

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PRACTICAL ESTIMATION OF THE OPTIMAL CLASSIFICATION ERROR WITH SOFT LABELS AND CALIBRATION

Anonymous authors

Paper under double-blind review

ABSTRACT

While the performance of machine learning systems has experienced significant improvement in recent years, relatively little attention has been paid to the fundamental question: to what extent can we improve our models? This paper provides a means of answering this question in the setting of binary classification, which is practical and theoretically supported. We extend a previous work that utilizes soft labels for estimating the Bayes error, the optimal error rate, in two important ways. First, we theoretically investigate the properties of the bias of the hard-label-based estimator discussed in the original work. We reveal that the decay rate of the bias is adaptive to how well the two class-conditional distributions are separated, and it can decay significantly faster than the previous result suggested as the number of hard labels per instance grows. Second, we tackle a more challenging problem setting: estimation with *corrupted* soft labels. One might be tempted to use calibrated soft labels instead of clean ones. However, we reveal that *calibration guarantee is not enough*, that is, even perfectly calibrated soft labels can result in a substantially inaccurate estimate. Then, we show that isotonic calibration can provide a statistically consistent estimator under an assumption weaker than that of the previous work. Our method is *instance-free*, i.e., we do not assume access to any input instances. This feature allows it to be adopted in practical scenarios where the instances are not available due to privacy issues. Experiments with synthetic and real-world datasets show the validity of our methods and theory.

1 INTRODUCTION

It is a common practice in the field of machine learning research to assess the performance of a newly proposed algorithm using one or more metrics and compare them to the previous state-of-the-art (SOTA) performance to show its effectiveness (Neu, 2024; Int, 2025a;b). In classification, arguably the most common one is the error rate, i.e., the expected frequency of misclassification for future data.

While the SOTA performance continues to improve for a wide range of benchmarks over time, there is a limit on the prediction performance that any machine learning model can achieve, which is determined by the underlying data distribution. It is important to know this limit, or the best achievable performance. For example, if the current SOTA performance is close enough to the limit, there is no point in seeking further improvement. It is not only wasteful in terms of time and financial resources but also harmful to the environment, since large-scale machine learning models are notorious for their high energy consumption (Strubell et al., 2020; Luccioni et al., 2023). Knowing the best possible performance also provides a practical check for test-set overfitting (Recht et al., 2018; Ishida et al., 2023): if a model’s score on the test set approaches or even exceeds the upper bound, it may be a signal of the model directly training on the test set.

In classification, the best achievable error rate for a given data distribution is called the *Bayes error*, and the estimation of the Bayes error has a rich history of research (Fukunaga and Hostetler, 1975; Devijver, 1985; Berisha et al., 2014; Moon et al., 2018; Noshad et al., 2019; Theisen et al., 2021; Ishida et al., 2023; Jeong et al., 2023). In the case of binary classification, the existing approaches can be roughly categorized into two groups: the majority of estimation from instance-label pairs $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times \{0, 1\}$ (Fukunaga and Hostetler, 1975; Devijver, 1985; Berisha et al., 2014; Moon et al., 2018; Noshad et al., 2019; Theisen et al., 2021), where \mathcal{X} is the space of instances,

and the recently proposed methods of estimation from *soft labels* $\eta_1, \dots, \eta_n \in [0, 1]$ (Ishida et al., 2023; Jeong et al., 2023). A soft label is a special type of supervision that represents the posterior class probability $\eta_i := \mathbb{P}(y = 1 \mid x = x_i)$, $i \in \{1, \dots, n\}$, and it quantifies the uncertainty of class labels associated with each instance x_i . The strength of the methods proposed in (Ishida et al., 2023; Jeong et al., 2023) based on soft labels is that they are *instance-free*, i.e., they do not require access to the instances $\{x_i\}_{i=1}^n$. Since the instances themselves are not used for estimation, these methods do not suffer from the curse of dimensionality even when dealing with very high-dimensional data. Moreover, the instance-free property is practically valuable since it makes the methods easy to apply to real-world problems, such as medical diagnoses, where the instances are often inaccessible due to privacy concerns. However, these methods have a crucial limitation: they assume that we have direct access to *clean* soft labels $\eta_i = \mathbb{P}(y = 1 \mid x = x_i)$, which only an oracle would know. Ishida et al. (2023) also discussed a scenario where each soft label η_i is approximated by an average $\hat{\eta}_i = \frac{1}{m} \sum_{j=1}^m y_i^{(j)}$ of m hard labels $y_i^{(1)}, \dots, y_i^{(m)}$ per instance. They showed that, for a fixed number n of samples, the bias of the resulting estimator approaches zero as m tends to infinity. However, their bound on the bias is prohibitively large for practical values of m , and thus the theoretical guarantee for this estimator is weak.

Another issue is *labeling distribution shift*. For example, whereas the images in the original CIFAR-10 dataset (C-10) (Krizhevsky, 2009) can be regarded as though they were annotated before they were downsampled, the images in the CIFAR-10H dataset (C-10H) (Peterson et al., 2019) were annotated after downscaling, making the task more challenging and thus increasing label uncertainty.¹ Given that the Bayes error can be interpreted as the average label uncertainty, we will get an unreasonably high estimate of the Bayes error if we just plug the soft labels in C-10H into their estimator, as shown in Fig. 1. In general, a similar issue can arise due to subjectivity of human soft labelers, or the bias of using large language models (LLMs) as annotators (Gilardi et al., 2023; Tjuatja et al., 2024). Recent work has explored a range of techniques to obtain soft labels and confidence scores from LLMs, but constructing a high-quality soft label remains to be a challenge (Xie et al., 2024; Kadavath et al., 2022; Argyle et al., 2023). This distortion issue due to the distribution shift was also mentioned by Ishida et al. (2023), but no solution was shown in their paper.

Contribution of this paper We extend the previous work by Ishida et al. (2023) that utilizes soft labels for estimating the Bayes error, the optimal error rate, in two important ways.

First, we deepen the theoretical understanding of the bias of the hard-label-based estimator discussed in the original work. Specifically, we show that the decay speed of the bias depends on how well the two class-conditional distributions are separated, and it can approach zero significantly faster than the previous result suggested as the number m of hard labels per instance grows.

Second, we discuss a new, more challenging problem of estimation from *corrupted* soft labels. In this scenario, we are given a distorted version of the clean soft labels. The distortion can arise from a shifted labeling distribution or subjectivity of human/LLM soft labelers. It reflects many real-world problems including the estimation of best achievable performances for benchmark datasets and estimation from soft labels obtained from subjective confidence. One might be tempted to use calibrated soft labels in place of clean ones. However, we reveal that *calibration guarantee is not enough*, i.e., even perfectly calibrated soft labels can result in a substantially inaccurate Bayes error estimate, which highlights the importance of choosing appropriate calibration algorithms. Then, we show

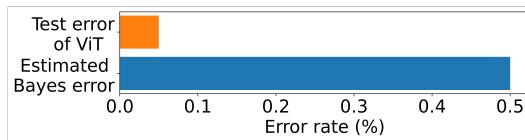


Figure 1: The Bayes error estimated with the method of Ishida et al. (2023) is larger than the test error of a Vision Transformer (Dosovitskiy et al., 2021).

¹For more information, C-10 was curated as follows. First, images for each class were collected by searching for the class label or its hyponym on the Internet. Second, the images were downsampled to 32×32 . Finally, human labelers were asked to filter out mislabeled images. On the other hand, C-10H is a soft-labeled version of C-10, i.e., it consists of 10,000 test images of the C-10 test set along with their soft labels. Each soft label was obtained as an average of 47–63 hard labels, which were collected by asking human labelers to answer which class the downsampled image belongs to. As a result, the labeling processes are significantly different between these two datasets.

108 that a classical calibration algorithm called *isotonic calibration* (Zadrozny and Elkan, 2002) can
 109 provide a statistically consistent estimator as long as the original soft labels are correctly ordered.
 110

112 2 FINE-GRAINED ANALYSIS OF THE BIAS

114 We first explain the preliminaries for this section and then present our main results.
 115

116 2.1 PRELIMINARIES

118 **Formulation and notations** Let $\mathcal{X} \subset \mathbb{R}^d$ and \mathcal{Y} be the spaces of instances and output labels,
 119 respectively. In this paper, we confine ourselves to binary classification problems and thus we set
 120 $\mathcal{Y} = \{0, 1\}$. Classes 1 and 0 are also called the positive and negative classes, respectively. Let \mathbb{P} be
 121 a distribution over $\mathcal{X} \times \mathcal{Y}$ and (x, y) be a pair of random variables following \mathbb{P} , where $x \in \mathbb{R}^d$ is
 122 an input instance and $y \in \{0, 1\}$ is the corresponding class label. Throughout this paper, x_1, \dots, x_n
 123 are n i.i.d. samples drawn from the marginal distribution $\mathbb{P}_{\mathcal{X}}$ over the input space \mathcal{X} . We denote
 124 by $\mathbb{P}_1, \mathbb{P}_0$ two class-conditional distributions over the input space \mathcal{X} given $y = 1$ and $y = 0$,
 125 respectively. Note that $\mathbb{P}_{\mathcal{X}} = \theta \mathbb{P}_1 + (1 - \theta) \mathbb{P}_0$, where $\theta := \mathbb{P}(y = 1) \in (0, 1)$ is the base rate.
 126 $\eta(x)$ is the *clean soft label* for an instance x , i.e., the posterior probability $\mathbb{P}(y = 1 | x)$ of $y = 1$
 127 given x . The expectation and the variance with respect to the marginal $\mathbb{P}_{\mathcal{X}}$ are denoted by \mathbb{E} and
 128 Var , respectively.

