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ABSTRACT

Most modern image-quality-assessment (IQA) metrics are based on neural net-
works, which makes the adversarial robustness of these metrics a critical concern.
This paper presents the first comprehensive study of IQA defense mechanisms in
response to adversarial attacks on these metrics. We systematically evaluated 29
defense strategies — including adversarial purification, adversarial training, and
certified robustness — and applied 14 adversarial attack algorithms in both adap-
tive and nonadaptive settings to compare these defenses on nine no-reference IQA
metrics. Our analysis of the differences between defenses and their applicability
to IQA metrics recognizes that a defense technique should preserve IQA scores
and image quality. Our proposed benchmark aims to guide the development of
IQA defense methods and can evaluate new methods; the latest results are at link
hidden for blind review.

1 INTRODUCTION

Image-quality-assessment (IQA) metrics are essential for developing and evaluating image- and
video-processing algorithms. Modern IQA metrics based on neural networks correlate highly with
subjective-quality assessments. Neural networks, however, are vulnerable to input perturbations.
Recent studies have explored IQA metric robustness (Antsiferova et al. (2024); Meftah et al. (2023);
Zhang et al. (2024); Ghildyal & Liu (2023)), revealing that modern neural-networks-based metrics
are susceptible to adversarial attacks. Adversarial attacks on IQA metrics are perturbations that in-
crease the metric’s score of an adversarial image without improving its real perceptual quality. Such
attacks can manipulate image search results, as search engines (e.g., Microsoft’s Bing) employ IQA
metrics to rank outputs (Bing (2013)). Also, as IQA metrics serve in public benchmarks to evaluate
image-/video-processing and compression algorithms, competitors can exploit metric’s vulnerabili-
ties to artificially inflate their algorithm’s evaluated quality. As it was shown in Comparison (2021),
the leaders by VMAF, a learning-based video quality metric by Netflix (vma), differ from the lead-
ers by subjective comparison (Comparison (2021)). The fact that VMAF’s vulnerability is being
exploited is seen in Google’s libaom video-compression codec, which has a “–tune=vmaf” option
to increase VMAF scores for compressed videos by applying sharpening filters (Deng et al. (2020)).
Several works showed that optimizing image restoration for modern IQA metrics can reduce actual
image’s quality (Ding et al. (2021)) or generate visual artifacts (Kashkarov et al. (2024)).

Researchers have proposed defense methods to increase neural-network robustness in different ap-
plications. Several benchmarks cover object-classification defenses (Croce et al. (2021); Dong et al.
(2020)), but few defense methods are developed for IQA metrics, and no benchmarks were proposed
for this task. Relative to defenses for classification models, which need only provide a correct class
label, IQA metric defenses are more challenging. A successful IQA defense must meet two criteria:
restore the original IQA scores and restore the perceptual quality of the original image, which may
have suffered distortion after the attack. This paper introduces the first benchmark that systemati-
cally evaluates defenses against adversarial attacks on IQA metrics. Our contributions include a new
method for measuring and comparing the efficiency of adversarial IQA metric defenses, a dataset
of adversarial images for evaluating nonadaptive defenses, a series of comprehensive experiments,
an in-depth analysis of the results, and an online leaderboard. Our method is the first to systematize
defenses for IQA metrics. We analyzed 30 defense algorithms, including empirical and certified
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Figure 1: Adversarial defenses efficiency for IQA metrics in terms of SROCCadv (left) and D
(D)
score.

Dots and bars are for adaptive and non-adaptive attacks, respectively. Each dot represent result for
each preset of defense. Red dots represent a selected preset for adaptive case. We average the results
by 9 IQA metrics and 14 attacks.

ones, and evaluated their efficiency against 14 adversarial attacks. We analyzed scenarios of both
adaptive and nonadaptive attacks, depending on the awareness of an attack of the defense method.
The benchmark is available online 1 along with the dataset of adversarial images that can be used for
adversarial training; code for our proposed method, IQA models, adversarial attacks, and defense
methods is in the GitHub repository 2. The benchmark gives developers and researchers a unified
framework for measuring and comparing defense efficiency and we encourage submissions of new
methods.

2 RELATED WORK

Existing comparisons of defense methods efficiency mostly handle object classification (Croce et al.
(2021), Dong et al. (2020)). All leaderboards of defense methods on paperswithcode.com are based
on image classification datasets: ImageNet, CIFAR, MNIST, etc. However, no benchmark addresses
defense methods for IQA metrics attacks. The closest benchmark is Antsiferova et al. (2024), which
compares the robustness of existing IQA metrics to adversarial attacks. However, aforementioned
benchmark does not analyse defense methods. It can serve to evaluate a new IQA metric, but consid-
ering the vast variability of IQA tasks (e.g., measuring the quality of user- or AI-generated content,
artificial distortions caused by image-processing algorithms, etc.), a single universal and robust IQA
metric can not be created. Instead, we propose a comparison of defense methods’ efficiency for IQA
task to help the researchers improve the robustness of their existing metrics.

IQA metrics can be categorized as full-reference (FR) or no-reference (NR) depending on the avail-
ability of the reference image. This paper evaluates adversarial defenses on NR metrics, which is
a more challenging task, because NR metrics show lower robustness than FR ones (Antsiferova
et al. (2024)). Moreover, the only three existing robust metrics are FR (VMAF NEG Li (2020), R-
LPIPS Ghazanfari et al. (2023), LipSim Ghazanfari et al. (2024)), but, to our knowledge, no robust
NR metrics have been proposed so far, which makes it essential to find suitable defenses for them.
Adversarial attacks fall into two categories depending on the attacker’s knowledge of the model:
“white box” or “black box”. White-box attacks employ gradients of the attacked models; how-

1hidden for blind review
2hidden for blind review
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ever, in some situations, gradients are unavailable, and black-box attacks remain applicable. Several
white-box adversarial attacks (Shumitskaya et al. (2024); Korhonen & You (2022); Zhang et al.
(2022b); Wang & Simoncelli (2008); Shumitskaya et al. (2023)) and at least two black-box attacks
(Ran et al. (2024); Yang et al. (2024)) have emerged for fooling IQA metrics. Defense methods
for neural networks come in certified and empirical types. Certified methods provide deterministic
or probabilistic robustness guarantees for particular perturbations, datasets, or model architectures.
However, these methods are usually computationally complex and reduce the model’s general accu-
racy. One of the most well-known certified methods is randomized smoothing (Cohen et al. (2019)).
Later variations appeared in Salman et al. (2020); Chen et al. (2022b), and included a denoiser
to improve the defended model’s performance. Empirical methods lack robustness guarantees but
require fewer computational resources. A widely used empirical defense method is adversarial train-
ing (Wong et al. (2020); Singh et al. (2023)), which updates the model weights based on generated
adversarial examples during training. Vanilla adversarial training, however, may decrease model
performance. Adversarial purification (Nie et al. (2022)) is an empirical method that removes adver-
sarial perturbations by processing input data. Although adversarial purification is model-agnostic
and computationally efficient, it may fail to eliminate advanced adversarial perturbations and can
sometimes degrade image quality. Examples include compression, spatial transformation, blurring,
and denoising.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Adversarial attacks. This work evaluates adversarial defenses for NR IQA because NR metrics are
more susceptible than FR metrics to adversarial attacks. Therefore, an attacked model, represented
by an NR IQA metric, takes a single image as input and estimates image quality. Formally, the
NR IQA metric is the mapping fω : X → R, parameterized by the vector of weights ω. Here,
X ∈ [0, 1]3×H×W is the set of input images. An adversarial attack A : X → X is the perturbation
of the input image defined as

A(x) = argmax
x′:ρ(x′,x)≤ε

L(fω(x
′)), (1)

where L is a loss function that represents the model’s outputs for perturbed images and ρ(·, ·) is
the distance function defined on X × X . We increase IQA scores during the attack to reflect real-
life applications. For IQA metric attacks, we define L(fω(x

′)) = fω(x′)
diam(fω) , where diam(fω) =

sup
x,z∈X

{|fω(x)− fω(z)|} represents the range of IQA metric values. The Appendix A.3 includes the

ranges of IQA metrics in our work.

Adversarial defenses. In our work, we consider three types of adversarial defenses.

Adversarial purification is an algorithm P : X → X that aims to transform the input image accord-
ing to the following optimization problem:

min |fω(P (x′))− fω(x)|+ λρ(P (x′), x), (2)

where x′ is the adversarial image, and λ is the regularization term.

Adversarial training is formulated as the following min-max problem:

min
ω

E(x,y)∼D

[
max

∥δ∥p≤ε
L(fω(x+ δ), y)

]
, (3)

where D is the distribution of training data, L is a training loss function, and ε is the allowable
attack magnitude. In practice, adversarial training uses an adversarial attack rather than internal
maximization.

Certified methods used in our paper are based on randomized smoothing (Cohen et al. (2019)), de-
noised randomized smoothing (Salman et al. (2020)), diffusion-based randomized smoothing (Car-
lini et al. (2022); Chen et al. (2022b)) and median smoothing (Chiang et al. (2020)). The idea behind
randomized smoothing is replacement of the original IQA metric with a smoothed version:

g(x) = E
ϵ∼N (0,σ2)

fω(x+ ϵ) (4)

where ϵ is a centered Gaussian random variable.
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Table 1: Adversarial attacks in our benchmark. We adjusted parameters to align attack strengths and
launched each attack as procedures.

Adversarial attack Param. Short description
W

hi
te

-b
ox

MADC (Wang & Simoncelli (2008)) lr Grad. project. onto MSE
I-FGSM (Kurakin et al. (2018)) lr Grad. descent to increase IQA metric
Korhonen et al. (Korhonen & You (2022)) lr Sobel-filter-masked gradient descent
Zhang et al. (Zhang et al. (2022b)) lr Grad. descent with saving DISTS
SSAH (Luo et al. (2022)) lr Grad. descent with high-freq. min.
FACPA (Shumitskaya et al. (2023)) amplit. Perturb. generated using U-Net
UAP (Shumitskaya et al. (2024)) amplit. Universal perturb. via grad. descent
cAdv (Bhattad et al. (2019)) lr Grad. descent with recolorization

B
la

ck
-b

ox

NES (Ilyas et al. (2018)) ϵ Grad. descent with approx. gradient
One Pixel (Su et al. (2019)) #pixels Perturbs pixels with diff. evolution
Parsimonious (Moon et al. (2019)) ϵ Perturbs using discrete optimization
Square (Andriushchenko et al. (2020)) ϵ Square-like perturb. via rand. search
Patch-RS (Croce et al. (2022)) ϵ Finds adv. patch via random search

Figure 2: Procedure for selecting adversarial attack parameters.

3.2 ADVERSARIAL ATTACKS

This work considers two adversarial attack scenarios: nonadaptive and adaptive. In the first case,
we generate a set of adversarial images. In the second, we integrate differentiable defenses into the
attacked IQA metric, allowing the adaptive attacks to access the IQA metric and defense-method
gradients, thereby simulating a greater challenge. We selected several white- and black-box attacks
from the IQA robustness benchmark (Antsiferova et al. (2024)). Table 1 describes these attacks. We
executed each method with three distinct hyperparameter sets corresponding to “weak”, “medium”,
and “strong” attacks by perturbation budget to account for different adversarial attack strengths.
Figure 2 illustrates the parameter-selection procedure, ensuring all attack hyperparameters yielded
perturbations with an equal set of l∞-bounds. We chose a subset of 50 images used for attack
alignment via clustering the KonIQA dataset by spatial complexity (SI), colorfulness, and ground-
truth quality labels. All chosen hyperparameter sets are listed in the Appendix A.3.

3.3 ADVERSARIAL DEFENSES

Adversarial purification. The top part of the Table 2 describes the selected adversarial purification
techniques. We used five parameter sets to vary the defense strength. Parameter sets differ by defense
strength, e.g., scaling ratio, blurring kernel size, and number of diffusion steps. The Appendix A.5
provides a list of used defense parameters.

Adversarial training. IQA presents additional challenges in applying adversarial training since
adversarial examples generated in training have lower subjective quality. Manually labeling such
images with new scores is impractical, and using ground-truth labels from pre-attack images is in-
accurate. To overcome these limitations, our experiments employed six training configurations: two
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Table 2: Compared adversarial defense methods in our benchmark.

Defense method Param. Short description

A
dv

er
sa

ri
al

pu
ri

fic
at

io
n

Gaussian blur kernel size Smooth with a Gaussian filter
Median blur kernel size Smooth with a median filter
JPEG (Guo et al. (2018)) q JPEG compression algorithm
Color quantization (Xu et al. (2018)) npp Reduce the number of colors
DiffJPEG (Reich et al. (2024)) q Differentiable JPEG
Unsharp masking kernel size Unsharp mask
FCN (Gushchin et al. (2024)) — Neural filter to counter color attack
Flip — Mirror the image
Bilinear Upscale scale Resize and upscale to original size
Resize (Guo et al. (2018)) scale Change the image size
Random Rotate angle lim. Image rotation
Random Crop (Guo et al. (2018)) size Crop the image
Random noise — Add random noise
MPRNet (Zamir et al. (2021)) — 3-stage CNN for denoising
Real-ESRGAN (Wang et al. (2021)) — GAN-based super-res. denoising
DISCO (Ho & Vasconcelos (2022)) — Enc.+loc. implicit module denoising
DiffPure (Nie et al. (2022)) t Diffusion denoising

Classic adversarial training ϵ, FR metric Model fine-tuning on adv. img.
Gradient Norm optimization Liu et al. (2024) — Perform gradient normalisation during training

C
er

tifi
ed

Random. Smoothing (RS) (Cohen et al. (2019)) Noisy samp. →clf.→voting
Denoised RS (DRS) (Salman et al. (2020)) Noisy samp.→denoiser→ clf.→voting
Diffusion DRS (DDRS) (Carlini et al. (2022)) Noisy samp.→1-step diffus.→clf.→voting
DensePure (DP) (Chen et al. (2022b)) Noisy samp.→N-step diffus.→clf.→voting
Median Smoothing (MS) (Chiang et al. (2020)) Noisy samp.→reg.→median
Denoised MS (DMS) (Chiang et al. (2020)) Noisy samp.→denoiser→reg.→ median

score-penalizing strategies (using SSIM or LPIPS) with three attack magnitudes ε = {2, 4, 8}/255.
To create the adversarial images during training, we applied an APGD attack (Croce & Hein (2020)).

Certified defenses. This work employed smoothing-based certified defenses that are easy to imple-
ment with any NR image-quality metric and avoid restricting the model architecture. Only one study
(Chiang et al., 2020) investigated smoothing for regression. Additionally, we added classification-
based defenses which we adapted for regression by converting the regression model into a multiclass
classification model. All these defense methods generate noisy variations of the input images, which
then pass through the model. Before passing them through the model, some of these methods apply
denoising to boost accuracy. Table 2 provides further details. For each certified defense method, we
generated 1000 noisy images as an input.

To discretize a regression-based quality metric for classification-based methods, we divided the
metric range into N segments, each corresponding to a specific class. According to our experiments,
10 segments showed optimal correlation with subjective scores. We also added classes for metric
values below or above the calculated range, ensuring every value falls into a class. Doing so yielded
an (N + 2)-class metric classifier. Note that these classes are ordered, with higher class values
indicating better quality. Thus, we can measure classifier-metric quality the same way we measure
regression-metric quality, using relative gain and correlation with subjective scores. Given an input
image, the results of the classification-based certified method are the quality class and the certified
radius R. The method guarantees that the class remains unchanged for the input image in an l2 ball
of radius R. The results of a regression-based certified method are the metric score and the certified
delta. The method guarantees that within an l2 ball of radius ϵ, the metric score changes by no more
than delta. To make this value comparable across metrics, we define the certified relative delta by
dividing the certified delta by diam(fω).

3.4 EXPERIMENTAL SETUP

Datasets. Our study used four datasets to evaluate adversarial defenses. KonIQA-10k (Hosu et al.
(2020)) and KADID-10k (Lin et al. (2019)) contain various natural images with multiple distortions.
NIPS 2017: Adversarial Learning Development Set (2017, Competition Page) is designed for eval-
uating adversarial attacks against image classifiers.AGIQA-3K dataset (Li et al. (2024)) contains
AI-generated images for different quality levels. To balance computational efficiency and dataset
diversity, we randomly sampled 1,000 out of 10,073 KonIQA-10k images and 1,000 out of 10,125
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KADID-10k images. We included each distortion type and strength and sampled 8 out of 81 original
images from KADID-10k, resulting in 1000 distorted images. We analyzed different sample sizes
while selecting a subset of images to ensure that our subset represents the whole dataset. Figure 5
in the Appendix A.2 shows that the distribution for the 1,000-image sample is nearly identical to the
distribution for the full dataset. Due to high computational complexity, we used a smaller set of 50
images from each dataset for black-box attacks and, for the same reason, a smaller set of 10 images
from each dataset when evaluating certified defenses.

IQA metrics. We chose nine NR-IQA metrics by the results of the IQA adversarial robustness
benchmark (Antsiferova et al. (2024)): META-IQA (Zhu et al. (2020)), MANIQA (Yang et al.
(2022)), CLIP-IQA+ (Wang et al. (2023)), TOPIQ (Chen et al. (2024)), KonCept (Hosu et al.
(2020)), SPAQ (Fang et al. (2020)), PAQ2PIQ (Ying et al. (2020)), Linearity (Li et al. (2020)),
and FPR (Chen et al. (2022a)). These metrics employ different convolutional and transformer-
based architectures with a wide robustness Rscore range. The Appendix A.5 provides a more de-
tailed description. Because of adversarial training’s computational complexity, we selected only two
CNN-based NR-IQA metrics — Linearity and KonCept — because of their high correlation with
subjective quality scores.

