™, the surrogate churn between the models is

oo~} () (o))

maxf (X; wy max f(X; we
As o — 00, this reduces to the standard Churn definition in (3)). In Table[2] we measure SChurn,, for
o = 1, which shows that even the distance between prediction probabilities is significant across runs.
Thus, the churn observed in Table [2]is not merely caused by the discontinuity of the arg max, but it
indeed highlights the instability of model predictions caused by randomness in training.

2.3  WHAT CAUSES CHURN?

We now investigate the role played by randomness in initialization, mini-batch ordering, data augmen-
tation, and non-determinism in the computation platform in causing churn. Even though these aspects
are sources of randomness in training, they are not necessarily sources of churn. We experiment
by holding some of these factors constant and measure the churn across 5 different runs. We report
results in Table[T} where the first column gives the baseline churn with no factor held constant across
runs.
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Model initialization is a source of churn. Simply initializing weights from identical seeds (odd
columns in Table[T)) can decrease churn under most settings. Other sources of randomness include
mini-batch ordering and dataset augmentation. To hold the former constant, we ensure that
every model iterates over the dataset in the same order; to hold the latter constant, we remove all
augmentation during training. These two aspects contribute to randomness between training runs, but
fixing them does not decrease churn; rather, they appear to have a regularizing affect on our hardware
platform.

Finally, there is churn resulting from an unavoidable source during training, the non-determinism in
computing platforms used for training machine learning models, e.g., GPU/TPU (Morin & Willetts|
2020; |[PyTorch, 2019} Nvidia, 2020). The experiments in Table E] were run on TPU. Even when
all other aspects of training are held constant (rightmost column), model weights diverge within
100 steps (across runs) and the final churn is significant. We verified that this is the sole source of
non-determinism: models trained to 10,000 steps on CPUs under these settings had identical weights.

These experiments underscore the importance of developing and incorporating churn reduction
strategies in training. Even with extreme measures to eliminate all sources of randomness, we
continue to observe churn due to unavoidable hardware non-determinism.

2.4 REDUCING CHURN: RELATION TO PREDICTION PROBABILITIES

We now focus on the main objective of this paper — churn reduction in NNs. Many factors that have
been shown to cause churn in § [2.3]are crucial for the good performance of NNs and thus cannot be
controlled or eliminated without causing performance degradation. Moreover, controlling certain
factors such as hardware non-determinism is extremely challenging, especially in the large scale
distributed computing setup.

Towards reducing churn, we first develop an understanding of the relationship between the distribution
of prediction probabilities of a model and churn. Intuitively, encouraging either larger prediction
confidence or smaller variance across multiple training runs should result in reduced churn.

To formalize this intuition, let us consider the prediction confidence realized by the classification
model f(-;w) on the instance x € X

Yeyw = f(l', w)ﬁm;w — arg maxj;égm;m f(xa w)ja (5)

where .., is the model prediction in (I). Note that ~,., denotes the difference between the
probabilities of the most likely and the second most likely classes under the distribution f(z;w),
and is not the same as the standard multi-class margin (Koltchinskii et al.| 2001): it captures how
confident the model f(-;w) is about its prediction §,.,,, without taking the true label into account.

The following result relates the prediction confidence to churn. See Appendix [B]for the proof.

Lemma 2. Let vy,.,y, and g, be the prediction confidences realized on x € X by the classification
models f(-;wy) and f(-;ws), respectively. Then,

Churn(wla w2) = IP)X{?X;u}l # ?X;wg} < ]P)X[DLl(f(x; wl)a f(X, w2)) > min{’yx;wla’yx;um }]

Here, Dy (f(z;w1), f(25w2)) = 250y | f(23w1);— f(2;w2) ;| measures the L1 distance. Lemma(2|
establishes that, for a given instance x, the churn between two models f(-;w;) and f(+; w2) becomes
less likely as their confidences v,.yy, and 7., increase. Similarly, the churn becomes smaller when
the difference between their prediction probabilities, Dy (f (x;w1), f(2;ws)), decreases.

3 REGULARIZED CO-DISTILLATION FOR CHURN REDUCTION

In this section we present our approach for churn reduction. Motivated by Lemma[2] we consider an
approach with two complementary techniques for churn reduction: 1) We first propose entropy based
regularizers that encourage solutions w € VV with large prediction confidence 7., for each instance
z. 2) We next employ co-distillation approach with novel design choices that simultaneously trains
two models while minimizing the distance between their prediction probabilities.

Note that the entropy regularizers themselves cannot actively enforce alignment between the prediction
probabilities across multiple runs as the resulting objective does not couple multiple models together.
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On the other hand, the co-distillation in itself does not affect the prediction confidence of the
underlying models (as verified in Figure[2). Thus, our combined approach promotes both large model
prediction confidence and small variance in prediction probabilities across multiple runs.

3.1 MINIMUM ENTROPY REGULARIZERS

Aiming to increase the prediction confidences of the trained model {7,.,, }zex, We propose novel
training objectives that employ one of two possible regularizers based on: (1) entropy of the model
prediction probabilities; and (2) negative symmetric KL divergence between the model prediction
probabilities and the uniform distribution. Both regularizers encourage the prediction probabilities to
be concentrated on a small number of classes, and increase the associated prediction confidence.

