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ABSTRACT

While the performance of machine learning systems has experienced significant
improvement in recent years, relatively little attention has been paid to the funda-
mental question: to what extent can we improve our models? This paper provides
a means of answering this question in the setting of binary classification, which is
practical and theoretically supported. We extend a previous work that utilizes soft
labels for estimating the Bayes error, the optimal error rate, in two important ways.
First, we theoretically investigate the properties of the bias of the hard-label-based
estimator discussed in the original work. We reveal that the decay rate of the bias
is adaptive to how well the two class-conditional distributions are separated, and
it can decay significantly faster than the previous result suggested as the number
of hard labels per instance grows. Second, we tackle a more challenging prob-
lem setting: estimation with corrupted soft labels. One might be tempted to use
calibrated soft labels instead of clean ones. However, we reveal that calibration
guarantee is not enough, that is, even perfectly calibrated soft labels can result in
a substantially inaccurate estimate. Then, we show that isotonic calibration can
provide a statistically consistent estimator under an assumption weaker than that
of the previous work. Our method is instance-free, i.e., we do not assume access
to any input instances. This feature allows it to be adopted in practical scenar-
ios where the instances are not available due to privacy issues. Experiments with
synthetic and real-world datasets show the validity of our methods and theory.

1 INTRODUCTION

It is a common practice in the field of machine learning research to assess the performance of a
newly proposed algorithm using one or more metrics and compare them to the previous state-of-
the-art (SOTA) performance to show its effectiveness (Neu, 2024; Int, 2025a;b). In classification,
arguably the most common one is the error rate, i.e., the expected frequency of misclassification for
future data.

While the SOTA performance continues to improve for a wide range of benchmarks over time,
there is a limit on the prediction performance that any machine learning model can achieve, which
is determined by the underlying data distribution. It is important to know this limit, or the best
achievable performance. For example, if the current SOTA performance is close enough to the
limit, there is no point in seeking further improvement. It is not only wasteful in terms of time
and financial resources but also harmful to the environment, since large-scale machine learning
models are notorious for their high energy consumption (Strubell et al., 2020; Luccioni et al., 2023).
Knowing the best possible performance also provides a practical check for test-set overfitting (Recht
et al., 2018; Ishida et al., 2023): if a model’s score on the test set approaches or even exceeds the
upper bound, it may be a signal of the model directly training on the test set.

In classification, the best achievable error rate for a given data distribution is called the Bayes error,
and the estimation of the Bayes error has a rich history of research (Fukunaga and Hostetler, 1975;
Devijver, 1985; Berisha et al., 2014; Moon et al., 2018; Noshad et al., 2019; Theisen et al., 2021;
Ishida et al., 2023; Jeong et al., 2023). In the case of binary classification, the existing approaches
can be roughly categorized into two groups: the majority of estimation from instance-label pairs
(x1, y1), . . . , (xn, yn) ∈ X × {0, 1} (Fukunaga and Hostetler, 1975; Devijver, 1985; Berisha et al.,
2014; Moon et al., 2018; Noshad et al., 2019; Theisen et al., 2021), where X is the space of instances,
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and the recently proposed methods of estimation from soft labels η1, . . . , ηn ∈ [0, 1] (Ishida et al.,
2023; Jeong et al., 2023). A soft label is a special type of supervision that represents the posterior
class probability ηi := P(y = 1 | x = xi), i ∈ {1, . . . , n}, and it quantifies the uncertainty
of class labels associated with each instance xi. The strength of the methods proposed in (Ishida
et al., 2023; Jeong et al., 2023) based on soft labels is that they are instance-free, i.e., they do not
require access to the instances {xi}ni=1. Since the instances themselves are not used for estimation,
these methods do not suffer from the curse of dimensionality even when dealing with very high-
dimensional data. Moreover, the instance-free property is practically valuable since it makes the
methods easy to apply to real-world problems, such as medical diagnoses, where the instances are
often inaccessible due to privacy concerns. However, these methods have a crucial limitation: they
assume that we have direct access to clean soft labels ηi = P(y = 1 | x = xi), which only an oracle
would know. Ishida et al. (2023) also discussed a scenario where each soft label ηi is approximated
by an average η̂i =

1
m

∑m
j=1 y

(j)
i of m hard labels y(1)i , . . . , y

(m)
i per instance. They showed that,

for a fixed number n of samples, the bias of the resulting estimator approaches zero as m tends to
infinity. However, their bound on the bias is prohibitively large for practical values of m, and thus
the theoretical guarantee for this estimator is weak.

Figure 1: The Bayes error estimated with the
method of Ishida et al. (2023) is larger than the test
error of a Vision Transformer (Dosovitskiy et al.,
2021).

Another issue is labeling distribution shift. For
example, whereas the images in the original
CIFAR-10 dataset (C-10) (Krizhevsky, 2009)
can be regarded as though they were annotated
before they were downscaled, the images in the
CIFAR-10H dataset (C-10H) (Peterson et al.,
2019) were annotated after downscaling, mak-
ing the task more challenging and thus increas-
ing label uncertainty. 1 Given that the Bayes
error can be interpreted as the average label un-
certainty, we will get an unreasonably high es-
timate of the Bayes error if we just plug the soft
labels in C-10H into their estimator, as shown in Fig. 1. In general, a similar issue can arise due to
subjectivity of human soft labelers, or the bias of using large language models (LLMs) as annotators
(Gilardi et al., 2023; Tjuatja et al., 2024). Recent work has explored a range of techniques to obtain
soft labels and confidence scores from LLMs, but constructing a high-quality soft label remains to
be a challenge (Xie et al., 2024; Kadavath et al., 2022; Argyle et al., 2023). This distortion issue
due to the distribution shift was also mentioned by Ishida et al. (2023), but no solution was shown
in their paper.

Contribution of this paper We extend the previous work by Ishida et al. (2023) that utilizes soft
labels for estimating the Bayes error, the optimal error rate, in two important ways.

First, we deepen the theoretical understanding of the bias of the hard-label-based estimator discussed
in the original work. Specifically, we show that the decay speed of the bias depends on how well the
two class-conditional distributions are separated, and it can approach zero significantly faster than
the previous result suggested as the number m of hard labels per instance grows.

Second, we discuss a new, more challenging problem of estimation from corrupted soft labels. In
this scenario, we are given a distorted version of the clean soft labels. The distortion can arise from a
shifted labeling distribution or subjectivity of human/LLM soft labelers. It reflects many real-world
problems including the estimation of best achievable performances for benchmark datasets and esti-
mation from soft labels obtained from subjective confidence. One might be tempted to use calibrated
soft labels in place of clean ones. However, we reveal that calibration guarantee is not enough, i.e.,
even perfectly calibrated soft labels can result in a substantially inaccurate Bayes error estimate,
which highlights the importance of choosing appropriate calibration algorithms. Then, we show

1For more information, C-10 was curated as follows. First, images for each class were collected by searching
for the class label or its hyponym on the Internet. Second, the images were downscaled to 32 × 32. Finally,
human labelers were asked to filter out mislabeled images. On the other hand, C-10H is a soft-labeled version
of C-10, i.e., it consists of 10,000 test images of the C-10 test set along with their soft labels. Each soft label
was obtained as an average of 47–63 hard labels, which were collected by asking human labelers to answer
which class the downscaled image belongs to. As a result, the labeling processes are significantly different
between these two datasets.
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that a classical calibration algorithm called isotonic calibration (Zadrozny and Elkan, 2002) can
provide a statistically consistent estimator as long as the original soft labels are correctly ordered.

2 FINE-GRAINED ANALYSIS OF THE BIAS

We first explain the preliminaries for this section and then present our main results.

2.1 PRELIMINARIES

Formulation and notations Let X ⊂ Rd and Y be the spaces of instances and output labels,
respectively. In this paper, we confine ourselves to binary classification problems and thus we set
Y = {0, 1}. Classes 1 and 0 are also called the positive and negative classes, respectively. Let P be
a distribution over X × Y and (x, y) be a pair of random variables following P, where x ∈ Rd is
an input instance and y ∈ {0, 1} is the corresponding class label. Throughout this paper, x1, . . . , xn

are n i.i.d. samples drawn from the marginal distribution PX over the input space X . We denote
by P1, P0 two class-conditional distributions over the input space X given y = 1 and y = 0,
respectively. Note that PX = θP1 + (1 − θ)P0, where θ := P(y = 1) ∈ (0, 1) is the base rate.
η(x) is the clean soft label for an instance x, i.e., the posterior probability P(y = 1 | x) of y = 1
given x. The expectation and the variance with respect to the marginal PX are denoted by E and
Var, respectively.

For any positive integer n, we denote [n] := {1, . . . , n}. An indicator function is denoted by 1 [·].
Given a sequence of n random variables z1, . . . , zn, we use a shorthand z1:n = (z1, . . . , zn). For
µ ∈ Rd and Σ ∈ Rd×d, N(µ,Σ) is the Gaussian distribution with mean µ and covariance Σ.

Estimating the best possible performance with soft labels Among the most commonly used
performance measures would be the error rate. The error rate of a classifier h : X → Y is defined
as Err(h) := E(x,y)∼P [1 [y ̸= h(x)]], where (x, y) is a test instance-label pair drawn independently
of training data. The best possible error rate Err∗ := infh:X→Y Err(h) is called the Bayes error
(Mohri et al., 2018).2

Recall that η(x) := P(y = 1 | x). Ishida et al. (2023) proposed a direct approach to estimating
the Bayes error Err∗ assuming access to the soft labels {η(xi)}ni=1 rather than instance-label pairs
{(xi, yi)}ni=1. Its derivation is outlined as follows. First, it is well-known that the Bayes error can
be expressed as Err∗ = Ex∼PX [min {η(x), 1− η(x)}] (Cover, 1968). Replacing the expectation
with a sample average over {xi}ni=1, they obtained an unbiased estimator

Êrr∗ (η1:n) :=
1

n

n∑
i=1

min {ηi, 1− ηi} , (1)

where ηi := η(xi). It is also statistically consistent, or more specifically, for any δ ∈ (0, 1), with

probability at least 1− δ, we have
∣∣∣Êrr∗ (η1:n)− Err∗

∣∣∣ ≤√ log(2/δ)
8n .

In practical terms, the instance-free nature of this method exhibits considerable advantages over
existing methods described in Section A despite its simplicity. It can be applied to settings where
input instances themselves are unavailable, e.g., due to privacy issues. On the other hand, one of
the crucial drawbacks of this method is that clean soft labels are usually inaccessible in practice.
Therefore, we have no choice but to substitute some estimates for them. Ishida et al. (2023) also
considered a setting where ηi is approximated by an average of hard labels η̂i := 1

m

∑m
j=1 y

(j)
i ,

where y
(1)
i , . . . , y

(m)
i are m hard labels each of which is drawn independently from the posterior

distribution of the class labels given the instance xi. In practice, y(1)i , . . . , y
(m)
i could be collected by

asking m different human labelers to answer whether xi belongs to class 1. C-10H (Peterson et al.,
2019) and Fashion-MNIST-H (Ishida et al., 2023) are examples of a dataset constructed as such.
By plugging η̂i in place of ηi, they obtained the estimator Êrr∗(η̂1:n) = 1

n

∑n
i=1 min {η̂i, 1− η̂i}.

2The infimum is taken over all measurable functions.
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They showed that the bias is bounded as∣∣∣E [Êrr∗(η̂1:n)]− Err∗
∣∣∣ ≤ 1

2
√
m

+

√
log(2n

√
m)

m
, (2)

and thus vanishes as m → ∞ given n fixed. However, the rate Õ (1/
√
m) is quite slow given that m

is typically much smaller than n. For example, in the case of the C-10H dataset, each image is given
only around 50 hard labels. Later in Section 2.2, we will show that this rate can be significantly
improved for well-conditioned distributions. In addition, the second term on the right-hand side
of (2) increases as n grows, which appears to be unnatural. We also show that the bias can be
upper-bounded by a quantity irrelevant to n.

2.2 MAIN RESULTS

Improved bound on the bias The following theorem provides a new bound on the bias of the
estimator Êrr∗(η̂1:n). The proofs for all results in this section can be found in Section B.