129 For any positive integer n , we denote $[n] := \{1, \dots, n\}$. An indicator function is denoted by $\mathbb{1}[\cdot]$.
 130 Given a sequence of n random variables z_1, \dots, z_n , we use a shorthand $z_{1:n} = (z_1, \dots, z_n)$. For
 131 $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$, $N(\mu, \Sigma)$ is the Gaussian distribution with mean μ and covariance Σ .

132 **Estimating the best possible performance with soft labels** Among the most commonly used
 133 performance measures would be the error rate. The error rate of a classifier $h : \mathcal{X} \rightarrow \mathcal{Y}$ is defined
 134 as $\text{Err}(h) := \mathbb{E}_{(x, y) \sim \mathbb{P}} [\mathbb{1}[y \neq h(x)]]$, where (x, y) is a test instance-label pair drawn independently
 135 of training data. The best possible error rate $\text{Err}^* := \inf_{h: \mathcal{X} \rightarrow \mathcal{Y}} \text{Err}(h)$ is called the *Bayes error*
 136 (Mohri et al., 2018).²

137 Recall that $\eta(x) := \mathbb{P}(y = 1 | x)$. Ishida et al. (2023) proposed a direct approach to estimating
 138 the Bayes error Err^* assuming access to the soft labels $\{\eta(x_i)\}_{i=1}^n$ rather than instance-label pairs
 139 $\{(x_i, y_i)\}_{i=1}^n$. Its derivation is outlined as follows. First, it is well-known that the Bayes error can
 140 be expressed as $\text{Err}^* = \mathbb{E}_{x \sim \mathbb{P}_{\mathcal{X}}} [\min \{\eta(x), 1 - \eta(x)\}]$ (Cover, 1968). Replacing the expectation
 141 with a sample average over $\{\eta_i\}_{i=1}^n$, they obtained an unbiased estimator

$$143 \widehat{\text{Err}}^*(\eta_{1:n}) := \frac{1}{n} \sum_{i=1}^n \min \{\eta_i, 1 - \eta_i\}, \quad (1)$$

146 where $\eta_i := \eta(x_i)$. It is also statistically consistent, or more specifically, for any $\delta \in (0, 1)$, with
 147 probability at least $1 - \delta$, we have $|\widehat{\text{Err}}^*(\eta_{1:n}) - \text{Err}^*| \leq \sqrt{\frac{\log(2/\delta)}{8n}}$.
 148

149 In practical terms, the *instance-free* nature of this method exhibits considerable advantages over
 150 existing methods described in Section A despite its simplicity. It can be applied to settings where
 151 input instances themselves are unavailable, e.g., due to privacy issues. On the other hand, one of
 152 the crucial drawbacks of this method is that clean soft labels are usually inaccessible in practice.
 153 Therefore, we have no choice but to substitute some estimates for them. Ishida et al. (2023) also
 154 considered a setting where η_i is approximated by an average of hard labels $\widehat{\eta}_i := \frac{1}{m} \sum_{j=1}^m y_i^{(j)}$,
 155 where $y_i^{(1)}, \dots, y_i^{(m)}$ are m hard labels each of which is drawn independently from the posterior
 156 distribution of the class labels given the instance x_i . In practice, $y_i^{(1)}, \dots, y_i^{(m)}$ could be collected by
 157 asking m different human labelers to answer whether x_i belongs to class 1. C-10H (Peterson et al.,
 158 2019) and Fashion-MNIST-H (Ishida et al., 2023) are examples of a dataset constructed as such.
 159 By plugging $\widehat{\eta}_i$ in place of η_i , they obtained the estimator $\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}) = \frac{1}{n} \sum_{i=1}^n \min \{\widehat{\eta}_i, 1 - \widehat{\eta}_i\}$.
 160

161 ²The infimum is taken over all measurable functions.

162 They showed that the bias is bounded as
 163

$$164 \quad \left| \mathbb{E} \left[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}) \right] - \text{Err}^* \right| \leq \frac{1}{2\sqrt{m}} + \sqrt{\frac{\log(2n\sqrt{m})}{m}}, \quad (2)$$

$$165$$

$$166$$

167 and thus vanishes as $m \rightarrow \infty$ given n fixed. However, the rate $\tilde{\mathcal{O}}(1/\sqrt{m})$ is quite slow given that m
 168 is typically much smaller than n . For example, in the case of the C-10H dataset, each image is given
 169 only around 50 hard labels. Later in Section 2.2, we will show that this rate can be significantly
 170 improved for well-conditioned distributions. In addition, the second term on the right-hand side
 171 of (2) increases as n grows, which appears to be unnatural. We also show that the bias can be
 172 upper-bounded by a quantity irrelevant to n .
 173

2.2 MAIN RESULTS

175 **Improved bound on the bias** The following theorem provides a new bound on the bias of the
 176 estimator $\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})$. The proofs for all results in this section can be found in Section B.
 177

178 **Theorem 1.** *We have*

$$179 \quad - \mathbb{E}_{x \sim \mathbb{P}_{\mathcal{X}}} \left[\min \left\{ \frac{L_{\text{Err}}(\eta(x))}{m}, \sqrt{\frac{\pi}{2m}} \right\} \right] \leq \mathbb{E} \left[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}) \right] - \text{Err}^* \leq 0, \quad (3)$$

$$180$$

$$181$$

182 where $L_{\text{Err}}(q)$ is $\frac{q(1-q)}{|2q-1|}$ if $q \neq 0.5$ and ∞ if $q = 0.5$.
 183

184 First of all, we note that our upper bound does not contain n unlike the existing result (2) by Ishida
 185 et al. (2023). More importantly, our bound (3) indeed improves upon theirs (Proposition 1). We only
 186 need a weaker version of (3) to show the improvement: $-\sqrt{\frac{\pi}{2m}} \leq \mathbb{E} \left[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}) \right] - \text{Err}^* \leq 0$.
 187

188 Although the $\frac{L_{\text{Err}}(\eta(x))}{m}$ term in the left-hand side of (3) is unnecessary to improve the previous
 189 result (2), it provides further insights. Fig. 5 in Section B shows the graph of the function $L_{\text{Err}}(p)$.
 190 It takes a near-zero value when p is close to 0 or 1 and diverges to infinity as $p \rightarrow 0.5$. This means
 191 that $L_{\text{Err}}(\eta(x))$ is large for instances x close to the Bayes-optimal decision boundary $\eta(x) = 0.5$,
 192 while it is close to zero for instances far away from it. Therefore, the rate at which the bias decays
 193 can be understood as a mixture of the fast rate $1/m$ and the slower rate $1/\sqrt{m}$, whose weights are
 194 determined by how well the two classes are separated. We validate this with numerical experiments
 195 in Section B.3.
 196

196 **Well-separated cases** Here we note that real-world datasets often have well-separated classes;
 197 see, e.g., Fig. 6 in Section B. If the two classes are perfectly separated, the bias can decay at the fast
 198 rate $\mathcal{O}(1/m)$, as opposed to the worst cases rate $\mathcal{O}(1/\sqrt{m})$.
 199

200 **Corollary 1.** *Suppose there exists a constant $c > 0$ such that $|\eta(x) - 0.5| \geq c$ holds almost surely.
 Then, we have*

$$201 \quad - \frac{1 - 4c^2}{8cm} \leq \mathbb{E} \left[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}) \right] - \text{Err}^* \leq 0. \quad (4)$$

$$202$$

$$203$$

204 The assumption of Corollary 1 is satisfied by, for example, the following distribution.
 205

205 **Example 1** (Perfectly separated distributions with label noise). Consider two continuous distributions
 206 $\mathcal{F}_0, \mathcal{F}_1$ over \mathcal{X} with disjoint supports. An instance-label pair (x, y) is generated as follows.
 207 First, an index k is selected from $\{0, 1\}$ with equal probability. Given k , x and y are generated
 208 conditionally independently as follows: (i) The instance x is sampled from \mathcal{F}_k . (ii) The label y is
 209 set to $1 - k$ with conditional probability ν and k with conditional probability $1 - \nu$, where $\nu \neq 0.5$.
 210 Then, the assumption of Corollary 1 is satisfied for $c = |\nu - 0.5|$.
 211

211 **Computable bound for general cases** Our results so far (Theorem 1 and Corollary 1) provide
 212 tighter bounds and a more detailed perspective on the bias. However, a downside of those results is
 213 that, in order to compute the numerical values of the lower bounds directly, we need to know some
 214 characteristics of the data distribution that might not be available in most practical scenarios. The
 215 good news is that we can still derive a computable bound that only requires an upper bound on the
 Bayes error, e.g., the error rate of the SOTA model, from Theorem 1.
 216

216 **Corollary 2.** Assume that $\text{Err}^* \leq E$. Then, we have $-B(E, m) \leq \mathbb{E} \left[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}) \right] - \text{Err}^* \leq 0$,
 217 where
 218

$$219 \quad B(E, m) := \inf_{t \in (0, 1/2)} \left(\frac{t(1-t)}{1-2t} \frac{1}{m} + \min \left\{ 1, \frac{E}{t} \right\} \sqrt{\frac{\pi}{2m}} \right). \quad (5)$$

$$220$$

221 The function $B(E, m)$ can be computed numerically
 222 without any information about the data distribution,
 223 except for an upper bound of the Bayes error, E . Fig. 2
 224 shows the magnitude of our lower bound, $B(E, m)$,
 225 for various values of E (the blue line). It also shows
 226 the existing bias bound by Ishida et al. (2023) (the
 227 orange line). This comparison demonstrates that Corol-
 228 lary 2 is a substantial improvement over the existing
 229 result across the entire range of the parameter E .