Entropy regularizer. Recall that the standard training minimizes the risk L(w). Instead, for a €
[0,1] and S = {(i, ¥:) }ie[n]> We propose to minimize the following regularized objective to increase

the prediction confidence of the mode

1

Lentropy(w;s) = (1 - O() ) L(’LU,S) +a- EZze[n] H(f(x“w)), (6)

where H (f(z;w)) = — 2jerx f (@3 w);log f(a;w); denotes the entropy of predictions f(x;w).

Symmetric KL divergence regularizer. Instead of encouraging the low entropy for the prediction
probabilities, we can alternatively maximize the distance of the prediction probability mass function
from the uniform distribution as a regularizer to enhance the prediction confidence. In particular,
we utilize the symmetric KL divergence as the distance measure. Let Unif € A g be the uniform
distribution. Thus, given n samples S = {(;, ¥;) }ie[n]> We propose to minimize

Lskr(w; S) £ (1—04)-L(w;8)—a~%2 SKL(f(zi;w), Unif), (7)

i€[n]
where SKL ( f(z; w), Unif) = KL(f(z; w)||Unif) + KL(Unif|| f(z; w)).

As discussed in the beginning of the section, the intuition behind utilizing these regularizers is to
encourage spiky prediction probability mass functions, which lead to higher prediction confidence.
The following result supports this intuition in the binary classification setting. See Appendix [B]for the
proof. As for multi-class classification, we empirically verify that the proposed regularizers indeed
lead to increased prediction confidences (cf. Figure [2).

Theorem 3. Let f(-;w) and f(-;w’) be two binary classification models. For a given x € X, if we
have H(f(z;w)) < H(f(z;w')) or SKL(f(z;w)) = SKL(f(x; w')), then Yumw = Yaw -

Note that the effect of these regularizers is different from increasing the temperature in softmax while
computing f(x; w). Similar to max entropy regularizers (Pereyra et al., [2017), they are independent
of the label, a crucial difference that allows them to reduce churn even among misclassified examples.

3.2 CO-DISTILLATION

As the second measure for churn reduction, we now focus on designing training objectives that mini-
mize the variance among the prediction probabilities for the same instance across multiple runs of the
learning algorithm. Towards this, we consider novel variants of co-distillation approach (Anil et al.|
2018). In particular, we employ co-distillation by using symmetric KL divergence (Co-distillgkt,),
with a linear warm-up, to penalize the prediction distance between the models instead of the popular
step-wise cross entropy loss (Co-distillcg) used in /Anil et al.|(2018) (see §. We first motivate the
proposed objective for reducing churn using Lemma 2|

Recall from Lemma 2] that, for a given instance z, churn across two models f(-;w1) and f(-;ws)
decreases as the distance between their prediction probabilities Dy, (f (x;w1), f(2; w2)) becomes
smaller. Motivated by this, given training samples S = {(x;, ¥;) }ie[»]> One can simultaneously train
two models corresponding to w1, w2 € VW by minimizing the following objective and keeping either

3We restrict ourselves to the convex combination of the original risk and the regularizer terms as this ensures
that the scale of the proposed objective is the same as that of the original risk. This allows us to experiment with
the same learning rate and other hyperparameters for both.
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Dataset Method Training  Accuracy Churn(%) SChurny (%) Churn correct Churn incorrect
cost
Baseline 1x 93.97+0.11 5.7240.18 6.41140.15 2.62140.12 53.82+1.44
CIFAR-10 Entropy (this paper) 1x 94.0540.18 5.59+0.21 6.1740.17 2.5540.19 53.33+1.62
ResNet-56 SKL (this paper) Ix 93.7540.13 5.7940.18 6.031+0.16 2.66+0.15 52.6+1.59
2-Ensemble distil. (Hinton et al.,;2015) 3x 94.6240.07 4.4740.13 49140.11 2.0540.1 47.25+1.55
Co-distillcg (Anil et al. ;2018 2x 94.2540.15 5.1440.14 5.6240.12 3.03+0.31 40.45+5.98
Co-distillg k1, (this paper) 2x 94.63+0.15 4.29+0.14 4.66+0.11 2.49+0.25 36.78+4.14
+Entropy (this paper) 2x 94.631+0.15 4.21+0.15 4.61+0.14 1.9440.13 44294+1.9
Baseline 1x 73.26+0.22 26.7740.26 37.1940.35 11.4240.26 68.771+0.72
CIFAR-100 Entropy (this paper) 1x 73.24+0.29 26.55+0.26 34.58+0.29 11.2940.32 68.3240.69
ResNet-56 SKL (this paper) 1x 73.3540.3 25.621+0.36 28.8140.35 11.1640.34 65.4240.65
2-Ensemble distil. (Hinton et al.,2015) 3x 76.2740.25 18.8610.26 25.4340.23 7.7940.23 54.340.86
Co-distillc g, (Anil et al. J2018] 2x 75.1140.17 19.5540.27 25.034+0.27 9.98+0.97 48.691+2.84
Co-distillgk 1, (this paper) 2x 76.58+0.16 17.7040.33 24.9940.31 9.08+0.8 45.98+2.98
+Entropy (this paper) 2x 76534026  17.0940.3 24.06+0.28 7.240.26 49.441.1
Baseline 1x 76+0.11 15.2240.16 35.014+0.24 5.87+40.11 44.7740.46
ImageNet Entropy (this paper) Ix 76.3940.11 14.9240.09 32.9340.18 5.7540.11 44.56+0.33
ResNet-v2-50 SKL (this paper) Ix 75.9840.08 15.3240.11 32.6440.2 5.99+40.07 44.88+0.37
2-Ensemble distil. (Hinton et al., 12015} 3x 75.8340.08 12.9240.14 34.0240.2 4.9240.11 38.0410.39
Co-distillc g, (Anil et al.J2018] 2x 76.12+0.08 11.62+0.21 18.38+0.34 4.9740.36 32.67+1.45
Co-distillg k1, (this paper) 2x 76.74+0.06 11.4540.13 28.6610.20 5.1140.36 3241+1.15
+Entropy (this paper) 2x 76.56+0.02 11.05+0.36 22.924+1.01 4.32+0.32 32.89+1.15
Baseline 1x 60.97+0.26 26.9940.25 71.3340.51 9.4540.3 54.2840.5
iNaturalist Entropy (this paper) 1x 62.7410.15 25.8440.2 66.6110.47 9.23+0.24 53.8240.35
ResNet-v2-50 Co-distillcg, (Anil et al.[2018) 2x 61.1+0.11 26.894+0.22 70.8140.43 9.51+0.22 54.1840.41
Co-distillg k1, (this paper) 2x 61.5940.28 21.73+0.26 68.114+1.17 7.48+0.34 44.531+0.59
Baseline 1x 87.164+0.43 14.3+0.4 17.5240.48 5.9+0.33 70.39+1.24
SVHN Entropy (this paper) 1x 87.2440.61 14.124+0.42 16.6240.52 6.1+0.47 69.31+1.41
LeNet5 Co-distillc g, (Anil et al. J2018] 2x 88.934+0.39 9.42+0.33 10.44+0.36 3.84+0.37 54.09+1.83
Co-distillg 1, (this paper) 2x 89.61+0.25 8.4940.25 1224035 3.59+0.24 51.11+1.46