3.5 EVALUATION METRICS

Robustness scores. Rscore and R
(D)
score (R robustness Zhang et al. (2022a)) aims to assess model

robustness by measuring relative score changes before and after attacks. Rscore takes into consider-
ation the maximum allowable quality-prediction change:

Rscore =
1

N

N∑
i=1

log

(
max{β1 − fω(xi), fω(xi)− β2}

|fω(xi)− fω(P (x′
i))|

)
, (5)

where N is the number of images, xi is the ith source image, x′
i is the attacked version of xi. fω(∗)

is the IQA model, and β1 and β2 are the maximum and minimum mean opinions scores (MOS) in
the dataset, which are ground-truth quality labels. In addition, we propose a variation of this metric
called R

(D)
score, which differs only in applying purification P (∗) to xi and x′

i. These metrics can be
calculated only for datasets with subjective scores. A larger value means better robustness.

Dscore and D
(D)
score measure adversarial purification’s ability to reduce the discrepancy between the

IQA scores of the original and attacked images after applying a defense:

Dscore =
100

n

n∑
i=1

|fω(P (x′
i))− fω(xi)|

diam(fω)
; D(D)

score =
100

n

n∑
i=1

|fω(P (x′
i))− fω(P (xi))|
diam(fω)

, (6)

where scores denoted with the superscript D are for purified source images, P represents the purifi-
cation method. Lower scores correspond to better defense performance. We propose these metrics
to quantify how much an IQA metric’s predicted values for an adversarial image can be restored to
their originals after the defense is applied. The fundamental premise is that a robust defense should
minimize the disparity between the IQA scores of the defended and original images.

For certified defense methods, we additionally measured the certified radius (Cert.R ↑), which
indicates how much the input image can undergo alteration without changing the class prediction; the
percentage of abstentions (Abst. ↓), reported by classification-based methods when their predictions
are highly uncertain; and certified relative delta (Cert.RD ↑), which is the certified delta, produced
by the defense method, divided by diam(fω). This parameter characterizes how much a metric score
can change in a fixed l2 ball of norm ϵ around a given image x.

Quality scores. We use PSNR and SSIM (Wang et al. (2004) ) to measure the perceptual simi-
larity between purified images and their original images, reflecting the preservation of visual quality
post-defense. The underlying principle is that the defense mechanism should restore the IQA score
and preserve the image’s perceptual quality.

Performance scores. We use SROCC and PLCC to assess an IQA metric’s performance in the
presence of adversarial defense. We measured the correlation between ground-truth image-quality
scores y and the IQA metric predictions. SROCCclear is a coefficient measured for purified non-
adversarial images, which represents a scenario with a detection method that identifies adversarial

6
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Table 3: Comparison of defenses. Evaluated metrics are averaged across all images and attacks for
all quality metrics for nonadaptive/adaptive use cases on all datasets.

Time
(ms)↓ SROCCclear ↑ SROCCadv ↑ Dscore

(D) ↓ Rscore ↑ PSNRadv ↑ SSIMadv ↑ MSE ↓,×10−3 Linf ↓

W/o Defense — 0.611/0.511 0.447/0.413 56.39/66.68 0.76/0.56 43.89/44.61 0.94/0.94 2.51/1.86 0.08/0.09

Flip 0.05 0.593/0.587 0.555/0.420 7.91/67.41 1.17/0.45 10.76/10.76 0.28/0.29 110.47/109.80 0.95/0.95
Color Quantization 0.07 0.587/— 0.532/— 27.38/— 0.83/— 32.54/— 0.86/— 2.84/— 0.11/—

Median Blur 0.11 0.551/0.531 0.431/0.424 15.14/49.95 0.92/0.50 31.38/31.80 0.86/0.87 4.48/3.17 0.51/0.51
Bilinear Upscale 0.15 0.569/0.479 0.452/0.355 18.13/40.93 0.86/0.58 32.82/28.68 0.91/0.83 3.50/4.23 0.35/0.48

Crop 0.16 0.587/0.431 0.508/0.385 11.68/6.49 0.92/0.78 11.53/11.00 0.33/0.37 89.94/105.34 0.94/0.93
Resize 0.19 0.597/0.511 0.549/0.353 10.56/54.31 1.02/0.42 32.11/29.38 0.90/0.85 3.83/3.90 0.37/0.45
FCN 0.52 0.571/0.562 0.478/0.310 23.89/64.32 0.80/0.41 20.89/20.78 0.78/0.77 13.24/13.35 0.54/0.55

Unsharp 0.78 0.611/0.595 0.427/0.370 43.22/80.24 0.52/0.32 30.34/29.77 0.87/0.86 3.81/3.03 0.33/0.35
Gaussian Blur 0.99 0.552/0.522 0.423/0.376 15.75/45.67 0.84/0.53 32.22/32.30 0.90/0.90 3.83/2.72 0.34/0.35

Rotate 2.14 0.560/0.585 0.501/0.469 6.64/16.24 1.09/0.89 11.56/14.65 0.31/0.42 96.44/54.03 0.97/0.96
Real-ESRGAN 5.89 0.552/0.501 0.503/0.436 9.47/30.13 0.66/0.58 30.32/30.47 0.89/0.88 3.97/2.98 0.43/0.44

DiffJPEG 8.11 0.625/0.610 0.608/0.549 12.94/29.81 1.07/0.71 34.33/31.33 0.91/0.87 3.04/2.61 0.26/0.33
Random Noise 8.29 0.556/0.594 0.539/0.508 10.14/44.84 0.87/0.59 25.42/35.87 0.54/0.90 4.78/1.79 0.30/0.13

MPRNet 65.79 0.565/0.565 0.535/0.488 12.14/45.00 0.97/0.53 32.21/32.32 0.88/0.89 4.23/2.91 0.37/0.36
DISCO 139.60 0.585/0.562 0.581/0.476 3.51/47.91 1.14/0.50 29.12/29.08 0.86/0.86 4.34/3.31 0.43/0.43
JPEG 387.34 0.622/— 0.605/— 13.07/— 1.07/— 34.25/— 0.90/— 3.03/— 0.26/—

DiffPure 4291.42 0.496/0.487 0.485/0.470 2.01/22.96 0.79/0.75 27.59/30.11 0.79/0.86 5.34/3.44 0.48/0.43

attacks before passing them to the purification defense; and SROCCattacked is measured for puri-
fied adversarial images:

SROCCclear = SROCC( #»y , fω(P ( #»x ))); SROCCadv = SROCC( #»y , fω(P ( #»x ′))). (7)

3.6 IMPLEMENTATION DETAILS

We used a sophisticated end-to-end automated training and evaluation pipeline with a unified inter-
face using GitLab CI/CD tools to ensure all our results are reproducible. Calculations were made
with Slurm Workload Manager with 120 × NVIDIA Tesla A100 80 Gb GPU, Intel Xeon Processor
(Ice Lake) 32-Core Processor @ 2.60 GHz. All calculations took a total of about 25,000 GPU hours.

We used original open-source implementations with default parameters for all adversarial attacks,
defenses, and IQA metrics when available. For each attack and defense, we varied one main param-
eter — commonly associated with the attack strength — while keeping the remaining parameters
consistent with their original implementations (see 2). However, because the exact relationship be-
tween the varied parameters and attack strength is sometimes poorly defined, the impact on attack
intensity may be somewhat unpredictable. The Appendix A.4, A.5 provides a list of parameters for
attacks and defenses, links to the original repositories, and a list of the applied patches necessary to
enable gradients in some metrics.

4 RESULTS

This section presents defense efficiency against adaptive and nonadaptive attack scenarios. In all
tables and figures, for nonadaptive cases, we report the results of defenses with a hyperparameter set
that provides the best SROCCadv on the KonIQA dataset.

Overall performance-robustness trade-off. Our comparison considers three aspects of defense
method performance: improving the robustness of the defended model (Dscore, R(D)

score), and pre-
serving correlation with human perception (SROCC, PLCC) along with the quality of the image
(PSNR, SSIM ). By varying defense parameters, its performance can be balanced with other char-
acteristics. Strong defenses may significantly alter input images and erase adversarial perturbation,
but they often degrade image quality and correlation with human perception. Figure 3 demonstrates
how adversarial purification parameters influence the robustness-performance ratio. The strong de-
fenses in the lower left corner almost completely returned IQA metrics scores to the original ones
before the attacks but significantly lowered correlations with subjective quality, making them unsuit-
able for real-life application scenarios. The red line shows the Pareto-optimal front of tested meth-
ods; it includes strong JPEG compression, weak DiffPure and Gaussian blur, and DISCO. Flipping
the image shows a high correlation, but only for nonadaptive attacks. Table 3 shows overall results
for adversarial purification defenses, and Table 4 — for adversarial training and certified methods.
In all tables and figures, we show only SROCC; PLCC results are similar and are provided in the
Appendix A.8. DiffJPEG leads in several categories, demonstrating the best SROCCadv , Dscore
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(a) (b)

Figure 3: Scatter plot (a) depicts results for different presets of parameters of purification defenses
in nonadaptive cases, where red line indicated Pareto-optimal defenses. (b) illustrates the results for
different test datasets in terms of D(D)

score (left) and SROCCadv (right).

Table 4: Comparison of adversarial training (left) and certified defenses (right). C is classification-
based methods, R — regression-based. For AT methods, APGD is an attack used during fine-tuning,
2/4/8 is an attack perturbation budget. LPIPS/SSIM is an FR metric used for adjusting MOS values.

Adaptive attacks, 1000 images KonIQ, KONCEPT+LINEARITY Nonadaptive attacks, 10 images from KonIQ, 9 IQA metrics

AT Defense SROCCclear ↑ SROCCadv ↑ D
(D)
score↓ Rscore ↑ Cert Defense Time(ms)↓ SROCCclear ↑ SROCCadv ↑ D

(D)
score↓ Rscore ↑ Cert.R ↑ / Cert.RD ↓

APGD-LPIPS-2 0.840±0.00 0.651±0.14 20.70±13.92 1.10±0.82 RS (C) 11080 0.747 0.706 2.70 5.61 0.183 / ∞
APGD-LPIPS-4 0.866±0.00 0.576±0.25 36.59±29.97 0.77±0.80 DRS (C) 15320 0.882 0.712 16.57 2.01 0.175 / ∞
APGD-LPIPS-8 0.867±0.00 0.547±0.22 45.61±37.10 0.79±0.87 DDRS (C) 39800 0.819 0.792 1.20 6.21 0.174 / ∞
APGD-SSIM-2 0.830±0.00 0.763±0.05 17.11±11.41 1.23±0.94 DP (C) 82130 0.823 0.815 1.09 6.20 0.162 / ∞
APGD-SSIM-4 0.852±0.00 0.505±0.27 39.53±33.33 0.80±0.89 MS (R) 2830 0.753 0.694 3.80 1.92 0 / 1.707
APGD-SSIM-8 0.873±0.00 0.582±0.20 45.38±37.21 0.64±0.81 DMS (R) 5970 0.875 0.822 4.70 1.89 0 / 1.440

NT Liu et al. (2024) 0.815±0.00 0.649±0.14 35.42±23.97 0.805±0.82

and Rscore, while being in the top-3 methods according to SROCCclear and PSNR. IQA metrics
with adversarial training showed lower robustness than ones with purification defenses. For adver-
sarial training, smaller ϵ restrictions for generating attacks while training led to better performance,
but not higher SROCCclear. The best AT method (APGD-SSIM-2) ranks the top-3 methods ac-
cording to Rscore, but is worse for other performance metrics. In our experiments, certified methods
performed well even in empirical settings when perturbations with an l2-norm significantly larger
than the certified radius (for classification-based) or ϵ (for regression-based). The best method in
terms of empirical robustness D

(D)
score is DensePure, largely because diffusion-based denoising is

highly effective at removing Gaussian noise with a known σ. Additionally, converting regression
into a classification task by quantizing metric values helps achieve zero gain on more than half of the
data. Inference computational complexity. Tables 3 and 4 show time measurements for compared
methods. Certified methods show the best efficiency in adversarial defense but have the highest com-
putational complexity. The fastest certified defense is median smoothing, which requires about 26
seconds for one image, while the slowest — DensePure — runs for 116 seconds. Conversely, adver-
sarial training comes without additional computational cost during inference, making it the fastest
defense method in our benchmark. The computational complexity of purification-based defenses
largely depends on the specifics of the particular method. Simple image preprocessing methods
(blurring, rotation, random noise) add almost no additional computational cost. The most compu-
tationally intensive method is Diffpure. Due to the diffusion-based model with multiple denoising
steps, it is slower than other purification defenses by 1-3 orders of magnitude. The second slowest
purification-based defense is JPEG, the only method that requires running on the CPU. However, its
differentiable approximation, DiffJPEG, demonstrates significantly better speed as it runs on GPU.

Defenses against adaptive and non-adaptive attacks. Figure 1 compares defense performance
against non-adaptive and adaptive attacks. Note that adversarial training was measured only for
adaptive attacks, while certified defenses were only for nonadaptive scenarios: it is possible to
construct an attack on a certifiably smoothed model, but such a procedure requires extremely high
computations with a potentially low attack success. By design, adaptive attacks are significantly
more successful than non-adaptive ones, and so D

(D)
score robustness bars are higher than markers. At

the same time, SROCCadv of defended IQA metrics against adaptive attacks is lower, which could
be related to the more unpredictable behavior of adaptive attacks. Simple spatial transformations
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(a) (b)

Figure 4: R score (a) and SROCCclear (b) on different IQA metrics of some purification defenses.

(Flip, Resize) and frequency filtering (Gaussian Blur, Median Blur) are effective in the nonadaptive
case but insufficient for adaptive attacks. More complex methods that incorporate randomness, such
as Random Rotate, Random Crop, and DiffPure, perform better for adaptive cases as it is more
complex for an attack to account for random transformations.

Defenses against weak and strong attacks The comparison results for different variations of attack
parameters, as presented in the Appendix A.8 (Table 14), show that increasing attack strength gener-
ally leads to decreased defense success. Although this decrease is not significant for most defenses
in the case of nonadaptive attacks, it is more prominent for Random Noise, DISCO, and FCN in the
adaptive scenario.

Different types of defenses In the non-adaptive scenario, robustness scores’ most effective de-
fense methods incorporated compression and spatial transformations. Compression-, denoising-,
and filtering-based (like FCN, unsharp masking) provide the best visual quality preservation. Meth-
ods based on random transforms, compression, and denoising were the most resistant against adap-
tive attacks. Therefore, spatial transforms and advanced defenses designed for adversarial noise
removal (DISCO, DiffPure) are the least robust against adaptive attacks: adversarial perturbations
can be easily adapted to these methods. The table with the results for defenses grouped by categories
is in the Appendix A.8.

Defenses for different IQA metrics’ architectures. The chosen IQA metrics fall into categories
by their backbones: CNN-based (META-IQA, KonCept, SPAQ, PAQ2PIQ, Linearity), transformer-
based (Maniqa, CLIP-IQA+), and custom (FPR, TOPIQ). We show R score and SROCCclear of
purification defenses applied for different IQA metric types in a non-adaptive scenario in Figure 4.
Transformer-based metrics have greater R score robustness even without any defense. The high
robustness of such metrics yielded a low robustness increase after applying defenses. For other
metrics, most defenses increased the robustness. DISCO managed to improve the robustness of all
metrics, but the effect was much stronger on CNN-based metrics. JPEG defense was one of the best
to improve the R score of transformer-based metrics. Defended transformer-based metrics showed
a higher correlation decrease than metrics of other architectures. It should be noted that custom
architecture can be highly vulnerable. FPR model shows the worst R score. This vulnerability is
likely caused by its atypical architecture for the NR-IQA task, which includes a Siamese network
and an attempt to ”hallucinate” the features of the pseudo-reference image from a distorted one.
These results correlate with the previous researchAntsiferova et al. (2024)

Defenses for regular/AI-gen image content Figure 3 (b) compares Dscore (left) and SROCCadv

(right) for purification methods by different datasets. Three datasets contained natural scene images,
and AGIQA-3K contained AI-generated images. There is no significant difference in defense effi-
ciency for most methods between datasets, but some advanced defenses based on neural networks
(Real-ESRGAN, DISCO) have larger discrepancies. As shown in Figure 3 (right), correlations de-
pend highly on the dataset. On average, SROCCadv on KonIQA1k is significantly higher than on
KADID and AGIQA-3K, similar to results in Table 25 in the Appendix regarding SROCCclear.
This can be due to two factors: a) Several IQA models (e.g., TOPIQ and CLIP-IQA+) were trained
on the KonIQ-10k dataset or its subsets, giving them a natural advantage on KonIQ-1k. b) Cer-
tain IQA models, such as MetaIQA and PAQ2PIQ, generally achieve higher correlation values on
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KonIQ-10k, as reported in their respective studies, suggesting an inherent dataset bias. This figure
also reveals that defenses can boost the correlation coefficients compared to scenarios W/o Defense.

Guarantees of the defenses. Among all the methods compared, only certified methods provide
theoretically reliable predictions. Table 4 presents the results for certified defenses. Classification-
based methods (RS, DRS, DDRS, and DP) guarantee that perturbations with an l2-norm less than the
certified radius will not alter the metric score. Similarly, regression-based methods (MS and DMS)
assure that any perturbation with an l2-norm less than ϵ = 0.05 will cause the metric score to change
by no more than the certified delta. Compared to more sophisticated methods, simple randomized
smoothing showed the highest certified radius. Among regression-based methods, Denoised Median
Smoothing showed the lowest certified relative delta.

Perceptual quality of defended images The perceptual quality of defended images changes only af-
ter purification approaches. Most presented purification defenses aim to restore the original content
of the image. However, the restored images differ from the original and may have flaws in the form
of artifacts. The examples of defenses’ performance are in the Appendix A.8. The most noticeable
artifacts caused by purification defenses include removing details of the original image (DISCO,
MPRNet), altering the image content (Real-ESRGAN, DiffPure), reducing the image clarity (Diff-
Pure, blur defenses), and compression artifacts (JPEG/DiffJPEG, Color Quantization). Figures 12
and 11 in the Appendix A.10 show examples of images after applying different purification meth-
ods. Table 3 shows perceptual quality metrics for purification defenses. Adversarial images without
defenses were closer to the original images than purified ones. Color Quantization and Bilinear Up-
scale are more successful in restoring the original image in non-adaptive cases than other defenses.
Flip, Rotate, and Crop show the worst results because they transform the attacked image without
changing its content so that the PSNR and SSIM do not apply to them.