230 Let us take the binarized³ CIFAR-10 test set as an
 231 example. It consists of $n = 10000$ instances, each
 232 of which has a soft label obtained as the average of
 233 around $m = 50$ hard labels from the CIFAR-10H
 234 dataset. As the parameter E , we can use the Vision
 235 Transformer (Dosovitskiy et al., 2021)'s empirical
 236 error rate of 0.0005 reported by Ishida et al. (2023),
 237 which is shown by the black dashed line in Fig. 2.
 238 While the existing bound suggests the bias of the hard-
 239 label-based estimator $\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})$ could be as large as
 240 0.557, our bound reveals the estimator is not that bad;
 241 indeed, it implies the bias is never larger than 0.00276.
 242 In this case, our result is over 200 times tighter than
 243 theirs.

244 Theorem 1 also implies the estimator $\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})$ is statistically consistent; see Corollary 3 for de-
 245 tails.

247 3 ESTIMATION FROM CORRUPTED SOFT LABELS

249 This section tackles a more challenging setting where we do *not* have access to the true posterior
 250 probability η . This setting reflects many real-world problems, such as in medical diagnosis where a
 251 doctor's subjective confidence in their decision can be regarded as a soft label, or when practition-
 252 ers provide automated soft labels with LLMs in place of human annotators. However, there is no
 253 guarantee that it exactly reflects the true underlying probability.

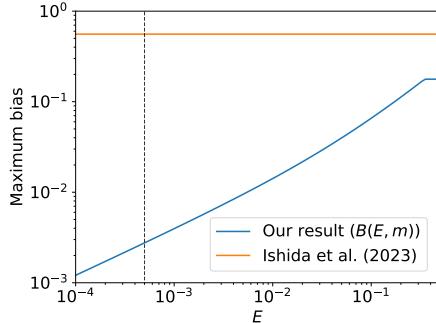
254 In this section, we consider a problem setting where each instance x_i is given a real number $\tilde{\eta}_i \in$
 255 $[0, 1]$, which is expected to approximate the clean soft label η_i in some sense but not necessarily
 256 identical to η_i . We call $\{\tilde{\eta}_i\}_{i=1}^n$ *corrupted* soft labels. How can we estimate the Bayes error when
 257 only corrupted soft labels are available instead of clean ones? Estimation with a provable guarantee
 258 will be impossible without some assumption on the quality of the soft labels. Then, what guarantee
 259 can be provided under what assumption?

261 3.1 PRELIMINARIES

263 In addition to the preliminaries introduced in Section 2.1, we briefly review a few more required for
 264 the discussion in this section.

265 **Calibration** Predicting accurate class labels is not always sufficient in classification problems.
 266 It is often crucial to obtain reliable probability estimates, especially in high-stakes applications in-
 267 cluding personalized medicine (Jiang et al., 2012) and meteorological forecasting (Murphy, 1973;
 268 DeGroot and Fienberg, 1983).

269 ³See Section 4.1 for details.



270 Figure 2: A comparison of our bias bound
 271 (Corollary 2) and the existing bound by
 272 Ishida et al. (2023) with $n = 10000$, $m =$
 273 50. The dashed line indicates the test error
 274 (0.05%) of the SOTA model for the bina-
 275 rized CIFAR-10 dataset, which we can use
 276 as E in Corollary 2. Our bound is over 200
 277 times tighter than the existing one in this
 278 setup.

270 A popular notion to capture the quality of probability estimates is *calibration*. A probabilistic classifier c is said to be *well-calibrated* if the predicted probabilities closely match the actual frequencies
 271 of the class labels (Kull et al., 2017), i.e., $c(x) = \mathbb{E}[y | c(x)]$ almost surely. While one might hope
 272 that a perfectly calibrated output $c(x)$ matches the posterior probability $\mathbb{E}[y | x] = \mathbb{P}(y = 1 | x)$,
 273 it is not necessarily true. Indeed, calibration is a weaker notion and just a necessary condition for
 274 $c(x) = \mathbb{E}[y | x]$. For example, even a constant predictor $c(x) \equiv \mathbb{P}(y = 1)$ is well-calibrated⁴
 275 although it can be far from $\mathbb{P}(y = 1 | x)$.
 276

277 It is known that many machine learning models, including modern neural networks, are not cali-
 278 brated out of the box (Zadrozny and Elkan, 2001; Guo et al., 2017). Therefore, their outputs have
 279 to be recalibrated in post-processing, and various methods have been proposed to achieve this goal.
 280 They can be roughly categorized into two groups, namely parametric and nonparametric methods.
 281 The former includes *Platt scaling* (Platt, 1999), also known as *logistic calibration* (Kull et al., 2017),
 282 and *beta calibration* (Kull et al., 2017). Among the latter category are *histogram binning* (Zadrozny
 283 and Elkan, 2001) and *isotonic calibration* (Zadrozny and Elkan, 2002). Each of these methods re-
 284 quires a dataset $\{(c_i, y_i)\}_{i=1}^n$ to obtain a function that takes the output of an uncalibrated predictor c
 285 and transforms it into a reliable probability estimate. This function is sometimes called a *calibration*
 286 *map* (Kull et al., 2017; 2019). Here, $c_i = c(x_i)$ is the output of c for an instance x_i , and y_i is the
 287 corresponding class label. To avoid overfitting, each (x_i, y_i) needs to be sampled independently of
 288 the training set used to obtain the predictor c .
 289

290 **Isotonic calibration** Here, we briefly describe the algorithm of isotonic calibration (Zadrozny
 291 and Elkan, 2002), arguably one of the most commonly used nonparametric recalibration meth-
 292 ods, as it plays an important role in this paper. Suppose a dataset $\{(c_i, y_i)\}_{i=1}^n$ is given.
 293 The algorithm proceeds as follows. First, the dataset $(c_1, y_1), \dots, (c_n, y_n)$ is reordered into
 294 $(c_{(1)}, y_{(1)}), \dots, (c_{(n)}, y_{(n)})$ so that the resulting sequence $c_{(1)}, \dots, c_{(n)}$ of outputs becomes non-
 295 decreasing. Then, we find a non-decreasing sequence $0 \leq c'_{(1)} \leq \dots \leq c'_{(n)} \leq 1$ such that it
 296 minimizes the squared error $\frac{1}{n} \sum_{i=1}^n (y_{(i)} - c'_{(i)})^2$. Finally, for each $i \in [n]$, $c'_{(i)}$ is assigned as the
 297 calibrated version of $c_{(i)}$. This procedure is a special case of *isotonic regression*, one of the most
 298 well-studied shape-constrained regression problems.
 299

300 3.2 PROPOSED METHOD

301 We propose a simple approach where we first calibrate the corrupted soft labels and then plug them
 302 into the formula (1) for clean soft labels. Although calibration was originally developed for trans-
 303 forming the output scores of classifiers into reliable probability estimates, here we suggest using
 304 it for corrupted soft labels. We assume that, for each $i \in [n]$, we are given a corrupted soft la-
 305 bel $\tilde{\eta}_i \in [0, 1]$ and a single hard label $y_i \in \{0, 1\}$ sampled from the true posterior distribution
 306 $\mathbb{P}(y | x = x_i)$. We use the hard labels $\{y_i\}_{i=1}^n$ to calibrate the soft labels $\{\tilde{\eta}_i\}_{i=1}^n$ using some
 307 calibration algorithm \mathcal{A} . We write $\hat{\eta}_i^{\mathcal{A}}$ to represent the resulting calibrated soft labels. Finally, we
 308 estimate the Bayes error Err^* by $\text{Err}^*(\hat{\eta}_{1:n}^{\mathcal{A}}) = \frac{1}{n} \sum_{i=1}^n \min\{\hat{\eta}_i^{\mathcal{A}}, 1 - \hat{\eta}_i^{\mathcal{A}}\}$.
 309

310 However, as we mentioned earlier, even perfect calibration does not necessarily imply that the re-
 311 sulting soft labels are accurate estimates of the clean soft labels. A simple example illustrates this
 312 limitation:

313 **Example 2.** Consider drawing instances from a mixture of two distributions over \mathcal{X} with disjoint
 314 supports, and let us set the mixture rate θ to be 0.5. The true Bayes error is trivially 0. If \mathcal{A} is a
 315 calibration algorithm that produces constant soft labels $\hat{\eta}_i^{\mathcal{A}} = \theta = 0.5$ for all $i \in [n]$, it indeed
 316 achieves perfect calibration. However, the resulting estimate of the Bayes error is $\min\{\theta, 1 - \theta\} =$
 317 0.5, which deviates significantly from the true value 0.
 318

319 Therefore, estimation with a provable guarantee will not be possible for arbitrary calibration algo-
 320 rithms or without any assumptions on the soft labels. What calibration algorithm can achieve reliable
 321 estimation under what assumption? In Section 3.3, we provide the first answer to this question.
 322

323 ⁴If $c(x)$ takes the constant value $\mathbb{P}(y = 1)$ for all x , $\mathbb{E}[y | c(x)]$ is equal to $\mathbb{E}[y] = \mathbb{P}(y = 1)$ since it is a
 324 conditional expectation conditioned by a constant.