Table 2: Estimate of Churn (cf. (3))) and SChurn (cf. @) on the test sets. For each setting, we report
the mean and standard deviation over 10 independent runs, with random initialization, mini-batches
and data-augmentation. We report the values corresponding to the smallest churn for each method
(see Table5]in § [A]for the exact parameters). We boldface the best results in each column. First we
notice that both the proposed methods are effective at reducing churn and Schurn, with Co-distillgkr,
showing significant reduction in churn. Additionally, these methods also improve the accuracy.
Finally combing the entropy regularizer with Co-distillgkr, offers the best way to reduce churn,
improving over the ensembling-distillation and Co-distillcg approaches. Note that for co-distillation
we measure churn of a single model (e.g. f(;w1) in eq (9)) across independent training runs.

of the two models as the final solution.

Lco-disitiy, (W1, w2; 8) £ L(wy;8) + L(w2; S) + gzie[n] Dri(f(zsswr), f(xiwe))  (8)

From Pinsker’s inequality, D1 (f(zi;w1), f(2i;w2)) < 4/2 - KL(f(zi;w1)|| f(2s; w2)). Thus, one
can alternatively utilize the following objective.

Leodisitisger, (w1, w2; 8) £ L(wi; S) + L(wa; S) + gzie[n] SKL(f (w5 w1), f(zi;w2)),  9)

where SKL(f(z;w1), f(z;w2)) = KL(f(z;w1)||f(z;w2)) + KL(f (2;w2)]] f(z;w1)) denotes
the symmetric KL-divergence between the prediction probabilities of the two models. In what
follows, we work with the objective in @I) as we observed this to be more effective in our experiments,
leading to both smaller churn and higher model accuracy.

In addition to the co-distillation objective, we introduce two other changes to the training procedure:
joint updates and linear rampup of the co-distillation loss. We discuss these differences in § [C|

Regularized co-distillation. In this paper, we also explore regularized co-distillation, where we
utilize the minimum entropy regularizes (cf. § [3.1I)) in our co-distillation framework. We note that the
best results for the combined approach are achieved when we use a linear warmup for the regularizer
coefficient as well. Note that combining the Co-distillgk1, objective with an entropy regularizer is
not the same as using the cross entropy loss, due to the use the different weights for each method, and
rampup of the regularizer coefficients. This distinction is important in reducing churn ( Table[2).

4 EXPERIMENTS

We conduct experiments on 5 different datasets, CIFAR-10, CIFAR-100, ImageNet, SVHN and
iNaturalist 2018. We use LeNet5 for experiments on SVHN, ResNet-56 for experiments on CIFAR-
10 and CIFAR-100, and ResNet-v2-50 for experiments on ImageNet and iNaturalist. We use the
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Figure 1: ImageNet ablation study: We plot the effect of the entropy regularizer (top,), for varying
«, and Co-distillgky, for varying 3, on the prediction entropy, accuracy and churn. These plots shows
the complementary nature of these methods in reducing churn. While entropy regularizer reduces
churn by reducing the prediction entropy, Co-distillgk1, reduces churn by improving the agreement
between two models, hence increasing the entropy.
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Figure 2: ImageNet: Left - effect of the entropy regularizer and our proposed variant of co-distillation,
Co-distillgkt,, on the prediction confidence. Right - comparison with Co-distillcg (Anil et al.;[2018).
We plot the trade-off between accuracy and churn for Co-distillcg and Co-distillgky, by varying 3.
The plot clearly shows that the proposed variant achieves a better tradeoff, compared to Co-distillcg.