Theorem 1. We have

− E
x∼PX

[
min

{
LErr(η(x))

m
,

√
π

2m

}]
≤ E

[
Êrr∗(η̂1:n)

]
− Err∗ ≤ 0, (3)

where LErr(q) is q(1−q)
|2q−1| if q ̸= 0.5 and ∞ if q = 0.5.

First of all, we note that our upper bound does not contain n unlike the existing result (2) by Ishida
et al. (2023). More importantly, our bound (3) indeed improves upon theirs (Proposition 1). We only
need a weaker version of (3) to show the improvement: −

√
π
2m ≤ E

[
Êrr∗(η̂1:n)

]
− Err∗ ≤ 0.

Although the LErr(η(x))
m term in the left-hand side of (3) is unnecessary to improve the previous

result (2), it provides further insights. Fig. 5 in Section B shows the graph of the function LErr(p).
It takes a near-zero value when p is close to 0 or 1 and diverges to infinity as p → 0.5. This means
that LErr(η(x)) is large for instances x close to the Bayes-optimal decision boundary η(x) = 0.5,
while it is close to zero for instances far away from it. Therefore, the rate at which the bias decays
can be understood as a mixture of the fast rate 1/m and the slower rate 1/

√
m, whose weights are

determined by how well the two classes are separated. We validate this with numerical expeirments
in Section B.3.

Well-separated cases Here we note that real-world datasets often have well-separated classes;
see, e.g., Fig. 6 in Section B. If the two classes are perfectly separated, the bias can decay at the fast
rate O(1/m), as opposed to the worst cases rate O(1/

√
m).

Corollary 1. Suppose there exists a constant c > 0 such that |η(x)− 0.5| ≥ c holds almost surely.
Then, we have

−1− 4c2

8cm
≤ E

[
Êrr∗ (η̂1:n)

]
− Err∗ ≤ 0. (4)

The assumption of Corollary 1 is satisfied by, for example, the following distribution.

Example 1 (Perfectly separated distributions with label noise). Consider two continuous distribu-
tions F0,F1 over X with disjoint supports. An instance-label pair (x, y) is generated as follows.
First, an index k is selected from {0, 1} with equal probability. Given k, x and y are generated
conditionally independently as follows: (i) The instance x is sampled from Fk. (ii) The label y is
set to 1− k with conditional probability ν and k with conditional probability 1− ν, where ν ̸= 0.5.
Then, the assumption of Corollary 1 is satisfied for c = |ν − 0.5|.

Computable bound for general cases Our results so far (Theorem 1 and Corollary 1) provide
tigher bounds and a more detailed perspective on the bias. However, a downside of those results is
that, in order to compute the numerical values of the lower bounds directly, we need to know some
characteristics of the data distribution that might not be available in most practical scenarios. The
good news is that we can still derive a computable bound that only requires an upper bound on the
Bayes error, e.g., the error rate of the SOTA model, from Theorem 1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Corollary 2. Assume that Err∗ ≤ E. Then, we have −B(E,m) ≤ E
[
Êrr∗(η̂1:n)

]
− Err∗ ≤ 0,

where

B(E,m) := inf
t∈(0,1/2)

(
t(1− t)

1− 2t

1

m
+min

{
1,

E

t

}√
π

2m

)
. (5)

10 4 10 3 10 2 10 1

E

10 3

10 2

10 1

100

M
ax
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um

 b
ia

s

Our result (B(E, m))
Ishida et al. (2023)

Figure 2: A comparison of our bias bound
(Corollary 2) and the existing bound by
Ishida et al. (2023) with n = 10000, m =
50. The dashed line indicates the test error
(0.05%) of the SOTA model for the bina-
rized CIFAR-10 dataset, which we can use
as E in Corollary 2. Our bound is over 200
times tighter than the existing one in this
setup.

The function B(E,m) can be computed numerically
without any information about the data distribution,
except for an upper bound of the Bayes error, E. Fig. 2
shows the magnitude of our lower bound, B(E,m),
for various values of E (the blue line). It also shows
the existing bias bound by Ishida et al. (2023) (the or-
ange line). This comparison demonstrates that Corol-
lary 2 is a substantial improvement over the existing
result across the entire range of the parameter E.

Let us take the binarized3 CIFAR-10 test set as an
example. It consists of n = 10000 instances, each
of which has a soft label obtained as the average of
around m = 50 hard labels from the CIFAR-10H
dataset. As the parameter E, we can use the Vision
Transformer (Dosovitskiy et al., 2021)’s empirical er-
ror rate of 0.0005 reported by Ishida et al. (2023),
which is shown by the black dashed line in Fig. 2.
While the existing bound suggests the bias of the hard-
label-based estimator Êrr∗(η̂1:n) could be as large as
0.557, our bound reveals the estimator is not that bad;
indeed, it implies the bias is never larger than 0.00276.
In this case, our result is over 200 times tighter than
theirs.

Theorem 1 also implies the estimator Êrr∗(η̂1:n) is statistically consistent; see Corollary 3 for de-
tails.

3 ESTIMATION FROM CORRUPTED SOFT LABELS

This section tackles a more challenging setting where we do not have access to the true posterior
probability η. This setting reflects many real-world problems, such as in medical diagnosis where a
doctor’s subjective confidence in their decision can be regarded as a soft label, or when practition-
ers provide automated soft labels with LLMs in place of human annotators. However, there is no
guarantee that it exactly reflects the true underlying probability.

In this section, we consider a problem setting where each instance xi is given a real number η̃i ∈
[0, 1], which is expected to approximate the clean soft label ηi in some sense but not necessarily
identical to ηi. We call {η̃i}ni=1 corrupted soft labels. How can we estimate the Bayes error when
only corrupted soft labels are available instead of clean ones? Estimation with a provable guarantee
will be impossible without some assumption on the quality of the soft labels. Then, what guarantee
can be provided under what assumption?

3.1 PRELIMINARIES

In addition to the preliminaries introduced in Section 2.1, we briefly review a few more required for
the discussion in this section.

Calibration Predicting accurate class labels is not always sufficient in classification problems.
It is often crucial to obtain reliable probability estimates, especially in high-stakes applications in-
cluding personalized medicine (Jiang et al., 2012) and meteorological forecasting (Murphy, 1973;
DeGroot and Fienberg, 1983).

3See Section 4.1 for details.
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A popular notion to capture the quality of probability estimates is calibration. A probabilistic classi-
fier c is said to be well-calibrated if the predicted probabilities closely match the actual frequencies
of the class labels (Kull et al., 2017), i.e., c(x) = E [y | c(x)] almost surely. While one might hope
that a perfectly calibrated output c(x) matches the posterior probability E [y | x] = P(y = 1 | x),
it is not necessarily true. Indeed, calibration is a weaker notion and just a necessary condition for
c(x) = E [y | x]. For example, even a constant predictor c(x) ≡ P (y = 1) is well-calibrated 4

although it can be far from P (y = 1 | x).
It is known that many machine learning models, including modern neural networks, are not cali-
brated out of the box (Zadrozny and Elkan, 2001; Guo et al., 2017). Therefore, their outputs have
to be recalibrated in post-processing, and various methods have been proposed to achieve this goal.
They can be roughly categorized into two groups, namely parametric and nonparametric methods.
The former includes Platt scaling (Platt, 1999), also known as logistic calibration (Kull et al., 2017),
and beta calibration (Kull et al., 2017). Among the latter category are histogram binning (Zadrozny
and Elkan, 2001) and isotonic calibration (Zadrozny and Elkan, 2002). Each of these methods re-
quires a dataset {(ci, yi)}ni=1 to obtain a function that takes the output of an uncalibrated predictor c
and transforms it into a reliable probability estimate. This function is sometimes called a calibration
map (Kull et al., 2017; 2019). Here, ci = c(xi) is the output of c for an instance xi, and yi is the
corresponding class label. To avoid overfitting, each (xi, yi) needs to be sampled independently of
the training set used to obtain the predictor c.

Isotonic calibration Here, we briefly describe the algorithm of isotonic calibration (Zadrozny
and Elkan, 2002), arguably one of the most commonly used nonparametric recalibration meth-
ods, as it plays an important role in this paper. Suppose a dataset {(ci, yi)}ni=1 is given.
The algorithm proceeds as follows. First, the dataset (c1, y1), . . . , (cn, yn) is reordered into(
c(1), y(1)

)
, . . . ,

(
c(n), y(n)

)
so that the resulting sequence c(1), . . . , c(n) of outputs becomes non-

decreasing. Then, we find a non-decreasing sequence 0 ≤ c′(1) ≤ · · · ≤ c′(n) ≤ 1 such that it

minimizes the squared error 1
n

∑n
i=1

(
y(i) − c′(i)

)2
. Finally, for each i ∈ [n], c′(i) is assigned as the

calibrated version of c(i). This procedure is a special case of isotonic regression, one of the most
well-studied shape-constrained regression problems.

3.2 PROPOSED METHOD

We propose a simple approach where we first calibrate the corrupted soft labels and then plug them
into the formula (1) for clean soft labels. Although calibration was originally developed for trans-
forming the output scores of classifiers into reliable probability estimates, here we suggest using
it for corrupted soft labels. We assume that, for each i ∈ [n], we are given a corrupted soft la-
bel η̃i ∈ [0, 1] and a single hard label yi ∈ {0, 1} sampled from the true posterior distribution
P(y | x = xi). We use the hard labels {yi}ni=1 to calibrate the soft labels {η̃i}ni=1 using some
calibration algorithm A. We write η̂Ai to represent the resulting calibrated soft labels. Finally, we
estimate the Bayes error Err∗ by Êrr∗

(
η̂A1:n

)
= 1

n

∑n
i=1 min

{
η̂Ai , 1− η̂Ai

}
.

However, as we mentioned earlier, even perfect calibration does not necessarily imply that the re-
sulting soft labels are accurate estimates of the clean soft labels. A simple example illustrates this
limitation:

Example 2. Consider drawing instances from a mixture of two distributions over X with disjoint
supports, and let us set the mixture rate θ to be 0.5. The true Bayes error is trivially 0. If A is a
calibration algorithm that produces constant soft labels η̂Ai = θ = 0.5 for all i ∈ [n], it indeed
achieves perfect calibration. However, the resulting estimate of the Bayes error is min {θ, 1− θ} =
0.5, which deviates significantly from the true value 0.

Therefore, estimation with a provable guarantee will not be possible for arbitrary calibration algo-
rithms or without any assumptions on the soft labels. What calibration algorithm can achieve reliable
estimation under what assumption? In Section 3.3, we provide the first answer to this question.

4If c(x) takes the constant value P (y = 1) for all x, E [y | c(x)] is equal to E [y] = P (y = 1) since it is a
conditional expectation conditioned by a constant.
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3.3 THEORETICAL GUARANTEE FOR ISOTONIC CALIBRATION

Here, we propose choosing isotonic calibration (Zadrozny and Elkan, 2002) as the calibration algo-
rithm A and indentify a condition under which we can consistently estimate the Bayes error with
our method. Specifically, we estimate the Bayes error by the following procedure:

(i) Reorder (η̃1, y1), . . . , (η̃n, yn) into
(
η̃(1), y(1)

)
, . . . ,

(
η̃(n), y(n)

)
so that the resulting se-

quence η̃(1), . . . , η̃(n) of outputs becomes non-decreasing.

(ii) Find a non-decreasing sequence 0 ≤ η̂iso(1) ≤ · · · ≤ η̂iso(n) ≤ 1 such that it minimizes

the squared error 1
n

∑n
i=1

(
y(i) − η̂iso(i)

)2
. This gives us isotonic-calibrated soft labels

η̂iso(1), . . . , η̂
iso
(n).

(iii) Estimate the Bayes error as Êrr∗(η̂iso1:n) =
1
n

∑n
i=1 min

{
η̂iso(i) , 1− η̂iso(i)

}
.

The next theorem is the main theoretical result of this section, which states that we can construct a
consistent estimator of the Bayes error using isotonic calibration as long as the soft labels’ order is
preserved. The use of isotonic regression allows us to provide a solid theoretical guarantee without
making parametric assumptions on how corruption occurs. See Section C for the proof.
Theorem 2. Suppose that there exists an increasing function f such that η̃i = f(ηi) almost surely.
Then, for any δ ∈ (0, 1), with probability at least 1− δ, we have∣∣∣Êrr∗(η̂iso1:n)− Err∗

∣∣∣ ≤ C

(
1

n1/3
+

√
log(1/δ)

n

)
, (6)

where C > 0 is a constant.

