
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LongShield: Scalable Distributed Differentially
Private Training for Long-Context LLMs

Anonymous authors
Paper under double-blind review

Abstract

Large language models excel at in-context learning, but can memorize sensitive
sequences and enable membership-inference and extraction attacks. Differential
privacy (DP) offers provable protection, yet DP training remains costly for long
contexts: prior work primarily targets short-sequence DP fine-tuning, and the
strongest public DP pretraining scales only to 1B parameters with 1,024 tokens
contexts.
We focus on providing DP guarantees for long data. However, the state-of-the-art
DP solution ZeRO-DP is optimized for small sequences and fails to scale to long
sequences due to the single-GPU memory ceiling for the unsharded activations
under FSDP. Moreover, straightforward context extension techniques like CP do
not work out of the box with ZeRO-DP, as the ghost norm overhead dominates
compute and communication for long sequences.
We introduce LongShield, a memory- and communication-efficient context-
parallel DP training method that closes the performance gap to non-DP while
enabling long-context scaling on modest GPU budgets. LongShield keeps per-
sample gradients shards local to each GPU to avoid full materialization, overlaps
per-sample gradient aggregation with backward computation to sustain through-
put, and enables DP-safe activation checkpointing to extend context further. These
system changes leave the underlying DP algorithm and accounting unchanged,
and use flat clipping for best convergence. On Llama 3.1 8B with 4× NVIDIA
H100 GPUs, LongShield scales sequence length from 4k to 16k compared to
the state-of-the-art ZeRO-DP, achieves linear sequence-length scaling, shrinks the
throughput gap from 67% to 8.9% while matching non-DP memory usage, and
reaches a 64k context length with activation checkpointing. These results show
that long-context DP training is practical on modest GPU budgets.

1 Introduction

Modern LLMs support and benefit from increasingly large context lengths (Jacobs et al., 2023;
Kryściński et al., 2022; Huang et al., 2024). For example, Llama 3.1 (Grattafiori et al., 2024) and
Qwen 2.5-1M (Yang et al., 2025) support sequence lengths of 128k and 1M, respectively. Advances
in LLMs’ long-context capabilities depend heavily on long, high-quality datasets, such as full patient
records and proprietary codebases, which contain sensitive information.

Although LLMs excel at in-context learning, they can memorize rare sequences (Carlini et al., 2022;
Nasr et al., 2023), making the model vulnerable to membership-inference attacks (MIA) (Shokri
et al., 2017). Differential privacy (DP)1 techniques are the gold standard for provably constraining
privacy leakage from the underlying training data and offer formal protection against such memo-
rization (Abadi et al., 2016; VaultGemma Team, 2025).

However, DP training remains costly, especially with longer contexts. Early academic results (Li
et al., 2021; Bu et al., 2023d) focused on DP fine-tuning over tiny context lengths (around 100
tokens for table-to-text generation on the E2E dataset (Novikova et al., 2017)); the strongest public

1DP is the abbreviation for data parallelism in distributed training literature. In the context of our paper,
DP always means Differential Privacy, following existing literature. We will explicitly say “data parallelism” if
encountered.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

DP pretraining (VaultGemma Team, 2025) to date targets 1B-parameter models with 1024-token
contexts, which is orders of magnitude smaller than today’s non-DP models with up to 1M-token
contexts (Yang et al., 2025).

This is because state-of-the-art DP-SGD (Abadi et al., 2016) (or its variants) requires large effective
batch sizes to control noise, which competes for memory capacity with long contexts. Practition-
ers therefore shorten the context to fit more batches (VaultGemma Team, 2025), sacrificing the
long-context capability modern applications require (Liu et al., 2023b; Bai et al., 2023; Grattafiori
et al., 2024; Yang et al., 2025). Moreover, using shorter context lengths increases the token through-
put, which is crucial for offsetting the non-trivial slowdown introduced by DP.

Nevertheless, it is critical to enable long-context capability for LLMs under DP to protect long private
data where existing DP solutions fall short. In the non-private domain, context extension continued
pretraining (CPT) is the standard approach to enable long-context capability for models pretrained
on small sequences (Grattafiori et al., 2024; Yang et al., 2025; Fu et al., 2024; Xiong et al., 2023).
However, CPT has very different requirements than the from-scratch pretraining approach taken by
DP work to date (see Table 1), and existing SOTA distributed DP solutions like ZeRO-DP cannot be
used with.

This is because, even with infinite GPU resources, long contexts do not fit given the ZeRO-DP
sharding layout — chosen to maximize throughput — due to the single-GPU memory ceiling for
the unsharded activations under FSDP (See Section 2). Moreover, straightforward context extension
techniques, such as context parallelism (CP) (Liu et al., 2023a), do not work out of the box with
ZeRO-DP, as the resulting ghost overhead demands𝑂 (𝑇2) compute and𝑂 (𝑇) communication, which
is expensive with long contexts.

In this paper, we show how CPT can be adapted to the DP setting. A key observation is that context
extension requires orders of magnitude fewer tokens than pre-training from scratch — just 0.5B to 5B
tokens (Fu et al., 2024) — meaning that throughput requirements are much lower. Lower throughput
pressure means that the microbatch size (MBS) can be made much smaller, leaving memory capacity
for the sequence dimension T. Instead of using MBS to control noise, we compensate with more
gradient accumulation steps, effectively controlling noise by setting the global batch size (GBS).