Dataset Method Accuracy Churn(%)
Weight decay = 0 ‘Weight decay = 0.0001 ‘Weight decay = 0 Weight decay = 0.0001

Baseline 91.6240.2 93.9740.11 8.440.21 5.7240.18

CIFAR-10 Entropy (this paper) 91.5640.26 94.0540.18 8.4540.25 5.5940.21
SKL (this paper) 91.91+0.22 93.7540.13 7.84+0.24 5.7940.18
Co-distillg k1, (this paper) 92.14+0.31 94.631+0.15 6.7410.32 4.29+0.14
Baseline 68.61+0.21 73.261+0.22 32.23+0.45 26.7740.26

CIFAR-100 Entropy (this paper) 68.411+0.33 73.2440.29 32.0240.42 26.5540.26
SKL (this paper) 69.0240.33 73.3540.3 31.2240.38 25.6240.36
Co-distillg k1, (this paper) 72.29+0.42 76.58+0.16 23.1410.83 17.70+0.33

Table 3: Weight decay ablation studies. Similar to Table [2] we provide results on accuracy and
churn for baseline and the proposed approaches, with and without weight decay. We notice that the
proposed approaches improve churn both with and without weight decay.

same hyperparameters for all the experiments on a dataset. We use the Cross entropy loss and the
Momentum optimizer. For complete details we refer to the Appendix [A]

Top,, regularizer. For problems with a large number of outputs, e.g. ImageNet, it is not required
to penalize all the predictions to reduce churn. Recall that prediction confidence is only a function
of the top two prediction probabilities. Hence, on ImageNet, we consider the top,, variants of the
proposed regularizers, and penalize the entropy/SKL only on the top k predictions, with & = 10.

Accuracy and churn. In Table 2] we present the accuracy and churn of models trained with the
minimum entropy regularizers, co-distillation and their combination. For each dataset we report
the values for the best o and 3. We notice that our proposed methods indeed reduce the churn and
Schurn. While both minimum entropy regularization and co-distillation are consistently effective
in reducing Schurn, their effect on churn varies, potentially due to the discontinuous nature of the
churn. Also note that the proposed methods reduce churn both among the correctly and incorrectly
classified examples. Our co-distillation proposal, Co-distillskr, consistently showed a significant
reduction in churn, and has better performance than Co-distillcg (Anil et al.| 2018)) that is based on
the cross-entropy loss, showing the importance of choosing the right objective for reducing churn. We
present additional comparison in Figure[2] showing churn and Top-1 error on ImageNet, computed for
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Method Training cost CIFAR-10 - ECE (x 1e2) CIFAR-100 - ECE (x 1e2) ImageNet - ECE (x 1e2)
Baseline Ix 4.0440.13 15.2340.32 3.71£0.12
Entropy (this paper) Ix 4.1940.18 17.4340.26 6.1740.09
SKL (this paper) 1x 5.4140.12 21.8240.16 6.49+0.12
2-Ensemble distil. (Hinton et al.}2015) 3x 3.83+0.05 13.854+0.23 2.1440.1
Co-distillcg (Anil et al.]2018] 2x 4.1340.12 15.86+0.13 11.9740.07
Co-distillgk 1, (this paper) 2x 3.884+0.15 11.39+0.15 2.4440.09
+Entropy (this paper) 2x 3.9440.09 11.5540.23 3.8940.39

Table 4: Expected Calibration Error. We compute the Expected Calibration Error (ECE) (Guo
et al.,2017) to evaluate the effect on calibration of logits by the churn reduction methods considered
in this paper, for different datasets. We report ECE for the predictions of the models used to report
accuracy and churn in Table 2] We note that while the minimum entropy regularizers, predictably,
increase the calibration error, our combined approach with co-distillation results in calibration error
competitive with 2-ensemble distillation method.

different values of 3 (cf. (9)). Finally, we achieve an even further reduction in churn by the combined
approach of entropy regularized co-distillation. Interestingly, the considered methods also improve
the accuracy, showing their utility beyond churn reduction.

Ensembling. We also compare with the ensembling-distillation approach (Hinton et al.,[2015)) in
Table 2, where we use a 2 teacher ensemble for distillation. We show that the proposed methods
consistently outperform ensembling-distillation approach, despite having a lower training cost.

Ablation. We next report results of our ablation study on the entropy (top; ) regularizer coefficient
«, and the Co-distillgky, coefficient 3 in Figure[ll While both methods improve accuracy and churn,
the prediction entropy shows different behavior between these methods. While entropy regularizers
improve churn by reducing the entropy, co-distillation reduces churn by reducing the prediction
distance between two models, resulting in an increase in entropy. This complementary nature explains
the advantage in combining these two methods (cf. Table[2).

We next present ablation studies on weight decay regularization in Table[3] showing that the proposed
approaches improve churn on models trained both with and without weight decay.

Fixed initialization. Earlier in Table[I| we showed that fixing the initialization of five runs of the
baseline model lowers churn from 5.81 + 0.08 to 5.56 + 0.12 for CIFAR-10 on ResNet-56. However,
our proposed Co-distillskr, model is more effective, reducing churn to 4.29 + 0.14 (see Table [2).
Using fixed initialization on this model does not significantly affect churn (4.24 4+ 0.07).

5 DISCUSSION

Connection to label smoothing and calibration. Max entropy regularizers, such as label smooth-
ing, are often used to reduce prediction confidence (Pereyra et al., 2017 Miiller et al., |2019) and
provide better prediction calibration. The minimum entropy regularizers studied in this paper
have the opposite effect and increase the prediction confidence, whereas co-distillation reduces the
prediction confidences. To study this more concretely we measure the effect of churn reduction
methods on the calibration.

