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Abstract

Spatio-temporal graph neural networks (ST-GNNs) have achieved notable success1

in structured domains such as road traffic and public transportation, where spatial2

entities can be naturally represented as fixed nodes. In contrast, many real-world3

systems including maritime traffic lack such fixed anchors, making the construction4

of spatio-temporal graphs a fundamental challenge. Anomaly detection in these5

non-grid environments is particularly difficult due to the absence of canonical6

reference points, the sparsity and irregularity of trajectories, and the fact that7

anomalies may manifest at multiple granularities. In this work, we introduce a novel8

benchmark dataset for anomaly detection in the maritime domain, extending the9

Open Maritime Traffic Analysis Dataset (OMTAD) into a benchmark tailored for10

graph-based anomaly detection. Our dataset enables systematic evaluation across11

three different granularities: node-level, edge-level, and graph-level anomalies. We12

plan to employ two specialized LLM-based agents: Trajectory Synthesizer and13

Anomaly Injector to construct richer interaction contexts and generate semantically14

meaningful anomalies. We expect this benchmark to promote reproducibility and to15

foster methodological advances in anomaly detection for non-grid spatio-temporal16

systems.17

1 Introduction18

Spatio-temporal graph neural networks (ST-GNNs) have been extensively studied in domains such as19

road traffic forecasting and public transportation systems [19, 3, 2]. A common characteristic of these20

applications is that the underlying spatial entities like road intersections, bus stops, or subway stations21

can be naturally defined as fixed nodes. This inherent grid-like structure makes the construction of22

spatio-temporal graphs straightforward and facilitates the modeling of both spatial dependencies and23

temporal dynamics. Consequently, anomaly detection in such structured environments has received24

significant attention and demonstrated promising results [1].25

However, there are many cases both in real-world and scientific domains where situations do not26

conform to these assumptions. In particular, there exist domains where fixed spatial anchors are27

absent or physically ambiguous. The maritime environment represents one of the most prominent28

examples: unlike road traffic systems, the open sea does not provide natural fixed nodes such as29

intersections or road segments. Although artificial proxies such as waypoints, port coordinates, or30

grid discretizations can be imposed, these methods are often ad hoc and fail to capture the continuous31

and dynamic nature of vessel trajectories. This fundamental challenge renders the construction of a32

meaningful spatio-temporal graph a non-trivial task. We expect that such non-grid spatio-temporal33

systems will become increasingly common, not only in maritime monitoring but also in emerging34

domains such as drone swarms and aerial traffic management.35
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Performing anomaly detection in these settings is even more challenging. First, the lack of fixed36

spatial anchors complicates the definition of normal versus abnormal interactions among moving37

entities. Second, the inherent sparsity and irregularity of the trajectories make it difficult to design38

robust models. Third, anomalous patterns may manifest at multiple levels: individual entities (node-39

level anomalies), unusual pairwise interactions (edge-level anomalies), or entire subgroups behaving40

abnormally (graph-level anomalies). These challenges highlight the need for systematic benchmarks41

that enable rigorous evaluation and foster methodological innovations [7]. There are several Marine42

datasets43

To address this gap, in this paper we introduce a novel benchmark dataset for anomaly detection in the44

maritime domain. Our dataset is designed to support anomaly detection tasks at three granularities:45

(i) node-level anomalies, capturing abnormal single-entity behaviors, (ii) edge-level anomalies,46

reflecting irregular inter-entity interactions, and (iii) graph-level anomalies, identifying collective47

abnormal events. Inspired by recent advances in graph anomaly detection across node-, edge-, and48

graph-level settings [5], we aim to provide a unified testbed that allows the community to explore49

and compare methods across multiple anomaly detection settings. To construct the dataset in a50

principled manner, we use two large language model(LLM)-based agents: Trajectory Synthesizer,51

which augments inter-vessel contexts by enriching sparse neighborhoods, and an Anomaly Injector,52

which introduces diverse anomalies guided by high-level prompts. We believe this contribution53

will not only facilitate research on maritime anomaly detection, but also establish a foundation for54

studying anomaly detection in broader non-grid spatio-temporal systems.55

2 Dataset56

We build our benchmark upon the Open Maritime Traffic Analysis Dataset (OMTAD) [9], a57

publicly available and openly licensed collection of vessel trajectories derived from AIS signals.58