TPS requirements MBS T
DP pretraining from scratch high large small
DP context extension CPT low small large

Table 1: Performance requirements between DP PT from scratch and DP context extension CPT. TPS
= tokens per second; MBS = microbatch size; T = sequence length.

Key insights: We adopt the pure gradient-sample (GS) approach to avoid ghost overhead. However,
challenges remain in tackling the heavy memory pressure of saving per-sample gradients across the
entire model. In contrast to SOTA ZeRO-DP, which avoids tracking per-sample gradients over the
whole network using ghost clipping, we realize a unique sharding opportunity that is otherwise
unavailable under FSDP to provide memory scalability that is crucial for larger models (a larger
model corresponds to a larger per-sample gradient overhead).

The sharding opportunity comes at the cost of additional communication. We analyze the trade-
off between output-stationary and input-stationary communication patterns. We choose the input-
stationary pattern for better scalability and hide the communication with independent computation.

Contributions: To enable scalable and efficient long-context distributed DP training that satisfies
the requirement of context extension CPT under DP, we introduce LongShield: a DP training recipe
that scales context, not cost. We make the following contributions:

• We adopt a pure GS approach to avoid ghost overhead at long contexts and integrate it
with context scaling methods, such as CP, to achieve linear sequence scaling. We treat
this as a baseline. It beats SOTA ZeRO-DP in terms of achieved sequence length and
the throughput. However, it still suffers from the standard memory penalty of storing the
per-sample gradients for the entire model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We further reduce per-GPU DP memory overhead by sharding per-sample gradients within
the context-parallel domain. Such an opportunity does not exist in prior SOTA distributed
solutions DP-Zero (Bu et al., 2023a). We minimize the required communication and hide it
using independent computation to avoid throughput reduction.

• We use activation checkpointing (Chen et al., 2016), which is incompatible with prior DP
frameworks (Yousefpour et al., 2021; Li et al., 2021; Bu et al., 2023d;a). This enables
additional context scaling under limited resources at the cost of an extra forward pass,
resulting in approximately a 33% reduction in throughput.

LongShield achieves 4× context scaling compared to ZeRO-DP Bu et al. (2023a) under 4× H100
GPUs under various Llama 3 family of models. DP-aware activation checkpointing provides up to
4× additional context scaling. Meanwhile, we significantly close the throughput gap between non-
private baselines compared with prior SOTA ZeRO-DP (e.g., 67% to 8.9% on Llama 3.1 8B), while
maintaining non-DP memory usage. Preliminary and related work is included in appendix Section A.

2 Challenges of Long-Context DP

The state-of-the-art distributed DP solution ZeRO-DP Bu et al. (2023a) leverages the zero redundancy
optimizer (ZeRO) (Rajbhandari et al., 2020) or fully sharded data parallelism (FSDP) (Zhao et al.,
2023; PyTorch Documentation, 2025) to scale the SOTA single-GPU efficient DP methods (Bu
et al., 2022; 2023d). However, ZeRO-DP (Bu et al., 2023a) cannot help sequence scaling and is
therefore not suitable for the context extension CPT task under DP. ZeRO-DP gets out of memory
error (OOM) even with infinite H100 GPUs for sequence length 32k, 16k, and 8k for Llama 3.2 1B,
Llama 3.2 3B, and Llama 3.1 8B, respectively. Below, we first explain why ZeRO-DP fails to scale,
and then discuss suitable context scaling techniques LongShield use to scale.

Under FSDP, each GPU holds a sharded model state 𝑂 (𝑀/𝑁) (M for model state space and N for
number of GPUs) and unsharded activations 𝑂 (𝑀𝐵𝑆 ×𝑇 × 𝐿 × ℎ) (MBS for micro-batch size, T for
sequence length, L for number of layers, and h for hidden size). The sum of the sharded states and
the unsharded activation needs to be smaller than the GPU physical memory size.

FSDP is subject to a hard memory ceiling for sequence length scaling. Even if N reaches infinity,
and the model states space reaches zero. The unsharded activation must fit within the single-GPU
memory limit. Even choosing MBS=1, there’s an upper limit for sequence length under FSDP.

Table 2 shows the maximum achievable sequence length (power of two) across various MBS for
Llama 3.2 1B, Llama 3.2 3B, and Llama 3.1 8B over 1, 4, and infinite H100 (80GB) GPUs. The
benefits are marginal beyond 4 GPUs.

1B 3B 8B
Num GPUs 1 4 ∞ 1 4 ∞ 1 4 ∞

MBS=1 16384 16384 16384 4096 8192 8192 OOM 4096 4096
MBS=2 8192 8192 8192 2048 4096 4096 OOM 2048 2048
MBS=4 4096 4096 4096 1024 2048 2048 OOM 1024 1024
MBS=8 2048 2048 2048 512 1024 1024 OOM 512 512

Table 2: The maximum achieved sequence length (power of 2) under various MBS for Llama 3.2 1B,
Llama 3.2 3B, and Llama 3.1 8B over 1, 4, and infinite H100 (80GB) GPUs.