324
325

3.3 THEORETICAL GUARANTEE FOR ISOTONIC CALIBRATION

326
327
328

Here, we propose choosing isotonic calibration (Zadrozny and Elkan, 2002) as the calibration algorithm \mathcal{A} and indentify a condition under which we can consistently estimate the Bayes error with our method. Specifically, we estimate the Bayes error by the following procedure:

329
330
331

- (i) Reorder $(\tilde{\eta}_1, y_1), \dots, (\tilde{\eta}_n, y_n)$ into $(\tilde{\eta}_{(1)}, y_{(1)}), \dots, (\tilde{\eta}_{(n)}, y_{(n)})$ so that the resulting sequence $\tilde{\eta}_{(1)}, \dots, \tilde{\eta}_{(n)}$ of outputs becomes non-decreasing.
- (ii) Find a non-decreasing sequence $0 \leq \hat{\eta}_{(1)}^{\text{iso}} \leq \dots \leq \hat{\eta}_{(n)}^{\text{iso}} \leq 1$ such that it minimizes the squared error $\frac{1}{n} \sum_{i=1}^n (y_{(i)} - \hat{\eta}_{(i)}^{\text{iso}})^2$. This gives us isotonic-calibrated soft labels $\hat{\eta}_{(1)}^{\text{iso}}, \dots, \hat{\eta}_{(n)}^{\text{iso}}$.
- (iii) Estimate the Bayes error as $\widehat{\text{Err}}^*(\hat{\eta}_{1:n}^{\text{iso}}) = \frac{1}{n} \sum_{i=1}^n \min \left\{ \hat{\eta}_{(i)}^{\text{iso}}, 1 - \hat{\eta}_{(i)}^{\text{iso}} \right\}$.

336

The next theorem is the main theoretical result of this section, which states that we can construct a consistent estimator of the Bayes error using isotonic calibration as long as the soft labels' order is preserved. The use of isotonic regression allows us to provide a solid theoretical guarantee without making parametric assumptions on how corruption occurs. See Section C for the proof.

342
343
344

Theorem 2. *Suppose that there exists an increasing function f such that $\tilde{\eta}_i = f(\eta_i)$ almost surely. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, we have*

345
346
347

$$\left| \widehat{\text{Err}}^*(\hat{\eta}_{1:n}^{\text{iso}}) - \text{Err}^* \right| \leq C \left(\frac{1}{n^{1/3}} + \sqrt{\frac{\log(1/\delta)}{n}} \right), \quad (6)$$

348
349

where $C > 0$ is a constant.

Note that the assumption of Theorem 2 is a relaxation of the availability of clean soft labels since we can take the identity map as f when $\tilde{\eta}_i = \eta_i$. In other words, the original work by Ishida et al. (2023) assumes that we have access to the exact values of the clean soft labels, whereas our proposed method only requires the knowledge of their order.

354
355
356
357
358

Furthermore, our result can be extended to the case where the corruption involves random noise.

Theorem 3. *Assume each corrupted soft label $\tilde{\eta}_i$ is generated as $\tilde{\eta}_i = f(\eta_i) + \varepsilon_i$ where f is a differentiable function such that $f' \geq c$ for some constant $c > 0$ and ε_i is a zero-mean random variable with variance $\leq \sigma^2$. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, we have*

359
360
361

$$\left| \widehat{\text{Err}}^*(\hat{\eta}_{1:n}^{\text{iso}}) - \text{Err}^* \right| \leq C' \left(\sigma + \frac{1}{n^{1/3}} + \sqrt{\frac{\log(1/\delta)}{n}} \right), \quad (7)$$

362
363

where $C' > 0$ is a constant.

364
365
366
367
368
369

As an example, we can think of the situation we studied in Section 2 but with corrupted labeling distribution skewed by some function f . For each $i = 1, \dots, n$, the resulting posterior distribution can be seen as a Bernoulli distribution with mean $f(\eta_i)$. Then, we draw m hard labels $y_i^{(1)}, \dots, y_i^{(m)}$ from that distribution. We can then approximate the unknown soft label η_i by the average $\frac{1}{m} \sum_{j=1}^m y_i^{(j)}$ of the hard labels and plug it into our estimator. In this case, the randomness over the hard labels translates to additive noise with standard deviation at most $\sigma = \frac{1}{2\sqrt{m}}$.

370
371
372
373
374
375
376
377

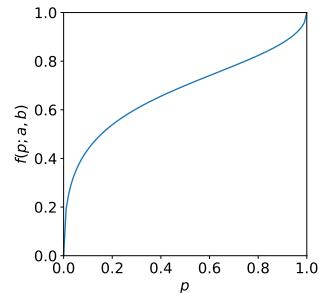
A limitation of Theorem 3 is that it cannot be applied to f whose derivative can be arbitrarily small. Roughly speaking, it is because a small fluctuation in the function value can translate to a large deviation in the inverse function value if the function is too “flat.” We have not yet reached a theoretical understanding of how much violating this assumption hurts the estimation accuracy. However, in our empirical study with synthetic data (Section D.2), the results suggest that our method can perform well even for such corruption functions. An interesting finding is that beta calibration (Kull et al. (2017)) performs poorly even though it is a *well-specified* parametric calibrator in our experimental setting. This fact suggests that choosing appropriate calibration methods, such as isotonic calibration, is indeed crucial in our algorithm design. See Section D.2 for details.

378

4 EXPERIMENTS

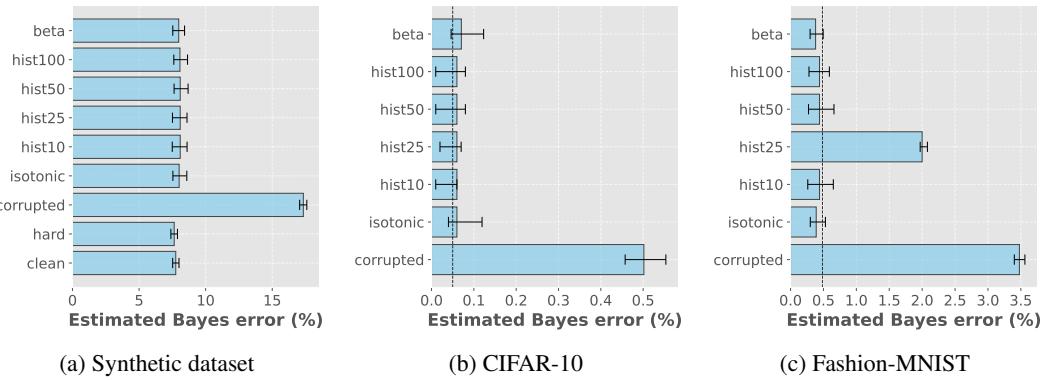
380
381 In this section, we perform an experiment where we estimate the Bayes error of synthetic and real-
382 world datasets using our proposed method.383
384

4.1 EXPERIMENTAL SETTINGS

385
386 The methods employed in this experiment are the following: (i) `clean`: the estimator with clean
387 soft labels, i.e., $\widehat{\text{Err}}^*(\eta_{1:n})$, (ii) `hard`: the estimator with approximate soft labels obtained as
388 averaged hard labels, i.e., $\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})$, (iii) `corrupted`: the estimator with corrupted soft labels,
389 i.e., $\widehat{\text{Err}}^*(\tilde{\eta}_{1:n})$, and (iv) The estimator with soft labels obtained by calibrating the corrupted soft
390 labels, i.e., $\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}^A)$. We use the following as the calibration algorithm \mathcal{A} : isotonic calibration
391 (`isotonic`; Zadrozny and Elkan (2002)), uniform-mass histogram binning (Zadrozny and Elkan,
392 2001) with 10, 25, 50 and 100 bins (`hist-10`, `hist-25`, `hist-50` and `hist-100`), and beta
393 calibration (`beta`; Kull et al. (2017)). We use 1000 bootstrap resamples to compute a 95% confi-
394 dence interval for each method.
395396 **Datasets** We conduct our experiments using several datasets. The first one is a two-dimensional
397 synthetic dataset of size $n = 10000$ generated from a Gaussian mixture $\mathbb{P}_{\mathcal{X}} = 0.6 \cdot \mathbb{P}_0 + 0.4 \cdot \mathbb{P}_1$,
398 where $\mathbb{P}_0 = N((0, 0), I_d)$, $\mathbb{P}_1 = N((2, 2), I_d)$ and I_d is the d -by- d identity matrix. We use $m = 50$
399 hard labels per instance in the `hard` setup. For each $i \in [n]$, we generated the corrupted version $\tilde{\eta}_i$
400 of the soft label η_i by $\tilde{\eta}_i = f(\eta_i; 2, 0.7)$, where $f(p; a, b) = \left(1 + \left(\frac{1-p}{p}\right)^{1/a} \frac{1-b}{b}\right)^{-1}$, $0 < p <$
401 1, $a \geq 0$, $0 < b < 1$. The function f is the inverse function of the two-parameter beta calibration
402 map (Kull et al., 2017) and can express various continuous increasing transformations on the interval
403 $(0, 1)$ depending on the parameters a and b . Fig. 3 shows the graph of the corruption function f .
404 As can be seen in the figure, it pushes probability values away from zero or one, making the soft
405 labels “unconfident.” It also distorts soft labels so that $\eta_i = 0.5$ is mapped to $\tilde{\eta}_i = f(\eta_i) = b$. Note
406 that f satisfies the assumption of Theorem 2 since it is increasing. We also explored other sets of
407 parameters and other types of corruption; see Section D for details.
408409 The second dataset is the test set of CIFAR-10 (Krizhevsky, 2009)
410 with soft labels taken from the CIFAR-10H dataset (Peterson et al.,
411 2019). Since they are originally multi-class datasets, we reconstruct
412 a binary dataset by relabeling the animal-related classes (*bird*, *cat*,
413 *deer*, *dog*, *frog* and *horse*) as positive and the rest as negative, sim-
414 ilarly to what Ishida et al. (2023) did in their experiments. We can-
415 not experiment with the `clean` setup as clean soft labels are un-
416 available for real-world datasets. Therefore, we conduct our exper-
417 iment only for `corrupted/isotonic/hist/beta` using soft la-
418 bels from CIFAR-10H as corrupted ones.⁵ Recall that the CIFAR-
419 10H soft labels can be considered to be corrupted because of the
420 mismatched labeling distributions, as we mentioned in Section 1.
421 We compare the estimated Bayes error with the test error of a Vi-
422 sion Transformer (ViT) (Dosovitskiy et al., 2021) on this dataset
423 reported by Ishida et al. (2023), which is 0.05%.424 We also experimented with the Fashion-MNIST dataset (Xiao et al.,
425 2017) and its soft-labeled counterpart, Fashion-MNIST-H (Ishida
426 et al., 2023). Following Ishida et al. (2023), we binarized the dataset by treating *T-shirt/top*, *pullover*,
427 *dress*, *coat* and *shirt* as the positive class. The rest proceeds similarly to the CIFAR-10 experiment
428 except that we newly trained a ResNet-18 (He et al., 2016) in place of the ViT. Details such as
429 training parameters can be found in Section D.Figure 3: The corruption function $f(p; a, b)$ with parameters $a = 2$, $b = 0.7$.430
431 ⁵Although we could run `hard` experiments with $m = 1$ using the hard labels from the CIFAR-10 test set,
432 it will not produce any meaningful estimates of the Bayes error because $\min\{y, 1 - y\} = 0$ for both $y = 0$
433 and 1.