OMTAD covers the West Australian offshore region (105–116°E, 36–15°S) from 2018 to 2020, and59

provides 19,124 trajectories across four vessel categories: Cargo (14,384), Tanker (4,020), Fishing60

(466), and Passenger (254). Each AIS record includes vessel identifiers, geolocation, kinematic61

information such as course over ground (COG) and speed over ground (SOG), and UTC timestamps.62

2.1 Limitations and Our Extensions63

While OMTAD provides a well-organized and open collection of vessel tracks, it has two key64

limitations that prevent direct use for graph-based anomaly detection. First, although some trajectories65

are physically close enough to form meaningful spatio-temporal graphs, many occur in isolation66

without nearby neighbors, making graph construction difficult. Second, it only contains normal67

trajectories and thus provides no anomaly labels. These issues hinder systematic benchmarking of68

graph-based anomaly detection.69

To address these limitations, we extend OMTAD in two complementary ways.70

• Trajectory synthesis in sparse regions. For vessels without nearby neighbors, we generate71

synthetic but physically plausible companion trajectories. These synthetic neighbors are72

created by perturbing SOG, COG, and geolocation values within bounded ranges, ensuring73

that even isolated vessels can be embedded into meaningful spatio-temporal graphs.74

• Anomaly injection. Since no anomalies are provided, we introduce anomalies through a75

controlled injection process. Instead of rigid rules, we rely on prompt-driven generation76

to produce diverse anomalies across node, edge, and graph levels, aligning them with77

semantically meaningful maritime scenarios.78

This extension is not only practical but also justified: preliminary experiments in Appendix A.279

show that even under relatively naive anomaly settings, graph-based models consistently outperform80

purely temporal baselines. This validates that repurposing OMTAD into a graph-based anomaly81

detection benchmark captures meaningful structural signals and provides a solid foundation for82

further extensions. Through these steps, OMTAD is repurposed into a unified benchmark dataset that83

supports systematic evaluation of anomaly detection in non-grid spatio-temporal graphs. Detailed84

configurations of the trajectory synthesis and anomaly injection agents are provided in the Appendix C.85
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A Motivation145

To verify the feasibility of our proposed benchmark, we conducted a preliminary experiment by146

injecting synthetic anomalies into the OMTAD dataset. This was necessary because maritime data147

lacks ground-truth anomaly labels and defining anomalies is highly context-dependent, with no clear148

consensus even within the maritime community. By introducing controlled perturbations, we created149

a testbed to examine whether graph-level anomaly detection tasks can be meaningfully supported in150

this setting.151

A.1 Anomaly Injection152

We synthesized anomalies by perturbing vessel trajectories at the node level. For each trajectory of153

length w, a contiguous anomaly block of size m = rnodew was chosen, where rnode ∈ {r1, r2, r3} is154

the node anomaly ratio. The block was placed by sampling a start index s ∼ U(0, w −m), which de-155

fined a binary anomaly mask zt indicating anomalous segments. Nodes within the anomaly block were156

perturbed in their Speed Over Ground (SOG) and Course Over Ground (COG) features [6]. Formally,157

we modeled the rates of change of SOG (a) and COG (ω) as normally distributed, a ∼ N (µa, σ
2
a) and158

ω ∼ N (µω, σ
2
ω), where ai = (SOGi − SOGi−1)/∆t and ωi = (COGi − COGi−1)/∆t. To create159

significant deviations, we replaced them with a∗i = µa + k · σa and ω∗
i = µω + k · σω with k > 3,160

which ensures perturbed values lie outside the 99.7% confidence interval of normal behavior. The161

updated SOG and COG values were then iteratively applied over the anomaly block. A trajectory was162

labeled anomalous (ytraj = 1) if at least one node was perturbed, and normal (ytraj = 0) otherwise.163