In contrast to FSDP, two types of approaches help with sequence scaling: (1) context parallelism (CP)
implements a spatial version of the flash attention (FA) (Dao et al., 2022; Dao, 2024), which enables
linear scaling with respect to the number of GPUs, despite slower inter-node communication and
quadratic attention costs; (2) memory optimization techniques like activation checkpointing recom-
pute activations during backward to avoid saving all activation tensors. However, these techniques
do NOT work directly with ZeRO-DP or will encounter significant system overhead.

Naive combination of ZeRO-DP with CP introduces significant ghost overhead. The mixed ghost
norm heuristic (Bu et al., 2022) prefers to use ghost clipping, especially for large layers like the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

final linear layer. For example, mixed ghost norm choose ghost for Llama 3.1 8B final linear layer
up to T= 16k. However, the ghost norm is 4× more FLOPs than directly evaluating the per-sample
gradient, and the final dot product between two large intermediate tensors (𝑂 (𝐵𝑇2)) causes a similar
delay, according to our profiling, due to the reduction nature. This causes 8× slowdown for the largest
layer. Communication is more of an issue, as input tensors to the ghost norm are context-distributed,
requiring an all-gather (AG) or ring-exchange that is similar to ring attention (Liu et al., 2023a).
Instead, LongShield builds with a GS approach to avoid ghost overhead at long context.

Meanwhile, ZeRO-DP (Bu et al., 2023a) or any hook-based DP approach (Yousefpour et al., 2021; Li
et al., 2021; Bu et al., 2023d;a) is not compatible with AC. The forward hooks used in DP frameworks
attempt to capture activation so that the backward hook can evaluate the per-sample gradient norm
using either the gradient sample or the ghost clipping method. However, this hook will capture both
the activation that is supposed to be released and the recomputed activation, resulting in incorrect
behavior. We show proper hook management in Section 3.3.

3 LongShield Design

As discussed in Section 2, directly extending SOTA ZeRO-DP to longer contexts faces two challenges:
(i) the ghost norm overhead at long distributed contexts, and (ii) incompatibility with memory
optimization techniques like activation checkpointing (Chen et al., 2016).

LongShield therefore avoids ghost clipping and instead adopts the pure grad sample (GS) approach.
However, scaling GS with context parallelism faces new challenges. The GS method is notorious
for preserving the per-sample gradient over the entire model, adding significant memory pressure
and limiting scalability, especially for large models. ZeRO-DP switches to the ghost norm to prevent
this, but the ghost norm has quadratic complexity in sequence length, which is a cost that we cannot
afford for context scaling.

Instead, LongShield takes advantage of a new sharding opportunity that is otherwise unavailable in
ZeRO-DP with FSDP. We introduce CP per-sample gradient sharding in Section 3.1.

However, CP per-sample gradient sharding is not free and introduces additional communication
challenges compared with FSDP. Section 3.2 analyzes the tradeoff between the output-stationary
and the input-stationary communication patterns, and discusses their communication volume and
how to avoid the throughput penalty resulting from exposed communication.

Finally, we introduce DP-compatible activation checkpointing in Section 3.3, which enables addi-
tional context scaling capability.

3.1 DP Memory–Communication Trade-off between Context Parallelism and FSDP

Let’s consider a generalized linear layer with dimensions 𝑝 by 𝑑, and evaluate its per-sample gradient
of shape (MBS, 𝑝, 𝑑). Figure 1 illustrates the initial sharding state with a toy 2-GPU example,
comparing FSDP and CP.

GPU 0 GPU 1 GPU 0 GPU 1FSDP CP

param act

Figure 1: Activation and parameter sharding under FSDP and CP

FSDP shards the model states and enables batch scaling where GBS = 2 × MBS. However, the
single-GPU activation of the shape (MBS, T, 𝑝) is not sharded and therefore has limited sequence
scaling capability.

When it comes to CP, one can also use a distributed model state, where each GPU holds only a shard
of the parameters. Instead, the activation of shape (MBS, T, 𝑝) is sharded over the sequence length
dimension, and each GPU holds an activation of shape (MBS, T/2, 𝑝).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

GPU 0 GPU 1 GPU 0 GPU 1FSDP CP

grad_act act

Figure 2: Activation and activation gradient sharding under FSDP and CP

Figure 2 shows the sharding states before computing the per-sample gradients, where the upstream
activation gradients are ready and follow the corresponding FSDP and CP sharding strategy. Notice
that in FSDP, the entire sequence length T is local to each GPU, and the per-sample gradient can be
evaluated locally without any communication. Evaluating per-sample gradient requires the following
einsum operation (we use B for MBS):

per-sample grad = einsum
(
BTp,BTd→ Bpd, act, grad act

)
.

However, local computation for the per-sample gradient under CP only yields partial results, which
means that some forms of communication among context-parallel GPUs are required. We provide a
careful analysis of different communication patterns and their consequences in Section 3.2.

On the other hand, FSDP incurs the full memory overhead of saving the per-sample gradient, as
shown in Figure 3. The per-sample gradients on each GPU are not shardable as they correspond
to different samples. However, per-sample gradients can be sharded within the CP domain, as they
correspond to the same MBS, which is significantly more scalable compared to FSDP.

GPU 0 GPU 1 GPU 0 GPU 1FSDP CP

per-sample grad

Figure 3: Per-sample gradient under FSDP and CP

3.2 Communication for Per-Sample Gradient with Context Parallelism

Evaluating per-sample gradient under CP (from Figure 2 to Figure 3) can be achieved with multiple
approaches, with distinct communication patterns and bandwidth requirements.