Note that the assumption of Theorem 2 is a relaxation of the availability of clean soft labels since
we can take the identity map as f when η̃i = ηi. In other words, the original work by Ishida et al.
(2023) assumes that we have access to the exact values of the clean soft labels, whereas our proposed
method only requires the knowledge of their order.

Furthermore, our result can be extended to the case where the corruption involves random noise.
Theorem 3. Assume each corrupted soft label η̃i is generated as η̃i = f(ηi) + εi where f is a
differentiable function such that f ′ ≥ c for some constant c > 0 and εi is a zero-mean random
variable with variance ≤ σ2. Then, for any δ ∈ (0, 1), with probability at least 1− δ, we have∣∣∣Êrr∗(η̂iso1:n)− Err∗

∣∣∣ ≤ C ′

(
σ +

1

n1/3
+

√
log(1/δ)

n

)
, (7)

where C ′ > 0 is a constant.

As an example, we can think of the situation we studied in Section 2 but with corrupted label-
ing distribution skewed by some function f . For each i = 1, . . . , n, the resulting posterior dis-
tribution can be seen as a Bernoulli distribution with mean f(ηi). Then, we draw m hard labels
y
(1)
i , . . . , y

(m)
i from that distribution. We can then approximate the unknown soft label ηi by the

average 1
m

∑m
j=1 y

(j)
i of the hard labels and plug it into our estimator. In this case, the randomness

over the hard labels translates to additive noise with standard deviation at most σ = 1
2
√
m

.

A limitation of Theorem 3 is that it cannot be applied to f whose derivative can be arbitrarily small.
Roughly speaking, it is because a small fluctuation in the function value can translate to a large devi-
ation in the inverse function value if the function is too “flat.” We have not yet reached a theoretical
understanding of how much violating this assumption hurts the estimation accuracy. However, in
our empirical study with synthetic data (Section D.2), the results suggest that our method can per-
form well even for such corruption functions. An interesting finding is that beta calibration (Kull
et al. (2017)) performs poorly even though it is a well-specified parametric calibrator in our exper-
imental setting. This fact suggests that choosing appropriate calibration methods, such as isotonic
calibration, is indeed crucial in our algorithm design. See Section D.2 for details.
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4 EXPERIMENTS

In this section, we perform an experiment where we estimate the Bayes error of synthetic and real-
world datasets using our proposed method.

4.1 EXPERIMENTAL SETTINGS

The methods employed in this experiment are the following: (i) clean: the estimator with clean
soft labels, i.e., Êrr∗ (η1:n), (ii) hard: the estimator with approximate soft labels obtained as av-
eraged hard labels, i.e., Êrr∗ (η̂1:n), (iii) corrupted: the estimator with corrupted soft labels,
i.e., Êrr∗ (η̃1:n), and (iv) The estimator with soft labels obtained by calibrating the corrupted soft
labels, i.e., Êrr∗

(
η̂A1:n

)
. We use the following as the calibration algorithm A: isotonic calibration

(isotonic; Zadrozny and Elkan (2002)), uniform-mass histogram binning (Zadrozny and Elkan,
2001) with 10, 25, 50 and 100 bins (hist-10, hist-25, hist-50 and hist-100), and beta
calibration (beta; Kull et al. (2017)). We use 1000 bootstrap resamples to compute a 95% confi-
dence interval for each method.

Datasets We conduct our experiments using several datasets. The first one is a two-dimensional
synthetic dataset of size n = 10000 generated from a Gaussian mixture PX = 0.6 · P0 + 0.4 · P1,
where P0 = N ((0, 0), I2), P1 = N ((2, 2), I2) and Id is the d-by-d identity matrix. We use m = 50
hard labels per instance in the hard setup. For each i ∈ [n], we generated the corrupted version η̃i

of the soft label ηi by η̃i = f(ηi; 2, 0.7), where f(p; a, b) =

(
1 +

(
1−p
p

)1/a
1−b
b

)−1

, 0 < p <

1, a ≥ 0, 0 < b < 1. The function f is the inverse function of the two-parameter beta calibration
map (Kull et al., 2017) and can express various continuous increasing transformations on the interval
(0, 1) depending on the parameters a and b. Fig. 3 shows the graph of the corruption function f .
As can be seen in the figure, it pushes probability values away from zero or one, making the soft
labels “unconfident.” It also distorts soft labels so that ηi = 0.5 is mapped to η̃i = f(ηi) = b. Note
that f satisfies the assumption of Theorem 2 since it is increasing. We also explored other sets of
parameters and other types of corruption; see Section D for details.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

f(p
;a

,b
)

Figure 3: The corruption
function f(p; a, b) with pa-
rameters a = 2, b = 0.7.

The second dataset is the test set of CIFAR-10 (Krizhevsky, 2009)
with soft labels taken from the CIFAR-10H dataset (Peterson et al.,
2019). Since they are originally multi-class datasets, we reconstruct
a binary dataset by relabeling the animal-related classes (bird, cat,
deer, dog, frog and horse) as positive and the rest as negative, sim-
ilarly to what Ishida et al. (2023) did in their experiments. We can-
not experiment with the clean setup as clean soft labels are un-
available for real-world datasets. Therefore, we conduct our experi-
ment only for corrupted/isotonic/hist/beta using soft la-
bels from CIFAR-10H as corrupted ones.5 Recall that the CIFAR-
10H soft labels can be considered to be corrupted because of the
mismatched labeling distributions, as we mentioned in Section 1.
We compare the estimated Bayes error with the test error of a Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021) on this dataset
reported by Ishida et al. (2023), which is 0.05%.

We also experimented with the Fashion-MNIST dataset (Xiao et al.,
2017) and its soft-labeled counterpart, Fashion-MNIST-H (Ishida
et al., 2023). Following Ishida et al. (2023), we binarized the dataset by treating T-shirt/top, pullover,
dress, coat and shirt as the positive class. The rest proceeds similarly to the CIFAR-10 experiment
except that we newly trained a ResNet-18 (He et al., 2016) in place of the ViT. Details such as
training parameters can be found in Section D.

5Although we could run hard experiments with m = 1 using the hard labels from the CIFAR-10 test set,
it will not produce any meaningful estimates of the Bayes error because min {y, 1− y} = 0 for both y = 0
and 1.
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4.2 RESULTS

Fig. 4 shows the result of the experiments. The black dashed lines in Fig. 4b and Fig. 4c indicate
the test error of a classifier trained for each dataset as a reference. As expected, the unconfidence
of the corrupted soft labels results in a severe overestimation of the Bayes error. All the calibration
methods (isotonic, hist-*, beta) produce far more reasonable estimates compared with the
baseline corrupted. For Fashion-MNIST, however, histogram binning sometimes fails to offer
rational estimates, as you can see in Fig. 4c. Specifically, hist-25 results in a Bayes error estimate
substantially larger than the ResNet’s test error. This might be highlighting the necessity for a
carefully chosen calibration method, as we mentioned in Section 3.2. On the other hand, isotonic
and beta produce reasonable estimates in these settings.

0 5 10 15
Estimated Bayes error (%)

clean
hard

corrupted
isotonic

hist10
hist25
hist50

hist100
beta

(a) Synthetic dataset

0.0 0.1 0.2 0.3 0.4 0.5
Estimated Bayes error (%)

corrupted

isotonic

hist10

hist25

hist50

hist100

beta

(b) CIFAR-10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Estimated Bayes error (%)

corrupted

isotonic

hist10

hist25

hist50

hist100

beta

(c) Fashion-MNIST

Figure 4: The estimated Bayes error for the synthetic dataset, CIFAR-10, and Fashion-MNIST,
obtained with various methods. Error bars denote 95% bootstrap confidence intervals. For CIFAR-
10, the ViT test error is indicated by a horizontal dashed line, while for Fashion-MNIST the dashed
line marks the ResNet-18 test error.

5 CONCLUSION AND DISCUSSION

In this paper, we discussed the estimation of the Bayes error in binary classification. In Section 2,
we significantly improved the existing bound on the bias of the hard-label-based estimator. We also
revealed that the decay rate of the bias depends on how well the two class-conditional distributions
are separated, and it can decay in a much faster rate than the previous result suggested. In Section 3,
we tackled a challenging problem of Bayes error estimation from corrupted soft labels and pro-
posed an estimator based on calibration. After presenting an example highlighting the importance
of choosing appropriate calibration algorithms, we proved that we can construct a statistically con-
sistent estimator using isotonic calibration as long as the original soft labels are correctly ordered.
Then, our theory was validated by numerical experiments with synthetic and real-world datasets in
Section 4.

Finally, we discuss possible future directions. Although our calibration-based methods successfully
mitigate over- or underestimation of the Bayes error, it is still non-trivial to truly assess the validity
of the estimates for real-world datasets since we do not have access to the underlying distributions.
This is a fundamental challenge common across the field of Bayes error estimation. Early attempts
to solve it have appeared in recent years, e.g., Renggli et al. (2021), and we see advancing these
approaches as an important direction for future work. Another possible direction is the extension
to multi-class problems. Investigating theoretical guarantees for calibration algorithms other than
isotonic calibration (e.g., histogram binning) is also an interesting direction.

REPRODUCIBILITY STATEMENT

All the information needed to reproduce the experimental results in this paper is fully disclosed in
the body text, the appendix, and the source code in the supplementary material. The body text and
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the appendix clearly explain the experimental settings. The supplementary material provides all the
source code to run the experiments and the README.md file containing the instructions required to
reproduce the experimental results. As for the theoretical results, the appendix contains the proofs
for all the theoretical results in this paper. We also made sure it is clear what assumptions are made
in each theorem, proposition, lemma, and corollary.
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THE USE OF LARGE LANGUAGE MODELS

We used OpenAI’s ChatGPT and Codex for the following assistance purposes:

• Detect grammatical errors and improve clarity.

• Assist in writing the code for generating the figures in the paper.

A RELATED WORK

Estimation of the Bayes error Err∗ (see Section 2.1 for the definition) is a classical problem in the
field of machine learning and pattern recognition. Existing methods for Bayes error estimation can
be categorized based on the type of data used, specifically as either instance-label pair-based or soft
label-based estimation.

Most of the existing methods require a dataset {(xi, yi)}ni=1 composed of instances xi ∈ X paired
with their respective labels yi ∈ Y = {0, 1}. Assuming the two class-conditional distributions
of instances have densities satisfying certain conditions, Berisha et al. (2014), Moon et al. (2018)
and Noshad et al. (2019) proposed approaches based on the estimation of f -divergence between
the class-conditional densities. Specifically, Berisha et al. (2014) and Moon et al. (2018) sug-
gested estimating upper or lower bounds and thus their methods suffer from relatively large biases.
Although Noshad et al. (2019) succeeded in estimating the exact Bayes error instead of bounds
on it, they assumed that the class-conditional densities p0, p1 are Hölder-continuous and satisfy
0 < L ≤ pi ≤ U (i = 0, 1) for some constants L and U , and their estimator requires the knowledge
of the values of these constants, which can be unpractical.

On the other hand, Theisen et al. (2021) proposed a Bayes error estimation method based on nor-
malizing flow models (Papamakarios et al., 2021; Kingma and Dhariwal, 2018). They first showed
that the Bayes error is invariant under invertible transformations. Using this result, they suggested
approximating the data distribution with a normalizing flow and then computing the Bayes error
for its base Gaussian distribution, which can be done using the Holmes–Diaconis–Ross integration
scheme (Diaconis and Holmes, 1995; Gessner et al., 2020). One of the drawbacks of their approach
is that it is prohibitively memory-intensive for high-dimensional data, as mentioned in their paper.

The method proposed by Ishida et al. (2023), described in Section 2.1, was unique in that it utilized
the soft labels ηi = η(xi) instead of the instances xi themselves. Jeong et al. (2023) extended the
approach of Ishida et al. (2023) to the estimation of the Bayes error in multi-class classification
problems.

B SUPPLEMENTARY FOR SECTION 2

B.1 PROOF OF THEOREM 1

For each i = 1, . . . , d, let p̂i = 1
m

∑m
j=1 Z

(j)
i where Z

(1)
i , . . . , Z

(m)
i ∈ {0, 1} are independent

Bernoulli random variables with mean pi. For ease of notation, we denote p̂ = (p̂1, . . . , p̂d) and
p = (p1, . . . , pd). Noting that E [p̂] = p, p̂ is an unbiased and consistent estimator of p.