Statistical tests We used a one-sided Wilcoxon Signed Rank Test with Bonferroni correction to
reduce the risk of false positives due to the many tested hypotheses. The defenses were compared
pairwise, with each pair yielding a percentage indicating how often one defense statistically outper-
formed the other under adversarial attack conditions. Tables in the Appendix A.9 present test results
on KonIQA, NIPS, and KADID1K datasets. The results show that the top performers include Dif-
fJPEG, DISCO, and DiffPure, which show high superiority percentages against most other defenses.
The results from these tables intuitively make sense when considering the design and complexity of
each defense. Further statistical tests, including evaluations of quality scores, expand the analysis to
both adaptive and non-adaptive scenarios in the Appendix A.9.

5 CONCLUSION

This paper analyzed the efficiency of 29 adversarial defense methods against a wide range of at-
tacks for IQA metrics. We showed that defending IQA metrics is more challenging than object
classification models due to the additional requirement of preserving an image’s quality. According
to the results, adversarial training is the best defense in three out of four criteria: it offers a zero
inference computational overhead, no distortions and may provide high correlations. However, for
our task of defending IQA metrics, it showed lower robustness than purification methods. Among
purification defenses, DiffJPEG, DiffPure, and Real-ESRGAN offer good performance-robustness
trade-offs, but the latter two methods are more vulnerable to adaptive attacks. Certified defenses
are also efficient in all criteria but one, which is inference computational time. Suprisingly, some
of the purification approaches showed comparable robustness to randomized smoothing in our set-
tings. We published the dataset of adversarial images used in nonadaptive scenarios and the results
as an online leaderboard. This dataset and the benchmark can be helpful for researchers and compa-
nies who want to make their IQA metrics more robust to potential attacks. Although the proposed
benchmark can identify the most effective defense methods against adversarial attacks on IQA met-
rics, it can also pinpoint attacks most resistant to these defenses, which can be considered to have
a potential negative social impact. By publishing our findings, we highlight the necessity of further
research on incorporating defense methods in image quality assessment. The limitations of our com-
parison listed in the Appendix A.1 are mostly related to parameters of attacks and defenses. Due to
the extreme measurement complexity, we varied only one parameter for most defenses, and a more
in-depth evaluation is a subject of our future work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Vmaf - video multi-method assessment fusion. URL https://github.com/Netflix/vmaf.

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, July 2017.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
tack: a query-efficient black-box adversarial attack via random search. In European Conference
on Computer Vision, pp. 484–501. Springer, 2020.

Anastasia Antsiferova, Khaled Abud, Aleksandr Gushchin, Ekaterina Shumitskaya, Sergey
Lavrushkin, and Dmitriy Vatolin. Comparing the robustness of modern no-reference image-and
video-quality metrics to adversarial attacks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 700–708, 2024.

Shumeet Baluja and Ian Fischer. Adversarial transformation networks: Learning to generate adver-
sarial examples. arXiv preprint arXiv:1703.09387, 2017.

Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, and David A Forsyth. Unrestricted adver-
sarial examples via semantic manipulation. arXiv preprint arXiv:1904.06347, 2019.

Microsoft Bing. A behind the scenes look at how bing is improving image search qual-
ity. https://blogs.bing.com/search-quality-insights/2013/08/23/
a-behind-the-scenes-look-at-how-bing-is-improving-image-search-quality,
2013.

Nicholas Carlini, Florian Tramer, Krishnamurthy Dj Dvijotham, Leslie Rice, Mingjie Sun, and
J Zico Kolter. (certified!!) adversarial robustness for free! In The Eleventh International Confer-
ence on Learning Representations, 2022.

Baoliang Chen, Lingyu Zhu, Chenqi Kong, Hanwei Zhu, Shiqi Wang, and Zhu Li. No-reference
image quality assessment by hallucinating pristine features. IEEE Transactions on Image Pro-
cessing, 31:6139–6151, 2022a.

Chaofeng Chen, Jiadi Mo, Jingwen Hou, Haoning Wu, Liang Liao, Wenxiu Sun, Qiong Yan, and
Weisi Lin. Topiq: A top-down approach from semantics to distortions for image quality assess-
ment. IEEE Transactions on Image Processing, 2024.

Zhongzhu Chen, Kun Jin, Jiongxiao Wang, Weili Nie, Mingyan Liu, Anima Anandkumar, Bo Li,
and Dawn Song. Densepure: Understanding diffusion models towards adversarial robustness. In
Workshop on Trustworthy and Socially Responsible Machine Learning, NeurIPS 2022, 2022b.

Ping-yeh Chiang, Michael Curry, Ahmed Abdelkader, Aounon Kumar, John Dickerson, and Tom
Goldstein. Detection as regression: Certified object detection with median smoothing. Advances
in Neural Information Processing Systems, 33:1275–1286, 2020.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning, pp. 1310–1320. PMLR, 2019.

MSU Video Codecs Comparison. Msu video codecs comparison 2021 part 2: Sub-
jective. http://www.compression.ru/video/codec_comparison/2021/
subjective_report.html, 2021.

Competition Page. Nips 2017: Adversarial learning development
set. https://www.kaggle.com/datasets/google-brain/
nips-2017-adversarial-learning-development-set, 2017.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks, 2020.

11

https://github.com/Netflix/vmaf
https://blogs.bing.com/search-quality-insights/2013/08/23/a-behind-the-scenes-look-at-how-bing-is-improving-image-search-quality 
https://blogs.bing.com/search-quality-insights/2013/08/23/a-behind-the-scenes-look-at-how-bing-is-improving-image-search-quality 
http://www.compression.ru/video/codec_comparison/2021/subjective_report.html
http://www.compression.ru/video/codec_comparison/2021/subjective_report.html
https://www.kaggle.com/datasets/google-brain/nips-2017-adversarial-learning-development-set
https://www.kaggle.com/datasets/google-brain/nips-2017-adversarial-learning-development-set


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adver-
sarial robustness benchmark. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track, 2021. URL https://openreview.net/forum?
id=SSKZPJCt7B.

Francesco Croce, Maksym Andriushchenko, Naman D Singh, Nicolas Flammarion, and Matthias
Hein. Sparse-rs: a versatile framework for query-efficient sparse black-box adversarial attacks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 6437–6445,
2022.

Sai Deng, Jingning Han, and Yaowu Xu. Vmaf based rate-distortion optimization for video coding.
In 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6.
IEEE, 2020.

Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Comparison of full-reference image
quality models for optimization of image processing systems. International Journal of Computer
Vision, 129(4):1258–1281, 2021.

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu. Benchmark-
ing adversarial robustness on image classification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 321–331, 2020.

Yuming Fang, Hanwei Zhu, Yan Zeng, Kede Ma, and Zhou Wang. Perceptual quality assessment of
smartphone photography. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3677–3686, 2020.

Sara Ghazanfari, Siddharth Garg, Prashanth Krishnamurthy, Farshad Khorrami, and Alexan-
dre Araujo. R-lpips: An adversarially robust perceptual similarity metric. arXiv preprint
arXiv:2307.15157, 2023.

Sara Ghazanfari, Alexandre Araujo, Prashanth Krishnamurthy, Farshad Khorrami, and Siddharth
Garg. Lipsim: A provably robust perceptual similarity metric. In The Twelfth International
Conference on Learning Representations, 2024.

Abhijay Ghildyal and Feng Liu. Attacking perceptual similarity metrics. arXiv preprint
arXiv:2305.08840, 2023.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial
images using input transformations, 2018.

Aleksandr Gushchin, Anna Chistyakova, Vladislav Minashkin, Anastasia Antsiferova, and Dmitriy
Vatolin. Adversarial purification for no-reference image-quality metrics: applicability study and
new methods, 2024.

Chih-Hui Ho and Nuno Vasconcelos. Disco: Adversarial defense with local implicit functions.
Advances in Neural Information Processing Systems, 35:23818–23837, 2022.

Vlad Hosu, Hanhe Lin, Tamas Sziranyi, and Dietmar Saupe. Koniq-10k: An ecologically valid
database for deep learning of blind image quality assessment. IEEE Transactions on Image Pro-
cessing, 29:4041–4056, 2020.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. In International Conference on Machine Learning, pp. 2137–
2146. PMLR, 2018.

Egor Kashkarov, Egor Chistov, Ivan Molodetskikh, and Dmitriy Vatolin. Can no-reference quality-
assessment methods serve as perceptual losses for super-resolution?, 2024.

Jari Korhonen and Junyong You. Adversarial attacks against blind image quality assessment models.
In Proceedings of the 2nd Workshop on Quality of Experience in Visual Multimedia Applications,
pp. 3–11, 2022.

12

https://openreview.net/forum?id=SSKZPJCt7B
https://openreview.net/forum?id=SSKZPJCt7B


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

William H. Kruskal and W. Allen Wallis. Use of ranks in one-criterion variance analysis. Journal
of the American Statistical Association, 47(260):583–621, 1952. doi: 10.1080/01621459.1952.
10483441. URL https://www.tandfonline.com/doi/abs/10.1080/01621459.
1952.10483441.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial Intelligence Safety and Security, pp. 99–112. Chapman and Hall/CRC, 2018.

Chunyi Li, Zicheng Zhang, Haoning Wu, Wei Sun, Xiongkuo Min, Xiaohong Liu, Guangtao Zhai,
and Weisi Lin. Agiqa-3k: An open database for ai-generated image quality assessment. IEEE
Transactions on Circuits and Systems for Video Technology, 34(8):6833–6846, 2024. doi: 10.
1109/TCSVT.2023.3319020.

Dingquan Li, Tingting Jiang, and Ming Jiang. Norm-in-norm loss with faster convergence and
better performance for image quality assessment. In Proceedings of the 28th ACM International
Conference on Multimedia, pp. 789–797, 2020.

Zhi Li. On vmaf’s property in the presence of image enhance-
ment operations, 2020. URL https://netflixtechblog.com/
toward-a-better-quality-metric-for-the-video-community-7ed94e752a30.

Hanhe Lin, Vlad Hosu, and Dietmar Saupe. Kadid-10k: A large-scale artificially distorted iqa
database. 06 2019. doi: 10.1109/QoMEX.2019.8743252.

Yujia Liu, Chenxi Yang, Dingquan Li, Jianhao Ding, and Tingting Jiang. Defense against adver-
sarial attacks on no-reference image quality models with gradient norm regularization. In 2024
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 25554–25563,
2024. doi: 10.1109/CVPR52733.2024.02414.

Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):
129–137, 1982.

Cheng Luo, Qinliang Lin, Weicheng Xie, Bizhu Wu, Jinheng Xie, and Linlin Shen. Frequency-
driven imperceptible adversarial attack on semantic similarity. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15315–15324, 2022.

Hanene FZ Brachemi Meftah, Sid Ahmed Fezza, Wassim Hamidouche, and Olivier Déforges. Eval-
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A APPENDIX

A.0 STRUCTURE

• Section A.1 outlines the limitations of our work, including attack parameters, transferabil-
ity, and ranking methodology.

• Section A.2 gives a more in-depth analysis of used datasets, including their characteristics
and relevance to the study.

• Section A.3 presents a list of parameters of IQA metrics and explains the methodology for
calculating their ranges.

• In section A.4, we describe evaluated attacks with their parameters.
• Section A.5 describes each defense method, evaluated in our study, including more in-depth

principles behind certified defense.
• Section A.6 provides quantitative results for non-adaptive attacks. It proves that alignment

for attack strength is correct.
• In section A.7 we provide more in-depth analysis of purification defenses.
• Section A.8 includes Figures and Tables with additional results. It also provides an analysis

of the difference between SROCC and PLCC.
• Section A.9 presents statistical tests (in particular, one-sided Wilcoxon Signed Rank Tests)

for observed results and supports the points we made in the main paper.
• Section A.10 provides some visual examples of attacked and defended images to illustrate

the impact of the evaluated methods.

A.1 LIMITATIONS

While the proposed framework for benchmarking defenses against adversarial attacks on IQA met-
rics offers significant contributions, we acknowledge the existence of the following limitations to be
addressed in future work:

1. Handling Multiple Parameter Attacks: The current framework deals mainly with attacks
that have a single parameter. However, Some attacks might have multiple parameters to
control their strength, complicating the evaluation process. Moreover, a group of Boundary
Attacks adapts their parameters according to the response of the attacked model, which
poses an additional challenge in a fixed-parameter setting. Future versions will include
methods for dealing with different types of evolving attacks, possibly through dynamic
parameter optimization techniques

2. Transferability of Adversarial Attacks: There might be defenses that better generalize to
attacks produced on other defenses. Currently, the framework does not evaluate the trans-
ferability of adversarial attacks among different defenses. Future versions should provide
insights into the generalizability and robustness of the defense.
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3. Simplified Ranking Methodology: The current framework employs a straightforward
ranking methodology that may not fully capture the complexity and the existence of dif-
ferent evaluation metrics with varying importance levels depending on the attack used for
testing. Different evaluation measures can be assigned different weights based on their im-
portance and relevance to the attack. This system allows for a composite score that reflects
the overall performance of a defense mechanism. To provide a nuanced assessment of met-
ric robustness, a more rigorous statistical framework for ranking metrics will be employed
in future versions.

Addressing these limitations in future work will ensure the framework’s robustness and adaptability
in diverse and realistic scenarios.

A.2 DATASETS

In Table 5 we provide information about the datasets used in our study.

Table 5: List of datasets used in our benchmark.

Dataset Size Resolution Subjective ratings Short description
KonIQA-10k 1,000 (out of 10,073) 512× 384 120,000 Provides wide range of real-world photos with authentic distortions
KADID-10k 8 out of 81 original images 512× 384 30,000 Large-scale dataset with wide variety of content and artificial distortions
NIPS 2017 1,000 299× 299 — Competition on adversarial examples and defenses in the NIPS 2017
AGIQA-3K 2,982 512× 512 125,244 AGIs from GAN-/auto-regression-/diffusion-based model with subjective scores

We use a subset of 1000 images at 512×384 resolution from the freely available to the research
community KonIQA-10K IQA dataset Hosu et al. (2020) to evaluate adversarial defense methods.
We chose it due to its large, diverse collection of real-world images with subjective quality scores.
The original set was partitioned into 10 clusters using K-Means Lloyd (1982) based on 3 parameters:
Spatial Information (SI), Colorfulness (CF), and Mean Opinion Scores (MOS). We selected 100
random images from each cluster, resulting in a diverse set of test images regarding quality and
content. Using these images as the source, we generated an adversarial dataset of over 215,000
images (1000 × number of attacks × number of attacked NR IQA metrics × number of attack
hyperparameter sets). Figure 5 shows that the distribution for the 1,000-image sample is nearly
identical to the distribution for the full dataset. Due to significantly higher computational complexity,
we used a smaller set of 50 images (5 per cluster) for black-box attacks. For the same reason, we
used a smaller set of 10 images for certified defenses to generate attacks. To evaluate the impact
of sampling this procedure was repeated 10 times, focusing on purification methods and black-box
attacks to accelerate calculations. We used default parameters for defense methods and 3 presets
from the main paper for attacks. For each IQA model, attack and defense method, we calculated
four scores per sample: Dscore, SROCCclear, SROCCadv , and SSIM .

Figure 6 illustrates the distribution of these scores for each sample. The results show that the distri-
butions are nearly identical across all samples and metrics, with consistent mean values. To assess
the differences between the means of distributions, we computed the mean for each distribution and
score, yielding a list of 10 mean values per score. Then, we calculated the mean and variance of
these values across the 10 samples. These values can be found in Table 6. To verify these findings
statistically, we performed a Kruskal-Wallis test Kruskal & Wallis (1952) for each metric across the
10 samples. The p-values are shown in Table 6. These p-values indicate no significant differences
between the samples, confirming that the sampling procedure does not introduce variability into the
evaluation results. This consistency strengthens our conclusions and ensures that the findings are
robust across different random subsets of the dataset.

A.3 IQA METRICS

We define metric range as diam(fω) = sup
x,z∈X

{|fω(x) − fω(z)|} = upper − lower, where upper is

called the upper metric bound and lower - lower metric bound. To calculate these bounds, we used
the DIV2K valid HR subset from the DIV2K dataset (Agustsson & Timofte (2017)). The upper
bound is set to the highest metric value across the chosen subset, while the lower bound is set to

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(b)

Figure 5: (a): Distribution of DD
score on different source dataset sizes. (b): Mean DD

score and corre-
sponding confidence intervals.
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Figure 6: The effect of sampling 50 images on results.

the minimum value between the lowest metric value on subset images compressed with JPEG with
quality of 10 and sampled random noise of the image subset size.

We report metric ranges in Table 7 and metric parameters in Table 8. The Rscore is taken from
Antsiferova et al. (2024).

A.4 USED ADVERSARIAL ATTACKS

The early methods for attacking IQA metrics were initially developed to stress-test their perfor-
mance. In 2008, Wang & Simoncelli (2008) introduced the MADC method, which utilizes gradient
projection onto a proxy FR quality metric. This method generates an image with the same quality
level according to proxy metrics, used to compare the metrics’ accuracy. Many years later, Kurakin
et al. (2018) proposed creating an adversarial image by iteratively adding the model’s gradient with
respect to the image (I-FGSM). However, this approach produces highly visible distortions in low-
frequency areas. To address this issue, Korhonen & You (2022) proposed multiplying the gradients
by a weights map produced using the Sobel filter and morphological operations to add distortions
only in high-textured regions (Korhonen et al.). In another work by Zhang et al. (2022b), the au-
thors suggested incorporating a FR IQA component into the loss function to control visual quality.
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Table 6: Results across 10 samplings of 50 images.