GPU 0

GPU 1

einsum

per-sample gradgrad_act act

A2A + AG

einsum

Figure 4: Output Stationary DP under CP

Output-stationary pattern. An output-stationary approach (Figure 4) exchanges the input tensor
(i.e., activation and activation gradients) followed by the per-sample gradient einsum operation. For
example, we can all-to-all (A2A) exchange the activation tensor (shape changing from (MBS, T/2, p)
to (MBS, T, p)) and then all-gather (AG) the activation gradient tensor (shape transferred from (MBS,
T/2, d) to (MBS, T, d/2)). Performing the per-sample grad einsum operation then directly yields a
complete shard of per-sample gradient (shape (MBS, d/2, p)). One optimization is to apply A2A on
the large tensor and AG on the smaller tensor (by comparing 𝑑 and 𝑝) to reduce communication

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

volume. This effectively makes the sharding dimension configurable (one can choose either from 𝑑

or 𝑝). One needs to align other model state sharding such that the optimizer step does not require
additional communication.

GPU 0

GPU 1

per-sample gradgrad_act act

einsum

RS

einsum

Figure 5: Input Stationary DP under CP

Input-stationary pattern. An input-stationary approach (Figure 5) computes per-sample gradients
based on local activation and activation gradient shards, followed by exchanging the output per-
sample gradient tensor instead. Directly evaluating per-sample gradients based on local activation
and activation gradient shards yields a partial per-sample gradient with shape (MBS, p, d). Then, a
reduce-scatter (RS) operation aggregates and produces the complete per-sample gradient shard of
shape (MBS, p/2, d).

For long contexts, we prefer the input-stationary approach, as the required communication does
not scale with sequence length. AG (even for the smaller tensor between activation and activation
gradient) can be a performance bottleneck over a long context with large T. Meanwhile, the output-
stationary approach is hard to overlap communication with computation in practice. At the time
we enter the backward hook, the data gradient operation is completed, and there is no independent
computation to overlap. This causes the input tensor exchange to be on the critical path, exposing
the communication latency and resulting in lower throughput. However, for the input-stationary
approach, one can post the RS with the following independent computation: backward data gradient
computation of the previous layer.

3.3 DP-compatible Activation Checkpointing

Activation checkpointing (AC) (Chen et al., 2016) is a popular memory optimization technique
that avoids saving full activations during the forward pass and recomputes the required activations
during the backward pass. However, this approach is not compatible with mainstream DP frame-
works (Yousefpour et al., 2021; Li et al., 2021; Bu et al., 2023d;a) due to incorrect activation
memory management. Mainstream DP frameworks (Yousefpour et al., 2021; Li et al., 2021; Bu
et al., 2023d;a) adopt the hook-based method from Opacus (Yousefpour et al., 2021) to track and
release activation that will be used for per-sample gradient norm evaluation.

All trainable modules will be wrapped with DP forward and backward hooks. The DP forward hook
captures the reference to the input activation of the module. The DP backward hook captures the
reference to the activation gradient tensor, uses the tracked activation from the forward hook to
evaluate per-sample gradients, and frees the tracked activation.

Direct integration with AC fails with hook-based DP methods. During the forward pass, the module
under the AC regime is supposed to release the activation and recompute during the backward pass.
However, the forward hook captures a reference to activation and therefore prevents the release of
activation, which defeats the original purpose of activation checkpointing. Moreover, the forward
hook will fire again during the backward pass when forward recomputation is triggered. This captures
the references to the newly recomputed activation. The backward hook evaluates per-sample gradient
using the new activation and frees it, leaving the activation captured by the initial forward pass
dangling, causing the training to go OOM after some steps eventually.

To preserve the intended AC behavior under DP, we disable forward hooks under the AC region to
prevent tracking references to activation that is supposed to be freed. Any trainable module outside
the AC region is left untouched. After the forward pass and prior to the backpropagation, we re-enable

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

forward hooks for all DP modules under the AC region such that the recomputed activations can be
captured and the backward hook can use the captured activation to compute the per-sample gradient.

4 Evaluation

4.1 Methods

Our experiments were conducted on a node with four H100 80 GB GPUs and 900 GB/s NVLink.
We build LongShield on top of the SOTA DP framework Opacus (Yousefpour et al., 2021) and
leverage TorchTitan (Liang et al., 2025) distributed training support on LLMs. We use TorchTitan’s
internal tools to report throughput (in TPS = tokens per second per GPU) and monitor peak memory
usage. We evaluate three popular variants of the Llama 3 family models that are feasible to run on
four H100 GPUs: Llama 3.2 1B, Llama 3.2 3B, and Llama 3.1 8B.

We evaluate training throughput and peak memory usage of three LongShield variants to un-
derstand the effect of CP context scaling, sharding and overlapped communication, and activation
checkpointing.

• LongShield-V1 is a basic context-parallel implementation. It leverages existing efficiency
tricks in the literature, except that it replaces the mixed ghost norm with the pure grad
sample method to enable long contexts (cf. Section 2).

• LongShield-V2 builds on LongShield-V1 by (i) adding per-sample gradient sharding to
save memory and (ii) overlapping the RS aggregation of per-sample gradients to boost
throughput.