We compute Expected Calibration Error (ECE) (Guo et al.,2017) for methods considered in this paper
and report the results in Table[d We notice that the minimum entropy regularizers, predictably, in-
crease the calibration error, whereas the propose co-distillation approach (Co-distillgkr,) significantly
reduces the calibration error. We notice that our joint approach is competitive with the ensemble
distillation approach on CIFAR datasets but incurs higher error on ImageNet. Developing approaches
that jointly optimize for churn and calibration is an interesting direction of future work.
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Dataset Method a B8 Temperature Accuracy Churn(%)
Baseline - - - 93.97+0.11 5.72+0.18
CIFAR-10 Entropy 0.15 - - 94.05+0.18 5.59+0.21
ResNet-56 SKL 0.05 - - 93.75+0.13 5.79+0.18
2-Ensemble distillation - - 3.0 94.62+0.07 4.4740.13
Co-distillcg - 0.01 - 94.25+0.15 5.14+0.14
Co-distillgk 1, - 0.01 - 94.63+0.15 4.2940.14
+Entropy 0.1 0.01 - 94.63+0.15 4.21+0.15
Baseline - - - 73.26+0.22 26.771+0.26
CIFAR-100 Entropy 0.25 - - 73.2440.29 26.55+0.26
ResNet-56 SKL 0.35 - - 73.354+0.3 25.62+0.36
2-Ensemble distillation - - 4.0 76.27+0.25 18.864+0.26
Co-distillcg - 0.04 - 75.11+0.17 19.554+0.27
Co-distillg k1, - 0.04 - 76.58+0.16 17.704+0.33
+Entropy 0.2 0.04 - 76.531+0.26 17.09+0.3
Baseline - - - 7610.11 15.22+0.16
ImageNet Entropy 0.2 - - 76.3940.11 14.924-0.09
ResNet-v2-50 SKL 0.05 - - 75.98+0.08 15.32+0.11
2-Ensemble distillation - - 1.0 75.83+0.08 12.92+0.14
Co-distillcg - 0.02 - 76.12+0.08 11.62+0.21
Co-distillgik, - 0.06 - 76.74+0.06 11.4540.13
+Entropy 0.2 0.06 - 76.5610.02 11.05+0.36
Baseline - - - 60.971+0.26 26.99+0.25
iNaturalist Entropy 0.4 - - 62.74+0.15 25.84+0.2
ResNet-v2-50 Co-distillcg - 0.02 - 61.14+0.11 26.89+0.22
Co-distillgk 1, - 0.05 - 61.59+0.28 21.734+0.26
Baseline - - - 87.16+0.43 143404
SVHN Entropy 0.2 - - 87.2440.61 14.12+0.42
LeNet5 Co-distillog - 0.02 - 88.93+0.39 9.42+40.33
Co-distillg k1, - 0.02 - 89.61+0.25 8.49+0.25

Table 5: In this table we list the hyper-parameter values corresponding to the settings for the results
in Table 2] For each method we experiment with a range of hyper-parameters, and 10 independent
runs, as described in the Section |Aland report the results for the setting with the best performance.

A EXPERIMENTAL SETUP

Architecture: For our experiments we use the standard image classification datasets CIFAR and
ImageNet. For our experiments with CIFAR, we use ResNet-32 and ResNet-56 architectures, and for
ImageNet we use ResNet-v2-50. These architectures have the following configuration in terms of
(Miayer, Miileer, stride), for each ResNet block:

« ResNet-32- [(5, 16, 1), (5, 32, 2), (5, 64, 2)]
« ResNet-56- [(9, 16, 1), (9, 32, 2), (9, 64, 2)]
« ResNet-v2-50- [(3, 64, 1), (4, 128, 2), (6, 256, 2), (3, 512, 2)],

where ‘stride’ refers to the stride of the first convolution filter within each block. For ResNet-v2-50,
the final layer of each block has 4 s ng, filters. We use L2 weight decay of strength 1e-4 for all
experiments.

Learning rate and Batch size: For our experiments with CIFAR, we use SGD optimizer with a 0.9
Nesterov momentum. We use a linear learning rate warmup for first 15 epochs, with a peak learning
rate of 1.0. We use a stepwise decay schedule, that decays learning rate by a factor of 10, at epoch
numbers 200, 300 and 400. We train the models for a total of 450 epochs. We use a batch size of
1024.

For the ImageNet experiments, we use SGD optimizer with a 0.9 momentum. We use a linear learning
rate warmup for first 5 epochs, with a peak learning rate of 0.8. We again use a stepwise decay
schedule, that decays learning rate by a factor of 10, at epoch numbers 30, 60 and 80. We train the
models for a total of 90 epochs. We use a batch size of 1024.
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Data augmentation: We use data augmentation with random cropping and flipping.

Parameter ranges: For our experiments with the min entropy regularizers, we use
a € [0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.5], and report the « corresponding to best
churn in Table For our experiments with the co-distillation approach, we use § €
[0.01,0.02,0.03,0.04,0.05,0.06,0.07, 0.08], and report the 3 corresponding to best churn in Table
2

For our experiments on entropy regularized co-distillation, we use a linear warmup of the regularizer
coefficient. We use the same range for « as described above, and use only the best 3 value from the
earlier experiments.

Finally, we run our experiments using TPUv3. Experiments on CIFAR datasets finish in an hour,
experiments on ImageNet take around 6-8 hours.

Hyper parameters for Table 2} Finally we list in Table[5]the best hyperparameters used to obtain
the results in Table 2| For reference we also include the accuracy and the churn again for all methods.