Score Mean Variance of means
for each sample

p-value after
Kruskal-Wallis test

Dscore 0.1533 0.000044 0.5425
SROCCadv 0.4681 0.00043 0.1449
SROCCclear 0.7343 0.00066 0.1958
SSIM 0.7953 0.000034 0.1138

Table 7: List of NR IQA metric ranges in our benchmark.

Metric Lower bound High bound Metric range

META-IQA (Zhu et al. (2020)) 0.000 1.000 1.000
MANIQA (Yang et al. (2022)) 0.000 1.000 1.000
KonCept (Hosu et al. (2020)) 26.403 66.869 40.466
SPAQ (Fang et al. (2020)) 21.749 77.755 56.006
PAQ2PIQ (Ying et al. (2020)) 58.380 84.171 25.791
Linearity (Li et al. (2020)) 25.780 83.226 57.446
FPR (Chen et al. (2022a)) 47.225 77.047 29.822
CLIP-IQA+ (Wang et al. (2023)) 0.000 1.000 1.000
TOPIQ (Chen et al. (2024)) 0.215 0.822 0.607

Table 8: List of NR IQA metrics used in our benchmark.

Metric Rscore ↑ Backbone Number of parameters Input transformations Code

META-IQA (Zhu et al. (2020)) 1.168 ResNet-18 13.2M ImageNet Normalization Github
MANIQA (Yang et al. (2022)) 0.986 ViT-B/8 135.62M 224× 224 crop Github
KonCept (Hosu et al. (2020)) 0.584 InceptionResNetV2 59.82M Normalization (0.5, 0.5) Github
SPAQ (Fang et al. (2020)) 0.493 ResNet-50 23.5M 224× 224 crop Github
PAQ2PIQ (Ying et al. (2020)) 0.449 ResNet-18 11M — Github
Linearity (Li et al. (2020)) 0.267 ResNeXt-101 90M ImageNet Normalization Github

FPR (Chen et al. (2022a)) -0.229 Custom 16.6M Splitting into
fixed-sized patches Github

CLIP-IQA+ (Wang et al. (2023)) CLIP 244M — Github
TOPIQ (Chen et al. (2024)) Custom 45M — Github

They used metrics such as DISTS, SSIM, and LPIPS (Zhang et al.). Another approach to reducing
attack visibility is SSAH proposed by Luo et al. (2022), which decomposes the image into low and
high frequencies and generates an attack only in high frequencies. Bhattad et al. (2019) introduced
the cAdv method, which operates in the LAB color space instead of the pixel space. Some meth-
ods, such as those proposed by Moosavi-Dezfooli et al. (2017) and Baluja & Fischer (2017), work
much faster since they do not require a backpropagation step during inference. Other fast-working
methods are based on creating universal adversarial perturbations (UAP) (Shumitskaya et al., 2022;
2024), that can also be applied to the task of video quality assessment. As an improvement of this
idea, Shumitskaya et al. (2023) proposed the FACPA method, which requires initial training on
low-resolution data and can then be efficiently applied to high-resolution data.

For black-box attacks, we chose to adopt several approaches that were designed for image classifiers.

The NES attack, proposed by Ilyas et al. (2018), estimates gradient using the natural evolutionary
strategy (NES) and then performs gradient descent with the approximation to minimize the objective.
The Parsimonious attack, proposed by Moon et al. (2019), searches for perturbations consisting
of pixels with ±ε. It defines the working set as the set of pixels in the perturbation that have pixel
value of +ε, and updates it in Lazy Greedy Insert and Lazy Greedy Deletion. This method also
uses hierarchical lazy evaluation and starts from coarse blocks and finishes with pixel updates. An-
driushchenko et al. (2020) introduced the Square attack that updates perturbation according to a
random search algorithm. The update is generated as a square patch which is applied to existing
perturbation. If the update improves the objective, the patch is applied; otherwise, the perturbation
remains unchanged. Parsimonious and Square attacks were chosen as they are among the most effi-
cient score-based black-box attacks and can be easily converted to attacking IQA models. Patch-RS
was chosen to represent black-box sparse attacks. NES was chosen to represent gradient estimation
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Table 9: List of adversarial attacks used in our benchmark. WB and BB are white-box and black-box
attack types. We adjust varied parameters to align attacks’ strengths.

Adversarial attack Type Restriction Varied parameter Fixed parameters
I-FGSM (Kurakin et al. (2018)) WB l∞ lr eps = 10 / 255, iters = 10
Optimised-UAP (Shumitskaya et al. (2024)) WB l∞ amplitude eps = 0.1, lr = 0.001, n epoch = 5
Korhonen et al. (Korhonen & You (2022)) WB l∞ lr iters = 10
Zhang et al. (Zhang et al. (2022b)) WB l∞ lr iters = 10
MADC (Wang & Simoncelli (2008)) WB l∞ lr eps = 10 / 255, iters = 8
cAdv (Bhattad et al. (2019)) WB SSIM lr —
SSAH (Luo et al. (2022)) WB l∞ lr lambda lf=0.1

FACPA (Shumitskaya et al. (2023)) WB l∞ amplitude n epoch=5, lr = 0.001, ε = 10/255

NES (Ilyas et al. (2018)) BB l∞ ϵ
sigma=0.001, N=32,
n=20, eta=0.1, max iters=250

Parsimonious (Moon et al. (2019)) BB PSNR ϵ
max queries=10000, batch size=64,
block size=32, max iters=10000

One Pixel (Su et al. (2019)) BB l0 pixel count POPSIZE=300,
batch size=32, iters=5

Square (Andriushchenko et al. (2020)) BB l∞ ϵ p init=0.05, max queries=10000

Patch-RS (Croce et al. (2022)) BB PSNR ϵ
max queries=10000,
p init=0.8, n restarts=1

Table 10: List of varied parameters’ values of adversarial attacks.

Adversarial attack Type Varied parameter Parameter values
I-FGSM (Kurakin et al. (2018)) WB lr 4e-04, 7e-04, 1e-03, 2e-03, 3e-03, 5e-03, 8e-03, 14e-03, 2e-02, 4e-02
Optimised-UAP (Shumitskaya et al. (2024)) WB amplitude 0.1, 0.189, 0.278, 0.367, 0.456, 0.544, 0.633, 0.722, 0.811, 0.9
Korhonen et al. (Korhonen & You (2022)) WB lr 5e-05, 1e-04, 2e-04, 5e-04, 1e-03, 2e-03, 5e-03, 1e-02, 2e-02, 5e-02
Zhang et al. (Zhang et al. (2022b)) WB lr 5e-05, 1e-04, 2e-04, 5e-04, 1e-03, 2e-03, 5e-03, 1e-02, 2e-02, 5e-02
MADC (Wang & Simoncelli (2008)) WB lr 1e-05, 2e-05, 5e-05, 1e-04, 2e-04, 5e-04, 1e-03, 2e-03, 5e-03, 0.01
cAdv (Bhattad et al. (2019)) WB lr 5e-05, 1e-04, 2e-04, 5e-04, 1e-03, 2e-03, 5e-03, 1e-02, 2e-02, 5e-02
SSAH (Luo et al. (2022)) WB lr 1e-4, 2e-4, 3e-4, 5e-4, 8e-4, 13e-4, 22e-4, 36e-4, 6e-3, 0.01
FACPA (Shumitskaya et al. (2023)) WB amplitude 0.1, 0.189, 0.278, 0.367, 0.456, 0.544, 0.633, 0.722, 0.811, 0.9
NES (Ilyas et al. (2018)) BB ϵ 0.01, 0.014, 0.02, 0.027, 0.038, 0.053, 0.074, 0.103, 0.143, 0.2
Parsimonious (Moon et al. (2019)) BB ϵ 0.01, 0.014, 0.02, 0.027, 0.038, 0.053, 0.074, 0.103, 0.143, 0.2
One Pixel (Su et al. (2019)) BB l0 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0
Square (Andriushchenko et al. (2020)) BB ϵ 0.01, 0.014, 0.02, 0.027, 0.038, 0.053, 0.074, 0.103, 0.143, 0.2
Patch-RS (Croce et al. (2022)) BB ϵ 49, 64, 81, 121, 169, 225, 289, 361, 484, 625

methods. Patch-RS from Sparse-RS, proposed by Croce et al. (2022), also uses random search to
create a square patch and search for its place on the image. Su et al. (2019) suggested to change a
predefined number of pixels to make their One Pixel attack successful using Differential Evolution
algorithm.

We report the list of parameters for attacks and fixed values for non-varied parameters in Table 9
and the list of varied parameter values in Table 10.

A.5 EVALUATED DEFENSES

A.5.1 PURIFICATION

According to Guo et al. (2018), several standard preprocessing techniques for images can be used as
defenses against additive adversarial noise. These methods include compression (JPEG, DiffJPEG
(Reich et al. (2024)) color quantization (Xu et al. (2018))), spatial transformations (Resize, Rotate,
Crop, Flip), blurring (Median blur, Gaussian blur, etc.), Unsharp masking, and others. Although
not originally designed as defenses, studies have shown these methods can be effective. Since adver-
sarial perturbations are often high-frequency noise, denoising techniques can help remove them. The
Multi-Stage Progressive Image Restoration Network (MPRNet (Zamir et al. (2021))) is a three-stage
convolutional neural network for image deblurring, deraining, and denoising. The first two stages
use an encoder-decoder architecture for multi-scale contextual information, while the final stage
operates at the original resolution to preserve details. MPRNet features supervised attention mod-
ules and cross-stage feature fusion for effective information transfer. Real-ESRGAN (Wang et al.
(2021)), a GAN-based model with several residual dense blocks for super-resolution, is trained with
synthetic data and can be used for adversarial denoising. Another idea for adversarial denoising is
based on applying diffusion models. DiffPure (Nie et al. (2022)) employs diffusion models to purify

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: List of compared adversarial Purification methods.

Defense method Type Varied parameter Fixed parameters Parameter values Code
JPEG (Guo et al. (2018)) Compression q — 10, 30, 50, 70, 90 —
DiffJPEG (Reich et al. (2024)) Compression q — 10, 30, 50, 70, 90 Github
Color quantization (Xu et al. (2018)) Compression npp — 2, 5, 16, 20, 25 —
Resize (Guo et al. (2018)) Spat. transform. scale — 0.1, 0.25, 0.5, 0.75, 0.9 —
Bilinear Upscale Spat. transform. scale — 0.1, 0.25, 0.5, 0.75, 0.9 —
Rotate Spat. transform. angle lim. — 10, 15, 20, 30, 50 —
Crop (Guo et al. (2018)) Spat. transform. size — 32, 64, 128, 256, 288 —
Flip Spat. transform. — — — —
Gaussian blur Blurring kernel size sigma=0.15*kernel size+ 0.35 3, 5, 7, 9, 11 —
Median blur Blurring kernel size — 3, 5, 7, 9, 11 —
Unsharp masking Preprocessing kernel size sigma=1, amount=1 3, 5, 7, 9, 11 —
MPRNet (Zamir et al. (2021)) Denoising — — — Github

Real-ESRGAN (Wang et al. (2021)) Denoising — denoise strength=0.2, outscale=1,
tile=0, tile pad=10, pre pad=0 — Github

DiffPure (Nie et al. (2022)) Defense t t delta=15, diffusion type=ddpm, sample step=1 5, 10, 20, 30, 50 Github
DISCO (Ho & Vasconcelos (2022)) Defense — — — Github
FCN (Gushchin et al. (2024)) Defense — — — Github
Random noise Adding noise — — — —

adversarial images by introducing a small amount of noise through forward diffusion, then reversing
the process to recover a clean image. DISCO (Ho & Vasconcelos (2022)) is an image purification
method aimed at enhancing classification robustness. It employs local implicit functions to ensure
small perturbations do not significantly alter local data representations. By maintaining these robust
local representations, DISCO effectively resists adversarial perturbations that do not align with the
data’s local structure. Some adversarial attacks, such as color-based modifications, are not bounded.
Standard denoising approaches are ineffective against these. Gushchin et al. (2024) proposed neural
filter FCN, to counter color attack cAdv on image quality metrics. FCN features a compact, fully
convolutional architecture with three hidden layers of 64, 32, and 3 filters, optimized with Adam
and MSE loss.

We report the list of parameters for defenses and fixed values for non-varied parameters in Table 11.

A.5.2 ADVERSARIAL TRAINING

We fine-tuned Linearity and KonCept IQA models using the original images and attacked images
in a 1:1 ratio from the original KonIQA-10K training dataset for 30 epochs. During the training
process, we used a 2-step APGD attack Croce & Hein (2020) to generate the attacked images. This
method uses an adaptive step that allows a small number of iterations to achieve strong adversarial
examples and reduce computational time. The goal of the attack during the training process is to
increase model loss. We adjusted the MOS values based on the FR metric scores. For a given
original image x with MOS y, we obtain the adjusted MOS for the attacked image x′ as follows:

y′ = y −M(x, x′) (8)

We have considered LPIPS and 1 - SSIM as M. To evaluate the impact of attack magnitude during
training we chose 3 different attack magnitudes ε = {2, 4, 8}/255.

A.5.3 CERTIFIED METHODS

Description. Cohen et al. (2019) proposed the Randomized Smoothing (RS) method to transform
any classifier that performs well under Gaussian noise into a new classifier that is certifiably robust
to adversarial perturbations under the l2 norm. The overall process of this defense can be described
as follows: given an input image, the algorithm samples N noisy variations of this image using
a Gaussian noise model with a certain σ. These images are then passed through the backbone
classification model, and the most frequently predicted class is given as the final answer. This
approach results in an algorithm that provides a provable answer for the model within a l2 ball. The
radius of this ball is calculated based on the difference between the most popular and the second
most popular classes across the sampled images used for answer selection. The main disadvantage
of the previous approach is that running the classifier on noisy data causes a drop in model accuracy,
as it was not trained to handle such data. To address this issue, Salman et al. (2020) extended
randomized smoothing to Denoised Randomized Smoothing (DRS) by denoising the noisy image
before passing it to the model. Since the noise model is known, training an effective denoiser
for a given σ is relatively straightforward. Carlini et al. (2022) extended the approach of Salman
et al. (2020) by replacing the denoiser with a pre-trained denoising diffusion probabilistic model
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Table 12: Experiment to determine the optimal number of classes N for regression metric discretiza-
tion.

N
SROCCclear ↑

(no Monte-Carlo sampling)
Cert.R ↑

(with Monte-Carlo sampling)

3 0.49 0.249
5 0.53 0.248
10 0.56 0.206
15 0.56 0.160
20 0.56 0.142
∞ 0.56 0

(Diffusion Denoised Randomized Smoothing (DDRS)). They used only one diffusion step because
it demonstrated high speed and relatively good quality. Chen et al. (2022b) proposed the DensePure
(DP) method that involves multiple runs of denoising via the reverse process of the diffusion model
(using different random seeds) to generate multiple samples. These samples are then passed through
the classifier, and the final prediction is made using majority voting.

Chiang et al. (2020) proposed a method to certify regression models. Instead of using the most
popular class within the l2 ball, they utilize the median of function values. They also theoretically
demonstrated that using the median is better than the mean. We denote this method as Median
Smoothing (MS). They further extended the method to Denoised Median Smoothing (DMS) by
adding a denoising step before model prediction to improve accuracy.

Parameters selection. Given an input image, the results of the classification-based certified method
are the metric score and the certified radius R. The method guarantees that the class remains un-
changed for the input image within a l2 ball of radius R. All classification-based certified methods
were run with the following parameters: σ = 0.12, N0 = 100, N = 1000, α = 0.001. Here, σ is the
standard deviation of the Gaussian noise used for sampling, N0 is the number of samples for class
selection, N is the number for class certification, and alpha is the probability of class change within
the l2 ball of the predicted certified radius R.

Given an input image, the results of a regression-based certified method are the metric score and the
certified delta. The method guarantees that, within a l2 ball of radius ϵ, the metric score changes by
no more than delta. To make this value comparable across metrics, we define the certified relative
delta by dividing the certified delta by the metric range. All regression-based certified methods were
run with the following parameters: σ = 0.12, ϵ = 0.05, N = 1000, α = 0.001.

Scripts for running all these methods are available on GitHub.

Classifier-based methods application. To discretize a regression quality metric for classification-
based methods, we divided the metric range into N segments, each corresponding to a specific class.
We also added additional classes for metric values that fall below or above the calculated range,
ensuring that every metric value is assigned to a class. This resulted in a (N + 2)-class metric-
classifier. Note that these classes are ordered, with higher class values indicating better quality.
Thus, we can measure the quality of the classifier metric in the same way as the regression metric –
using relative gain and correlations with subjective scores.

We conducted additional experiments to determine the optimal value of N on PAQ2PIQ NR metric.
The main challenge is balancing the trade-off between SROCCclear and Cert.R. As the number
of classes increases, SROCCclear also increases, but Cert.R decreases. This occurs because a
higher number of classes makes it easier to cross class borders during Monte Carlo sampling. Table
12 presents the results of our experiment, indicating that when the number of classes is set to ten,
SROCCclear on the discrete metric without Monte Carlo sampling is optimal. Additionally, we
measured Cert.R for this number of classes and discovered that Cert.R does not significantly
decrease for N = 10. Therefore, we chose N = 10 to discretize NR metric values in the main
experiments of this paper.
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Figure 7: The intensity of adversarial attacks averaged across all IQA metrics. The dotted vertical
lines show the targeted strength values for which the preset parameters of the bolded attack methods
were selected.