As mentioned earlier, defining anomalies in the maritime context is inherently difficult, and even164

within this domain there is no established consensus. Therefore, we restrict our anomaly definition to165

kinematic movement anomalies based on SOG and COG deviations.166

Node- and graph-level anomaly ratios. In our design, anomaly prevalence is controlled at two167

complementary levels. First, the node anomaly ratio rnode ∈ (0, 1] specifies the fraction of anomalous168

nodes within a trajectory. Given a trajectory of length w, the anomalous span is set to m = rnode w169

nodes, realized as a consecutive block of length m. This choice reflects the temporal persistence170

of real-world incidents, since anomalies are more likely to appear as sustained abnormal behaviors171

(e.g., equipment malfunction, evasive maneuvers, adverse weather conditions, or loitering) rather172

than isolated spikes.173

Second, the trajectory anomaly ratio rtraj ∈ (0, 1] denotes the fraction of trajectories labeled anoma-174

lous at the graph level, formally defined as175

rtraj =
1

N

N∑
i=1

1

(
y
(i)
traj = 1

)
,

where N is the total number of trajectories.176

Thus, rnode controls the intra-trajectory anomaly density, while rtraj governs the dataset-level class177

balance for graph-level detection.178

4



A.2 Preliminary Experiment179

We conducted a preliminary study under the setting of graph-level anomaly detection, where each180

vessel trajectory is classified as either normal or anomalous. In this setup, we varied the trajectory181

anomaly ratio rtraj ∈ {0.1, 0.5} while fixing the node anomaly ratio at rnode = 0.5. We compared182

standard time-series models (LSTM, Transformer) with their Time-series + GNN counterparts, which183

incorporate GNN modules, as summarized in Fig. 1a and Fig. 1b.184

To construct graph inputs for the GNNs, we applied the OPTICS clustering algorithm to spatial185

snapshots at each timestamp t, grouping nearby vessels into dynamic clusters without imposing186

predefined constraints on the number or shape of clusters. From each cluster, a fixed number k of187

vessel trajectories was sampled to ensure that the adjacency matrix remained consistent across all188

graphs. For each sampled set, we then built a directed temporal graph over a w-hour observation189

window, where each node corresponds to a time-stamped vessel state, resulting in exactly k × w190

nodes per graph.191

Although this preliminary experiment primarily focuses on graph-level anomaly detection with192

varying rtraj and fixed rnode, the same framework can naturally be extended to support node-level193

anomaly detection.194

(a) (b)

Figure 1: Preliminary results of time-series models and their GNN-integrated variants under different
rtraj settings. (a) LSTM-based models. (b) Transformer-based models. “TRANS” denotes Trans-
former.

A.3 Findings195

The results show that GNN-integrated models consistently outperform purely temporal baselines196

across all anomaly ratios. This demonstrates that graph-based modeling provides a more natural fit197

for capturing maritime dynamics, where vessel states and inter-vessel interactions must be considered198

jointly. At the same time, it is important to emphasize that our injection strategy perturbed only the199

simplest navigational features. Real-world maritime anomalies are far more diverse, including illegal200

rendezvous between vessels, loitering behaviors, spoofed AIS signals, or sudden deviations due to201

environmental conditions. Thus, while this experiment confirmed the viability of our framework,202

it represents only a simplified case. Our ultimate goal is to generalize this process by employing203

LLM-based agents to automatically generate and annotate richer, semantically meaningful anomalies,204

thereby creating a more realistic and versatile benchmark environment.205

B Related Works206

Spatio-temporal GNNs in structured domains. Spatio-temporal graph neural networks (ST-207

GNNs) have achieved notable success in domains where the underlying graph structure is fixed and208

well defined, such as road traffic [19, 3, 17], public transportation [2], and mobility systems [4, 1]. In209

these settings, nodes typically correspond to pre-defined spatial anchors (e.g., intersections, stations,210

or sensors), which makes the construction of spatio-temporal graphs straightforward and effective.211