• Finally, LongShield-V3 applies DP-compatible full activation checkpointing at the trans-
former block level to LongShield-V2. LongShield-V3 further scales sequence length
because full activation is not materialized and recomputed during the backward pass.

For a fair comparison, we implement ZeRO-DP+, an improved version of ZeRO-DP with enhanced
memory efficiency and utility, within the same framework. We utilize recent FSDP ghost clipping
(FGC) support from Opacus (Yousefpour et al., 2021), which provides FSDP2 (PyTorch Documen-
tation, 2025) support and enables flat clipping for improved convergence (Bu et al., 2023b). We also
incorporate all efficiency techniques developed in ZeRO-DP (Bu et al., 2023a), including mixed
ghost norm (Bu et al., 2022), book-keeping (Bu et al., 2023d), and the origin parameter trick (Bu
et al., 2023d).

4.2 ZeRO-DP+ Performance

We compare training throughput (TPS) at the maximum achieved sequence length (T) across various
micro-batch sizes (MBS) for Llama 3.2 1B, Llama 3.2 3B, and Llama 3.1 8B over 4× H100 in
Table 3. The majority of the runs incur non-trivial throughput overheads ranging from 15% to 156%.

1B 3B 8B
MBS T non-DP DP Gap T non-DP DP Gap T non-DP DP Gap

1 16k 28.8k 25.0k 1.15 8k 14.2k 11.3k 1.26 4k 7.18k 4.30k 1.67
2 8k 35.7k 24.2k 1.48 4k 15.7k 11.8k 1.33 2k 7.64k 2.98k 2.56
4 4k 40.8k 29.1k 1.40 2k 16.8k 7.22k 2.33 1k 7.79k 3.90k 2.0
8 2k 44.1k 22.6k 1.95 1k 17.9k 9.70k 1.84 512 7.91k 4.47k 1.77

Table 3: Training throughput (measured in TPS) comparison between non-DP and ZeRO-DP+
at the maximum achieved sequence length (power of 2) under various MBS for Llama 3.2 1B,
Llama 3.2 3B, and Llama 3.1 8B on 4× H100 GPUs.

This slowdown is attributable to various sources, mostly notably due to ghost norm overheads,
unoptimized communication for synchronizing private gradients, as well as DP optimizer overheads
due to ineffective batching.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 LongShield Performance

We show training throughput and peak memory at the maximum achieved sequence length across
various MBS for Llama 3.2 1B, Llama 3.2 3B, and Llama 3.1 8B over four H100 GPUs in Table 4.
Our recommended settings run with MBS less than the number of GPUs (e.g., first two rows), as
we use CP for extended context. The third row, where MBS equals the number of GPUs, is not
recommended as it provides no context scaling compared to an FSDP setting; we include it for
sensitivity analysis to help explain performance trends. In practice, one should avoid 4-GPU CP with
MBS=4, and instead choose 4-GPU FSDP with MBS=1, which has the same achieved context but
contexts are local to each GPU to avoid KV exchange under ring-attention Liu et al. (2023a).

(a) Llama 3.2 1B Throughput in TPS
MBS T non-DP ZeRO-DP+ V1 V2 V1 gap V2 gap

1 64k 11.8k OOM 11.4k 11.6k 1.04 1.02
2 32k 16.4k OOM 15.1k 15.8k 1.09 1.04
4 16k 20.9k OOM 18.1k 19.4k 1.15 1.08

(b) Llama 3.2 1B Peak Memory in GB
non-DP V1 V2 V1 gap V2 gap

69.0 70.6 66.2 1.02 0.96
68.4 70.5 66.7 1.03 0.98
68.0 71.2 66.4 1.05 0.98

(c) Llama 3.2 3B Throughput in TPS
MBS T non-DP ZeRO-DP+ V1 V2 V1 gap V2 gap

1 32k 6.47k OOM 5.95k 6.08k 1.09 1.06
2 16k 8.31k OOM 7.02k 7.42k 1.18 1.12
4 8k 9.34k OOM 5.87k 7.91k 1.59 1.18

(d) Llama 3.2 3B Peak Memory in GB
non-DP V1 V2 V1 gap V2 gap

67.0 75.1 66.2 1.12 0.99
67.0 75.1 66.0 1.12 0.99
66.9 76.9 66.0 1.15 0.99

(e) Llama 3.1 8B Throughput in TPS
MBS T non-DP ZeRO-DP+ V1 V2 V1 gap V2 gap

1 16k 4.44k OOM OOM 4.08k N/A 1.09
2 8k 4.82k OOM OOM 4.09k N/A 1.18
4 4k 4.99k OOM OOM 2.20k N/A 2.27

(f) Llama 3.1 8B Peak Memory in GB
non-DP V1 V2 V1 gap V2 gap

73.2 OOM 72.2 N/A 0.99
73.3 OOM 76.4 N/A 1.04
73.3 OOM 76.6 N/A 1.05

Table 4: Throughput and peak memory at the maximum sequence length reached under CP

LongShield context scaling capability. Both LongShield-V1 and LongShield-V2 offer 4×
context scaling over Llama 3.2 1B, Llama 3.2 3B, and Llama 3.1 8B, which is linear to the
context-parallel degree(c.f. Table 4 and Table 3. ZeRO-DP (Bu et al., 2023a) gets OOM under the
4× H100 setting with LongShield’s context length, and will get OOM even with infinite H100, due
to hard single GPU activation memory ceiling.