B PROOFS

Proof of Lemma(I} Recall from Definition|[I] that
Churn(wq, ws) = IEDx[\?x,w1 # \?x,wQ] =Pxy [\?x,w1 #* \?X,wg]
=Pxyv [{\?x,w1 = \(7\A(x,w2 #Y}u {\?x,w1 # Y,\?X,w1 # ?X,’wg H
(@) - N . . .
< IP)X,Y [YX,wl = YvYX,wg # Y] + IP>[YX,wl 7> Y7YX,UJ1 7> YX,wg]
(i)« N
< P[Yxuw, # Y]+ P[Yxw, # Y]

= PErr,wz + PErr,wly (10)
where (7) and (47) follow from the union bound and the fact that P[A] < P[B] whenever A € B,
respectively. O

Proof of Lemma 2| Note that, for any j # ¥z v, »
f(@iwa)g, ,, — flzw2);

= flwswa)g, ., = f(@w1)g, ., + F(@5w1)g, ,, — f@w); +f(zw1); — f(2;w2);

v~

Z’Yw,wl
> Yoor — ) 1 (@;wn); = fw;ws),]
jed
= Ya,wn — Dra (f(z;w1), f(2502)). (11)
Similarly, for any j # { w,, We can establish that
flaswi)g, ., — F@w1)5 2 Yo, — Dra (f(z;w1), fa;ws)). 12)

Note that experiencing churn between the two models on z is equivalent to
{gm,wl 76 :gat,wrz} o=
{Elj #* gm,un : f(x, wZ)?}x,wl < f(xa w2)j} U {EI] # gz,wg : f(m;wl)gz,w2 < f(m;wl)j}

(@
< {Dr1 (f(z;wr), flz;ws)) > ’Ya:,wl}U {Dr1(f(z;w1), fz5w2)) > Yows }r (13)
where (i) follows from and (12). Now, implies that

Px{Yx.w, # Yy} < Px[Dr1 (f (X;w1), f(X;w2)) > min{yx,w, , Vx,ws }] - (14)
O

Proof of Theorem[3] Let the prediction for a given z be p = f(x;w). W.L.O.G. letp > 1 — p. The
prediction confidence is then

Yew =p— (1—p)=2p—1 (15)
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Entropy case. Now we can write entropy in terms of the prediction confidence (cf. (I3))
H(f(x;w)) = —plog(p) — (1 - p)log(1 - p)
1 T, w 1 T, w 1- T, w 1- T, w
:_7( +’y’)><log( +7’)—( 7’)><10g<fy'>

2 2 2 2
= 9(Yow)- (16)
Now the gradient of g(-) is V., , ¢(Vz,w) = % log (%) , which is less than 0 for 7, ., € [0, 1].

Hence, the function g(v, ) is a decreasing function for inputs in range [0, 1]. Hence, if g(vg /) =
g(’}/m,w) lmPheS 'Ym,w/ < 7x,u;~

Symmetric-KL divergence case. Recall that
SKL(f(z;w), Unif) = KL(f(z;w)||Unif) + KL(Unif|| f(z; w))
= 2oy Flasw); = 1/K) -log (K - f(zw);)

1
= 3 (s w); +log (f (@ w);) — = log (f(xi w)y).
J
For binary classification this reduces to,

SKL(f (r;w), Unif) = — 2 loa(p(1 — p)) — H(p).

By using (I5) and (I6), we can rewrite this function in terms of 7, ,, as:

SKL(f (z;w), Unif) = —% log(p(1 —p)) — H(p)

1 1+ Yew 1=, 1 1—7
__2'10g< = X 3Lw)_g(’}/at,w)__2'10g <xw _g(%u,w)-

2 2 4

Now notice that both the above terms are an increasing function of 7, ., as log is an increasing
function, and g(~,,.,) is a decreasing function. Hence SKL( f (z; w), Unif) > SKL( f(z; w’), Unif)
implies Vosw 2 Vayuw - O

C DESIGN CHOICES IN THE PROPOSED VARIANT OF CO-DISTILLATION
Here, we discuss two important design choices that are crucial for successful utilization of co-
distillation framework for churn reduction while also improving model accuracy.

Joint vs. independent updates. |Anil et al.|(2018)) consider co-distillation with independent updates
for the participating models. In particular, with two participating models, this corresponds to
independently solving the following two sub-problems during the ¢-th step.

. 1 _
w] = argmin,, ¢y L(wy;S) + B Ezie[n] KL(f (253 w5 )| f(2i;w1)) (172)

. 1 _
wh = argming,eyy L(ws; ) + -~ > KL(f(wsswi DI f(wi;ws)),  (17b)
where w’i_T and wg_T corresponds to earlier checkpoints of two models being used to compute

the model disagreement loss component at the other model. Note that since w57 and w! ™" are

not being optimized in (I7a) and (I7D), respectively. Thus, for each model, these objectives are
equivalent to regularizing its empirical loss via a cross-entropy terms that aims to align its prediction
probabilities with that of the other model. In particular, the optimization steps in (I7)) are equivalent
to

w] = argmin,, ¢y L(wi;S) + B - %Z H(f(xi;wé_T),f(xi;wl)) (18a)

i€[n]

wh = argmin,,,cyy L(wz; S) + 3 - %2 H(f(mi;wf_T),f(wi;wg)), (18b)

ie[n]
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where H (f(w;w1), f(;ws)) = — X f(w;w1);log f(x;w2); denotes the cross-entropy between
the probability mass functions f(xz;w,) and f(z;ws).

In our experiments, we verify that this independent updates approach leads to worse results as
compared to jointly training the two models using the objective in (9).