432 4.2 RESULTS
433

434 Fig. 4 shows the result of the experiments. The black dashed lines in Fig. 4b and Fig. 4c indicate
435 the test error of a classifier trained for each dataset as a reference. As expected, the unconfidence
436 of the corrupted soft labels results in a severe overestimation of the Bayes error. All the calibration
437 methods (isotonic, hist-*, beta) produce far more reasonable estimates compared with the
438 baseline corrupted. For Fashion-MNIST, however, histogram binning sometimes fails to offer
439 rational estimates, as you can see in Fig. 4c. Specifically, hist-25 results in a Bayes error estimate
440 substantially larger than the ResNet’s test error. This might be highlighting the necessity for a
441 carefully chosen calibration method, as we mentioned in Section 3.2. On the other hand, isotonic
442 and beta produce reasonable estimates in these settings.
443



454 Figure 4: The estimated Bayes error for the synthetic dataset, CIFAR-10, and Fashion-MNIST,
455 obtained with various methods. Error bars denote 95% bootstrap confidence intervals. For CIFAR-
456 10, the ViT test error is indicated by a horizontal dashed line, while for Fashion-MNIST the dashed
457 line marks the ResNet-18 test error.
458

461 5 CONCLUSION AND DISCUSSION
462

464 In this paper, we discussed the estimation of the Bayes error in binary classification. In Section 2,
465 we significantly improved the existing bound on the bias of the hard-label-based estimator. We also
466 revealed that the decay rate of the bias depends on how well the two class-conditional distributions
467 are separated, and it can decay in a much faster rate than the previous result suggested. In Section 3,
468 we tackled a challenging problem of Bayes error estimation from corrupted soft labels and pro-
469 posed an estimator based on calibration. After presenting an example highlighting the importance
470 of choosing appropriate calibration algorithms, we proved that we can construct a statistically con-
471 sistent estimator using isotonic calibration as long as the original soft labels are correctly ordered.
472 Then, our theory was validated by numerical experiments with synthetic and real-world datasets in
473 Section 4.
474

475 Finally, we discuss possible future directions. Although our calibration-based methods successfully
476 mitigate over- or underestimation of the Bayes error, it is still non-trivial to truly assess the validity
477 of the estimates for real-world datasets since we do not have access to the underlying distributions.
478 This is a fundamental challenge common across the field of Bayes error estimation. Early attempts
479 to solve it have appeared in recent years, e.g., Renggli et al. (2021), and we see advancing these
480 approaches as an important direction for future work. Another possible direction is the extension
481 to multi-class problems. Investigating theoretical guarantees for calibration algorithms other than
482 isotonic calibration (e.g., histogram binning) is also an interesting direction.
483

484 REPRODUCIBILITY STATEMENT
485

486 All the information needed to reproduce the experimental results in this paper is fully disclosed in
487 the body text, the appendix, and the source code in the supplementary material. The body text and
488

486 the appendix clearly explain the experimental settings. The supplementary material provides all the
 487 source code to run the experiments and the `README.md` file containing the instructions required to
 488 reproduce the experimental results. As for the theoretical results, the appendix contains the proofs
 489 for all the theoretical results in this paper. We also made sure it is clear what assumptions are made
 490 in each theorem, proposition, lemma, and corollary.

491
 492 **REFERENCES**
 493

494 Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting, and David
 495 Wingate. Out of one, many: Using language models to simulate human samples. *Political Analysis*,
 496 31(3):337–351, 2023.

497 Miriam Ayer, H. Daniel Brunk, George M. Ewing, William T. Reid, and Edward Silverman. An
 498 empirical distribution function for sampling with incomplete information. *The Annals of Mathe-
 499 matical Statistics*, pages 641–647, 1955.

500 Pierre C. Bellec. Sharp oracle inequalities for least squares estimators in shape restricted regression.
 501 *The Annals of Statistics*, 46(2):745–780, 2018.

502 Pierre C. Bellec and Alexandre B. Tsybakov. Sharp oracle bounds for monotone and convex regres-
 503 sion through aggregation. *The Journal of Machine Learning Research*, 16:1879–1892, 2015.

504 Visar Berisha, Alan Wisler, Alfred O. Hero, and Andreas Spanias. Empirically estimable classifica-
 505 tion bounds based on a new divergence measure. *arXiv preprint arXiv:1412.6534*, 2014.

506 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration inequalities: A nonasym-
 507 totic theory of independence*. Oxford University Press, 2013.

508 Sabyasachi Chatterjee and John Lafferty. Adaptive risk bounds in unimodal regression. *Bernoulli*,
 509 25(1):1–25, 2019.

510 Sabyasachi Chatterjee, Adityanand Guntuboyina, and Bodhisattva Sen. On risk bounds in isotonic
 511 and other shape restricted regression problems. *The Annals of Statistics*, 43(4):1774–1800, 2015.

512 Sourav Chatterjee. A new perspective on least squares under convex constraint. *The Annals of
 513 Statistics*, pages 2340–2381, 2014.

514 Thomas Cover. Nearest neighbor pattern classification. *IEEE Trans. Information Theory*, 4(5):
 515 515–516, 1968.

516 Morris H. DeGroot and Stephen E. Fienberg. The comparison and evaluation of forecasters. *Journal
 517 of the Royal Statistical Society: Series D (The Statistician)*, 32(1-2):12–22, 1983.

518 Pierre A. Devijver. A multiclass, k-NN approach to Bayes risk estimation. *Pattern Recognition
 519 Letters*, 3(1):1–6, 1985.

520 Persi Diaconis and Susan Holmes. Three examples of Monte-Carlo Markov chains: At the interface
 521 between statistical computing, computer science, and statistical mechanics. In *Discrete probabil-
 522 ity and algorithms*, pages 43–56. Springer, 1995.

523 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 524 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
 525 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 526 scale. In *International Conference on Learning Representations*, 2021.

527 Keinosuke Fukunaga and L. Hostetler. K-nearest-neighbor Bayes-risk estimation. *IEEE Transac-
 528 tions on Information Theory*, 21(3):285–293, 1975.

529 Fuchang Gao and Jon A. Wellner. Entropy estimate for high-dimensional monotonic functions.
 530 *Journal of Multivariate Analysis*, 98(9):1751–1764, 2007.

531 Xiang Gao, Meera Sitharam, and Adrian E Roitberg. Bounds on the Jensen gap, and implications
 532 for mean-concentrated distributions. *The Australian Journal of Mathematical Analysis and Ap-
 533 plications*, 16(2):1–16, 2019.

540 Alexandra Gessner, Oindrila Kanjilal, and Philipp Hennig. Integrals over Gaussians under linear
 541 domain constraints. In *International Conference on Artificial Intelligence and Statistics*, pages
 542 2764–2774. PMLR, 2020.

543

544 Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for text-
 545 annotation tasks. *Proceedings of the National Academy of Sciences*, 120(30):e2305016120, 2023.

546

547 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
 548 networks. In *International Conference on Machine Learning*, pages 1321–1330. PMLR, 2017.

549

550 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 551 tion. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
 552 pages 770–778, 2016.

553

554 Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. *Convex analysis and minimization algorithms
 I: Fundamentals*. Springer Berlin, Heidelberg, 1993.

555

556 *Proceedings of the 13th International Conference on Learning Representations (ICLR 2025)*, Sin-
 557 gapore, April 2025a. International Conference on Learning Representations. URL <https://iclr.cc/Conferences/2025>. Conference dates: April 24–28 2025.

558

559 *Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)*, Vancouver,
 560 BC, Canada, July 2025b. International Machine Learning Society. URL <https://icml.cc/>.
 561 Conference dates: July 13–19 2025.

562

563 Takashi Ishida, Ikko Yamane, Nontawat Charoenphakdee, Gang Niu, and Masashi Sugiyama. Is the
 564 performance of my deep network too good to be true? A direct approach to estimating the Bayes
 565 error in binary classification. In *International Conference on Learning Representations*, 2023.

566

567 Minoh Jeong, Martina Cardone, and Alex Dytso. Demystifying the optimal performance of multi-
 568 class classification. In *Thirty-seventh Conference on Neural Information Processing Systems*,
 569 2023.

570

571 Xiaoqian Jiang, Melanie Osl, Jihoon Kim, and Lucila Ohno-Machado. Calibrating predictive model
 572 estimates to support personalized medicine. *Journal of the American Medical Informatics Asso-
 573 ciation*, 19(2):263–274, 2012.