However, the assumptions of stable topologies and fixed node identities do not generalize to non-grid212

environments such as the open sea, where spatial anchors are absent and trajectories are highly213

irregular.214
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Maritime Anomaly Detection and Datasets. Maritime anomaly detection has emerged as a215

challenging task in the maritime domain due to the dynamic and unstructured nature of vessel216

movements. A comprehensive survey [14] highlights the difficulty of defining anomalous behaviors217

and reviews a wide range of approaches. Classical machine learning techniques have long been applied218

to AIS data, including supervised and unsupervised methods for identifying irregular navigation219

patterns [12, 15]. More recently, deep learning approaches have demonstrated stronger capacity220

for modeling complex temporal dependencies, such as CNN- and RNN-based models for abnormal221

behavior detection [20] and probabilistic neural representations like GeoTrackNet [11]. Transformer-222

based methods have also been introduced, with TrAISformer [10] achieving state-of-the-art results223

in AIS-based trajectory prediction. In parallel, graph-based methods have gained momentum for224

their ability to explicitly capture vessel-to-vessel interactions, including graph attention networks for225

anomaly detection [21] and spatio-temporal graph convolutional networks for trajectory prediction in226

crowded sea areas [16].227

A key bottleneck in advancing this line of research lies in the lack of standardized open datasets.228

While several AIS-based datasets exist [8], they are often incomplete, commercial, or unavailable229

for public use. The Open Maritime Traffic Analysis Dataset (OMTAD) [9] represents an important230

step toward openness by providing cleaned and processed AIS tracks for multiple vessel types.231

Nevertheless, OMTAD has not been designed as an anomaly detection benchmark, and in particular,232

it lacks systematic definitions and annotations for multi-level anomalies. Our work addresses this gap233

by extending OMTAD into a benchmark dataset tailored for graph-based anomaly detection across234

node, edge, and graph levels.235

LLM-based Anomaly Injection and Benchmark Augmentation. Recent studies have begun to236

explore the potential of LLMs in supporting anomaly detection tasks. For instance, AD-LLM [18]237

presents the first comprehensive benchmark that systematically examines how LLMs can be leveraged238

for anomaly detection across multiple dimensions, including zero-shot detection, data augmentation,239

and model selection. This line of work demonstrates the broad applicability of LLMs in enhancing240

anomaly detection pipelines. However, these efforts primarily remain at an abstract level and provide241

limited insights into fine-grained dataset augmentation grounded in real-world domain data.242

In parallel, BotSim [13] introduces an LLM-powered end-to-end simulation toolkit for malicious243

social botnet generation, enabling downstream evaluation of bot detection methods. This framework244

illustrates how LLM agents can be utilized to construct diverse and semantically meaningful anomaly245

scenarios in a simulation setting. Nevertheless, the maritime domain remains underexplored: despite246

the availability of AIS-based datasets such as OMTAD, there has been little research on using LLMs247

to perform precise, domain knowledge–driven anomaly injection.248

To bridge this gap, we extend OMTAD into a benchmark dataset specifically designed for maritime249

anomaly detection. To the best of our knowledge, this is the first attempt to systematically augment a250

real-world maritime dataset with LLM-based anomaly injection, providing a platform for training251

and evaluating anomaly detection methods in non-grid spatio-temporal systems.252

C Dataset Construction Method253

Overview We adopt a two–agent architecture specialized for dataset construction: (1) Trajectory254

Synthesizer, which enriches inter-vessel connectivity through augmentation of local contexts, and255

(2) Anomaly Injector, which introduces anomalies guided by high-level text prompts. Both agents256

operate under a common Coordinator that manages data flow, prepares structured perception inputs,257

enforces constraints, and validates outputs. This design separates augmentation (ensuring sufficient258

structural density) from anomaly generation (ensuring semantic variety), providing a flexible and259

reproducible pipeline for benchmark creation.260

C.1 Coordinator Workflow261

For each focal vessel v over a given window [t0, t1], the Coordinator executes a simple loop: (i)262

construct a standardized perception bundle from AIS and environmental metadata, (ii) dispatch it to263

the Trajectory Synthesizer to obtain an augmented multi-vessel graph G, (iii) pass the synthesized264

graph and perception context to the Anomaly Injector to apply prompt-driven modifications and265

produce labels, and (iv) collect provenance, validation logs, and final artifacts for dataset assembly.266
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Table 1: Perception schema consumed by both agents.
Category Fields
AIS MMSI, t, latitude, longitude, SOG, COG
Derived ∆SOG/∆t, ∆COG/∆t
Env wind/wave/current bins, visibility proxy
Provenance source trajectory IDs