Suppose that we would like to estimate the value ϕ(p) for some function ϕ : Rd → R. It is natural
to consider a plug-in estimator ϕ(p̂). We can evaluate its bias E [ϕ(p̂)]−ϕ(p) = E [ϕ(p̂)]−ϕ (E [p̂])
using a sharpened version of Jensen’s inequality by Gao et al. (2019).

Lemma 1. Suppose ϕ is differentiable at µ. Then, we have

infz ̸=µ h(z)

m

d∑
i=1

pi(1− pi) ≤ E [ϕ(p̂)]− ϕ(p) ≤
supz ̸=µ h(z)

m

d∑
i=1

pi(1− pi), (8)

where

h(z) :=
ϕ(z)− ϕ(µ)−∇ϕ(µ)⊤(z − µ)

∥z − µ∥22
. (9)
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Proof. For any i, j ∈ [d], we have

E [(p̂i − pi)(p̂j − pj)] =
1

m
pi(1− pi)δij , (10)

where δij = 1 [i = j] is the Kronecker delta. This implies

tr
(
Cov [ p̂ ]

)
=

1

m

d∑
i=1

pi(1− pi). (11)

Now, we can apply (2.4) in Gao et al. (2019) to conclude the proof.6

It is often the case that the function ϕ in question is Lipschitz continuous. For example, every convex
function is locally Lipschitz on any convex compact subset of the relative interior of its domain (see
e.g. Hiriart-Urruty and Lemaréchal, 1993, Theorem 3.1.2 in Chapter IV). In such cases, we can
derive another type of bound based on Lipschitzness.
Lemma 2 (Lipschitzness-based bounds for the bias). If ϕ is L-Lipschitz with respect to the 1-norm,
we have ∣∣∣E [ϕ(p̂)]− ϕ(p)

∣∣∣ ≤ Ld

√
π

2m
. (12)

Proof. First of all, it holds that∣∣∣E [ϕ(p̂)]− ϕ(p)
∣∣∣ ≤E [|ϕ(p̂)− ϕ(p)|] (13)

≤LE

[
d∑

i=1

|p̂i − pi|

]
(by Lipschitzness) (14)

=L

d∑
i=1

E [|p̂i − pi|] . (15)

Each summand can be bounded by integrating Hoeffding’s tail bound (see, e.g., Theorem 2.2.6 of
(Vershynin, 2018)):

E [|p̂i − pi|] =
∫ ∞

0

P (|p̂i − pi| ≥ t) dt (16)

≤
∫ ∞

0

2 exp(−2mt2) dt (17)

=

√
π

2m
. (18)

Hence the result follows.

Lemma 2 suggests that the bias is at most O(1/
√
m), whereas Lemma 1 indicates a faster conver-

gence rate of O(1/m) whenever the supremum and infimum are finite.

Now, define
ϕErr(z) := min {z, 1− z} (19)

for z ∈ [0, 1]. We choose ϕ = ϕErr and apply Lemma 1 and Lemma 2 to show the following lemma.
Lemma 3. For each i ∈ [d], we have

−
√

π

2m
≤ E [ϕErr(p̂i)]− ϕErr(pi) ≤ 0. (20)

Furthermore, if pi ̸= 0.5, it holds that

− pi(1− pi)

m|2pi − 1|
≤ E [ϕErr(p̂i)]− ϕErr(pi) ≤ 0. (21)

6Although Gao et al. (2019) only discusses the univariate case, it is straightforward to extend the result to
the multivariate case.
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Proof. The lower bound of the first inequality is a direct consequences of Lemma 2 and the fact
that ϕErr is 1-Lipschitz. The upper bound follows from the concavity of ϕErr and the classic Jensen
inequality.

To prove the second inequality, we first assume 0 ≤ pi < 0.5. For any z ∈ [0, 1] \ {pi}, we have

h(z) =
ϕErr(z)− ϕErr(pi)− (z − pi)

(z − pi)2
=


0 for z ∈ [0, 0.5],
1− 2z

(z − pi)2
for z ∈ [0.5, 1],

(22)

and thus

− 1

1− 2pi
≤ h(z) ≤ 0. (23)

Therefore, Lemma 1 implies

− pi(1− pi)

m(1− 2pi)
≤ E [ϕErr(p̂i)]− ϕErr(pi) ≤ 0. (24)

Next, we assume 0.5 < pi ≤ 1. A similar argument proves − 1
2pi−1 ≤ h(z) ≤ 0 and

− pi(1− pi)

m(2pi − 1)
≤ E [ϕErr(p̂i)]− ϕErr(pi) ≤ 0. (25)

Combining (24) and (25) proves the second bound.

Note that Lemma 3 can be rewritten as

−min

{
LErr(pi)

m
,

√
π

2m

}
≤ E [ϕErr(p̂i)]− ϕErr(pi) ≤ 0, (26)

where

LErr(q) =


q(1− q)

|2q − 1|
if q ̸= 0.5,

+∞ if q = 0.5.
(27)

Fig. 5 shows the graph of the function LErr. Finally, Theorem 1 is proved as follows.

Proof of Theorem 1. Conditioning on x, let
{
y(j)
}m
j=1

be independent Bernoulli random variables

with mean η(x) and η̂ be their average 1
m

∑m
j=1 y

(j). Then, Lemma 3 gives

−min

{
LErr(η(x))

m
,

√
π

2m

}
≤ E [ϕErr(η̂) | x]− ϕErr(η(x)) ≤ 0. (28)

By taking expectation over x, we obtain

−E
[
min

{
LErr(η(x))

m
,

√
π

2m

}]
≤ E [ϕErr(η̂)]− E [ϕErr(η(x))] ≤ 0. (29)

Now the claim follows since E
[
Êrr∗(η̂1:n)

]
= E [ϕErr(η̂)] and Err∗ = E [ϕErr(η(x))].

B.2 PROOFS FOR OTHER RESULTS

B.2.1 SUPERIORITY OF THEOREM 1 OVER THE EXISTING RESULT

Proposition 1. Theorem 1 is tighter than the existing result (2) by Ishida et al. (2023) for all n,m ≥
1.
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Figure 5: The graph of the function LErr.
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Figure 6: The distribution of the soft labels for the positive class in the binarized CIFAR-10H dataset
(see Section 4.1 for details). You can see the two classes are very well-separated.

Proof. Our upper bound 0 is of course smaller than the upper bound in (2). As for the lower bounds,
we can see that the condition √

π

2m
≤ 1

2
√
m

+

√
log(2n

√
m)

m
(30)

is equivalent to

n
√
m ≥ 1

2
exp

(√
2π − 1

2

)2
 . (31)

The right-hand side is less than 1 so (31) always holds.
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B.2.2 FASTER DECAY RATE OF THE BIAS IN WELL-SEPARATED CASES (COROLLARY 1 &
EXAMPLE 1)

Proof of Corollary 1. By the assumption, we have

LErr(η(x)) =
η(x)(1− η(x))

2 |η(x)− 0.5|
≤ 1/4− c2

2c
(32)

almost surely. Combining this with Theorem 1, we obtain the result.

Proof of Example 1. Let f0, f1 be the densities of F0,F1, respectively. From the data generation
model, we can see that

η(x) =
νf0(x) + (1− ν)f1(x)

f0(x) + f1(x)
(33)

for any x ∈ X such that f0(x) > 0 or f1(x) > 0. Since the supports of F0,F1 are disjoint, we can
assume that

f0(x) > 0 =⇒ f1(x) = 0, f1(x) > 0 =⇒ f0(x) = 0 for any x ∈ X , (34)
which implies

η(x) =

{
ν if f0(x) > 0,
1− ν if f1(x) > 0.

(35)

Therefore, it holds that
|η(x)− 0.5| = |ν − 0.5| = c > 0 (36)

almost surely.

B.2.3 COMPUTABLE BOUND OF THE BIAS (COROLLARY 2)

Lemma 4. If Err∗ ≤ E, we have

P (ϕErr(η(x)) ≥ t) ≤ min

{
1,

E

t

}
(37)

for any t ∈ (0, 1/2].

Proof. Since ϕErr(η(x)) is a non-negative random variable with mean E [ϕErr(η(x))] = Err∗,
Markov’s inequality gives

P (ϕErr(η(x)) ≥ t) ≤ Err∗

t
≤ E

t
(38)

for any t > 0.

Proof of Corollary 2. Let z = ϕErr(η(x)). Since
η(x)(1− η(x))

|2η(x)− 1|
=

z(1− z)

1− 2z
, (39)

we have
η(x)(1− η(x))

|2η(x)− 1|
<

t(1− t)

1− 2t
(40)

if z < t. Therefore,

E
[
min

{
LErr(η(x))

m
,

√
π

2m

}]
(41)

≤ E
[√

π

2m
· 1 [z ≥ t] +

1

m
· t(1− t)

1− 2t
· 1 [z < t]

]
(42)

≤
√

π

2m
· P (z ≥ t) +

1

m
· t(1− t)

1− 2t
· 1. (43)

By using Lemma 4, we obtain

E
[
min

{
LErr(η(x))

m
,

√
π

2m

}]
≤
√

π

2m
·min

{
1,

E

t

}
+

1

m
· t(1− t)

1− 2t
. (44)

Combining this with Theorem 1 yields the result.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2.4 STATISTICAL CONSISTENCY

Corollary 3. (i) For any δ ∈ (0, 1), with probability at least 1− δ, we have∣∣∣Êrr∗(η̂1:n)− Err∗
∣∣∣ ≤√ log(2/δ)

2n
+

√
π

2m
. (45)

(ii) Suppose there exists a constant c > 0 such that |η(x)− 0.5| ≥ c holds almost surely. Then,
for any δ ∈ (0, 1), with probability at least 1− δ, we have∣∣∣Êrr∗(η̂1:n)− Err∗

∣∣∣ ≤√ log(2/δ)

2n
+

1− 4c2

8cm
. (46)

Proof. By Hoeffding’s inequality, we have∣∣∣Êrr∗(η̂1:n)− E
[
Êrr∗(η̂1:n)

]∣∣∣ (47)

≤
∣∣∣Êrr∗(η̂1:n)− E

[
Êrr∗(η̂1:n)

]∣∣∣+ ∣∣∣E [Êrr∗(η̂1:n)]− Err∗
∣∣∣ (48)

≤
√

log(2/δ)

2n
+
∣∣∣E [Êrr∗(η̂1:n)]− Err∗

∣∣∣ (49)

with probability greater than 1 − δ. By upper-bounding the second term using Theorem 1 and
Corollary 1, we obtain (45) and (46), respectively.

B.3 NUMERICAL EXPERIMENTS

Here, we examine the validity of our theory using synthetic datasets composed of instances drawn
from the following distributions.7

(a) The Gaussian mixture PX = 0.5 · P0 + 0.5 · P1 with P0 = N ((0, 0), I2) and P1 =
N ((2, 2), I2).

(b) The Gaussian mixture PX = 0.5·P0+0.5·P1 with the completely overlapping components
P0 = P1 = N ((0, 0), I2).

(c) The distribution with label flips discussed in Example 1. We set the label flip rate to ν = 0.1
and use the uniform distributions over [0, 1)2 and [1, 2)2 as F0 and F1, respectively. 8

Note that the “perfect separation” assumption of Corollary 1 is met only by (c). For each m =
10, 25, 50, 100, 250, 500, 1000, we perform the following procedure 1000 times:

(i) Sample n = 2000 instances from one of the distributions (a), (b) and (c).

(ii) For each instance xi, generate m hard labels y(1)i , . . . , y
(m)
i from the posterior class distri-

bution P(y | x = xi) and compute the approximate soft label η̂i = 1
m

∑m
j=1 y

(j)
i .

(iii) Compute the estimate Êrr∗ (η̂1:n).