574

575 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
 576 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
 577 els (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

578

579 Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1-2):81–93, 1938.

580

581 Durk P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
 582 *Advances in Neural Information Processing Systems*, 31, 2018.

583

584 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
 585 of Toronto, 2009.

586

587 Meelis Kull, Telmo Silva Filho, and Peter Flach. Beta calibration: A well-founded and easily
 588 implemented improvement on logistic calibration for binary classifiers. In *Artificial Intelligence
 589 and Statistics*, pages 623–631. PMLR, 2017.

590

591 Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and Peter
 592 Flach. Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with
 593 dirichlet calibration. *Advances in Neural Information Processing Systems*, 32, 2019.

594

595 Ananya Kumar, Percy S. Liang, and Tengyu Ma. Verified uncertainty calibration. *Advances in
 596 Neural Information Processing Systems*, 32, 2019.

597

598 Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon foot-
 599 print of bloom, a 176b parameter language model. *Journal of Machine Learning Research*, 24
 600 (253):1–15, 2023.

594 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of machine learning, 2nd*
 595 *Edition*. MIT press, 2018.

596

597 Kevin R. Moon, Kumar Sricharan, Kristjan Greenewald, and Alfred O. Hero III. Ensemble estima-
 598 tion of information divergence. *Entropy*, 20(8):560, 2018.

599 Allan H. Murphy. A new vector partition of the probability score. *Journal of Applied Meteorology*
 600 *and Climatology*, 12(4):595–600, 1973.

601

602 *Proceedings of the 38th Conference on Neural Information Processing Systems (NeurIPS 2024)*,
 603 Vancouver, BC, Canada, December 2024. Neural Information Processing Systems Foundation.
 604 URL <https://neurips.cc/Conferences/2024>. Conference dates: December 10–15
 605 2024.

606 Yixin Nie, Xiang Zhou, and Mohit Bansal. What can we learn from collective human opinions on
 607 natural language inference data? In *Proceedings of the 2020 Conference on Empirical Methods*
 608 *in Natural Language Processing (EMNLP)*. Association for Computational Linguistics, 2020.

609 Morteza Noshad, Li Xu, and Alfred Hero. Learning to benchmark: Determining best achievable
 610 misclassification error from training data. *arXiv preprint arXiv:1909.07192*, 2019.

611

612 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
 613 shminarayanan. Normalizing flows for probabilistic modeling and inference. *The Journal of*
 614 *Machine Learning Research*, 22(1):2617–2680, 2021.

615 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 616 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 617 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 618 12:2825–2830, 2011.

619

620 Joshua C. Peterson, Ruairidh M. Battleday, Thomas L. Griffiths, and Olga Russakovsky. Human
 621 uncertainty makes classification more robust. In *Proceedings of the IEEE/CVF International*
 622 *Conference on Computer Vision*, pages 9617–9626, 2019.

623 John Platt. Probabilistic outputs for support vector machines and comparisons to regularized likeli-
 624 hood methods. *Advances in Large Margin Classifiers*, 10(3):61–74, 1999.

625

626 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do CIFAR-10 classi-
 627 fiers generalize to CIFAR-10? *arXiv preprint arXiv:1806.00451*, 2018.

628

629 Cedric Renggli, Luka Rimanic, Nora Hollenstein, and Ce Zhang. Evaluating bayes error estimators
 630 on real-world datasets with feebee. In *Thirty-fifth Conference on Neural Information Processing*
 631 *Systems Datasets and Benchmarks Track (Round 2)*, 2021.

632

633 T. Robertson, F.T. Wright, and R. Dykstra. *Order Restricted Statistical Inference*. Probability and
 634 Statistics Series. Wiley, 1988. ISBN 9780471917878.

635

636 Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
 637 modern deep learning research. *Proceedings of the AAAI Conference on Artificial Intelligence*,
 638 34(09):13693–13696, 2020.

639

640 Ryan Theisen, Huan Wang, Lav R. Varshney, Caiming Xiong, and Richard Socher. Evaluating
 641 state-of-the-art classification models against Bayes optimality. *Advances in Neural Information*
 642 *Processing Systems*, 34:9367–9377, 2021.

643

644 Linda Tjuatja, Valerie Chen, Tongshuang Wu, Ameet Talwalkar, and Graham Neubig. Do LLMs
 645 exhibit human-like response biases? a case study in survey design. *Transactions of the Association*
 646 *for Computational Linguistics*, 12, 2024.

647

648 Aad W. Van Der Vaart and Jon A. Wellner. *Weak convergence and empirical processes: With*
 649 *applications to statistics*. Springer, 1996.

650

651 Ramon van Handel. APC 550: Probability in high dimension. *Lecture Notes. Princeton University*,
 652 21, 2016. URL <https://web.math.princeton.edu/rvan/APC550.pdf>.

648 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,
 649 volume 47. Cambridge University Press, 2018.
 650

651 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
 652 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
 653 Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
 654 Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
 655 Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
 656 Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
 657 and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
 658 in Python. *Nature Methods*, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.
 659

659 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
 660 machine learning algorithms, 2017.
 661

661 Zhihui Xie, Jizhou Guo, Tong Yu, and Shuai Li. Calibrating reasoning in language models with
 662 internal consistency. In *The Thirty-eighth Annual Conference on Neural Information Processing
 663 Systems*, 2024.
 664

665 Fan Yang and Rina Foygel Barber. Contraction and uniform convergence of isotonic regression.
 666 *Electronic Journal of Statistics*, 13:646–677, 2019.
 667

667 Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
 668 and naive Bayesian classifiers. In *International Conference on Machine Learning*, volume 1,
 669 pages 609–616, 2001.
 670

671 Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass proba-
 672 bility estimates. In *Proceedings of the eighth ACM SIGKDD International Conference on Knowl-
 673 edge Discovery and Data Mining*, pages 694–699, 2002.
 674

674 Cun-Hui Zhang. Risk bounds in isotonic regression. *The Annals of Statistics*, 30(2):528–555, 2002.
 675

676 Xiang Zhou, Yixin Nie, and Mohit Bansal. Distributed nli: Learning to predict human opinion dis-
 677 tributions for language reasoning. In *Findings of the Association for Computational Linguistics:
 678 ACL 2022*. Association for Computational Linguistics, 2022.
 679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 THE USE OF LARGE LANGUAGE MODELS
703704 We used OpenAI’s ChatGPT and Codex for the following assistance purposes:
705706 • Detect grammatical errors and improve clarity.
707 • Assist in writing the code for generating the figures in the paper.
708710 A RELATED WORK
711712 Estimation of the Bayes error Err^* (see Section 2.1 for the definition) is a classical problem in the
713 field of machine learning and pattern recognition. Existing methods for Bayes error estimation can
714 be categorized based on the type of data used, specifically as either instance-label pair-based or soft
715 label-based estimation.716 Most of the existing methods require a dataset $\{(x_i, y_i)\}_{i=1}^n$ composed of instances $x_i \in \mathcal{X}$ paired
717 with their respective labels $y_i \in \mathcal{Y} = \{0, 1\}$. Assuming the two class-conditional distributions
718 of instances have densities satisfying certain conditions, Berisha et al. (2014), Moon et al. (2018)
719 and Noshad et al. (2019) proposed approaches based on the estimation of f -divergence between
720 the class-conditional densities. Specifically, Berisha et al. (2014) and Moon et al. (2018) sug-
721 gested estimating upper or lower bounds and thus their methods suffer from relatively large biases.
722 Although Noshad et al. (2019) succeeded in estimating the exact Bayes error instead of bounds
723 on it, they assumed that the class-conditional densities p_0, p_1 are Hölder-continuous and satisfy
724 $0 < L \leq p_i \leq U$ ($i = 0, 1$) for some constants L and U , and their estimator requires the knowledge
725 of the values of these constants, which can be unpractical.726 On the other hand, Theisen et al. (2021) proposed a Bayes error estimation method based on nor-
727 malizing flow models (Papamakarios et al., 2021; Kingma and Dhariwal, 2018). They first showed
728 that the Bayes error is invariant under invertible transformations. Using this result, they suggested
729 approximating the data distribution with a normalizing flow and then computing the Bayes error
730 for its base Gaussian distribution, which can be done using the Holmes–Diaconis–Ross integration
731 scheme (Diaconis and Holmes, 1995; Gessner et al., 2020). One of the drawbacks of their approach
732 is that it is prohibitively memory-intensive for high-dimensional data, as mentioned in their paper.733 The method proposed by Ishida et al. (2023), described in Section 2.1, was unique in that it utilized
734 the soft labels $\eta_i = \eta(x_i)$ instead of the instances x_i themselves. Jeong et al. (2023) extended the
735 approach of Ishida et al. (2023) to the estimation of the Bayes error in multi-class classification
736 problems.737
738 B SUPPLEMENTARY FOR SECTION 2
739740 B.1 PROOF OF THEOREM 1
741742 For each $i = 1, \dots, d$, let $\hat{p}_i = \frac{1}{m} \sum_{j=1}^m Z_i^{(j)}$ where $Z_i^{(1)}, \dots, Z_i^{(m)} \in \{0, 1\}$ are independent
743 Bernoulli random variables with mean p_i . For ease of notation, we denote $\hat{p} = (\hat{p}_1, \dots, \hat{p}_d)$ and
744 $p = (p_1, \dots, p_d)$. Noting that $\mathbb{E}[\hat{p}] = p$, \hat{p} is an unbiased and consistent estimator of p .
745746 Suppose that we would like to estimate the value $\phi(p)$ for some function $\phi : \mathbb{R}^d \rightarrow \mathbb{R}$. It is natural
747 to consider a plug-in estimator $\phi(\hat{p})$. We can evaluate its bias $\mathbb{E}[\phi(\hat{p})] - \phi(p) = \mathbb{E}[\phi(\hat{p})] - \phi(\mathbb{E}[\hat{p}])$
748 using a sharpened version of Jensen’s inequality by Gao et al. (2019).749 **Lemma 1.** Suppose ϕ is differentiable at μ . Then, we have