In this way, augmentation and anomaly injection are decoupled but remain interoperable under a267

single orchestrator.268

C.2 Shared Environment Perception Schema269

Both agents consume a common schema that represents vessel states and their context in a slot-filled270

format. The specific categories and fields are mentioned in Table 1.271

This schema ensures that both augmentation and injection modules operate on consistent, validated272

inputs. All fields follow fixed units and identifiers, and missing values are explicitly marked to273

maintain determinism.274

C.2.1 Agent 1: Trajectory Synthesizer (Augmentation)275

Goal. Increase the density and diversity of meaningful inter-vessel interactions so that GNN-based276

methods can better exploit spatial context while preserving physical plausibility.277

Main Idea. The Trajectory Synthesizer enriches local graph structures by adding trajectories around278

each vessel to ensure sufficient connectivity and realistic interaction density.279

Components.280

• Neighbor-based augmentation: If physically close vessels are present, their trajectories281

are directly included to form proximity-based edges and enrich inter-vessel connectivity.282

• Synthetic augmentation: In sparse regions where nearby vessels are absent, the agent283

generates additional “virtual neighbors” by sampling trajectories similar to the focal vessel.284

Their SOG, COG, latitude, and longitude values are perturbed within realistic variation285

ranges to preserve plausibility while increasing graph density.286

Outputs. An augmented spatio-temporal graph that combines original vessel tracks with either actual287

or synthesized neighbors, including provenance information indicating which trajectories were real288

and which were generated.289

C.2.2 Agent 2: Anomaly Injector (Prompt-Driven)290

Goal. Introduce diverse and semantically meaningful anomalies into trajectories in order to support291

node-, edge-, and graph-level anomaly detection tasks.292

Main Idea. The Anomaly Injector operates from high-level text prompts rather than fixed perturbation293

rules, allowing flexible and context-aware anomaly creation.294

Components.295

• Prompt Interpretation: Parsing natural language descriptions of anomalies (e.g., unusual296

speed changes, risky encounters, or group loitering) into structured intent.297

• Scenario Realization: Mapping the interpreted intent into corresponding edits of the spatio-298

temporal graph, such as modifying single-node kinematics, vessel-to-vessel interactions, or299

group-level patterns.300

• Label Generation: Attaching anomaly labels (node, edge, or graph level) along with301

rationale text that traces back to the original prompt.302

Outputs. A set of modified trajectories and anomaly labels, where each label is tied to a prompt,303

anomaly type, and severity level, accompanied by rationale text for interpretability.304
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D Future Works305

While our current work lays the foundation for a benchmark on non-grid spatio-temporal anomaly306

detection, several important directions remain for future development. First, we plan to consolidate307

the proposed pipeline into a reproducible framework that can automatically synthesize augmented308

trajectories and inject anomalies through prompt-driven agents. The next step is to curate a finalized309

version of the dataset. We will release the dataset under an open license to encourage broad adoption310

and reproducibility, accompanied by scripts that enable researchers to regenerate augmented or311

injected variants deterministically.312

Second, to establish a reference point for the community, we will benchmark a variety of base-313

line methods on the dataset. This includes purely temporal sequence models such as LSTM and314

Transformer, hybrid spatio-temporal GNN models, and recent graph anomaly detection architectures315

designed for node-, edge-, and graph-level tasks. Comprehensive evaluation across different anomaly316

ratios and scenarios will provide insights into the strengths and limitations of each model class.317

Finally, we aim to extend the anomaly definitions beyond the initial kinematic-focused injections. In318

particular, we plan to incorporate more semantically complex anomalies, such as illegal encounters,319

coordinated group behaviors, or procedural violations near ports and restricted areas. Leveraging320

LLM-based agents in conjunction with domain rules will allow us to gradually expand the scope of the321

benchmark, bridging the gap between controlled synthetic anomalies and realistic, context-dependent322

maritime events. In parallel, we recognize that the task-specific labeling strategy itself requires323

careful refinement. Defining consistent and interpretable labels across node-, edge-, and graph-level324

tasks is non-trivial, and we plan to investigate principled ways of assigning task-aware labels that325

capture both local anomalies and their broader contextual implications.326
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