Then, we approximate the expectation E
[
Êrr∗ (η̂1:n)

]
by the average of the 1000 estimates to cal-

culate the bias
∣∣∣E [Êrr∗ (η̂1:n)]− Err∗

∣∣∣.
Fig. 7 is a log-log plot showing the empirical bias (the blue solid line) as a function of m for each
setup. The corresponding theoretical bound (3) is also shown by the black dashed line.9 We note that

7This experiment takes around 1 hour for each distribution on a CPU.
8Note that the choice of base distributions F0,F1 does not matter as long as they satisfy the assumption

(34) because η is determined solely by the label flip rate ν; see (35).
9The expectation E

[
min

{
LErr(η(x))

m
,
√

π
2m

}]
is approximated by the sample average over 20000 data

points.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

the empirically observed bias is smaller than the theoretical bound in all the setups as expected. Our
theory accurately predicts the decay of the bias, especially in (a) and (b). If we fit a function of the
form mp to a bias curve, the slope of its graph corresponds to the exponent p. The slopes obtained
by least-squares fitting are −0.9066 for (a), −0.4970 for (b), and −0.4228 for (c). Recall that, the
two class-conditional distributions were completely overlapping with each other in (b). Thus the
slope close to −0.5 is as expected. What is somewhat interesting is the result for (a). Although
this setup does not satisfy the perfect separation assumption of Corollary 1, the observed bias decay
is approximately proportional to m−1. It suggests that the “fast” m−1 term dominates the “slow”
m−1/2 term. As for (c), examining the slope −0.4228 will not make much sense as the shape of the
graph Fig. 7c is far from being a straight line.
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Figure 7: The bias of the hard-label-based estimator Êrr∗ (η̂1:n) as a function of the number m of
hard labels per sample. The blue solid lines indicate the experimental results while the black dashed
lines indicate the theoretical upper bounds in Theorem 1.

C SUPPLEMENTARY FOR SECTION 3

In this section, we present the proof of Theorem 2. Section C.1 presents a new risk bound for
binary isotonic regression (Proposition 2) as well as a useful lemma for general shape-constrained
nonparametric regression problems (Lemma 5). Then, we employ these results to prove the theorem
in Section C.2.

C.1 RISK BOUND FOR BINARY ISOTONIC REGRESSION

C.1.1 NONPARAMETRIC REGRESSION AND ISOTONIC REGRESSION

Here, we introduce general nonparametric regression problems where we aim to estimate the under-
lying signal from noisy observations. Then, we describe the isotonic regression setting.

Let T be a set. Assume that, for each design point ti ∈ T , i = 1, . . . , n, we observe

yi = f∗(ti) + ξi, (50)

where f∗ : T → R is the unknown regression function and ξi ∈ R are independent and mean-zero
noise variables. A natural estimator would be the least squares estimator (LSE)

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

(yi − f(ti))
2 , (51)
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where F is some pre-defined function class. In the fixed design setting, the quality of an estimator
f̂ is evaluated by the ℓ2 risk

1

n

n∑
i=1

(
f̂(ti)− f∗(ti)

)2
. (52)

Under this criterion, estimators are evaluated only on the fixed design points ti so estimating the
function f∗ is equivalent to estimating the sequence/vector µ := (f∗(t1), . . . , f

∗(tn)) ∈ Rn.

From this perspective, the regression problem can be reformulated as follows. Our observation is an
n-dimensional random vector y = (y1, . . . , yn) ∈ Rn of the form

y = µ+ ξ. (53)

Here µ = (µ1, . . . , µn) ∈ Rn is the unknown signal and ξ = (ξ1, . . . , ξn) ∈ Rn is a centered noise
vector whose elements are independent. Let K ⊂ Rn be a closed convex subset from which we
choose our estimates, which corresponds to the function class F in the function estimation formu-
lation described above. Often it is assumed that the true signal µ indeed belongs to K. However,
in our results in Section C.1, we allow model misspecification, i.e., we do not assume µ ∈ K. The
LSE µ̂ is the Euclidean projection of y onto K:

µ̂ = argmin
u∈K

∥y − u∥22. (54)

Isotonic regression Isotonic regression is a special case where we choose K to be the collection
Mn of all non-decreasing sequences of length n:

Mn := {u ∈ Rn | u1 ≤ . . . ≤ un} . (55)

Note that Mn is a closed convex cone. Here the goal is to estimate isotonic, or monotonic, signals
from noisy observations. Recall that the LSE µ̂ is the Euclidean projection of the observation vector
y onto Mn:

µ̂ = argmin
u∈Mn

∥y − u∥22. (56)

It has the following explicit representation (Robertson et al., 1988), which is known as the min-max
formula:

µ̂i = min
l≥i

max
k≤i

ȳk:l, i = 1, . . . , n, (57)

where ȳk:l :=
1

l−k+1

∑l
i=k yi is the average of yk, . . . , yl. It can be efficiently computed with the

pool adjacent violators (PAV) algorithm (Ayer et al., 1955).

We are interested in evaluating the risk 1
n∥µ̂− µ∥22 of the LSE µ̂, which has been extensively

studied in the literature (e.g. Zhang, 2002; Chatterjee, 2014; Chatterjee et al., 2015; Bellec and
Tsybakov, 2015; Bellec, 2018; Yang and Barber, 2019; Chatterjee and Lafferty, 2019). We will
cover the results from these existing works later in Section C.1.2.

C.1.2 REVIEW OF THE EXISTING RISK BOUNDS FOR ISOTONIC REGRESSION

First, we introduce some notions that will be needed below. For each non-decreasing sequence
u ∈ Mn, we denote its total variation by

V (u) := max
i

ui −min
i

ui. (58)

We also let k(u) be the number of constant pieces in u. In other words, k(u)− 1 is the number of
the inequalities ui ≤ ui+1 that are strict, so the sequence u1, . . . , un has k(u)− 1 jumps in total.

For the cases where µ ∈ Mn and the noises have bounded variance E
[
ξ2i
]
≤ σ2, the following

bound on the expected risk was proven by Zhang (2002):

E
[
1

n
∥µ̂− µ∥22

]
≤ C

{(
σ2V (µ)

n

)2/3

+
σ2 log(en)

n

}
, (59)

where C ≤ 12.3 is an absolute constant. Chatterjee et al. (2015) showed this n−2/3 rate is minimax,
while providing another type of risk bound

E
[
1

n
∥µ̂− µ∥22

]
≤ 6 min

u∈Mn

{
1

n
∥u− µ∥22 +

σ2k(u)

n
log

en

k(u)

}
(60)
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under the assumptions that µ ∈ Mn and ξi are i.i.d. with finite variance E
[
ξ2i
]
= σ2. (60) is

adaptive, unlike (59), in the sense that it gives a parametric rate n−1/2 up to logarithmic factors
when the true signal µ is well-approximated by some u ∈ Mn with small k(u) (i.e., a piecewise
constant sequence with not too many pieces). Later, Bellec (2018) showed two types of bounds,
improving the previous results in the case of i.i.d. Gaussian noise ξ ∼ N(0, σ2In). In the first
result, they proved that, with probability greater than 1− e−x, we have

1

n
∥µ̂− µ∥22 ≤ min

u∈Mn

{
1

n
∥u− µ∥22 + 2cσ2

(
σ + V (u)

σn

)2/3
}

+
4σ2x

n
, (61)

where c is an absolute constant. A corresponding bound in expectation also can be derived by
integrating this high-probability bound. The second result is that, with probability at least 1− e−x,
we have

1

n
∥µ̂− µ∥22 ≤ min

u∈Mn

{
1

n
∥u− µ∥22 +

2σ2k(u)

n
log

en

k(u)

}
+

4σ2x

n
. (62)

A similar in-expectation bound

E
[
1

n
∥µ̂− µ∥22

]
≤ min

u∈Mn

{
1

n
∥u− µ∥22 +

σ2k(u)

n
log

en

k(u)

}
(63)

also holds. Bellec (2018)’s results, (61), (62) and (63), have several features worth mentioning.
First, their leading constants are 1. For this reason, these bounds are called sharp oracle inequalities.
Second, they are valid even under model misspecification, which (59) nor (60) allowed. Third, (61)
and (62) were the first oracle inequalities that were shown to hold with high probability, rather than
in expectation. The last point is especially important for our purpose, i.e., computing confidence
intervals. A major drawback of the results by Bellec (2018) is that they are restricted to Gaussian
noise. Yang and Barber (2019) employed their unique sliding window norm technique to prove the
following bound for general sub-Gaussian noise with variance proxy σ2:

E
[
1

n
∥µ̂− µ∥22

]
≤ 48

(
σ2V (µ) log(2n)

n

)2/3

+
96σ2 log2(2n)

n
(64)

Under model misspecification µ ̸∈ Mn, (64) still remains valid with µ replaced by its projection
onto Mn. A similar high-probability bound also can be derived by almost the same argument,
although they did not mention it in their paper.

C.1.3 METRIC ENTROPY BOUNDS FOR ISOTONIC CONSTRAINTS

For real numbers −∞ < a < b < ∞, we define the truncated version of the isotonic cone Mn as

Mn(a, b) := {x ∈ Rn | a ≤ x1 ≤ . . . ≤ xn ≤ b} . (65)

Mn(a, b) is not a cone, unlike Mn, but it is still a closed convex set. We also define the set of all
non-decreasing functions from [0, 1) to [0, 1]:

M := {f : [0, 1) → [0, 1] | f is non-decreasing} . (66)

Let (F , ∥·∥) be a subset of a normed function space. Given two functions l, u ∈ F with ∥u− l∥ ≤ ε,
the set

{f ∈ F | l ≤ f ≤ u} (67)
is called an ε-bracket (Van Der Vaart and Wellner, 1996). The ε-bracketing number N[ ](F , ∥·∥, ε)
of (F , ∥·∥) is the smallest number of ε-brackets needed to cover F . The logarithm of bracketing
numbers is called bracketing entropy.

Van Der Vaart and Wellner (1996, Theorem 2.7.5) and Gao and Wellner (2007, Theorem 1.1) proved
the ε-bracketing entropy of M is of order ε−1, i.e.,

logN[ ](M, ∥·∥Lp , ε) ≤ Cp

ε
, ∀ε > 0, (68)

where Cp > 0 is a universal constant depending only on p ∈ [1,∞) and ∥·∥Lp is the Lp norm
under Lebesgue measure. Later, Chatterjee (2014, Lemma 4.20) established a tool that enables us to
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convert the bracketing entropy bound (68) for monotone functions into a metric entropy bound for
monotone sequences. It has been commonly utilized in previous studies (Chatterjee, 2014; Bellec,
2018; Chatterjee and Lafferty, 2019). Although the original result by Chatterjee (2014) was stated
for the Euclidean norm ∥·∥2, results for other p-norms ∥·∥p, p ∈ [1,∞] can be obtained by a similar
argument. We state and prove this generalized version below.
Theorem 4. Take any p ∈ [1,∞). Then, we have

logN (Mn(a, b), ∥·∥p, ε) ≤
Cp(b− a)n1/p

ε
(69)

for ε > 0. Here Cp is the same constant as in (68).

Proof. Without loss of generality, we assume a = 0 and b = 1. First of all, note the general fact that
ε-covering number is upper-bounded by 2ε-bracketing number (see, e.g. Van Der Vaart and Wellner,
1996). This, together with the bracketing number bound (68), implies

logN (M, ∥·∥Lp , ε) ≤ logN[ ](M, ∥·∥Lp , 2ε) ≤ Cp

2ε
. (70)

Therefore, there exists an ε-net Ñ of the function class M with log|Ñ | ≤ Cp

2ε . Now set δ = 2n1/pε.
We will construct a δ-net N of the sequence class Mn(0, 1) based on Ñ . To this end, for each
monotone sequence u ∈ Mn(0, 1), we associate it with a monotone piecewise constant function
gu ∈ M of the form

gu(x) =

n∑
i=1

ui1

[
x ∈

[
i− 1

n
,
i

n

)]
. (71)

For each f ∈ Ñ , we check if f can be approximated by gu for some u ∈ Mn(0, 1) so that
∥f − gu∥Lp ≤ ε. If it can, we put one of the corresponding sequences u into N . By construction
of N , we have log |N | ≤ log|Ñ | ≤ Cp

2ε .

Next, we confirm N is indeed a δ-net of Mn(0, 1). Take any u ∈ Mn(0, 1). Then, since Ñ is a
ε-net of M and gu belongs to M, there exists f ∈ Ñ approximating gu so that

∥gu − f∥Lp ≤ ε. (72)

Now, observe that (72) implies “f ∈ Ñ can be approximated by gu for some u ∈ Mn(0, 1),” so
there is v ∈ N such that ∥f − gv∥Lp ≤ ε by the construction of N . So the triangle inequality
implies

∥gu − gv∥Lp ≤ ∥gu − f∥Lp + ∥f − gv∥Lp ≤ 2ε. (73)
On the other hand, the left-hand side can be explicitly calculated as follows.