LongShield significantly reduces the throughput gap between non-DP and DP (c.f. Table 4 and
Table 3) as the proportion of DP overhead grows slower than attention. The absolute throughput of
CP cannot beat that of FSDP (both non-DP and DP) due to longer context as well as CP framework
overheads. But this is a justifiable compromise for emerging DP context extension CPT tasks, which
typically require training fewer than 5B tokens (Fu et al., 2024) (compared to DP pretraining that
requires trillions of tokens).

Sharding and communication overlapping. We compare performance of LongShield-V1 and
LongShield-V2 to understand the effectiveness of sharding and communication. LongShield-V2
consistently outperforms LongShield-V1 in peak memory usage and in some cases even beats the
non-DP baseline. This is because all our runs have GA enabled, as DP requires larger GBS. The
non-DP baseline (TorchTitan) makes the design choice not to shard gradients until the end of the
GA to avoid premature gradient sharding and unnecessary communication. LongShield-V2 instead
always aggregates and shards per-sample gradients as we need to clip and accumulate per-sample
gradients to free space between multiple forward and backward passes.

Although LongShield-V2 does pay additional communication compared with non-DP, our through-
put impact is negligible as most of the communication can be overlapped. Communication can
become a bottleneck for large MBS or large models (e.g. LongShield-V1 under Llama 3.2 3B with
MBS=4 and even communication optimized LongShield-V2 under Llama 3.1 8B with MBS=4).
However, they are the non-recommended, ill-formed CP scenarios that serve to enhance sensitivity
understanding. For recommended settings, LongShield-V2 consistently cuts the throughput gap

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

between DP and non-DP by one third to a half. In general, intra-node GPUs benefit from the large
communication bandwidth provided by NVLink. We expect the overlapping to play a more critical
role when scaling beyond a single node, as inter-node interconnect bandwidth is limited.

Activation checkpointing. We evaluate the performance of DP-aware activation checkpointing in
Table 5. We list the throughput in TPS per GPU and the peak memory for non-DP (with and without
AC), as well as LongShield-V2 (without AC) and LongShield-V3 (with AC).

(a) Llama 3.2 1B Throughput in TPS
MBS T non-DP non-DP AC V2 V3

1 64k 11.8k 9.29k 11.6k 9.16k
1 128k OOM 5.92k OOM 5.79k
1 256k OOM OOM OOM OOM

(b) Llama 3.2 1B Peak Memory in GB
non-DP non-DP AC V2 V3

69.0 42.7 66.2 48.3
OOM 61.9 OOM 75.3
OOM OOM OOM OOM

(c) Llama 3.2 3B Throughput in TPS
MBS T non-DP non-DP AC V2 V3

1 32k 6.47k 5.26k 6.08k 4.99k
1 64k OOM 3.84k OOM 3.71k
1 128k OOM 2.45k OOM 2.31k

(d) Llama 3.2 3B Peak Memory in GB

non-DP non-DP AC V2 V3
67.0 35.9 66.2 38.8

OOM 58.1 OOM 62.7
OOM 76.7 OOM 76.9

(e) Llama 3.1 8B Throughput in TPS

MBS T non-DP non-DP AC V2 V3
1 16k 4.44k 3.49k 4.08k 3.32k
1 32k OOM 3.15k OOM 3.01k
1 64k OOM 2.32k OOM 2.26k

(f) Llama 3.1 8B Peak Memory in GB

non-DP non-DP AC V2 V3
73.2 50.4 72.2 52.5

OOM 57.4 OOM 62.3
OOM 73.4 OOM 75.5

Table 5: Performance effect of Activation Checkpointing

LongShield-V3 achieves 2×, 4×, and 4× additional sequence scaling beyond LongShield-V2’s
maximum achieved sequence length, same amount of sequence scaling compared to the non-DP
case. When comparing the same sequence length, AC has an expected slowdown (roughly 33% for
additional forward) but with much smaller peak memory. The relative throughput gap further shrinks
as the attention cost scales quadratically and dominates the runtime. In contrast, DP computation
based on the grad sample methods avoids ghost norm and the complexity only scales linearly with
sequence length.

LongShield-V3 memory usage can differ substantially from the non-DP AC primarily due to large
fragmentation in the current Opacus implementation (Yousefpour et al., 2021). For example, the
Llama 3.2 1B 128k sequence length run in Table 5b has identical 58.9 GB maximum active
memory, but the fragmentation causes a huge difference between maximum reserved space (61.9 GB
vs 75.3 GB). We leave better engineering optimization of Opacus (Yousefpour et al., 2021) as future
work, as it does not affect our context-scaling results.