Deferred model disagreement loss component in co-distillation. In general, imple-
menting co-distillation approach by employing the model disagreement based loss component
(e.g.SKL(f(x;w1), f(x;w2)) in our proposal) from the beginning leads to sub-optimal test accu-
racy as the models are very poor classifiers at the initialization. As a remedy, |Anil et al.| (2018)
proposed a step-wise ramp up of such loss component, i.e., a time-dependent 3(t) such that 5(t) > 0
iff t > to, with ¢ty burn-in steps. Besides step-wise ramp up, we experimented with linear ramp-up,
ie., By = min{c-t, 5} and observed that linear ramp up leads to better churn reduction. We believe
that, for churn reduction, it’s important to ensure that the prediction probabilities of the two models
start aligning before the model diverges too far during the training process.

D COMBINED APPROACH: CO-DISTILLATION WITH ENTROPY REGULARIZER

In this paper, we have considered two different approaches to reduce churn, involving minimum
entropy regularizers and co-distillation framework, respectively. This raises an important question
if these two approaches are redundant. As shown in Figures 2] [I] and [3] this is not the case. In
fact, these two approaches are complementary in nature and combining them together leads to better
results in term of both churn and accuracy.

Note that the minimum entropy regularizers themselves cannot actively enforce alignment between
the prediction probabilities across multiple runs as the resulting objective does not couple multiple
models together. On the other hand, as verified in Figure [2] the co-distillation framework in itself
does not affect the prediction confidence of the underlying models. Thus, both these approaches can
be combined together to obtain the following training objective which promotes both large model
prediction confidence and small variance in prediction probabilities across multiple runs.

rgembined (w1, wa;S) = Leodistlisgr, (W1, w2; S)(w, we; S) + a - EReg(wy, we; ), (19)

Co-distillskr,

where
1

EReg(w1, ws;S) = - Zie[n] H(f(zi,w1)) + H(f(z;, w2))

or

EReg(wy,wq; S) = —%Zie[n] (SKL(f(xl-;wl),Unif) + SKL(f(xi;wg),Unif)).

E ADDITIONAL EXPERIMENTAL RESULTS

In this section we present additional experimental results.

Ablation on CIFAR-100. Next we present our ablation studies, similar to results in Figure[I] for
CIFAR-100. In Figure[3] we plot the mean prediction entropy, accuracy and churn, for the proposed
SKL regularizer (7) and the co-distillation approach (9), for varying « and 3, respectively. Similar
to Figure[I] the plots show the effectiveness of the proposed approaches in reducing churn, while
improving accuracy.

E.1 ON HARDWARE NONDETERMINISM: GPU BASELINE ABLATION RESULTS

We now repeat the experiments in Sec. on GPUs to investigate the unavoidable nondeterminism
introduced by different hardware platforms.

We report results in Table [6} Compared to Table [T} there are two main differences. First, these
experiments are run on GPU with smaller ResNet-32 models. Second, these results always use data
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Figure 3: CIFAR-100 ablation study: Similar to Figure we plot the effect of the SKL regularizer
(cf. {@), for varying «, and our proposed variant of co-distillation (Co-distillsky,) for varying 3, on
the prediction entropy, accuracy, and churn. These plots shows the complementary nature of these
methods in reducing churn. While the regularizer reduces churn, by reducing the prediction entropy,
Co-distillgkr, reduces churn by improving the agreement between two models, hence increasing the
entropy.

Identical initialization v v
Ident. input data v v
Accuracy 91.67 + 0.22 91.61+ 0.16 91.534+ 0.13 91.86+ 0.05
Churn(%) 8.44+4 0.27 8.25+ 0.11 2.73+ 0.07 1.33+ 0.10

SChurnj (%) 8.71 £+ 0.26 8.69 £+ 0.12 2.98 £+ 0.08 1.47 £+ 0.05

Table 6: Ablation study of churn across 5 runs on CIFAR-10 with a ResNet-32 on GPU. Holding
the initialization constant across models decreases churn significantly, and using identical input data
(keeping minibatch ordering and augmentation constant) lowers churn further. Unlike Table[T] these
experiments were performed on GPU rather than TPU. Under this setting, using fixed initialization
does achieve a lower churn at a much more expensive computation cost.

augmentation, but control for the randomness differently by ensuring that all models within each
run perform the same augmentations during training; we call these “identical input data” ablations
because they control for both minibatch ordering and data augmentation. Again, the the first column
gives the baseline churn with no factor held constant across runs, and the last column has every
possible source of churn except hardware nondeterminism held constant across runs.

Model initialization is a significant source of churn. Simply initializing weights from identical seeds
(columns 1-2 in Table[T) can significantly decrease churn, no matter what other aspects of training
are held constant. Holding input data constant across runs does reduce randomness and further
reduces churn, but is less significant compared to constant initialization.

The rightmost column eliminates all possible sources of churn except for unavoidable non-
determinism in the computing platform used for training machine learning models, e.g., GPU/TPU
(Morin & Willetts| [2020; PyTorchl 2019} [Nvidia, [2020). The experiments in Table @ were run
on GPU, and even when all other aspects of training are held constant (rightmost column), model
weights diverge within 100 steps (across runs) and the final churn is significant. We verified that this
is the sole source of non-determinism: models trained to 10,000 steps on CPUs under these settings
had identical weights. Comparing these results to the rightmost column of Table|l} it seems TPU
platforms currently introduce a higher baseline amount of churn than GPUs. However, as shown in
this work, our Co-distillgkt, method can alleviate this somewhat.