∥gu − gv∥Lp =

(∫ 1

0

(gu − gv)
p

)1/p

=

(∫ 1

0

n∑
i=1

(ui − vi)
p
1

[
x ∈

[
i− 1

n
,
i

n

)])1/p

=

(
1

n

n∑
i=1

(ui − vii)
p

)1/p

=
∥u− v∥p

n1/p
. (74)

Therefore, it follows that, for any u ∈ Mn(0, 1), there exists v ∈ N such that

∥u− v∥p ≤ 2n1/pε = δ, (75)

which proves N is a δ-net of Mn(0, 1) with respect to p-norm. Thus, we have

logN (Mn(0, 1), ∥·∥p, δ) ≤ log |N | ≤ Cp

2ε
=

Cpn
1/p

δ
. (76)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.1.4 LEMMA FOR PROVING SHARP ORACLE INEQUALITIES

Here, we present a general lemma that we can use to prove a sharp oracle inequality for the LSE

µ̂ = argmin
u∈K

∥y − u∥22 = argmin
u∈K

∥(µ+ ξ)− u∥22 (77)

under a convex constraint K ⊂ Rn and a general noise ξ. Here “sharp” means that the resulting
oracle inequality has a leading constant 1. Lemma 5 below is a slight extension of the elegant
argument given by Bellec (2018, Theorem 2.3), which was given for the i.i.d. Gaussian noise setting.
In fact, it is essentially just a deterministic statement, so there is no requirement for the stochastic
structure of the noise ξ. Their key idea was to make use of convexity to obtain a stronger basic
inequality than usual. Here basic inequality refers to the elementary fact

∥µ̂− µ∥22 ≤ ∥u− µ∥22 + 2⟨ξ, µ̂− u⟩, ∀u ∈ K (78)

that holds even if K is non-convex. (78) immediately follows from the optimality of µ̂, i.e.,

∥y − µ̂∥22 ≤ ∥y − u∥22, ∀u ∈ K. (79)

Now suppose K is convex. Then, the LSE (i.e., the projection of y onto K) satisfies the variational
inequality

⟨u− µ̂,y − µ̂⟩ ≤ 0, ∀u ∈ K, (80)

which is an elementary result of convex geometry. Importantly, it implies

∥y − µ̂∥22 ≤ ∥y − u∥22 − ∥µ̂− u∥22, ∀u ∈ K. (81)

(81) can be seen as a strengthened version of (79) with the additional term −∥µ̂− u∥22. Therefore
it can be used to derive a stronger version of the basic inequality (78), i.e.,

∥µ̂− µ∥22 ≤ ∥u− µ∥22 + 2⟨ξ, µ̂− u⟩ − ∥µ̂− u∥22, ∀u ∈ K (82)

This is the inequality (2.3) in Bellec (2018). Following their method, we use this fact as the starting
point of the proof of Lemma 5. Recall that we do not require µ to belong to K. It can be any point
in Rn, i.e., we allow model misspecification.

Lemma 5 (Localized width and projection). Take any p ∈ [2,∞]. Let ξ,µ ∈ Rn be arbitrarily
fixed vectors and K ⊂ Rn be a convex set. Suppose that a point u ∈ K and positive numbers t, s
satisfy

Z(u, t) := sup
v∈K,∥v−u∥p≤t

⟨ξ,v − u⟩ ≤ t2

2
+ ts. (83)

Then, the projection µ̂ of µ+ ξ onto K satisfies

∥µ̂− µ∥22 ≤ ∥u− µ∥22 + (t+ s)
2 . (84)

Proof. For ease of notation, let

Kp(u, t) := {v ∈ K | ∥v − u∥p ≤ t} . (85)

Note that Z(u, t) = supv∈Kp(u,t)⟨ξ,v − u⟩. We break our analysis into two cases.

(i) If ∥µ̂− u∥p ≤ t, then µ̂ ∈ Kp(u, t). Therefore the basic inequality (82) implies

∥µ̂− µ∥22 − ∥u− µ∥22 ≤ 2⟨ξ, µ̂− u⟩ − ∥µ̂− u∥22 ≤ 2Z(u, t)− ∥µ̂− u∥22 ≤ 2Z(u, t).
(86)

Now use the assumption (83) to obtain

∥µ̂− µ∥22 − ∥u− µ∥22 ≤ t2 + 2ts ≤ (t+ s)
2 . (87)

(ii) Next, suppose ∥µ̂− u∥p > t. Letting α := t/∥µ̂− u∥p, we have α ∈ (0, 1). Now
take v := u + α(µ̂ − u). Then, the convexity of K implies v ∈ K, and clearly, we have
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∥v − u∥p = t, so v is a member of Kp(u, t). Therefore, we can plug µ̂−u = α−1(v−u)
into the basic inequality (82) to obtain

∥µ̂− µ∥22 − ∥u− µ∥22 ≤ 2⟨ξ, µ̂− u⟩ − ∥µ̂− u∥22 (88)

=
2

α
⟨ξ,v − u⟩ − ∥v − u∥22

α2
(89)

≤ 2

α
Z(u, t)− t2

α2
(90)

= 2
Z(u, t)

t

t

α
−
(
t

α

)2

(91)

≤
(
Z(u, t)

t

)2

, (92)

where we used ∥v − u∥22 ≥ ∥v − u∥2p = t2 in (90) and 2ab − b2 ≤ a2 in (92). Now, the
the assumption (83) readily implies

∥µ̂− µ∥22 − ∥u− µ∥22 ≤
(
t

2
+ s

)2

≤ (t+ s)
2 (93)

Therefore the claim is true for both cases.

C.1.5 RISK BOUND FOR BINARY ISOTONIC REGRESSION

In the sequel, we apply the general results stated in the previous sections to investigate the binary
isotonic regression problem. In binary regression, we are given n binary observations yi ∈ {0, 1},
each of which is drawn independently from the Bernoulli distribution with mean µi ∈ [0, 1]. The
noise distribution can be described as

P (ξi = 1− µi) = µi, P (ξi = −µi) = 1− µi. (94)

Many calibration methods for probabilistic classification, including calibration by isotonic regres-
sion (Zadrozny and Elkan, 2002), can be seen as an instance of binary regression problems. Some
authors refer to this setup as the Bernoulli model (Yang and Barber, 2019).

To the best of our knowledge, there is no previous work that investigated risk bounds in binary
isotonic regression. Here, we derive a new risk bound for this setting. Recall the definitions of the
isotonic cone Mn and its truncation Mn(a, b) (see (55) and (65)):

Mn = {u ∈ Rn | u1 ≤ . . . ≤ un} , (95)
Mn(a, b) = {u ∈ Rn | a ≤ u1 ≤ . . . ≤ un ≤ b} (−∞ < a < b < ∞). (96)

From the min-max formula (57), one can observe that the unbounded set Mn can be replaced with
the bounded closed convex set Mn(0, 1) in binary isotonic regression. In other words, the least
squares estimator for the binary isotonic regression problem can be written as

µ̂ = argmin
u∈Mn(0,1)

∥y − u∥22. (97)

It leads to the following result.
Proposition 2. With probability at least 1− e−x, we have

1

n
∥µ̂− µ∥22 ≤ min

u∈Mn(0,1)

1

n
∥u− µ∥22 +

((
C

n

)1/3

+

√
2x

n

)2

, (98)

where C is an absolute constant.
Remark.

(i) Thanks to the replacement of the unbounded set Mn with the bounded set Mn(0, 1),
we do not have to go through the additional “pealing” step used in Chatterjee (2014) and
Chatterjee and Lafferty (2019).
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(ii) This result is valid even under model misspecification.

Proof. For any u ∈ Mn(0, 1) and t > 0, let

K(u, t) := {v ∈ Mn(0, 1) | ∥v − u∥2 ≤ t} , (99)
Z(u, t) := sup

v∈K(u,t)

⟨ξ,v − u⟩. (100)

We first control the expectation E [Z(u, t)]. To this end, observe that the process (Xv)v∈K(u,t),
where Xv := ⟨ξ,v − u⟩, is a sub-Gaussian process, i.e., for any v1,v2 ∈ T , we have E [Xv1

] = 0
and

logE
[
eλ(Xv2−Xv1 )

]
≤ λ2∥v2 − v1∥22

8
, ∀λ ≥ 0. (101)

Now combining Dudley’s chaining technique (see e.g. van Handel, 2016, Corollary 5.25) and the
metric entropy bound in Theorem 4 gives

E [Z(u, t)] ≤ 6

∫ t

0

√
logN (K(u, t), ∥·∥2, ε) dε

≤ 6

∫ t

0

√
C2

√
n

ε
dε

= 12C
1/2
2 n1/4t1/2, (102)

where C2 is the constant appearing in (68).

Moreover, it is straightforward to see that, for each fixed u and t, Z(u, t) is a convex t-Lipschitz
function of ξ. Therefore, by using Theorem 6.10 in Boucheron et al. (2013) together with (102),
with probability greater than 1− e−x, we have

Z(u, t) ≤ E [Z(u, t)] + t
√
2x ≤ 12C

1/2
2 n1/4t1/2 + t

√
2x. (103)

Now, define t∗ := 4(9C2)
1/3n1/6 and observe that we have 12C

1/2
2 n1/4t1/2 ≤ t2

2 for any t ≥ t∗.
Therefore, Lemma 5 yields

∥µ̂− µ∥22 ≤ ∥u− µ∥22 +
(
t∗ +

√
2x
)2

≤
(
∥u− µ∥2 + t∗ +

√
2x
)2

(104)

with probability at least 1 − e−x. we obtain the result by dividing both sides by n and taking the
minimum over all u ∈ Mn(0, 1).

C.2 PROOF OF THEOREM 2

We are just one lemma away from proving our main theorem. The following lemma states that
the error between the two estimates with different sets of soft labels can be upper bounded by the
root-mean-square error between them.
Lemma 6. For any set of soft labels {η′i}

n
i=1 ∈ [0, 1]n, it holds that

∣∣∣Êrr∗(η′1:n)− Êrr∗(η1:n)
∣∣∣ ≤ 1

n

n∑
i=1

|η′i − ηi| ≤

√√√√ 1

n

n∑
i=1

(η′i − ηi)
2. (105)

Proof. Since x ∈ [0, 1] 7→ min {x, 1− x} is 1-Lipschitz, we have∣∣∣Êrr∗(η′1:n)− Êrr∗(η1:n)
∣∣∣ ≤ 1

n

n∑
i=1

|min {η′i, 1− η′i} −min {ηi, 1− ηi}| (106)

≤ 1

n

n∑
i=1

|η′i − ηi| . (107)

The second inequality follows from Jensen’s inequality.
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We can finally prove Theorem 2.

Proof. By the triangle inequality, we have∣∣∣Êrr∗(η̂iso1:n)− Err∗
∣∣∣ ≤ ∣∣∣Êrr∗(η̂iso1:n)− Êrr∗(η1:n)

∣∣∣+ ∣∣∣Êrr∗(η1:n)− Err∗
∣∣∣ . (108)

Using Lemma 6 for the first term and Proposition 3.2 of Ishida et al. (2023) for the second term, we
have ∣∣∣Êrr∗(η̂iso1:n)− Err∗

∣∣∣ ≤
√√√√ 1

n

n∑
i=1

(
η̂isoi − ηi

)2
+

√
log(4/δ)

8n
(109)

with probability at least 1− δ/2. Now, we evaluate the first term on the right-hand side by applying
Proposition 2 for µ = (η(1), . . . , η(n)). Conditioned on {xi}ni=1, with probability at least 1 − δ/2,
we have

1

n

n∑
i=1

(
η̂isoi − ηi

)2 ≤ min
u∈Mn(0,1)

1

n

n∑
i=1

(
ui − η(i)

)2
+

((
C

n

)1/3

+

√
2 log(2/δ)

n

)2

. (110)

Since f is increasing and η̃(1) = f(η(1)) ≤ · · · ≤ η̃(n) = f(η(n)), we have η(1) ≤ · · · ≤ η(n), i.e.,

(η(1), . . . , η(n)) ∈ Mn. Therefore, minu∈Mn(0,1)
1
n

∑n
i=1

(
ui − η(i)

)2
is zero as we can choose

u = (η(1), . . . , η(n)). As a result, we have√√√√ 1

n

n∑
i=1

(
η̂isoi − ηi

)2 ≤
(
C

n

)1/3

+

√
2 log(2/δ)

n
. (111)

Plugging (111) into (109) and rewriting C1/3 as C, we have∣∣∣Êrr∗(η̂iso1:n)− Err∗
∣∣∣ ≤ C

n1/3
+ 2

√
2 log(2/δ)

n
(112)

with probability at least 1− δ.