A.6 NON-ADAPTIVE CASE DATASET

In figure 7, we show the intensity of the applied attacks, averaged over all IQA metrics. For each
attack method, a metric of intensity was selected among L∞, PSNR, and SSIM. Marked with dotted
lines, the values represent specific levels of attack intensity that we aimed to achieve with the presets
for the highlighted attack methods. One Pixel and Patch-RS attacks are hidden in the first plot, since
these methods allow any change in the L∞ norm.

A.7 MORE IN-DEPTH ANALYSIS

Here we provide some findings to better understand the underlying reasons for defense performance.
First, adversarial perturbations generally consist of high-frequency noise. For this reason, defenses
that employ compression in some way are effective. JPEG and DiffJPEG remove high-frequency
noise alongside adversarial perturbations while maintaining the structural information of a clean
image, as the perturbation has a far more complex and unnatural representation than the original
high-frequency parts of an image. This conclusion suggests that developers of purification methods
should analyze how the high-frequency components of an image and perturbations differ. DISCO
uses an encoder-decoder architecture, which is a similar approach to compression. The learned fea-
tures of clean images help DISCO project images back onto the natural image manifold. Denoising
methods, such as MPRNet and Real-ESRGAN, show average results compared to other techniques
since they were trained on noise of a simpler nature, while adversarial perturbations possess more
complex high-frequency structures. Fine-tuning on adversarial perturbations is a subject for future
research.

Diffusion-based models offer high variability in strength due to their architecture. They can be
precisely tuned for the desired adversarial attack of a particular budget. On the other hand, DiffPure
introduces its own processing artifacts, causing the worst correlations and low PSNR and SSIM
compared to original images. This reveals a significant difference between applying diffusion-based
defenses in classification tasks (where they are state-of-the-art methods) and quality assessment
tasks.

However, to effectively mitigate adaptive attacks, methods need to employ high randomness. Partic-
ularly effective is the combination of randomness and geometric transformations, as perturbations
are vulnerable to them. Flip and Random Rotate are great examples. The first lacks randomness,
and adaptive attacks easily surpass it, while Random Rotate significantly reduces attack effective-
ness since the angle differs between the calculation of an attack and inference.

A.8 ADDITIONAL RESULTS

We show performances for evaluated defenses in tables below. Confidence intervals in some table are
large due to the fact that we calculate average score across large pool of IQA metrics/attacks/datasets.
To statistically check what defense is better we provide results of statistical tests A.9.

We analyse how much does SROCC and PLCC correlations are differ in table 26. It reports that
ranks in both cases are identical. Thus, in other tables we report only SROCC.
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Figure 8: D
(D)
score(↓)/PSNR(↑) (left) and D

(D)
score(↓)/SSIM(↑) tradeoffs for Purification-based

defenses in non-adaptive scenario averaged across KonIQA, KADID and AGIQA-3K datasets. Red
line denotes the Pareto Optimal front.

Figure 9: D
(D)
score(↓)/SROCCadv(↑) (left) and D

(D)
score(↓)/SROCCclear(↑) tradeoffs for

Purification-based and Adversarial Training defenses in adaptive scenario averaged across KonIQA,
KADID and AGIQA-3K datasets. Red line denotes the Pareto Optimal front.

Table 13 reports results for purification defenses on KonIQA and KADID datasets for adaptive and
non-adaptive cases. The results show, that DiffJPEG and JPEG show best correlations for metrics,
while Rotate and Diffpure increase R score the best.

Table 14 shows how well defenses can respond to attack of different strength. In summary, results
do not change much across strength.

Tables 15 and 16 present results of purification defenses on different IQA metrics. We can see that
correlations are highly dependent on IQA metric, while top methods in terms of robustness (Dscore,
Rscore) are similar accross different IQA models.

Table 17 shows scores for different attacks types. The experiment showed that undefended images
are more close to the original than defended by any defense. The results are the same as on all attack
types. JPEG and DiffJPEG show greater SROCCadv , while Color Quantization has better PSNR
with the original images.

Table 24 reports results for grouped purification defenses. The results demonstrate that compression
is one of the best in all metrics except R(D)

score.
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Figure 10: Comparison of Dscore and D
(D)
score (left) and Rscore/R

(D)
score (right) for Purification-based

and Adversarial Training defenses in adaptive scenario. Results are averaged across KonIQA, KA-
DID and AGIQA-3K datasets.

Table 25 compares results on different datasets. The results differ much, but simple defenses like
Flip and Rotate are effective on all datasets.

Table 27 report some score for certified methods. It shows that RS has bigger Cert.R and Abst.
among all classification-based defenses, while MS is the best among regression-based defenses.

Figure 8 pictures tradeoffs for Purification-based defenses. It shows the importance of tuning de-
fense parameters for defenses with different parameters.

Figure 9 compares correlation coefficients with D
(d)
score. The picture demonstrates the efficiency of

the simple transforms.

Figure 10 illustrates difference between Dscore D
(D)
score (left) and Rscore and R

(D)
score (right). The

main finding is that there is high correlation within these pairs of scores with rare exceptions like
Random Crop.

A.9 STATISTICAL TESTS

We used the one-sided Wilcoxon Signed Rank Test as a statistical test since it is appropriate for
comparing paired samples, as it is non-parametric and does not assume normality of the underlying
data, making it ideal for adversarial robustness scenarios, where the distribution of data (IQA met-
rics, in our case) may not follow normal patterns. This test provides insights into whether a defense
mechanism shows a statistically significant improvement over another in terms of Dscore, a metric
that reflects image quality after adversarial perturbations have been applied. We also conducted tests
for other scores used in this work. Results of these comparisons for different datasets are presented
in tables 18, 19, 20 for non-adaptive scenario and in tables 21, 22 and 23 for adaptive case. The
defenses are compared in a pairwise fashion, with each pair yielding a percentage indicating how
often one defense statistically outperforms the other under adversarial attack conditions. Intuitively,
the Wilcoxon Signed Rank Test results can be understood as a way to rank one defense in terms of
how frequently it outperforms others. Defenses that exhibit statistical superiority across most tests
(i.e., a higher percentage of tests where they outperform others) can be considered more reliable
across a broader range of conditions. The tests also underscore the importance of choosing the right
defense for specific types of attacks and image quality metrics.

Furthermore, the application of the Bonferroni correction across these tests further strengthens the
reliability of the results, controlling the family-wise error rate due to the large number of compar-
isons and, therefore, reducing the risk of false positives. The Bonferroni correction applied across
these tests is crucial because of the number of comparisons made: 13 attacks, three intensity scales,
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Table 13: Comparison of purification defenses. Evaluated metrics are averaged across all images,
attacks and quality metrics on KonIQ and KADID datasets.

Defense Common Non-adaptive case Adaptive case
SROCCclear ↑ Mean Time(ms)↓ Dscore

(D) ↓ R
(D)
score ↑ PSNR ↑ SROCCadv ↑ Dscore

(D) ↓ R
(D)
score ↑ PSNR ↑ SROCCadv ↑

W/o Defense 0.632±0.02 0.05±0.01 48.61±45.75 0.655±0.65 39.47±8.07 0.464±0.13 67.35±44.93 0.416±0.57 39.37±9.31 0.371±0.06

Unsharp 0.615±0.02 1.11±0.57 40.42±36.40 0.742±0.65 28.92±3.48 0.426±0.15 85.28±55.54 0.317±0.52 28.61±3.80 0.319±0.13
Color Quantization 0.618±0.03 0.09±0.02 25.69±24.31 0.892±0.63 32.26±4.05 0.551±0.11 — — — —

FCN 0.599±0.04 0.76±0.15 21.12±19.39 1.001±0.63 20.53±1.10 0.519±0.11 72.34±45.45 0.351±0.56 20.11±1.09 0.258±0.14
Bilinear Upscale 0.595±0.02 0.23±0.05 19.89±17.44 0.975±0.67 31.32±4.08 0.457±0.13 44.83±32.01 0.568±0.65 27.65±3.25 0.350±0.10
Gaussian Blur 0.560±0.02 1.41±0.29 14.10±12.20 1.136±0.67 30.41±3.81 0.434±0.12 49.02±30.86 0.453±0.59 30.94±4.34 0.349±0.12
Median Blur 0.554±0.02 0.16±0.04 13.55±10.92 1.235±0.87 29.40±3.69 0.433±0.11 53.69±32.14 0.428±0.59 30.30±4.19 0.405±0.12

JPEG 0.648±0.03 579.41±135.20 13.37±11.21 1.132±0.58 31.15±3.75 0.626±0.05 — — — —
DiffJPEG 0.651±0.03 12.17±2.00 13.26±11.08 1.135±0.58 31.18±3.76 0.629±0.05 31.86±20.12 0.661±0.57 30.20±4.06 0.540±0.08

Random Noise 0.600±0.04 12.45±0.80 11.06±9.80 1.264±0.58 25.37±2.04 0.571±0.07 48.72±32.98 0.489±0.56 35.31±6.22 0.493±0.13
MPRNet 0.588±0.05 72.57±3.46 10.57±9.62 1.362±0.67 29.38±3.88 0.554±0.06 48.71±30.97 0.494±0.65 30.88±4.29 0.492±0.09
Resize 0.629±0.03 0.27±0.05 10.05±7.60 1.344±0.55 30.37±3.80 0.579±0.07 59.39±39.28 0.458±0.54 28.13±3.44 0.335±0.11
Crop 0.596±0.02 0.23±0.05 10.02±7.51 1.484±0.85 11.47±0.40 0.518±0.08 6.86±6.57 1.593±0.54 11.08±0.20 0.389±0.10

Real-ESRGAN 0.601±0.06 7.41±1.80 9.34±7.25 1.579±0.45 29.47±3.45 0.541±0.10 34.04±21.04 0.643±0.61 29.61±4.00 0.439±0.08
Flip 0.570±0.03 0.07±0.01 6.71±4.88 1.491±0.54 10.53±0.37 0.543±0.06 72.30±46.54 0.371±0.57 10.78±0.16 0.392±0.13

Rotate 0.574±0.01 3.22±0.38 5.75±3.88 1.586±0.50 11.14±0.35 0.512±0.06 16.52±8.65 0.889±0.40 14.21±0.57 0.458±0.11
DISCO 0.621±0.04 193.56±9.74 3.87±3.46 1.760±0.44 27.80±2.91 0.611±0.05 51.97±36.63 0.591±0.80 28.10±3.35 0.454±0.05
DiffPure 0.537±0.03 1432.56±70.26 3.76±3.72 1.749±0.53 27.54±2.94 0.513±0.06 26.58±19.75 0.734±0.64 29.08±3.70 0.487±0.05

Table 14: Comparison of purification defenses by different attack strength. Evaluated metrics are
averaged across all images, attacks and quality metrics on KonIQ and KADID dataset.

Weak Medium Strong
Dscore ↓ Rscore ↑ SROCCadv ↑ Dscore ↓ Rscore ↑ SROCCadv ↑ Dscore ↓ Rscore ↑ SROCCadv ↑

W/o Defense 33.11 / — 0.822 / — 0.522 / — 45.88 / — 0.639 / — 0.470 / — 66.83 / — 0.502 / — 0.401 / —

Bilinear Upscale 14.51 / 28.97 0.909 / 0.674 0.499 / 0.385 18.44 / 38.96 0.822 / 0.556 0.463 / 0.354 24.16 / 53.77 0.748 / 0.461 0.411 / 0.311
Gaussian Blur 15.10 / 27.56 0.878 / 0.655 0.465 / 0.421 16.52 / 38.85 0.836 / 0.518 0.437 / 0.371 20.13 / 58.06 0.761 / 0.361 0.400 / 0.256

Resize 9.99 / 43.42 1.118 / 0.525 0.594 / 0.411 11.78 / 58.27 1.053 / 0.404 0.582 / 0.347 14.15 / 81.16 0.995 / 0.270 0.561 / 0.247
MPRNet 12.67 / 30.77 0.993 / 0.602 0.561 / 0.530 14.13 / 42.40 0.946 / 0.490 0.556 / 0.513 16.87 / 60.60 0.885 / 0.360 0.546 / 0.432
DiffJPEG 9.71 / 20.72 1.138 / 0.774 0.634 / 0.573 11.96 / 27.29 1.057 / 0.660 0.632 / 0.555 16.89 / 37.29 0.967 / 0.547 0.619 / 0.491

JPEG 9.72 / — 1.139 / — 0.631 / — 11.99 / — 1.054 / — 0.629 / — 16.97 / — 0.963 / — 0.616 / —
Unsharp 30.91 / 59.45 0.652 / 0.388 0.484 / 0.403 42.38 / 83.78 0.530 / 0.232 0.419 / 0.304 60.27 / 122.51 0.439 / 0.097 0.376 / 0.248

Median Blur 13.02 / 34.98 0.981 / 0.574 0.462 / 0.468 15.05 / 47.84 0.915 / 0.427 0.434 / 0.424 18.09 / 67.41 0.856 / 0.282 0.404 / 0.322
Real-ESRGAN 21.48 / 26.51 0.689 / 0.621 0.564 / 0.476 23.15 / 31.73 0.665 / 0.566 0.548 / 0.461 26.67 / 41.73 0.627 / 0.467 0.509 / 0.380

Color Quantization 15.46 / — 1.016 / — 0.586 / — 21.08 / — 0.897 / — 0.568 / — 36.81 / — 0.726 / — 0.499 / —
DISCO 8.72 / 40.31 1.176 / 0.514 0.607 / 0.479 8.30 / 52.05 1.193 / 0.438 0.612 / 0.453 8.29 / 64.85 1.190 / 0.406 0.613 / 0.429
DiffPure 17.92 / 15.97 0.780 / 0.869 0.501 / 0.502 17.33 / 20.49 0.800 / 0.766 0.515 / 0.492 17.57 / 32.05 0.797 / 0.593 0.521 / 0.467

FCN 15.38 / 47.23 0.973 / 0.471 0.566 / 0.344 20.74 / 67.76 0.885 / 0.318 0.529 / 0.248 30.85 / 100.34 0.771 / 0.194 0.463 / 0.182
Random Noise 14.72 / 26.84 0.907 / 0.688 0.576 / 0.578 14.58 / 42.29 0.921 / 0.490 0.572 / 0.517 17.43 / 72.84 0.869 / 0.272 0.566 / 0.382

Crop 11.51 / 18.44 1.045 / 0.788 0.557 / 0.435 13.47 / 18.26 0.982 / 0.791 0.529 / 0.403 16.93 / 19.89 0.899 / 0.762 0.468 / 0.330
Rotate 9.20 / 10.65 1.153 / 1.066 0.533 / 0.543 9.98 / 15.27 1.110 / 0.886 0.520 / 0.477 11.21 / 23.80 1.072 / 0.683 0.485 / 0.355
Flip 6.38 / 47.67 1.318 / 0.508 0.557 / 0.480 7.62 / 67.31 1.255 / 0.347 0.553 / 0.395 9.81 / 99.51 1.166 / 0.182 0.520 / 0.300

and 7 IQA models, resulting in thousands of pairwise comparisons. The conservative nature of the
Bonferroni correction makes the results highlighted as significant and reliable.

The results from these tables intuitively make sense when considering the design and complexity
of each defense. Advanced methods like DiffPure and DISCO incorporate more sophisticated tech-
niques to address adversarial perturbations, resulting in higher effectiveness. These methods are
tailored to different input image modifications, making them more robust than straightforward ap-
proaches. Basic defenses, on the other hand, apply straightforward transformations like blurring or
resizing, which may remove some adversarial noise but perform poorly, especially against stronger
methods. This highlights the limitations of more straightforward approaches in adversarial scenar-
ios, where sophisticated attacks require more nuanced defenses.

A.10 EXAMPLES OF ATTACKS AND DEFENSES

We show examples of attacks and defenses with corresponding metric values in Figure 11. We chose
the PAQ2PIQ metric and several types of defenses. The central part of the image is zoomed to show
the effects of the defenses and attacks.

We show image artifacts of presented defenses in Figure 12. The attacks were performed on
MANIQA metric. We demonstrate that most defenses have artifacts. Most of them include: remov-
ing details of the original image (DISCO, MPRNet), altering the image content (Real-ESRGAN,
DiffPure), reducing the image clarity (DiffPure, blur defenses), changing image color (FCN), and
compression artifacts (JPEG/DiffJPEG, Color Quantization).
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Table 15: Per-metric comparison of purification defenses in adaptive use case
(SROCCclear/SROCCadv). Evaluated metrics are averaged across all images and attacks
on KonIQ and KADID dataset.