E.2 2 ENSEMBLE

In Table [/| we provide the results for 2-ensemble models and compare with distillation and co-
distillation approaches. We notice that the proposed approach with entropy regularizer and co-
distillation achieve similar or better churn, with lower inference costs. However the the ensemble
models achieve better accuracy on certain datasets, and could be an alternative in settings where
higher inference costs are acceptable.
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Dataset Method Training  Inference Accuracy Churn(%) SChurng (%) Churn correct Churn incorrect
cost cost
Baseline Ix 1x 93.9740.11 5.7240.18 6.41+0.15 2.6240.12 53.824+1.44
CIFAR-10 2-Ensemble 2x 2x 94.79+0.09 4.0240.12 5.4240.09 1.84+0.11 43.74+1.24
ResNet-56 2-Ensemble distil. (Hinton et al.;2015) 3x Ix 94.62+0.07 4.47+40.13 491+0.11 2.05+0.1 47.25+1.55
Co-distillcg, (Anil et al. [2018) 2x 1x 94.2540.15 5.1440.14 5.6240.12 3.0340.31 40.45+5.98
Co-distillgk 1, (this paper) 2x 1x 94.6340.15 4.2940.14 4.66+0.11 2.49+40.25 36.78+4.14
+Entropy (this paper) 2x Ix 94.631+0.15 4.21£0.15 4.61+0.14 1.944-0.13 4429419
Baseline Ix 1x 73.26+0.22 26.7740.26 37.1940.35 11.4240.26 68.7740.72
CIFAR-100 2-Ensemble 2x 2x 76.2840.24 20.234+0.29 35.9140.33 8.26+0.25 58.9240.83
ResNet-56 2-Ensemble distil. (Hinton et al. 2015} 3x Ix 76.2740.25 18.86+0.26 25434023 7.7940.23 54.3140.86
Co-distillcg, (Anil et al. [2018) 2x 1x 75.1140.17 19.5540.27 25.034+0.27 9.98+0.97 48.69+2.84
Co-distillg k1, (this paper) 2x Ix 76.58+0.16 17.7040.33 24.9940.31 9.08+0.8 45.98+2.98
+Entropy (this paper) 2x 1x 76.531+0.26 17.09+0.3 24.06+0.28 7.240.26 49.4+1.1
Baseline Ix 1x 7640.11 15.2240.16 35.014+0.24 5.8740.11 44.7740.46
ImageNet 2-Ensemble 2x 2x 77.24+0.09 11.1340.13 27.714+0.18 4.2+0.11 34.631+0.43
ResNet-v2-50 2-Ensemble distil. (Hinton et al. 2015} 3x. 1x 75.831+0.08 12.9240.14 34.0240.2 4.92+40.11 38.0440.39
Co-distillcg, (Anil et al. [2018) 2x 1x 76.1240.08 11.6240.21 18.38+0.34 4.9740.36 32.67+1.45
Co-distillgk 1, (this paper) 2x Ix 76.7410.06 11.4540.13 28.6610.20 5.11£0.36 3241+£1.15
+Entropy (this paper) 2x 1x 76.561+0.02 11.05+0.36 22.924+1.01 4.3240.32 32.89+1.15

Table 7: Similar to Table we provide results on accuracy and churn for 2-ensemble and proposed
approaches. We notice that proposed approaches are either competitive or improve churn over
2-ensemble method, while keeping the inference costs low.

F LOSS LANDSCAPE: ENTROPY REGULARIZATION VS. TEMPERATURE
SCALING

Figure [] visualises the entropy regularised loss () in binary case. We do so both in terms of the
underlying loss operating on probabilities (i.e., log-loss), and the loss operating on logits with an
implicit transformation via the sigmoid (i.e., the logistic loss). Here, the regularised log-loss is
¢:0,1] — R4, where £(p) = (1 — a) - —logp + « - Hyin(p), for binary entropy Hpiyn. Similarly,
the logistic loss is £: R — R, where /(f) = (1 — «) - —logo(f) + a - Hyin(o(f)), for sigmoid
o(+). The effect of increasing « is to dampen the loss for high-confidence predictions - e.g., for the
logistic loss, either very strongly positive or negative predictions incur a low loss. This encourages
the model to make confident predictions.

Figure[5] by contrast, illustrates the effect of changing the temperature 7 in the softmax. Temperature
scaling is a common trick used to decrease classifier confidence. This also dampens the loss for
high-confidence predictions. However, with strongly negative predictions, one still incurs a high loss
compared to strongly positive predictions. This is in contrast to the more aggressive dampening of
the loss as achieved by the entropy regularised loss.

8
= --- a=00 --- a=0.0
< —a=025 —a =025
6 —_— a=0.5 —_—a=0.5
—a=0.75 —a=0.75
a=1.0 a=1.0
4
2
\ » . \ - f
0.2 0.4 0.6 0.8 1 —-10 -5 5 10

Figure 4: Visualisation of entropy regularised loss (eq. (6)) in binary case. On the left panel is the
regularised log-loss (1 — a) - —logp + o - Hpin(p), which accepts a probability in [0, 1] as input.
On the right panel is the logistic loss (1 — «) - —log o (f) + & - Hyin(o(f)), which accepts a score
in R as input and passes it through sigmoid o (-) to get a probability estimate.
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Figure 5: Visualisation of temperature scaling on binary logistic lau. We plot — log o (f/7) for
varying temperature parameter 7.
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