We can also prove an extension to the case where random noise is added to the corrupted soft labels.

Proof of Theorem 3. By the same argument as in the main theorem proof, we have

∣∣∣Êrr∗(η̂iso1:n)− Err∗
∣∣∣ ≤

√√√√ 1

n

n∑
i=1

(
η̂isoi − ηi

)2
+

√
log(6/δ)

8n
(113)

with probability at least 1 − δ/3. Also, conditioned on {xi}ni=1, with probability at least 1 − δ/3,
we have

1

n

n∑
i=1

(
η̂isoi − ηi

)2 ≤ min
u∈Mn(0,1)

1

n

n∑
i=1

(
ui − η(i)

)2
+

((
C

n

)1/3

+

√
2 log(3/δ)

n

)2

. (114)

Now, under the new assumption, f has an inverse function f−1, which is also differentiable and
increasing. Therefore, the mean value theorem gives

η(i) = f−1(η̃(i))−
ε(i)

f ′(t(i))
(115)

for some t(i) ∈ (0, 1), which means

min
u∈Mn(0,1)

1

n

n∑
i=1

(ui − η(i))
2 ≤ 2

n
min

u∈Mn(0,1)

n∑
i=1

(ui − f−1(η̃(i)))
2 +

2

n

n∑
i=1

ε2(i)

f ′(t(i))2
. (116)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Since f−1 is increasing and ˜η(1) ≤ · · · ≤ ˜η(n), the first term vanishes by choosing ui = f−1(η̃(i)).
By using the assumption that f ′ ≥ c, we obtain

min
u∈Mn(0,1)

1

n

n∑
i=1

(ui − η(i))
2 ≤ 2

c2n

n∑
i=1

ε2(i). (117)

Since ε2(i) ∈ [0, 1] and E
[
ε2(i)

]
≤ σ2 for each i, the Hoeffding’s inequality gives

1

n

n∑
i=1

ε2(i) ≤ σ2 +

√
log(3/δ)

2n
(118)

with probability at least 1− δ/3.

By combining the above bounds, there exists a constant C ′ > 0 such that∣∣∣Êrr∗(η̂iso1:n)− Err∗
∣∣∣ ≤ C ′

(
σ +

1

n1/3
+

√
log(1/δ)

n

)
(119)

holds with probability at least 1− δ.

D EXPERIMENTAL DETAILS

We utilized the scikit-learn library (Pedregosa et al., 2011), version 1.6.1, for isotonic re-
gression. We used the implementation of the histogram binning algorithm provided by the
uncertainty-calibration package (version 0.1.4; Kumar et al., 2019). We employed the
beta-calibration implementation provided in the betacal package (version 1.1.0; Kull et al., 2017).
We used the bootstrap function from the SciPy library (Virtanen et al., 2020), version 1.15.3, to
obtain 95% bootstrap confidence intervals. For each estimation method, the experiment took around
20–30 minutes on a CPU.

For the sake of comparison in Fig. 4c, we trained a ResNet-18 (He et al., 2016) on Fashion-MNIST
for 100 epochs with a batch size of 128 using the Adam optimizer with a learning rate of 0.001. It
took less than an hour.

Our experiments do not require any special computer resouces. All of them were conducted on the
CPU of a single Apple MacBook Pro (M1 chip, 16GB RAM) except for the ResNet training where
we used a T4 GPU on Google Colab.

D.1 CORRUPTION PARAMETERS

In experiments with synthetic mixture-of-gaussians data, we used the following corruption function:

f(p; a, b) =

(
1 +

(
1− p

p

)1/a
1− b

b

)−1

, 0 < p < 1, a ≥ 0, 0 < b < 1. (120)

Fig. 8 shows the graph of f(p; a, b) for various values of the parameters a and b. As you can see, the
parameter a makes the soft labels over-confident when a < 1, leading to an underestimation of the
Bayes error, and under-confident when a > 1, causing an overestimation. On the other hand, setting
b to values other than 0.5 results in asymmetric, skewed corruption.

We conducted the same experiment as in Fig. 4a for various values of a and b. The results are shown
in Fig. 9. Our calibration-based estimators consistently succeed in preventing over- or underestima-
tion of the Bayes error across all sets of parameter values.
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Figure 8: The corruption function f(p; a, b) for various parameters a and b.
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(e) a = 0.4, b = 0.9

cle
an ha

rd

cor
rup

ted

iso
ton

ic
his

t10
his

t25
his

t50

his
t10

0
be

ta
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Es
ti

m
at

ed
 B

ay
es

 e
rr

or
 (

%
)

(f) a = 2, b = 0.9

Figure 9: The estimated Bayes error for the synthetic dataset with various corruption parameters a
and b.
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D.2 VIOLATION OF THE ASSUMPTION OF THEOREM 3

In Section 3, we presented Theorem 3, which provides a theoretical guarantee for our Bayes error
estimator based on isotonic calibration when the corruption is noisy. This result assumes that the
derivative of the function f satisfies f ′ ≥ c for some strictly positive constant c. Theoretically, it is
still unclear what happens when this assumption is violated, i.e., when f ′ can be arbitrarily close to
zero. Here we empirically investigate the effects of such a violation using synthetic data.

D.2.1 EXPERIMENTAL SETTINGS

We draw n = 10000 data points {xi}ni=1 from a Gaussian mixture PX = 0.6 · P0 + 0.4 · P1,
where P0 = N ((0, 0), I2), P1 = N ((2, 2), I2).10 For each data point xi, we generate its soft
label η̃i by sampling m = 3, 5, 10, 25, 50, 100 hard labels from the corrupted posterior distribution
Bern(f(η(xi); a, b))

11 and taking their average. In other words, we obtain the soft label for xi as
a draw from Binom(m, f(η(xi); a, b)) divided by m. by drawing from Binom(m, f(η(xi); a, b))
and dividing the result by m. By changing the number m of hard labels, we can create different
noise levels σ = O( 1√

m
): the smaller m gets, the greater the noise level becomes. We consider two

sets of corruption parameters: (a, b) = (2, 0.5) and (a, b) = (0.4, 0.5). As we saw in Section D.1,
the former corresponds to under-confident soft labels, and the latter corresponds to over-confident
soft labels. Note that the former satisfies the assumption of Theorem 3 while the latter does not, i.e.,
the derivative f ′ can be arbitrarily small. You can see this visually in Fig. 8. Then, we estimate the
Bayes error from these corrupted soft labels {η̃i}ni=1 using the following methods (which we used
in Section 4.1):

(i) corrupted: the estimator with corrupted soft labels, i.e., Êrr∗ (η̃1:n).
(ii) The estimator with soft labels obtained by calibrating the corrupted soft labels. We use

the following calibration algorithms: isotonic calibration (isotonic), uniform-mass his-
togram binning with 10, 25, 50 and 100 bins (hist10, hist25, hist50 and hist100),
and beta calibration (beta).

As in Section 4, we use 1000 bootstrap resamples to compute a 95% confidence interval for each
method.

D.2.2 RESULTS

Fig. 10 shows the estimated Bayes error for various numbers m of hard labels per data point. The
black dashed lines indicate the Bayes error estimated with clean soft labels, which is expected
to be a good approximation of the true Bayes error. All the non-parametric calibration methods
(isotonic and hist*) perform similarly. However, parametric beta calibration (beta) performs
poorly.

Particularly, when (a, b) = (0.4, 0.5) and the assumption of Theorem 3 is violated, the more we
add hard labels per data point the worse the estimation performance gets even though the noise
level decreases. In the large-m (i.e., small noise level) regime, beta calibration goes “too far” and
consistently overestimates the Bayes error. On the other hand, isotonic calibration and histogram
binning perform consistently well, even for relatively small m. When (a, b) = (2, 0.5) and the
assumption of Theorem 3 is satisfied, the performance of all the methods tends to improve as the
noise level decreases. However, isotonic calibration and histogram binning still outperform beta
calibration, especially for small m.

These results suggest that isotonic calibration and histogram binning are relatively robust to cor-
ruption functions with small derivative, whereas beta calibration is not. It is interesting that beta
calibration performs so poorly when it is a well-specified parametric model in a sense, i.e., the cor-
ruption function f is an inverse function of the beta calibration map. This fact suggests that choosing
appropriate calibration methods, such as isotonic calibration, is crucial in our algorithm design.

Another interesting thing is that corrupted’s performance becomes worse as the number m of
hard labels per data point increases when (a, b) = (2, 0.5). This would be because, as we sample

10This is the same distribution as we used in Section 4.1.
11Bern(p) is the Bernoulli distribution with mean p.
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Figure 10: The Bayes error estimated by directly using corrupted soft labels (corrupted) and by
calibrating them (others) for various numbers m of hard labels per data point. The 95% bootstrap
confidence intervals are shown as shaded regions around each line. The black dashed lines indicate
the Bayes error estimated with clean soft labels, which is expected to be a good approximation of
the true Bayes error.

more hard labels, the resulting soft labels are pulled towards the corrupted posterior mean, which
makes them more biased. This result highlights the need to calibrate soft labels.
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D.3 FURTHER EXPERIMENTS

In this section, we conduct the experiment that we saw in Section 4.1 for a broader range of datasets
and calibration algorithms.

D.3.1 DATASETS

In Section 4.1, we used Synthetic, CIFAR-10, and Fashion-MNIST, each of which contains n =
10, 000 data points. Here, we describe the additional datasets that we use in this section.

ICLR peer-review datasets We put together new datasets, which consist of n = 32, 829 instances
of peer-review results for the past ICLR conferences. Peer-review can be considered as a binary
classification task (accept/reject). We used our datasets to estimate the Bayes error of the ICLR
reviews, which is the probability that the ideal, most prominent possible reviewer mistakenly rejects
a good paper or accepts a bad paper. It can be regarded as representing the inherent difficulty of the
review task.

For each paper submission xi, we utilized the OpenReview API to retrieve:

• Scores s(j)i and confidences c(j)i by the reviewers (j = 1, ..., #reviewers)
• The final decision yi: accept (yi = 1) or reject (yi = 0)

The averaged score si is calculated as si =
∑

j c
(j)
i s

(j)
i∑

j c
(j)
i

. We can then obtain a soft label η̃i for xi by

normalizing the averaged score si to fit into [0, 1]. Of course, this soft label η̃i should be considered
as corrupted, so we apply isotonic calibration (and other calibration algorithms) before using them
to estimate the Bayes error.

We merged data from ICLR 2017–2025 to construct a dataset consisting of n = 32, 829 examples,
each of which has a corrupted soft label (i.e., normalized average score) and a single hard label (i.e.,
final decision) for calibration. We also conducted experiments with single-year datasets (ICLR2017,
..., ICLR2025).

ChaosNLI ChaosNLI (Nie et al., 2020; Zhou et al., 2022) is a natural language processing dataset
with 100 hard labels per data point. It consists of three sub-datasets: SNLI (n = 1, 514), MNLI
(n = 1, 599) and AbductiveNLI (n = 1, 532).

D.3.2 CALIBRATION ALGORITHMS

In addition to the calibration algorithms mentioned in Section 4.1 ( isotonic, hist10, hist25,
hist50, hist100, beta, ), here we also investigate the following four parametric calibration
algorithms: platt, beta-am, beta-ab, and beta-a. platt is the classic Platt scaling (Platt,
1999) and each beta-* is a variant of beta calibration. Beta calibration is a calibration method
with three adjustable parameters a, b,m, and this is what we have been using as beta since the
initial submission. The ‘beta-*‘ variants are beta calibration with restricted parameters, which were
also mentioned in the original beta calibration paper (Kull et al., 2017):

• beta-am: a and m are adjustable; b is fixed to b = a.
• beta-ab: a and b are adjustable; m is fixed to m = 1/2.
• beta-a: only a is adjustable; b,m is fixed to b = a,m = 1/2.