750
$$\inf_{z \neq \mu} h(z) \sum_{i=1}^d p_i(1 - p_i) \leq \mathbb{E}[\phi(\hat{p})] - \phi(p) \leq \frac{\sup_{z \neq \mu} h(z)}{m} \sum_{i=1}^d p_i(1 - p_i), \quad (8)$$

751
752

753 where

754
$$h(z) := \frac{\phi(z) - \phi(\mu) - \nabla \phi(\mu)^\top (z - \mu)}{\|z - \mu\|_2^2}. \quad (9)$$

755

756 *Proof.* For any $i, j \in [d]$, we have

$$758 \quad \mathbb{E}[(\hat{p}_i - p_i)(\hat{p}_j - p_j)] = \frac{1}{m}p_i(1-p_i)\delta_{ij}, \quad (10)$$

759 where $\delta_{ij} = \mathbb{1}[i = j]$ is the Kronecker delta. This implies

$$761 \quad \text{tr}(\text{Cov}[\hat{p}]) = \frac{1}{m} \sum_{i=1}^d p_i(1-p_i). \quad (11)$$

764 Now, we can apply (2.4) in Gao et al. (2019) to conclude the proof.⁶ \square

766 It is often the case that the function ϕ in question is Lipschitz continuous. For example, every convex
767 function is locally Lipschitz on any convex compact subset of the relative interior of its domain (see
768 e.g. Hiriart-Urruty and Lemaréchal, 1993, Theorem 3.1.2 in Chapter IV). In such cases, we can
769 derive another type of bound based on Lipschitzness.

770 **Lemma 2** (Lipschitzness-based bounds for the bias). *If ϕ is L -Lipschitz with respect to the 1-norm,
771 we have*

$$772 \quad \left| \mathbb{E}[\phi(\hat{p})] - \phi(p) \right| \leq Ld\sqrt{\frac{\pi}{2m}}. \quad (12)$$

775 *Proof.* First of all, it holds that

$$776 \quad \left| \mathbb{E}[\phi(\hat{p})] - \phi(p) \right| \leq \mathbb{E}[|\phi(\hat{p}) - \phi(p)|] \quad (13)$$

$$778 \quad \leq L \mathbb{E} \left[\sum_{i=1}^d |\hat{p}_i - p_i| \right] \quad (\text{by Lipschitzness}) \quad (14)$$

$$781 \quad = L \sum_{i=1}^d \mathbb{E}[|\hat{p}_i - p_i|]. \quad (15)$$

784 Each summand can be bounded by integrating Hoeffding's tail bound (see, e.g., Theorem 2.2.6 of
785 (Vershynin, 2018)):

$$787 \quad \mathbb{E}[|\hat{p}_i - p_i|] = \int_0^\infty \mathbb{P}(|\hat{p}_i - p_i| \geq t) dt \quad (16)$$

$$789 \quad \leq \int_0^\infty 2 \exp(-2mt^2) dt \quad (17)$$

$$792 \quad = \sqrt{\frac{\pi}{2m}}. \quad (18)$$

794 Hence the result follows. \square

796 Lemma 2 suggests that the bias is at most $\mathcal{O}(1/\sqrt{m})$, whereas Lemma 1 indicates a faster conver-
797 gence rate of $\mathcal{O}(1/m)$ whenever the supremum and infimum are finite.

798 Now, define

$$799 \quad \phi_{\text{Err}}(z) := \min\{z, 1-z\} \quad (19)$$

800 for $z \in [0, 1]$. We choose $\phi = \phi_{\text{Err}}$ and apply Lemma 1 and Lemma 2 to show the following lemma.

801 **Lemma 3.** *For each $i \in [d]$, we have*

$$803 \quad -\sqrt{\frac{\pi}{2m}} \leq \mathbb{E}[\phi_{\text{Err}}(\hat{p}_i)] - \phi_{\text{Err}}(p_i) \leq 0. \quad (20)$$

805 Furthermore, if $p_i \neq 0.5$, it holds that

$$807 \quad -\frac{p_i(1-p_i)}{m|2p_i-1|} \leq \mathbb{E}[\phi_{\text{Err}}(\hat{p}_i)] - \phi_{\text{Err}}(p_i) \leq 0. \quad (21)$$

809 ⁶Although Gao et al. (2019) only discusses the univariate case, it is straightforward to extend the result to
the multivariate case.

810 *Proof.* The lower bound of the first inequality is a direct consequence of Lemma 2 and the fact
 811 that ϕ_{Err} is 1-Lipschitz. The upper bound follows from the concavity of ϕ_{Err} and the classic Jensen
 812 inequality.

813 To prove the second inequality, we first assume $0 \leq p_i < 0.5$. For any $z \in [0, 1] \setminus \{p_i\}$, we have
 814

$$815 \quad h(z) = \frac{\phi_{\text{Err}}(z) - \phi_{\text{Err}}(p_i) - (z - p_i)}{(z - p_i)^2} = \begin{cases} 0 & \text{for } z \in [0, 0.5], \\ 816 \quad \frac{1-2z}{(z-p_i)^2} & \text{for } z \in [0.5, 1], \end{cases} \quad (22)$$

817 and thus

$$818 \quad -\frac{1}{1-2p_i} \leq h(z) \leq 0. \quad (23)$$

819 Therefore, Lemma 1 implies

$$820 \quad -\frac{p_i(1-p_i)}{m(1-2p_i)} \leq \mathbb{E}[\phi_{\text{Err}}(\hat{p}_i)] - \phi_{\text{Err}}(p_i) \leq 0. \quad (24)$$

821 Next, we assume $0.5 < p_i \leq 1$. A similar argument proves $-\frac{1}{2p_i-1} \leq h(z) \leq 0$ and

$$822 \quad -\frac{p_i(1-p_i)}{m(2p_i-1)} \leq \mathbb{E}[\phi_{\text{Err}}(\hat{p}_i)] - \phi_{\text{Err}}(p_i) \leq 0. \quad (25)$$

823 Combining (24) and (25) proves the second bound. \square

824 Note that Lemma 3 can be rewritten as

$$825 \quad -\min\left\{\frac{L_{\text{Err}}(p_i)}{m}, \sqrt{\frac{\pi}{2m}}\right\} \leq \mathbb{E}[\phi_{\text{Err}}(\hat{p}_i)] - \phi_{\text{Err}}(p_i) \leq 0, \quad (26)$$

826 where

$$827 \quad L_{\text{Err}}(q) = \begin{cases} \frac{q(1-q)}{|2q-1|} & \text{if } q \neq 0.5, \\ 828 \quad +\infty & \text{if } q = 0.5. \end{cases} \quad (27)$$

829 Fig. 5 shows the graph of the function L_{Err} . Finally, Theorem 1 is proved as follows.

830 *Proof of Theorem 1.* Conditioning on x , let $\{y^{(j)}\}_{j=1}^m$ be independent Bernoulli random variables
 831 with mean $\eta(x)$ and $\hat{\eta}$ be their average $\frac{1}{m} \sum_{j=1}^m y^{(j)}$. Then, Lemma 3 gives

$$832 \quad -\min\left\{\frac{L_{\text{Err}}(\eta(x))}{m}, \sqrt{\frac{\pi}{2m}}\right\} \leq \mathbb{E}[\phi_{\text{Err}}(\hat{\eta}) \mid x] - \phi_{\text{Err}}(\eta(x)) \leq 0. \quad (28)$$

833 By taking expectation over x , we obtain

$$834 \quad -\mathbb{E}\left[\min\left\{\frac{L_{\text{Err}}(\eta(x))}{m}, \sqrt{\frac{\pi}{2m}}\right\}\right] \leq \mathbb{E}[\phi_{\text{Err}}(\hat{\eta})] - \mathbb{E}[\phi_{\text{Err}}(\eta(x))] \leq 0. \quad (29)$$

835 Now the claim follows since $\mathbb{E}[\widehat{\text{Err}}^*(\hat{\eta}_{1:n})] = \mathbb{E}[\phi_{\text{Err}}(\hat{\eta})]$ and $\text{Err}^* = \mathbb{E}[\phi_{\text{Err}}(\eta(x))]$. \square

836 B.2 PROOFS FOR OTHER RESULTS

837 B.2.1 SUPERIORITY OF THEOREM 1 OVER THE EXISTING RESULT

838 **Proposition 1.** *Theorem 1 is tighter than the existing result (2) by Ishida et al. (2023) for all $n, m \geq 1$.*