Defense Linearity KonCept PAQ2PIQ MANIQA Meta-IQA SPAQ FPR TOPIQ(NR) CLIP-IQA+

W/o Defense 0.526 / 0.436 0.477 / 0.405 0.449 / 0.349 0.497 / 0.465 0.617 / 0.456 0.355 / 0.251 -0.133 / 0.070 0.494 / 0.440 0.653 / 0.464

Crop 0.611 / 0.501 0.236 / 0.178 0.404 / 0.376 0.522 / 0.461 0.458 / 0.386 — / — 0.173 / 0.154 0.611 / 0.540 0.592 / 0.518
Real-ESRGAN 0.613 / 0.461 0.708 / 0.544 0.510 / 0.414 0.786 / 0.616 0.278 / 0.303 0.438 / 0.343 0.295 / 0.265 0.576 / 0.506 0.681 / 0.495

Unsharp 0.631 / 0.274 0.706 / 0.501 0.510 / 0.261 0.783 / 0.549 0.624 / 0.247 0.558 / 0.298 0.230 / -0.087 0.717 / 0.443 0.693 / 0.381
DISCO 0.662 / 0.554 0.519 / 0.486 0.555 / 0.423 0.630 / 0.583 0.643 / 0.523 0.571 / 0.407 0.108 / -0.075 0.719 / 0.655 0.653 / 0.530
Resize 0.676 / 0.372 0.481 / 0.328 0.510 / 0.314 0.565 / 0.490 0.575 / 0.331 — / — 0.209 / -0.109 0.738 / 0.563 0.555 / 0.390

Bilinear Upscale 0.677 / 0.522 0.433 / 0.289 0.540 / 0.414 0.481 / 0.407 0.429 / 0.280 0.569 / 0.304 0.193 / -0.044 0.644 / 0.561 0.607 / 0.417
DiffPure 0.680 / 0.643 0.515 / 0.499 0.564 / 0.483 0.558 / 0.584 0.424 / 0.404 0.577 / 0.467 0.061 / 0.149 0.611 / 0.577 0.685 / 0.576

FCN 0.700 / 0.306 0.624 / 0.376 0.546 / 0.207 0.684 / 0.450 0.595 / 0.167 0.515 / 0.222 0.190 / -0.141 0.675 / 0.396 0.693 / 0.340
Gaussian Blur 0.706 / 0.439 0.534 / 0.379 0.593 / 0.415 0.586 / 0.508 0.485 / 0.228 0.582 / 0.297 0.040 / -0.085 0.663 / 0.496 0.695 / 0.466

Rotate 0.713 / 0.484 0.674 / 0.546 0.557 / 0.420 0.731 / 0.710 0.506 / 0.268 0.582 / 0.406 0.274 / 0.228 0.734 / 0.594 0.700 / 0.470
Median Blur 0.722 / 0.535 0.548 / 0.480 0.549 / 0.425 0.598 / 0.570 0.460 / 0.302 0.572 / 0.365 0.174 / -0.036 0.668 / 0.580 0.652 / 0.421

Flip 0.743 / 0.424 0.678 / 0.546 0.515 / 0.348 0.743 / 0.607 0.550 / 0.312 0.570 / 0.330 0.220 / -0.086 0.731 / 0.564 0.776 / 0.481
Random Noise 0.745 / 0.580 0.683 / 0.592 0.572 / 0.429 0.732 / 0.654 0.611 / 0.444 0.574 / 0.432 0.238 / 0.172 0.707 / 0.601 0.712 / 0.531

DiffJPEG 0.748 / 0.664 0.673 / 0.608 0.586 / 0.467 0.747 / 0.712 0.583 / 0.490 0.593 / 0.473 0.307 / 0.186 0.738 / 0.649 0.734 / 0.608
MPRNet 0.755 / 0.619 0.665 / 0.600 0.589 / 0.456 0.653 / 0.621 0.574 / 0.455 0.569 / 0.394 0.157 / 0.089 0.751 / 0.667 0.712 / 0.525

Table 16: Per-metric comparison of purification defenses in adaptive use case (Dscore/Rscore).
Evaluated metrics are averaged across all images and attacks on KonIQ, KADID and NIPS datasets.

Defense Linearity KonCept PAQ2PIQ MANIQA Meta-IQA SPAQ FPR TOPIQ(NR) CLIP-IQA+

W/o Defense 63.66 / 0.31 41.80 / 0.47 41.61 / 0.49 25.61 / 0.62 42.62 / 0.39 60.63 / 0.46 281.18 / -0.28 21.57 / 0.70 21.91 / 0.68

Unsharp 71.57 / 0.21 60.29 / 0.23 56.56 / 0.26 36.70 / 0.41 48.48 / 0.26 84.57 / 0.20 376.46 / -0.45 26.08 / 0.56 24.13 / 0.60
Resize 66.23 / 0.25 21.52 / 0.67 26.15 / 0.64 19.13 / 0.68 45.11 / 0.29 — / — 223.38 / -0.20 21.74 / 0.64 21.28 / 0.65

Flip 62.20 / 0.31 45.41 / 0.38 42.11 / 0.44 28.26 / 0.57 40.12 / 0.43 66.02 / 0.36 264.75 / -0.15 22.44 / 0.67 22.63 / 0.65
FCN 61.60 / 0.29 44.00 / 0.41 43.61 / 0.41 26.67 / 0.54 43.05 / 0.37 62.42 / 0.37 256.72 / -0.27 23.11 / 0.63 23.31 / 0.60

DISCO 56.08 / 0.40 30.57 / 0.53 33.90 / 0.57 24.56 / 0.63 36.75 / 0.55 57.28 / 0.43 151.53 / 0.10 20.22 / 0.73 20.72 / 0.72
Median Blur 49.19 / 0.36 28.51 / 0.51 34.85 / 0.49 21.77 / 0.58 33.52 / 0.50 48.64 / 0.42 174.94 / -0.12 19.21 / 0.67 22.31 / 0.63

MPRNet 43.85 / 0.42 27.66 / 0.54 32.94 / 0.52 21.32 / 0.61 33.94 / 0.52 41.87 / 0.49 151.72 / -0.04 16.67 / 0.73 20.77 / 0.66
Random Noise 42.43 / 0.46 34.61 / 0.52 37.16 / 0.51 24.32 / 0.60 35.74 / 0.50 45.79 / 0.52 165.95 / -0.10 17.36 / 0.76 18.95 / 0.74
Gaussian Blur 32.26 / 0.56 23.82 / 0.62 30.48 / 0.53 20.24 / 0.64 27.93 / 0.59 36.96 / 0.55 149.81 / -0.12 14.57 / 0.84 21.51 / 0.65

Bilinear Upscale 31.03 / 0.57 20.91 / 0.68 22.89 / 0.68 17.66 / 0.73 22.14 / 0.71 34.90 / 0.58 135.84 / 0.03 17.10 / 0.77 20.30 / 0.66
Real-ESRGAN 21.71 / 0.73 66.37 / 0.08 39.43 / 0.44 36.74 / 0.32 19.19 / 0.76 22.89 / 0.75 67.99 / 0.20 13.21 / 0.89 17.36 / 0.72

Rotate 21.39 / 0.78 23.80 / 0.64 13.23 / 0.98 9.10 / 1.01 14.16 / 0.95 26.92 / 0.70 12.24 / 0.98 10.20 / 1.03 10.42 / 1.02
DiffJPEG 20.07 / 0.74 22.80 / 0.64 22.70 / 0.66 18.04 / 0.71 17.54 / 0.79 25.02 / 0.70 84.61 / 0.15 10.94 / 0.95 15.59 / 0.81
DiffPure 19.63 / 0.79 17.53 / 0.76 19.73 / 0.74 14.65 / 0.82 14.74 / 0.90 21.66 / 0.79 66.03 / 0.27 13.12 / 0.87 13.17 / 0.88

Crop 16.87 / 0.89 31.32 / 0.45 20.08 / 0.71 15.68 / 0.77 19.38 / 0.78 — / — 17.24 / 0.85 8.17 / 1.14 10.96 / 0.96

Table 17: Comparison of purification defenses by attack type. Evaluated metrics are averaged across
all images, attacks and quality metrics for nonadaptive use case on KonIQ and KADID datasets.

Defense Restricted WB Unrestricted WB Black-Box
Rscore ↑ SROCCadv ↑ PSNR ↑ Rscore ↑ SROCCadv ↑ PSNR ↑ Rscore ↑ SROCCadv ↑ PSNR ↑

W/o Defense 0.36±0.65 0.387±0.29 42.12±5.69 2.06±1.67 0.535±0.26 52.31±32.77 1.19±0.76 0.590±0.31 38.87±7.00
Unsharp 0.30±0.47 0.329±0.28 30.64±2.20 0.89±0.43 0.525±0.25 26.39±7.31 0.87±0.37 0.578±0.27 28.37±3.96

Real-ESRGAN 0.62±0.34 0.474±0.23 31.62±1.37 0.70±0.29 0.494±0.24 25.64±6.49 0.75±0.28 0.658±0.17 28.31±3.86
FCN 0.62±0.44 0.455±0.21 20.49±0.33 1.07±0.32 0.532±0.25 18.83±1.87 1.21±0.28 0.632±0.22 21.20±0.46

Color Quantization 0.63±0.49 0.500±0.25 33.62±1.63 1.08±0.40 0.533±0.25 27.30±7.77 1.21±0.51 0.632±0.24 32.38±2.45
Bilinear Upscale 0.68±0.33 0.389±0.27 33.69±1.94 0.92±0.25 0.493±0.24 27.30±7.99 1.01±0.24 0.555±0.26 29.92±4.70
Gaussian Blur 0.78±0.24 0.374±0.26 32.70±1.78 0.85±0.22 0.443±0.24 26.53±7.37 0.87±0.27 0.522±0.27 29.00±4.75

DiffPure 0.81±0.25 0.514±0.19 29.46±1.32 0.78±0.21 0.424±0.22 24.39±5.58 0.78±0.24 0.529±0.22 26.26±4.20
Random Noise 0.82±0.27 0.533±0.24 26.00±0.69 0.83±0.24 0.523±0.23 22.44±4.03 0.99±0.32 0.633±0.19 25.74±0.65

Crop 0.83±0.30 0.476±0.22 11.83±0.13 1.05±0.33 0.540±0.24 11.44±0.50 1.19±0.34 0.588±0.23 11.04±0.74
Median Blur 0.84±0.28 0.385±0.25 31.70±1.92 0.99±0.31 0.455±0.23 26.07±7.12 1.03±0.28 0.503±0.24 27.83±5.42

JPEG 0.91±0.42 0.612±0.20 33.23±1.72 1.14±0.37 0.572±0.23 26.99±7.34 1.23±0.34 0.655±0.23 30.02±3.37
DiffJPEG 0.91±0.42 0.614±0.20 33.29±1.72 1.14±0.37 0.575±0.23 27.02±7.36 1.22±0.33 0.660±0.22 30.03±3.39
MPRNet 0.94±0.28 0.557±0.16 32.36±1.61 0.98±0.26 0.511±0.20 26.14±7.20 0.99±0.26 0.629±0.18 27.93±4.92
Resize 0.94±0.35 0.545±0.21 32.65±1.78 1.08±0.33 0.555±0.22 26.55±7.39 1.23±0.27 0.639±0.21 28.96±4.73
Rotate 1.08±0.20 0.486±0.20 11.41±0.38 1.11±0.24 0.513±0.23 11.09±0.70 1.18±0.21 0.558±0.24 10.87±1.26
Flip 1.11±0.28 0.564±0.23 10.85±0.21 1.29±0.27 0.553±0.27 10.53±0.41 1.43±0.25 0.655±0.21 10.21±0.52

DISCO 1.20±0.22 0.594±0.22 29.62±1.29 1.07±0.27 0.544±0.22 24.21±5.35 1.20±0.25 0.651±0.20 26.64±3.57
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Table 18: Wilcoxon tests in nonadaptive use case of purification defenses on KonIQ dataset for
D

(D)
score. Each cell value represents the percentage of experiments in which defense denoted in

row statistically performs better in terms of D(D)
score than the defense in corresponding column with

pvalue=0.05.

Defense DiffJPEG Bilinear
Upscale Unsharp Resize Rotate Crop Median

Blur JPEG Gaussian
Blur

Color
Quantization DiffPure Random

Noise Flip MPRNet FCN Real-
ESRGAN DISCO W/o

Defense

DiffJPEG — 65.24% 76.92% 25.36% 8.55% 33.05% 38.46% 9.69% 39.32% 58.12% 0.85% 3.70% 15.95% 31.05% 45.87% 27.07% 1.42% 88.03%
Bilinear Upscale 6.84% — 62.39% 13.39% 6.27% 9.97% 5.70% 4.84% 0.00% 28.77% 0.00% 1.99% 8.26% 21.08% 16.81% 7.12% 0.00% 83.48%

Unsharp 0.00% 1.71% — 5.13% 0.28% 0.85% 0.85% 0.00% 1.14% 2.28% 0.00% 0.00% 0.00% 8.83% 0.00% 0.00% 0.00% 48.15%
Resize 41.88% 54.42% 79.20% — 5.70% 40.17% 50.43% 40.17% 45.87% 57.83% 8.26% 20.23% 11.68% 42.74% 47.58% 35.33% 0.00% 81.20%
Rotate 56.41% 70.94% 90.60% 46.15% — 49.29% 63.53% 63.53% 62.68% 72.36% 13.96% 38.75% 27.92% 49.00% 62.11% 51.00% 10.26% 89.17%
Crop 33.05% 60.40% 80.91% 17.38% 8.55% — 44.44% 36.18% 42.17% 58.97% 10.83% 29.34% 11.68% 37.04% 49.00% 41.60% 10.26% 86.32%

Median Blur 22.79% 58.69% 79.49% 26.78% 15.38% 29.34% — 19.09% 36.18% 60.97% 7.98% 15.10% 15.95% 27.35% 47.29% 36.18% 8.83% 90.03%
JPEG 0.00% 58.12% 79.77% 21.94% 8.83% 31.91% 33.33% — 34.47% 59.54% 0.85% 3.99% 15.10% 23.65% 45.58% 25.64% 0.85% 88.89%

Gaussian Blur 19.66% 79.20% 75.50% 25.93% 11.97% 23.08% 26.78% 16.81% — 55.56% 1.14% 8.55% 12.25% 24.22% 41.03% 28.77% 0.85% 87.46%
Color Quantization 2.28% 23.65% 66.10% 14.25% 2.85% 6.55% 9.12% 1.99% 6.84% — 0.28% 0.00% 5.41% 1.14% 7.69% 5.70% 0.57% 74.64%

DiffPure 80.91% 85.75% 92.59% 68.38% 47.86% 60.97% 80.91% 84.33% 75.50% 86.61% — 58.40% 44.73% 66.67% 75.21% 67.52% 39.89% 95.16%
Random Noise 61.54% 72.93% 80.06% 49.29% 26.50% 44.16% 65.53% 62.39% 64.67% 73.22% 7.98% — 28.49% 52.99% 60.68% 46.72% 9.12% 82.91%

Flip 35.61% 51.57% 66.10% 34.76% 8.55% 36.18% 45.58% 34.19% 43.87% 54.42% 9.69% 22.79% — 43.30% 47.58% 33.90% 5.41% 65.24%
MPRNet 28.49% 53.28% 54.13% 23.93% 10.26% 27.64% 39.89% 27.07% 34.47% 44.16% 2.85% 10.26% 15.38% — 39.60% 25.93% 2.28% 62.68%

FCN 9.97% 42.45% 82.91% 18.23% 4.27% 7.69% 21.94% 9.97% 24.22% 39.32% 1.42% 5.41% 4.56% 24.79% — 15.38% 2.85% 80.34%
Real-ESRGAN 29.91% 59.54% 85.19% 42.17% 25.93% 33.05% 37.61% 32.48% 36.75% 62.39% 10.26% 21.94% 19.37% 42.17% 51.00% — 18.80% 83.19%

DISCO 78.92% 82.91% 87.75% 70.37% 51.28% 59.54% 78.63% 79.49% 76.35% 81.48% 23.36% 60.40% 43.02% 65.53% 72.08% 54.42% — 94.59%
W/o Defense 0.00% 0.00% 13.68% 0.00% 0.28% 2.85% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 1.99% 0.00% 0.00% 0.00% —

Table 19: Wilcoxon tests in nonadaptive use case of purification defenses on KADID dataset for
D

(D)
score.

Defense DiffJPEG Bilinear
Upscale Unsharp Resize Rotate Crop Median

Blur JPEG Gaussian
Blur

Color
Quantization DiffPure Random

Noise Flip MPRNet FCN Real-
ESRGAN DISCO W/o

Defense

DiffJPEG — 54.70% 70.94% 22.79% 10.83% 30.20% 22.79% 14.53% 26.78% 69.23% 2.28% 9.40% 14.81% 3.13% 52.14% 5.41% 0.85% 78.35%
Bilinear Upscale 6.27% — 63.82% 15.95% 5.98% 8.26% 2.28% 3.13% 0.57% 51.00% 0.57% 3.70% 5.41% 0.00% 30.77% 3.99% 0.00% 77.78%

Unsharp 0.00% 0.85% — 1.99% 0.28% 0.85% 0.00% 0.00% 0.00% 5.13% 0.00% 0.00% 0.28% 0.00% 0.28% 0.00% 0.00% 54.70%
Resize 43.02% 58.40% 75.78% — 5.98% 44.44% 41.88% 41.60% 39.32% 66.95% 10.83% 35.04% 18.52% 27.07% 54.99% 3.70% 0.28% 81.77%
Rotate 60.97% 66.95% 85.47% 45.30% — 45.30% 58.97% 65.24% 56.41% 83.48% 19.94% 57.26% 38.75% 42.45% 70.94% 13.96% 11.68% 88.60%
Crop 38.75% 58.40% 80.91% 18.80% 9.40% — 31.62% 39.60% 33.05% 74.07% 12.82% 35.04% 17.38% 24.22% 56.98% 15.10% 11.68% 80.91%

Median Blur 25.36% 48.72% 81.48% 17.66% 10.54% 25.93% — 25.93% 29.91% 75.21% 3.42% 21.08% 13.68% 9.69% 56.98% 8.83% 5.41% 87.46%
JPEG 0.57% 49.86% 69.52% 19.94% 7.98% 29.06% 23.08% — 24.50% 66.38% 2.28% 7.12% 14.81% 1.99% 50.71% 5.13% 0.28% 79.20%

Gaussian Blur 22.22% 65.53% 73.79% 24.50% 9.40% 22.22% 15.67% 19.09% — 72.08% 1.99% 17.95% 15.67% 4.56% 56.13% 7.41% 0.28% 89.17%
Color Quantization 1.71% 6.27% 51.57% 8.55% 3.13% 3.70% 3.70% 1.99% 1.42% — 0.28% 0.00% 3.42% 0.00% 11.11% 1.42% 0.00% 66.10%

DiffPure 79.49% 81.77% 91.74% 61.54% 43.87% 56.13% 75.21% 81.77% 73.22% 93.16% — 72.65% 55.84% 55.27% 83.19% 28.21% 36.47% 94.30%
Random Noise 35.04% 59.54% 69.23% 29.91% 17.09% 37.61% 37.89% 35.33% 43.02% 74.93% 6.55% — 21.94% 18.23% 56.70% 12.25% 7.12% 83.48%

Flip 49.57% 64.67% 87.46% 37.04% 11.11% 37.89% 53.28% 49.29% 54.99% 78.35% 11.97% 49.29% — 38.46% 76.92% 9.40% 6.27% 93.73%
MPRNet 45.01% 62.11% 81.77% 31.91% 16.24% 37.32% 51.00% 45.58% 51.85% 83.76% 6.84% 30.77% 27.35% — 69.23% 14.81% 2.56% 97.44%

FCN 3.42% 17.95% 66.67% 10.54% 1.99% 3.70% 7.12% 3.99% 6.27% 47.58% 0.28% 3.99% 3.70% 3.99% — 1.71% 1.14% 86.04%
Real-ESRGAN 68.09% 68.95% 87.18% 58.12% 42.74% 49.00% 64.10% 68.38% 65.24% 80.34% 35.04% 65.24% 52.71% 52.99% 79.49% — 32.76% 92.88%

DISCO 77.21% 81.48% 88.60% 66.10% 48.15% 55.27% 70.94% 76.92% 69.23% 90.60% 23.93% 72.36% 54.70% 56.70% 82.05% 25.36% — 96.30%
W/o Defense 0.00% 0.00% 11.68% 0.00% 0.57% 0.85% 0.57% 0.00% 0.00% 0.28% 0.00% 0.00% 1.14% 0.00% 4.27% 0.28% 0.00% —

Table 20: Wilcoxon tests in nonadaptive use case of purification defenses on NIPS dataset for SSIM
scores.