D.3.3 RESULTS

The results are shown in Fig. 11p. For ChaosNLI datasets (SNLI, MNLI, AbductiveNLI), their
GitHub repository provides predictions of some pre-trained models. As a reference value, we show
the best error rates among them as the dashed horizontal lines in Figures 11d to 11f. A problem
in these experiments is that, especially for real-world (non-synthetic) datasets, it is hard to decide
which calibration algorithm is the best, since the true Bayes error is unknown. We will solve this
problem in Section D.4.
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(a) Synthetic (BCa)
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(b) CIFAR-10
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(c) Fashion-MNIST
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(f) AbductiveNLI
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(g) ICLR2017–2025
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(h) ICLR2017

Figure 11: Estimated Bayes error across various calibration algorithms and datasets.
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(i) ICLR2018
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(j) ICLR2019
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(k) ICLR2020
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(l) ICLR2021
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(m) ICLR2022
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(n) ICLR2023

cor
rup

ted

iso
ton

ic
his

t10
his

t25
his

t50

his
t10

0
be

ta

be
ta-

am
be

ta-
ab

be
ta-

a
pla

tt
0

10

20

30

40

Es
ti

m
at

ed
 B

ay
es

 e
rr

or
 (

%
)

(o) ICLR2024
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(p) ICLR2025

Figure 11: Estimated Bayes error across various calibration algorithms and datasets (continued).
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D.4 EVALUATING CALIBRATION ALGORITHMS AGAINST REAL-WORLD DATASETS WITH
FEEBEE

In this section, we first review FeeBee (Renggli et al., 2021), a real-world evaluation framework
for Bayes error estimators. Then, we present experimental results of various calibration algorithms
evaluated using FeeBee.

D.4.1 REVIEW OF FEEBEE

In the long history of the field of Bayes error estimation, evaluation of estimators on real-world
datasets has been a challenging task. For synthetic datasets, one can easily compute exact or ap-
proximate Bayes error rates; however, for real-world datasets, it is practically impossible to obtain
ground-truth Bayes error rates as they depend on the unknown data distribution. Of course, it is
trivial to obtain a lower bound and an upper bound of the Bayes error rate: if we have a classifier
with error rate E on a dataset, then the Bayes error rate should be somewhere between 0 and E.
However, such bounds are not informative enough. For example, constant estimators that always
return any value between 0 and E are technically valid from this perspective, but they are obviously
useless in practice.

To address this issue, Renggli et al. (2021) proposed an evaluation framework called FeeBee. The
key idea of FeeBee is to generate a series of datasets from a given real-world dataset by injecting
various levels of synthetic label noise. To be more specific, for a noise level ρ ∈ [0, 1], FeeBee
generates a new dataset by replacing each original label Y with a uniformly random label U with
probability ρ:

Yρ := Z · U + (1− Z) · Y , (121)
where Z ∼ Bernoulli(ρ). Importantly, there is a simple relationship between the Bayes error rates
Err∗ on the original dataset and Err∗ρ on the noise-injected dataset:

Err∗ρ = ρ · 1
2
+ (1− ρ) · Err∗. (122)

Since 0 ≤ Err∗ ≤ E, we can derive the following bounds on Err∗ρ:

L(ρ) :=
ρ

2
≤ Err∗ρ ≤ ρ

2
+ (1− ρ)E =: U(ρ). (123)

Based on this observation, FeeBee first generates many noise-injected datasets with different noise
levels ρ ∈ [0, 1], and then evaluates a given Bayes error estimator on each of them. Ideally, the
resulting estimates Êrr∗ρ should lie within the bounds [L(ρ), U(ρ)] given in (123). If the estimates
fall outside the bounds, we penalize the estimator by the amount of violation. By aggregating the
penalties over all noise levels, we can obtain a single score for the estimator on the given real-world
dataset:

FeeBee :=

∫ 1

0

[(
Êrr∗ρ − U(ρ)

)
+
+
(
L(ρ)− Êrr∗ρ

)
+

]
dρ, (124)

where (x)+ := max{x, 0}. In practice, the integral can be approximated by a finite sum: for a
sufficiently large N ∈ N, the approximate FeeBee score can be computed as

FeeBee ≈ 1

N + 1

N∑
i=0

[(
Êrr∗ρi

− U(ρi)
)
+
+
(
L(ρi)− Êrr∗ρi

)
+

]
, (125)

where ρi := i
N (i = 0, 1, . . . , N). The lower the FeeBee score is, the better the estimator is. FeeBee

provides a practical way to evaluate Bayes error estimators on real-world datasets without requiring
knowledge of the true Bayes error rates.

D.4.2 COMPARING CALIBRATION ALGORITHMS USING FEEBEE

Here, we present experimental results where various calibration algorithms are evaluated using the
FeeBee framework. We use the following real-world datasets: CIFAR-10/CIFAR-10H, Fashion-
MNIST/Fashion-MNIST-H, SNLI, MNLI, AbductiveNLI, ICLR2017-2025, ICLR2017, . . . , and
ICLR2025. For each dataset, we compare the FeeBee scores of the following calibration algorithms:
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Table 1: FeeBee scores of calibration algorithms across real-world datasets (lower is better). The
best scores for each dataset are highlighted in bold.

Dataset

Calibration algorithm CIFAR-10 Fashion-MNIST SNLI MNLI AbductiveNLI

isotonic 0.1131 0.1200 0.1025 0.0908 0.0721

hist
min. 0.1644 0.1568 0.1117 0.0941 0.0944
max. 0.1670 0.1592 0.1163 0.0986 0.0979

beta 0.1701 0.1782 0.1167 0.0966 0.1306
beta-am 0.1694 0.1792 0.1138 0.0971 0.1270
beta-ab 0.1698 0.1806 0.1168 0.0974 0.1263
beta-a 0.1702 0.1785 0.1144 0.0995 0.1254
platt 0.1677 0.1659 0.1297 0.1106 0.1095

Dataset

Calibration algorithm ICLR2017-2025 ICLR2017 ICLR2018 ICLR2019 ICLR2020

isotonic 0.0276 0.0104 0.0195 0.0235 0.0354

hist
min. 0.0660 0.0824 0.0716 0.0702 0.0708
max. 0.0670 0.0852 0.0739 0.0727 0.0738

beta 0.0565 0.0539 0.0536 0.0556 0.0586
beta-am 0.0562 0.0542 0.0567 0.0576 0.0610
beta-ab 0.0556 0.0551 0.0543 0.0584 0.0580
beta-a 0.0551 0.0537 0.0554 0.0570 0.0588
platt 0.0610 0.0544 0.0579 0.0611 0.0682

Dataset

Calibration algorithm ICLR2021 ICLR2022 ICLR2023 ICLR2024 ICLR2025

isotonic 0.0288 0.0089 0.0092 0.0351 0.0326

hist
min. 0.0688 0.0675 0.0677 0.0653 0.0673
max. 0.0712 0.0693 0.0696 0.0669 0.0686

beta 0.0599 0.0460 0.0487 0.0612 0.0599
beta-am 0.0600 0.0483 0.0482 0.0598 0.0606
beta-ab 0.0595 0.0458 0.0481 0.0606 0.0601
beta-a 0.0592 0.0441 0.0476 0.0604 0.0601
platt 0.0631 0.0520 0.0536 0.0661 0.0656

isotonic calibration (isotonic), histogram binning (hist), full three-parameter beta calibration
(beta), beta calibration with b = a (beta-am), beta calibration with m = 1

2 (beta-ab), beta
calibration with b = a,m = 1

2 (beta-a), and Platt scaling (platt). For histogram binning, we
test various numbers of bins (10, 15, 20, . . . , n

2 , where n is the number of data points) and report the
best and the worst scores among them. We set N = 100 for the approximation of FeeBee scores.

Choosing E To compute the FeeBee scores, we need to choose a classifier error rate E for each
dataset. For image classification datasets (CIFAR-10 & Fashion-MNIST), we use the error rates
of Vision Transformer (ViT) models as we have seen in Section 4. For natural language inference
datasets (SNLI, MNLI & AbductiveNLI), the ChaosNLI GitHub repository provides predictions of
some pre-trained models. We use the best error rates among them as E. For the ICLR peer-review
datasets, we do not have any pre-trained models, so we simply set E to the overall acceptance rate,
which is the error rate of a trivial reviewer who rejects any given paper no matter what.

Results The results are shown in Table 1. Isotonic calibration (isotonic) performs the best
among the calibration methods across all datasets, often by a large margin. It strongly supports our
choice of isotonic calibration as the soft label calibrator for Bayes error estimation. It not only has
a solid theoretical guarantee (Theorem 2 and Theorem 3) but has also been shown to perform the
best empirically for various real-world datasets. This again highlights that choosing an appropriate
calibration algorithm is key to successful estimation of the Bayes error.
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D.5 ORDER BREAKAGE

Theorem 2 and Theorem 3 assume that the corruption function f is order-preserving although the
latter theorem allows random noise to be added after the order-preserving transformation. To analyze
how much the estimation performance degrades when the order-preserving assumption is violated,
we conducted experiments on synthetic datasets where we can control the degree of order breakage.

Let f be the corruption function used in Section 4. We define a new, non-order-preserving corruption
fσ as follows:

fσ(η) = sigmoid(logit(f(η)) + z), where z ∼ N (0, σ2). (126)
Here, σ controls the amount of fluctuation added after the order-preserving transformation f . By in-
creasing σ, we can increase the degree of order breakage. We first consider the case where corrupted
soft labels are obtained as η̃i = fσ(ηi). We also consider the “non-monotonic skew + random noise”
setting, i.e., we obtain corrupted soft labels as an average of m independent hard labels sampled from
posteriors skewed by the above non-order-preserving corruption:

η̃i =
1

m

m∑
j=1

y
(j)
i , (127)

where y
(j)
i ∼ Bernoulli (fσ(ηi)) , z ∼ N (0, σ2). (128)

To quantify the degree of order breakage, we use the Kendall tau (Kendall, 1938) between ηi and
fσ(ηi). The Kendall tau or Kendall’s rank correlation coefficient is a non-parametric measure of
ordinal correspondence or monotonicity between two variables. It takes values in [−1, 1]. If the
relationship between two variables is completely increasing, the Kendall tau becomes 1. If they
are in a completely decreasing relationship, it takes a value of −1. Given the Kendall tau τ , the
probability of order breakage (in our case, the frequency that we have ηi ≤ ηj , fσ(ηi) > fσ(ηj) or
vice versa for a randomly picked pair i < j) can be obtained as 1−τ

2 .

We conducted experiments as below using the same Gaussian mixture model as in Section 4. For
various order breakage levels σ = 10−10, 10−9, . . . , 100, we estimated the Bayes error from a
dataset containing n = 10, 000 corrupted soft labels generated as η̃i = fσ(ηi) or from m = 50 hard
labels sampled from posteriors skewed by fσ . Fig. 12 shows the estimated Bayes error as a function
of the Kendall tau between ηi and fσ(ηi). The black dashed line indicates the Bayes error estimated
using the clean/true soft labels and is supposed to be a good approximation of the true Bayes error.

As expected, the estimation performance degrades as the degree of order breakage increases (i.e., as
the Kendall tau decreases). However, in the noiseless setting (Fig. 12a), all the estimators produced
estimates almost indistinguishable from the true Bayes error when the Kendall tau is sufficiently
large (say, when τ ≥ 0.95 or when the order breakage probability is less than 2.5%). For the noisy
setting (Fig. 12b), the results are a bit different. Overall, the estimation performance improves as
the Kendall tau increases, but for beta calibration and its variants, the estimates never get very close
to the true Bayes error even when the Kendall tau is nearly 1. Other calibration methods, including
isotonic calibration, produced estimates fairly close to the true Bayes error (but not as close as in the
noiseless setting) for sufficiently high Kendall tau values.
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(a) Non-order-preserving corruption without additional noise.
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(b) Non-order-preserving corruption with additional noise, i.e., the case where corrupted soft labels
are obtained by averaging m = 50 independent hard labels sampled from posteriors skewed by the
non-order-preserving corruption.

Figure 12: Kendall tau and order breakage on synthetic logit Gaussian datasets with and without
binomial noise.
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