5 Conclusion

We introduce LongShield, a memory- and communication-efficient context-parallel DP training
method that closes the performance gap to non-DP while enabling long-context scaling on modest
GPU budgets. LongShield keeps per-sample gradients shards local to each GPU to avoid full
materialization, overlaps per-sample gradient aggregation with backward computation to sustain
throughput, and enables DP-safe activation checkpointing to extend context further. On Llama 3.1 8B
with 4× NVIDIA H100 GPUs, LongShield scales sequence length from 4k to 16k compared to
the state-of-the-art ZeRO-DP, achieves linear sequence-length scaling, shrinks the throughput gap
from 67% to 8.9% while matching non-DP memory usage, and reaches a 64k context length with
activation checkpointing. These results show that long-context DP training is practical on modest
GPU budgets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and

Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Zhiqi Bu, Jialin Mao, and Shiyun Xu. Scalable and efficient training of large convolutional neural
networks with differential privacy. Advances in Neural Information Processing Systems, 35:
38305–38318, 2022.

Zhiqi Bu, Justin Chiu, Ruixuan Liu, Sheng Zha, and George Karypis. Zero redundancy distributed
learning with differential privacy. arXiv preprint arXiv:2311.11822, 2023a.

Zhiqi Bu, Ruixuan Liu, Yu-Xiang Wang, Sheng Zha, and George Karypis. On the accuracy
and efficiency of group-wise clipping in differentially private optimization. arXiv preprint
arXiv:2310.19215, 2023b.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially
private deep learning made easier and stronger. In NeurIPS, 2023c. arXiv:2206.07136.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization on
large model at small cost. In International Conference on Machine Learning, pp. 3192–3218.
PMLR, 2023d.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In The Eleventh International
Conference on Learning Representations, 2022.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv:1604.06174, 2016. URL https://arxiv.org/abs/1604.06174.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In Interna-
tional Conference on Learning Representations (ICLR), 2024. URL https://openreview.
net/forum?id=mZn2Xyh9Ec.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Advances in Neural Information Processing
Systems (NeurIPS), 2022. URL https://arxiv.org/abs/2205.14135.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and trends® in theoretical computer science, 9(3–4):211–407, 2014.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context. arXiv preprint arXiv:2402.10171,
2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs,
Nenghai Yu, and Jiang Bian. Exploring the limits of differentially private deep learning with
group-wise clipping. arXiv preprint arXiv:2212.01539, 2022.

Yunpeng Huang, Jingwei Xu, Junyu Lai, Zixu Jiang, Taolue Chen, Zenan Li, Yuan Yao, Xiaoxing
Ma, Lijuan Yang, Hao Chen, Shupeng Li, and Penghao Zhao. Advancing transformer architecture
in long-context large language models: A comprehensive survey, 2024. URL https://arxiv.
org/abs/2311.12351.

10

https://arxiv.org/abs/1604.06174
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Shuaiwen Leon Song, Samyam
Rajbhandari, and Yuxiong He. Deepspeed ulysses: System optimizations for enabling training of
extreme long sequence transformer models. arXiv preprint arXiv:2309.14509, 2023.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
Booksum: A collection of datasets for long-form narrative summarization, 2022. URL https:
//arxiv.org/abs/2105.08209.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
gradient clipping. arXiv preprint arXiv:2009.03106, 2020.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang, Iris
Zhang, Wei Feng, Howard Huang, Junjie Wang, Sanket Purandare, Gokul Nadathur, and Stratos
Idreos. Torchtitan: One-stop pytorch native solution for production ready LLM pretraining. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=SFN6Wm7YBI.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context. arXiv preprint arXiv:2310.01889, 2023a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023b.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations sympo-
sium (CSF), pp. 263–275. IEEE, 2017.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ippolito,
Christopher A Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable
extraction of training data from (production) language models. arXiv preprint arXiv:2311.17035,
2023.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-to-
end generation. arXiv preprint arXiv:1706.09254, 2017.

PyTorch Documentation. torch.distributed.fsdp.fully shard — pytorch 2.7 documenta-
tion. https://docs.pytorch.org/docs/stable/distributed.fsdp.fully_
shard.html, 2025. Accessed: 15 May 2025.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
3505–3506, 2020.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp.
3–18. IEEE, 2017.

VaultGemma Team. Vaultgemma: A differentially private gemma model. Technical report, Google
Research and Google DeepMind, 09 2025. URL https://services.google.com/fh/
files/blogs/vaultgemma_tech_report.pdf. Accessed 2025-09-21.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling
of foundation models. arXiv preprint arXiv:2309.16039, 2023.

11

https://arxiv.org/abs/2105.08209
https://arxiv.org/abs/2105.08209
https://openreview.net/forum?id=SFN6Wm7YBI
https://openreview.net/forum?id=SFN6Wm7YBI
https://docs.pytorch.org/docs/stable/distributed.fsdp.fully_shard.html
https://docs.pytorch.org/docs/stable/distributed.fsdp.fully_shard.html
https://services.google.com/fh/files/blogs/vaultgemma_tech_report.pdf
https://services.google.com/fh/files/blogs/vaultgemma_tech_report.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2. 5-1m technical report. arXiv preprint
arXiv:2501.15383, 2025.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and
Ilya Mironov. Opacus: User-friendly differential privacy library in PyTorch. arXiv preprint
arXiv:2109.12298, 2021.