Defense DiffJPEG Bilinear
Upscale Unsharp Resize Rotate Crop Median

Blur JPEG Gaussian
Blur

Color
Quantization DiffPure Random

Noise Flip MPRNet FCN Real-
ESRGAN DISCO W/o

Defense

DiffJPEG — 7.12% 39.03% 7.41% 100.00% 100.00% 63.25% 33.33% 7.69% 62.11% 65.53% 100.00% 100.00% 0.00% 17.66% 2.28% 3.13% 1.99%
Bilinear Upscale 52.71% — 44.16% 37.04% 100.00% 100.00% 79.77% 53.28% 43.59% 62.11% 82.05% 100.00% 100.00% 0.00% 53.85% 1.42% 0.00% 4.84%

Unsharp 29.91% 10.54% — 16.24% 100.00% 100.00% 54.99% 32.76% 19.37% 45.58% 60.68% 98.58% 100.00% 2.28% 24.22% 3.42% 5.41% 0.00%
Resize 19.66% 0.00% 35.04% — 88.89% 88.89% 63.53% 35.04% 21.94% 49.29% 53.56% 88.89% 88.89% 0.00% 45.30% 0.57% 0.00% 3.99%
Rotate 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 62.39% 0.00% 0.00% 0.00% 0.00% 0.00%
Crop 0.00% 0.00% 0.00% 0.00% 86.32% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Median Blur 0.00% 0.00% 21.94% 0.00% 100.00% 100.00% — 0.00% 0.00% 2.28% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
JPEG 0.00% 6.27% 36.18% 7.12% 100.00% 100.00% 62.68% — 7.69% 60.40% 62.39% 100.00% 100.00% 0.00% 11.40% 0.85% 1.99% 1.71%

Gaussian Blur 18.80% 0.00% 37.89% 8.83% 100.00% 100.00% 65.81% 27.64% — 55.84% 63.53% 100.00% 100.00% 0.00% 45.01% 0.57% 0.00% 4.56%
Color Quantization 0.00% 0.00% 21.08% 0.00% 100.00% 100.00% 14.25% 0.00% 0.00% — 16.52% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

DiffPure 0.57% 0.00% 23.93% 0.00% 100.00% 100.00% 17.66% 0.85% 0.00% 17.09% — 100.00% 100.00% 0.00% 1.71% 0.00% 0.00% 1.14%
Random Noise 0.00% 0.00% 0.00% 0.00% 99.43% 84.62% 0.00% 0.00% 0.00% 0.00% 0.00% — 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Flip 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00%
MPRNet 52.71% 16.24% 42.74% 41.31% 100.00% 100.00% 63.53% 54.13% 45.87% 61.54% 62.96% 100.00% 100.00% — 54.13% 9.40% 2.85% 5.41%

FCN 1.14% 4.56% 29.06% 4.84% 100.00% 100.00% 51.28% 1.42% 5.98% 36.18% 42.45% 100.00% 100.00% 0.85% — 2.28% 1.42% 0.85%
Real-ESRGAN 72.08% 9.97% 47.86% 51.00% 100.00% 100.00% 74.93% 61.54% 59.83% 64.67% 81.20% 100.00% 100.00% 1.99% 53.85% — 1.14% 4.27%

DISCO 71.23% 54.70% 62.96% 63.25% 100.00% 100.00% 81.20% 72.36% 72.36% 88.03% 95.73% 100.00% 100.00% 45.87% 67.24% 48.72% — 18.52%
W/o Defense 90.03% 88.03% 100.00% 81.48% 100.00% 100.00% 97.44% 90.03% 91.17% 95.44% 92.88% 100.00% 100.00% 85.19% 87.75% 86.04% 65.81% —

Table 21: Wilcoxon tests in adaptive use case of purification-based and Adversarial Training de-
fenses on KADID dataset and Linearity, Koncept IQA metrics for D(D)

score values.

FCN MPRNet Median
Blur DISCO Bilinear

Upscale Flip DiffPure Crop DiffJPEG Real-
ESRGAN

Gaussian
Blur Resize Unsharp Rotate Random

Noise
W/o

Defense
APGD-
LPIPS-2

APGD-
LPIPS-4

APGD-
LPIPS-8

APGD-
SSIM-2

APGD-
SSIM-4

APGD-
SSIM-8

FCN — 6.25% 4.17% 10.42% 12.50% 8.33% 0.00% 8.33% 6.25% 0.00% 4.17% 16.67% 75.00% 2.08% 0.00% 12.50% 6.25% 12.50% 35.42% 2.08% 10.42% 22.92%
MPRNet 87.50% — 79.17% 75.00% 22.92% 87.50% 8.33% 20.83% 12.50% 0.00% 41.67% 60.42% 87.50% 16.67% 41.67% 87.50% 12.50% 35.42% 54.17% 6.25% 45.83% 56.25%
Median Blur 77.08% 10.42% — 66.67% 8.33% 75.00% 0.00% 12.50% 8.33% 0.00% 14.58% 37.50% 91.67% 4.17% 25.00% 77.08% 8.33% 25.00% 39.58% 2.08% 33.33% 41.67%
DISCO 68.75% 16.67% 22.92% — 18.75% 45.83% 14.58% 25.00% 25.00% 0.00% 20.83% 39.58% 81.25% 25.00% 31.25% 52.08% 22.92% 29.17% 54.17% 10.42% 41.67% 52.08%
Bilinear Upscale 79.17% 75.00% 75.00% 68.75% — 81.25% 6.25% 25.00% 25.00% 0.00% 79.17% 91.67% 89.58% 16.67% 66.67% 83.33% 14.58% 50.00% 58.33% 6.25% 52.08% 64.58%
Flip 60.42% 6.25% 12.50% 14.58% 10.42% — 2.08% 12.50% 10.42% 0.00% 12.50% 25.00% 87.50% 10.42% 4.17% 8.33% 12.50% 14.58% 45.83% 6.25% 18.75% 37.50%
DiffPure 97.92% 79.17% 97.92% 79.17% 89.58% 93.75% — 25.00% 68.75% 0.00% 97.92% 97.92% 93.75% 31.25% 91.67% 91.67% 33.33% 89.58% 95.83% 8.33% 75.00% 93.75%
Crop 85.42% 75.00% 81.25% 75.00% 75.00% 83.33% 75.00% — 72.92% 0.00% 77.08% 77.08% 89.58% 79.17% 79.17% 83.33% 75.00% 79.17% 79.17% 72.92% 77.08% 77.08%
DiffJPEG 91.67% 79.17% 89.58% 75.00% 60.42% 89.58% 22.92% 22.92% — 0.00% 89.58% 77.08% 93.75% 25.00% 83.33% 91.67% 14.58% 66.67% 87.50% 8.33% 54.17% 87.50%
Real-ESRGAN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Gaussian Blur 81.25% 25.00% 60.42% 66.67% 10.42% 81.25% 0.00% 16.67% 4.17% 0.00% — 50.00% 89.58% 8.33% 45.83% 81.25% 8.33% 20.83% 45.83% 4.17% 35.42% 47.92%
Resize 72.92% 29.17% 47.92% 52.08% 0.00% 66.67% 0.00% 14.58% 10.42% 0.00% 39.58% — 79.17% 8.33% 35.42% 72.92% 8.33% 41.67% 47.92% 4.17% 41.67% 41.67%
Unsharp 14.58% 4.17% 8.33% 6.25% 8.33% 4.17% 0.00% 6.25% 2.08% 0.00% 6.25% 14.58% — 2.08% 6.25% 4.17% 2.08% 14.58% 35.42% 0.00% 10.42% 12.50%
Rotate 89.58% 79.17% 83.33% 75.00% 75.00% 85.42% 58.33% 10.42% 70.83% 0.00% 81.25% 77.08% 97.92% — 79.17% 85.42% 29.17% 83.33% 77.08% 8.33% 77.08% 77.08%
Random Noise 89.58% 33.33% 66.67% 66.67% 14.58% 85.42% 2.08% 14.58% 8.33% 0.00% 31.25% 47.92% 93.75% 10.42% — 91.67% 8.33% 12.50% 45.83% 6.25% 35.42% 45.83%
W/o Defense 54.17% 6.25% 8.33% 22.92% 10.42% 35.42% 2.08% 8.33% 8.33% 0.00% 6.25% 18.75% 93.75% 2.08% 2.08% — 8.33% 14.58% 39.58% 6.25% 18.75% 37.50%
APGD-LPIPS-2 85.42% 79.17% 83.33% 75.00% 64.58% 85.42% 52.08% 18.75% 60.42% 0.00% 79.17% 79.17% 87.50% 56.25% 85.42% 85.42% — 87.50% 87.50% 0.00% 77.08% 89.58%
APGD-LPIPS-4 79.17% 35.42% 64.58% 60.42% 39.58% 75.00% 4.17% 16.67% 18.75% 0.00% 43.75% 45.83% 81.25% 12.50% 52.08% 77.08% 0.00% — 83.33% 0.00% 31.25% 72.92%
APGD-LPIPS-8 45.83% 33.33% 33.33% 37.50% 8.33% 50.00% 0.00% 10.42% 6.25% 0.00% 33.33% 37.50% 56.25% 2.08% 33.33% 47.92% 4.17% 10.42% — 0.00% 2.08% 4.17%
APGD-SSIM-2 93.75% 91.67% 93.75% 81.25% 85.42% 91.67% 83.33% 20.83% 83.33% 0.00% 95.83% 95.83% 93.75% 87.50% 89.58% 93.75% 91.67% 97.92% 95.83% — 91.67% 95.83%
APGD-SSIM-4 68.75% 41.67% 50.00% 45.83% 41.67% 58.33% 6.25% 14.58% 27.08% 0.00% 45.83% 47.92% 83.33% 14.58% 47.92% 56.25% 4.17% 47.92% 85.42% 0.00% — 77.08%
APGD-SSIM-8 52.08% 37.50% 39.58% 37.50% 25.00% 45.83% 2.08% 8.33% 4.17% 0.00% 37.50% 39.58% 56.25% 4.17% 37.50% 47.92% 4.17% 12.50% 62.50% 2.08% 4.17% —
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Table 22: Wilcoxon tests in adaptive use case of purification-based and Adversarial Training de-
fenses on AGIQA dataset and Linearity, Koncept IQA metrics for Rscore values.

FCN MPRNet Median
Blur DISCO Bilinear

Upscale Flip DiffPure Crop DiffJPEG Real-
ESRGAN

Gaussian
Blur Resize Unsharp Rotate Random

Noise
W/o

Defense
APGD-
LPIPS-2

APGD-
LPIPS-4

APGD-
LPIPS-8

APGD-
SSIM-2

APGD-
SSIM-4

APGD-
SSIM-8

FCN — 10.42% 12.50% 50.00% 16.67% 39.58% 18.75% 22.92% 4.17% 16.67% 14.58% 47.92% 87.50% 6.25% 10.42% 39.58% 2.08% 4.17% 41.67% 0.00% 10.42% 25.00%
MPRNet 87.50% — 77.08% 58.33% 27.08% 89.58% 25.00% 39.58% 27.08% 45.83% 22.92% 64.58% 87.50% 14.58% 50.00% 83.33% 6.25% 41.67% 52.08% 4.17% 43.75% 54.17%

Median Blur 83.33% 16.67% — 62.50% 25.00% 83.33% 22.92% 39.58% 22.92% 43.75% 27.08% 62.50% 87.50% 16.67% 45.83% 83.33% 8.33% 31.25% 47.92% 4.17% 39.58% 45.83%
DISCO 43.75% 39.58% 35.42% — 25.00% 43.75% 31.25% 45.83% 33.33% 47.92% 20.83% 37.50% 50.00% 18.75% 41.67% 43.75% 12.50% 41.67% 45.83% 6.25% 41.67% 45.83%

Bilinear Upscale 81.25% 62.50% 68.75% 68.75% — 79.17% 14.58% 56.25% 39.58% 47.92% 37.50% 58.33% 81.25% 35.42% 47.92% 81.25% 33.33% 37.50% 50.00% 10.42% 37.50% 54.17%
Flip 39.58% 8.33% 12.50% 54.17% 18.75% — 18.75% 25.00% 4.17% 16.67% 18.75% 47.92% 87.50% 4.17% 2.08% 68.75% 2.08% 4.17% 41.67% 0.00% 10.42% 31.25%

DiffPure 79.17% 72.92% 75.00% 66.67% 77.08% 79.17% — 64.58% 66.67% 66.67% 64.58% 72.92% 83.33% 72.92% 75.00% 81.25% 66.67% 72.92% 77.08% 37.50% 72.92% 77.08%
Crop 72.92% 52.08% 58.33% 47.92% 37.50% 70.83% 16.67% — 47.92% 60.42% 43.75% 45.83% 77.08% 47.92% 58.33% 72.92% 33.33% 58.33% 72.92% 18.75% 60.42% 68.75%

DiffJPEG 89.58% 62.50% 68.75% 60.42% 58.33% 93.75% 33.33% 41.67% — 60.42% 62.50% 66.67% 89.58% 29.17% 66.67% 87.50% 18.75% 58.33% 83.33% 10.42% 62.50% 81.25%
Real-ESRGAN 70.83% 47.92% 47.92% 43.75% 43.75% 66.67% 14.58% 18.75% 31.25% — 43.75% 50.00% 83.33% 37.50% 43.75% 72.92% 27.08% 39.58% 79.17% 2.08% 54.17% 68.75%
Gaussian Blur 81.25% 75.00% 68.75% 68.75% 56.25% 81.25% 33.33% 43.75% 35.42% 45.83% — 68.75% 83.33% 29.17% 64.58% 81.25% 20.83% 43.75% 77.08% 8.33% 43.75% 79.17%

Resize 47.92% 35.42% 37.50% 54.17% 35.42% 50.00% 16.67% 45.83% 33.33% 39.58% 27.08% — 66.67% 31.25% 37.50% 52.08% 29.17% 35.42% 37.50% 6.25% 35.42% 37.50%
Unsharp 4.17% 12.50% 12.50% 31.25% 12.50% 12.50% 16.67% 22.92% 4.17% 10.42% 14.58% 27.08% — 6.25% 10.42% 0.00% 2.08% 4.17% 31.25% 0.00% 4.17% 10.42%
Rotate 89.58% 83.33% 79.17% 75.00% 58.33% 93.75% 22.92% 43.75% 60.42% 50.00% 68.75% 62.50% 91.67% — 79.17% 83.33% 20.83% 75.00% 81.25% 4.17% 75.00% 81.25%

Random Noise 85.42% 43.75% 54.17% 58.33% 41.67% 97.92% 22.92% 37.50% 29.17% 43.75% 29.17% 60.42% 89.58% 12.50% — 83.33% 6.25% 16.67% 64.58% 4.17% 43.75% 70.83%
W/o Defense 41.67% 16.67% 16.67% 52.08% 18.75% 20.83% 18.75% 22.92% 10.42% 18.75% 16.67% 47.92% 93.75% 16.67% 12.50% — 6.25% 8.33% 41.67% 0.00% 14.58% 31.25%

APGD-LPIPS-2 93.75% 81.25% 85.42% 70.83% 60.42% 93.75% 27.08% 54.17% 81.25% 58.33% 66.67% 64.58% 95.83% 62.50% 89.58% 89.58% — 87.50% 89.58% 0.00% 85.42% 87.50%
APGD-LPIPS-4 87.50% 56.25% 58.33% 56.25% 52.08% 89.58% 25.00% 37.50% 33.33% 50.00% 50.00% 64.58% 93.75% 16.67% 58.33% 83.33% 6.25% — 81.25% 4.17% 41.67% 81.25%
APGD-LPIPS-8 54.17% 41.67% 47.92% 50.00% 22.92% 58.33% 18.75% 22.92% 14.58% 10.42% 12.50% 56.25% 64.58% 14.58% 20.83% 52.08% 4.17% 8.33% — 0.00% 4.17% 14.58%
APGD-SSIM-2 100.00% 91.67% 93.75% 93.75% 79.17% 100.00% 54.17% 68.75% 83.33% 75.00% 89.58% 81.25% 100.00% 93.75% 95.83% 100.00% 89.58% 93.75% 95.83% — 91.67% 93.75%
APGD-SSIM-4 75.00% 52.08% 56.25% 56.25% 50.00% 72.92% 25.00% 33.33% 27.08% 27.08% 50.00% 64.58% 91.67% 16.67% 50.00% 68.75% 8.33% 18.75% 81.25% 6.25% — 79.17%
APGD-SSIM-8 62.50% 41.67% 41.67% 52.08% 22.92% 58.33% 18.75% 27.08% 12.50% 16.67% 14.58% 60.42% 87.50% 14.58% 18.75% 54.17% 6.25% 14.58% 45.83% 0.00% 6.25% —

Table 23: Wilcoxon tests in adaptive use case of purification-based and Adversarial Training de-
fenses on NIPS dataset and Linearity, Koncept IQA metrics for PSNR values.