Da Yu, Yi-Lin Kuo, Sashank Reddi, et al. Differentially private fine-tuning of language models.
arXiv:2110.06500, 2021.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 Differentially Private SGD (DP-SGD)
Require: Dataset 𝐷; iterations 𝐾; batch size 𝐵; sampling rate 𝑞=𝐵/|𝐷 |; clipping threshold𝐶; noise

multiplier 𝜎; learning rates {𝜂𝑘}𝐾𝑘=1.
1: Initialize parameters 𝜃0.
2: for 𝑘 = 1 to 𝐾 do
3: Sample a minibatch 𝐵𝑘 ⊂ 𝐷 from a Poisson distribution with rate 𝑞.
4: for all 𝑥 ∈ 𝐵𝑘 do
5: Compute per-example gradient 𝑔𝑥 ← ∇𝜃ℓ(𝜃𝑘−1; 𝑥).
6: Clip: 𝑔̃𝑥 ← 𝑔𝑥 ·min

(
1, 𝐶
∥𝑔𝑥 ∥2

)
.

7: end for
8: Aggregate clipped gradient: 𝑔̄𝑘 ← 1

𝐵

(∑
𝑥∈𝐵𝑘

𝑔̃𝑥 + N
(
0, 𝜎2𝐶2I

))
.

9: Update parameters: 𝜃𝑘 ← 𝜃𝑘−1 − 𝜂𝑘 𝑔̄𝑘 .
10: end for
11: return 𝜃𝐾 .

A Preliminary and Related Work

Differential privacy. We adopt the standard (𝜀, 𝛿)-differential privacy (DP) definition (Dwork
et al., 2014). Two datasets 𝐷, 𝐷′ are neighbors if they differ in a single individual record.
Definition 1 ((𝜀, 𝛿)-DP). A randomized mechanismM : D→R is (𝜀, 𝛿)-differentially private if
for all measurable 𝑆 ⊆ R and all neighboring 𝐷, 𝐷′,

Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 Pr[M(𝐷′) ∈ 𝑆] + 𝛿.

DP-SGD. DP-SGD (Abadi et al., 2016) privatizes stochastic gradient descent by bounding per-
example sensitivity via gradient clipping and injecting calibrated Gaussian noise into the aggregated
(mini-batch) gradient. Let 𝑓𝜃 denote the model with parameters 𝜃, loss ℓ(𝜃; 𝑥) on example 𝑥, sampling
rate 𝑞 = 𝐵/|𝐷 |, clipping threshold 𝐶 > 0, learning rate 𝜂𝑡 , and noise multiplier 𝜎 > 0. DP-SGD is
shown in Algorithm 1.

Privacy accounting. Across 𝐾 iterations, the overall (𝜀, 𝛿) depends on the subsampling rate 𝑞,
noise multiplier 𝜎, and the number of steps 𝐾 . Tight analyses typically use the moments accoun-
tant (Abadi et al., 2016) or Rényi DP (RDP) composition (Mironov, 2017), then convert back to
(𝜀, 𝛿) for a target 𝛿 (e.g., 𝛿 ≈ 1/|𝐷 |).

Efficient and Scalable DP methods. A major bottleneck in DP is evaluating the per-sample
norm for clipping. Recent systems work aims to make private training approach the speed and
memory profile of standard training, but is mostly effective for small contexts Li et al. (2021);
Bu et al. (2023d). Yousefpour et al. (2021) evaluate per-sample norm by instantiating per-sample
gradient over the entire network, adding heavy memory pressure. Li et al. (2021) introduces ghost
clipping to calculate ghost norm and avoid instantiating per-sample gradients. However, it suffers
a throughput penalty due to the required second backpropagation. Bu et al. (2023d) introduces
a book-keeping (BK) technique that stages activation gradients to avoid redundant data gradients
during second backpropagation. Complementary to single-node efficiency, SOTA distributed DP
framework ZeRO-DP (Bu et al., 2023a) scales SOTA efficient DP methods Bu et al. (2022; 2023d)
using zero redundancy optimizer (ZeRO) (Rajbhandari et al., 2020). However, two big issues remain.
First, efficient DP methods are not fully supported over ZeRO-2/3 due to the engineering complexity
of integrating into DeepSpeed (Rasley et al., 2020). Second, ZeRO-DP only supports per-module or
per-parameter clipping. This simplifies the computational problem but at the cost of provably worse
convergence (Bu et al., 2023b).

Clipping styles. Gradient clipping controls sensitivity in DP-SGD. The flat/global (Abadi et al.,
2016; Yousefpour et al., 2021; Li et al., 2021; Bu et al., 2023c; Yu et al., 2021) variant clips the
concatenated gradient with a single bound 𝐶, which is simple and often delivers better accuracy
but incurs more system overhead (Either incur 67% throughput reduction due to a second backward
pass (Lee & Kifer, 2020; Li et al., 2021; Bu et al., 2022), or requires additional memory penalty to

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

book-keep activation gradients (Bu et al., 2023d) or per-sample gradients (Yousefpour et al., 2021)).
Per-layer (He et al., 2022) clipping instead enforces bounds {𝐶ℓ } per layer. It does not encounter
performance overhead, since the layer gradient can be clipped immediately. However, it raises utility
concerns where it has provably worse convergence (Bu et al., 2023b).

14

	Introduction
	Challenges of Long-Context DP
	LongShield Design
	DP Memory–Communication Trade-off between Context Parallelism and FSDP
	Communication for Per-Sample Gradient with Context Parallelism
	DP-compatible Activation Checkpointing

	Evaluation
	Methods
	ZeRO-DP+ Performance
	LongShield Performance

	Conclusion
	Preliminary and Related Work