FCN MPRNet Median
Blur DISCO Bilinear

Upscale Flip DiffPure Crop DiffJPEG Real-
ESRGAN

Gaussian
Blur Resize Unsharp Rotate Random

Noise
W/o

Defense
APGD-
LPIPS-2

APGD-
LPIPS-4

APGD-
LPIPS-8

APGD-
SSIM-2

APGD-
SSIM-4

APGD-
SSIM-8

FCN — 0.00% 0.00% 0.00% 2.08% 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 2.08% 0.00% 100.00% 0.00% 0.00% 2.08% 0.00% 0.00% 4.17% 0.00% 0.00%
MPRNet 97.92% — 93.75% 0.00% 100.00% 100.00% 95.83% 100.00% 89.58% 0.00% 91.67% 100.00% 100.00% 100.00% 0.00% 0.00% 4.17% 2.08% 2.08% 6.25% 2.08% 2.08%

Median Blur 97.92% 0.00% — 0.00% 100.00% 100.00% 2.08% 100.00% 2.08% 0.00% 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 4.17% 2.08% 2.08% 4.17% 2.08% 2.08%
DISCO 100.00% 100.00% 100.00% — 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 100.00% 100.00% 25.00% 14.58% 20.83% 16.67% 16.67% 22.92% 20.83% 16.67%

Bilinear Upscale 93.75% 0.00% 0.00% 0.00% — 100.00% 0.00% 100.00% 2.08% 0.00% 0.00% 39.58% 4.17% 100.00% 0.00% 0.00% 2.08% 2.08% 0.00% 2.08% 0.00% 0.00%
Flip 0.00% 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

DiffPure 97.92% 0.00% 93.75% 0.00% 100.00% 100.00% — 100.00% 89.58% 0.00% 91.67% 100.00% 97.92% 100.00% 0.00% 0.00% 4.17% 2.08% 2.08% 6.25% 2.08% 2.08%
Crop 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

DiffJPEG 95.83% 2.08% 91.67% 0.00% 97.92% 100.00% 6.25% 100.00% — 0.00% 6.25% 97.92% 95.83% 100.00% 0.00% 0.00% 4.17% 0.00% 0.00% 8.33% 0.00% 0.00%
Real-ESRGAN 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Gaussian Blur 97.92% 0.00% 95.83% 0.00% 100.00% 100.00% 4.17% 100.00% 22.92% 0.00% — 100.00% 100.00% 100.00% 0.00% 0.00% 4.17% 2.08% 2.08% 6.25% 2.08% 2.08%

Resize 91.67% 0.00% 0.00% 0.00% 45.83% 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% — 6.25% 100.00% 0.00% 0.00% 2.08% 0.00% 0.00% 2.08% 0.00% 0.00%
Unsharp 93.75% 0.00% 0.00% 0.00% 91.67% 100.00% 0.00% 100.00% 2.08% 0.00% 0.00% 91.67% — 100.00% 0.00% 0.00% 2.08% 2.08% 0.00% 4.17% 2.08% 0.00%
Rotate 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% — 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Random Noise 97.92% 97.92% 100.00% 75.00% 100.00% 100.00% 100.00% 100.00% 97.92% 0.00% 97.92% 100.00% 100.00% 100.00% — 0.00% 6.25% 6.25% 2.08% 12.50% 4.17% 2.08%
W/o Defense 100.00% 100.00% 100.00% 81.25% 100.00% 100.00% 100.00% 100.00% 97.92% 0.00% 100.00% 100.00% 100.00% 100.00% 97.92% — 35.42% 35.42% 41.67% 50.00% 37.50% 41.67%

APGD-LPIPS-2 95.83% 87.50% 91.67% 72.92% 95.83% 100.00% 89.58% 100.00% 87.50% 0.00% 89.58% 95.83% 93.75% 100.00% 85.42% 47.92% — 50.00% 31.25% 35.42% 50.00% 50.00%
APGD-LPIPS-4 95.83% 89.58% 93.75% 75.00% 97.92% 100.00% 89.58% 100.00% 87.50% 0.00% 89.58% 97.92% 93.75% 100.00% 87.50% 27.08% 39.58% — 31.25% 35.42% 20.83% 25.00%
APGD-LPIPS-8 97.92% 87.50% 93.75% 72.92% 97.92% 100.00% 89.58% 100.00% 89.58% 0.00% 89.58% 97.92% 97.92% 100.00% 87.50% 47.92% 43.75% 47.92% — 66.67% 50.00% 43.75%
APGD-SSIM-2 95.83% 87.50% 89.58% 70.83% 91.67% 100.00% 87.50% 100.00% 87.50% 0.00% 89.58% 91.67% 91.67% 100.00% 85.42% 45.83% 29.17% 50.00% 20.83% — 41.67% 43.75%
APGD-SSIM-4 95.83% 87.50% 91.67% 75.00% 95.83% 100.00% 89.58% 100.00% 87.50% 0.00% 89.58% 97.92% 93.75% 100.00% 87.50% 29.17% 29.17% 18.75% 25.00% 41.67% — 31.25%
APGD-SSIM-8 97.92% 89.58% 93.75% 72.92% 97.92% 100.00% 91.67% 100.00% 89.58% 0.00% 91.67% 97.92% 97.92% 100.00% 87.50% 22.92% 39.58% 33.33% 8.33% 45.83% 22.92% —

Table 24: Comparison of defenses by defense type. Evaluated metrics are averaged across all im-
ages, attacks and quality metrics for nonadaptive/adaptive use cases on KonIQ and KADID datasets.

Defense Dscore
(D) ↓ Dscore ↓ R

(D)
score ↑ Rscore ↑ SROCCadv ↑ SROCCclear ↑ PSNR ↑

Filtering 21.13 / 27.17 20.39 / 22.34 0.63 / 0.49 0.72 / 0.68 0.499 / 0.545 0.631 / 0.628 19.53 / 20.14
Compression 21.86 / 15.60 18.20 / 11.29 0.65 / 0.75 0.81 / 0.99 0.561 / 0.635 0.687 / 0.697 19.96 / 20.46

Spatial Transforms 21.20 / 29.95 20.27 / 26.53 0.64 / 0.46 0.69 / 0.62 0.578 / 0.508 0.684 / 0.604 19.62 / 16.57
Denoising 17.26 / 19.90 26.05 / 25.95 0.80 / 0.71 0.59 / 0.60 0.533 / 0.569 0.664 / 0.672 19.66 / 20.09

With Randomness 14.93 / 16.71 19.17 / 22.29 0.83 / 0.84 0.77 / 0.69 0.523 / 0.528 0.634 / 0.596 18.81 / 14.81
Adv. Defenses 8.15 / 26.86 23.14 / 22.35 1.11 / 0.50 0.63 / 0.69 0.474 / 0.538 0.583 / 0.626 19.09 / 19.16
Adv. Training — / 22.41 — / 22.41 — / 0.68 — / 0.68 — / 0.552 — / 0.667 — / —

Table 25: Comparison of purification defenses by dataset. Evaluated metrics are averaged across all
images, attacks and quality metrics for nonadaptive/adaptive use cases.

KonIQA1K KADID1K AGIQA-3K NIPS
Dscore ↓ Rscore ↑ SROCCclear ↑ Dscore ↓ Rscore ↑ SROCCclear ↑ Dscore ↓ Rscore ↑ SROCCclear ↑ Dscore ↓ Rscore ↑

W/o Defense 51.32 / — 0.57 / — 0.778 / — 45.90 / — 0.74 / — 0.487 / — 55.89 / — 0.57 / — 0.586 / — 47.73 / — 0.60 / —

Unsharp 47.09 / 92.16 0.48 / 0.21 0.767 / 0.766 41.96 / 84.67 0.60 / 0.27 0.462 / 0.423 38.49 / 102.72 0.55 / 0.16 0.625 / 0.596 45.11 / 85.18 0.50 / 0.28
Color Quantization 24.43 / — 0.83 / — 0.760 / — 24.47 / — 0.93 / — 0.475 / — 24.67 / — 0.86 / — 0.546 / — 25.36 / — 0.85 / —

Bilinear Upscale 19.66 / 45.22 0.82 / 0.52 0.679 / 0.587 18.42 / 36.11 0.84 / 0.61 0.512 / 0.420 12.59 / 47.36 1.02 / 0.50 0.542 / 0.432 20.83 / 26.88 0.68 / 0.68
FCN 22.93 / 73.59 0.84 / 0.31 0.733 / 0.746 21.72 / 70.03 0.92 / 0.34 0.465 / 0.391 26.29 / 74.13 0.79 / 0.26 0.541 / 0.548 18.38 / 50.78 0.91 / 0.46

Gaussian Blur 16.80 / 42.72 0.83 / 0.49 0.607 / 0.615 17.70 / 40.12 0.82 / 0.53 0.512 / 0.461 16.45 / 50.24 0.90 / 0.42 0.568 / 0.490 15.83 / 36.36 0.82 / 0.60
Median Blur 15.17 / 51.43 0.93 / 0.41 0.668 / 0.678 15.60 / 48.65 0.90 / 0.45 0.440 / 0.402 15.98 / 57.85 0.95 / 0.36 0.571 / 0.512 11.82 / 44.05 0.98 / 0.49

Real-ESRGAN 26.36 / 33.41 0.59 / 0.54 0.719 / 0.682 21.18 / 33.15 0.73 / 0.57 0.484 / 0.385 18.49 / 30.48 0.61 / 0.57 0.464 / 0.457 25.38 / 35.13 0.61 / 0.53
JPEG 13.34 / — 1.02 / — 0.767 / — 12.45 / — 1.08 / — 0.530 / — 12.97 / — 1.08 / — 0.593 / — 10.35 / — 1.06 / —

DiffJPEG 13.27 / 28.33 1.02 / 0.65 0.770 / 0.765 12.43 / 28.46 1.09 / 0.67 0.532 / 0.484 12.96 / 34.54 1.08 / 0.57 0.593 / 0.579 10.33 / 22.22 1.06 / 0.73
Resize 12.35 / 67.49 1.04 / 0.35 0.722 / 0.628 11.60 / 54.19 1.07 / 0.45 0.536 / 0.439 13.03 / 66.14 1.00 / 0.31 0.561 / 0.478 9.73 / 44.73 1.10 / 0.55

MPRNet 11.35 / 46.26 1.02 / 0.47 0.697 / 0.699 15.64 / 42.56 0.91 / 0.51 0.569 / 0.499 14.68 / 51.79 1.00 / 0.41 0.504 / 0.501 12.43 / 41.16 0.98 / 0.52
Crop 14.38 / 19.30 0.93 / 0.77 0.740 / 0.575 13.56 / 18.29 1.02 / 0.79 0.452 / 0.310 17.05 / 21.35 0.90 / 0.76 0.576 / 0.409 15.06 / 14.44 0.97 / 0.90

Random Noise 16.43 / 47.75 0.83 / 0.46 0.727 / 0.781 14.73 / 46.72 0.97 / 0.51 0.473 / 0.435 14.89 / 52.67 0.90 / 0.40 0.498 / 0.566 16.26 / 46.33 0.84 / 0.54
Flip 8.89 / 74.64 1.16 / 0.31 0.762 / 0.774 7.41 / 67.97 1.28 / 0.38 0.477 / 0.431 9.46 / 81.95 1.16 / 0.26 0.556 / 0.558 7.64 / 54.15 1.20 / 0.53

Rotate 10.29 / 17.72 1.09 / 0.84 0.696 / 0.749 9.97 / 15.34 1.13 / 0.91 0.452 / 0.447 12.08 / 22.70 1.05 / 0.74 0.549 / 0.560 9.37 / 13.97 1.10 / 0.94
DISCO 7.77 / 54.65 1.20 / 0.38 0.720 / 0.735 9.10 / 52.58 1.17 / 0.45 0.522 / 0.459 11.26 / 61.65 1.05 / 0.36 0.543 / 0.542 11.28 / 41.30 1.15 / 0.61
DiffPure 17.53 / 23.15 0.76 / 0.73 0.550 / 0.554 19.29 / 22.54 0.77 / 0.77 0.522 / 0.477 17.67 / 21.91 0.83 / 0.76 0.463 / 0.436 12.35 / 20.82 0.89 / 0.78
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Table 26: Comparison of SROCC and PLCC scores averaged across KonIQ, KADID and
AGIQA-3K datasets for purification-based and adversarial training defenses.

Defense Common Non-adaptive case Adaptive case
SROCCclear ↑ PLCCclear ↑ PLCCadv ↑ SROCCadv ↑ SROCCadv ↑ PLCCadv ↑

W/o Defense 0.617±0.01 0.648±0.02 0.484±0.13 0.464±0.12 0.402±0.08 0.432±0.08

Unsharp 0.604±0.02 0.631±0.02 0.452±0.14 0.433±0.14 0.345±0.12 0.366±0.12
Color Quantization 0.594±0.02 0.616±0.02 0.574±0.09 0.542±0.09 — —

FCN 0.580±0.02 0.591±0.01 0.522±0.10 0.498±0.10 0.282±0.13 0.299±0.12
Bilinear Upscale 0.577±0.02 0.614±0.03 0.499±0.12 0.468±0.11 0.347±0.09 0.376±0.09
Gaussian Blur 0.543±0.03 0.572±0.03 0.450±0.13 0.426±0.12 0.360±0.11 0.390±0.10
Median Blur 0.546±0.02 0.579±0.02 0.458±0.11 0.430±0.11 0.412±0.11 0.444±0.11

JPEG 0.630±0.02 0.655±0.02 0.637±0.05 0.610±0.04 — —
DiffJPEG 0.632±0.02 0.658±0.02 0.639±0.04 0.613±0.04 0.548±0.07 0.584±0.06
MPRNet 0.560±0.03 0.595±0.04 0.570±0.06 0.533±0.05 0.483±0.08 0.513±0.08

Crop 0.589±0.01 0.624±0.02 0.553±0.08 0.518±0.07 0.381±0.10 0.389±0.09
Random Noise 0.566±0.03 0.593±0.04 0.573±0.05 0.547±0.05 0.501±0.12 0.534±0.11

Resize 0.606±0.02 0.640±0.03 0.588±0.07 0.561±0.06 0.335±0.10 0.370±0.10
Real-ESRGAN 0.570±0.05 0.585±0.04 0.537±0.08 0.523±0.09 0.435±0.08 0.467±0.07

Flip 0.598±0.01 0.631±0.02 0.597±0.05 0.564±0.05 0.403±0.12 0.423±0.11
Rotate 0.566±0.01 0.595±0.02 0.530±0.07 0.511±0.06 0.459±0.10 0.488±0.09
DISCO 0.595±0.02 0.626±0.03 0.617±0.05 0.589±0.03 0.466±0.05 0.494±0.05
DiffPure 0.512±0.04 0.547±0.04 0.531±0.06 0.497±0.06 0.472±0.04 0.511±0.04

APGD-LPIPS-2 0.642±0.00 — — — 0.510±0.09 0.449±0.12
APGD-LPIPS-4 0.669±0.00 — — — 0.485±0.14 0.475±0.16
APGD-LPIPS-8 0.663±0.00 — — — 0.461±0.11 0.420±0.12
APGD-SSIM-2 0.620±0.00 — — — 0.586±0.02 0.504±0.07
APGD-SSIM-4 0.670±0.00 — — — 0.445±0.14 0.428±0.17
APGD-SSIM-8 0.675±0.00 — — — 0.504±0.10 0.509±0.12

Table 27: Comparison of guarantees and computational complexity of certified defenses. For
classification-based methods (C) we measured certified radius and number of abstains, for
regression-based methods (R) – certified relative delta.

Defense Cert.R ↑ for C
Cert.RD ↑ for R Abst. ↓,% T ime. ↓, sec

Random. Smoothing (RS) (C) 0.20±0.03 / 0.16±0.04 4.68±2.85 / 10.61±5.51 36.70±18.68
Denoised RS (C) 0.19±0.03 / 0.16±0.04 6.30±3.42 / 7.43±4.51 44.43±20.97
Diffusion DRS (C) 0.18±0.02 / 0.17±0.03 10.55±5.50 / 8.33±5.47 71.85±18.94
DensePure (C) 0.17±0.02 / 0.16±0.02 7.91±3.95 / 9.21±6.81 116.37±19.04

Median Smoothing (MS) (R) 1.47±0.42 / 2.25±0.79 - 26.08±17.05
Denoised MS (R) 1.41±0.34 / 1.88±0.49 - 29.35±17.06
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Figure 11: Examples of attacks and defenses on PAQ2PIQ metric. The central part of the image is
zoomed to show defense effects.
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Parsimonious:DiffPure CAdv:Resize CNN-attack:JPEG SSAH:Real-ESRGAN SSAH:Rotate

SSAH:MPRNet CNN-attack:Random noise MADC:Real-ESRGAN CAdv:DiffPure Korhonen et al.:Gaussian Blur

Korhonen et al.:DiffPure CNN-attack:Color Quantization UAP:DiffPure CAdv:DISCO CAdv:Bilinear Upscale

I-FGSM:DiffPure CNN-attack:MPRNet MADC:DISCO Korhonen et al.:FCN Korhonen et al.:Real-ESRGAN

Korhonen et al.:Color Quantization CNN-attack:Median Blur CAdv:FCN Korhonen et al.:Unsharp SSAH:DiffJPEG

Figure 12: Examples of artifacts caused by various defenses when MANIQA metric is attacked. We
selectively zoom in on key parts of the images to highlight the details.
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