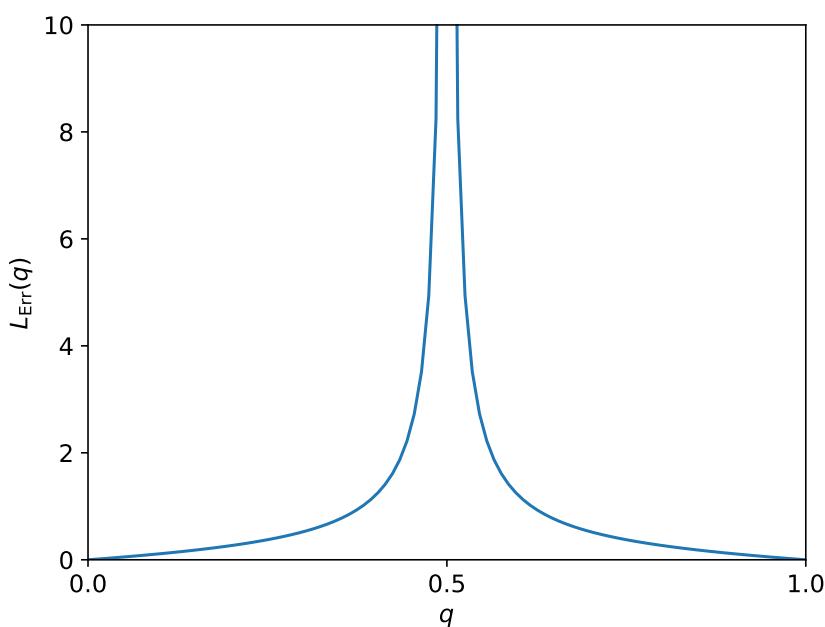
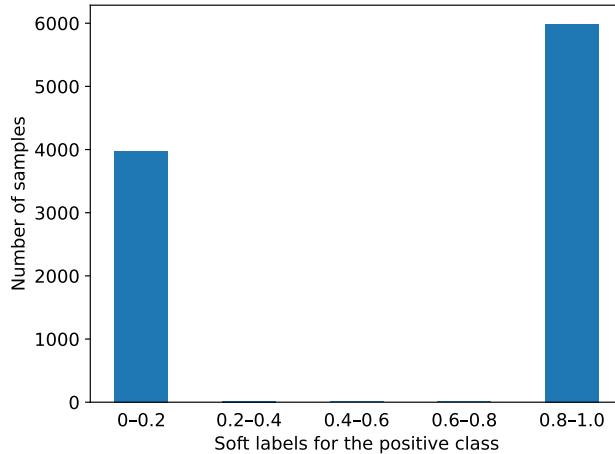
Figure 5: The graph of the function L_{Err} .

Figure 6: The distribution of the soft labels for the positive class in the binarized CIFAR-10H dataset (see Section 4.1 for details). You can see the two classes are very well-separated.

Proof. Our upper bound 0 is of course smaller than the upper bound in (2). As for the lower bounds, we can see that the condition

$$\sqrt{\frac{\pi}{2m}} \leq \frac{1}{2\sqrt{m}} + \sqrt{\frac{\log(2n\sqrt{m})}{m}} \quad (30)$$

is equivalent to

$$n\sqrt{m} \geq \frac{1}{2} \exp \left(\left(\frac{\sqrt{2\pi} - 1}{2} \right)^2 \right). \quad (31)$$

The right-hand side is less than 1 so (31) always holds. \square

918 B.2.2 FASTER DECAY RATE OF THE BIAS IN WELL-SEPARATED CASES (COROLLARY 1 &
 919 EXAMPLE 1)

920 *Proof of Corollary 1.* By the assumption, we have

922
$$L_{\text{Err}}(\eta(x)) = \frac{\eta(x)(1 - \eta(x))}{2|\eta(x) - 0.5|} \leq \frac{1/4 - c^2}{2c} \quad (32)$$

924 almost surely. Combining this with Theorem 1, we obtain the result. \square

926 *Proof of Example 1.* Let f_0, f_1 be the densities of $\mathcal{F}_0, \mathcal{F}_1$, respectively. From the data generation
 927 model, we can see that

928
$$\eta(x) = \frac{\nu f_0(x) + (1 - \nu) f_1(x)}{f_0(x) + f_1(x)} \quad (33)$$

930 for any $x \in \mathcal{X}$ such that $f_0(x) > 0$ or $f_1(x) > 0$. Since the supports of $\mathcal{F}_0, \mathcal{F}_1$ are disjoint, we can
 931 assume that

932
$$f_0(x) > 0 \implies f_1(x) = 0, \quad f_1(x) > 0 \implies f_0(x) = 0 \quad \text{for any } x \in \mathcal{X}, \quad (34)$$

934 which implies

935
$$\eta(x) = \begin{cases} \nu & \text{if } f_0(x) > 0, \\ 1 - \nu & \text{if } f_1(x) > 0. \end{cases} \quad (35)$$

937 Therefore, it holds that

938
$$|\eta(x) - 0.5| = |\nu - 0.5| = c > 0 \quad (36)$$

939 almost surely. \square

940 B.2.3 COMPUTABLE BOUND OF THE BIAS (COROLLARY 2)

942 **Lemma 4.** *If $\text{Err}^* \leq E$, we have*

944
$$\mathbb{P}(\phi_{\text{Err}}(\eta(x)) \geq t) \leq \min \left\{ 1, \frac{E}{t} \right\} \quad (37)$$

946 for any $t \in (0, 1/2]$.

948 *Proof.* Since $\phi_{\text{Err}}(\eta(x))$ is a non-negative random variable with mean $\mathbb{E}[\phi_{\text{Err}}(\eta(x))] = \text{Err}^*$,
 949 Markov's inequality gives

950
$$\mathbb{P}(\phi_{\text{Err}}(\eta(x)) \geq t) \leq \frac{\text{Err}^*}{t} \leq \frac{E}{t} \quad (38)$$

952 for any $t > 0$. \square

953 *Proof of Corollary 2.* Let $z = \phi_{\text{Err}}(\eta(x))$. Since

955
$$\frac{\eta(x)(1 - \eta(x))}{|2\eta(x) - 1|} = \frac{z(1 - z)}{1 - 2z}, \quad (39)$$

957 we have

958
$$\frac{\eta(x)(1 - \eta(x))}{|2\eta(x) - 1|} < \frac{t(1 - t)}{1 - 2t} \quad (40)$$

960 if $z < t$. Therefore,

961
$$\mathbb{E} \left[\min \left\{ \frac{L_{\text{Err}}(\eta(x))}{m}, \sqrt{\frac{\pi}{2m}} \right\} \right] \quad (41)$$

964
$$\leq \mathbb{E} \left[\sqrt{\frac{\pi}{2m}} \cdot \mathbb{1}[z \geq t] + \frac{1}{m} \cdot \frac{t(1 - t)}{1 - 2t} \cdot \mathbb{1}[z < t] \right] \quad (42)$$

966
$$\leq \sqrt{\frac{\pi}{2m}} \cdot \mathbb{P}(z \geq t) + \frac{1}{m} \cdot \frac{t(1 - t)}{1 - 2t} \cdot 1. \quad (43)$$

968 By using Lemma 4, we obtain

970
$$\mathbb{E} \left[\min \left\{ \frac{L_{\text{Err}}(\eta(x))}{m}, \sqrt{\frac{\pi}{2m}} \right\} \right] \leq \sqrt{\frac{\pi}{2m}} \cdot \min \left\{ 1, \frac{E}{t} \right\} + \frac{1}{m} \cdot \frac{t(1 - t)}{1 - 2t}. \quad (44)$$

971 Combining this with Theorem 1 yields the result. \square

972 B.2.4 STATISTICAL CONSISTENCY
973974 **Corollary 3.** (i) For any $\delta \in (0, 1)$, with probability at least $1 - \delta$, we have

975
976
$$|\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}) - \text{Err}^*| \leq \sqrt{\frac{\log(2/\delta)}{2n}} + \sqrt{\frac{\pi}{2m}}. \quad (45)$$

977

978 (ii) Suppose there exists a constant $c > 0$ such that $|\eta(x) - 0.5| \geq c$ holds almost surely. Then,
979 for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, we have
980

981
982
$$|\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}) - \text{Err}^*| \leq \sqrt{\frac{\log(2/\delta)}{2n}} + \frac{1 - 4c^2}{8cm}. \quad (46)$$

983

984 *Proof.* By Hoeffding’s inequality, we have
985

986
$$|\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}) - \mathbb{E}[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})]| \quad (47)$$

987

988
$$\leq |\widehat{\text{Err}}^*(\widehat{\eta}_{1:n}) - \mathbb{E}[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})]| + |\mathbb{E}[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})] - \text{Err}^*| \quad (48)$$

989

990
$$\leq \sqrt{\frac{\log(2/\delta)}{2n}} + |\mathbb{E}[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})] - \text{Err}^*| \quad (49)$$

991

992 with probability greater than $1 - \delta$. By upper-bounding the second term using Theorem 1 and
993 Corollary 1, we obtain (45) and (46), respectively. \square
994995 B.3 NUMERICAL EXPERIMENTS
996997 Here, we examine the validity of our theory using synthetic datasets composed of instances drawn
998 from the following distributions.⁷999
1000 (a) The Gaussian mixture $\mathbb{P}_X = 0.5 \cdot \mathbb{P}_0 + 0.5 \cdot \mathbb{P}_1$ with $\mathbb{P}_0 = N((0, 0), I_2)$ and $\mathbb{P}_1 = N((2, 2), I_2)$.
1001
1002 (b) The Gaussian mixture $\mathbb{P}_X = 0.5 \cdot \mathbb{P}_0 + 0.5 \cdot \mathbb{P}_1$ with the completely overlapping components
1003 $\mathbb{P}_0 = \mathbb{P}_1 = N((0, 0), I_2)$.
1004 (c) The distribution with label flips discussed in Example 1. We set the label flip rate to $\nu = 0.1$
1005 and use the uniform distributions over $[0, 1]^2$ and $[1, 2]^2$ as \mathcal{F}_0 and \mathcal{F}_1 , respectively.⁸
10061007 Note that the “perfect separation” assumption of Corollary 1 is met only by (c). For each $m =$
1008 10, 25, 50, 100, 250, 500, 1000, we perform the following procedure 1000 times:1009
1010 (i) Sample $n = 2000$ instances from one of the distributions (a), (b) and (c).
1011
1012 (ii) For each instance x_i , generate m hard labels $y_i^{(1)}, \dots, y_i^{(m)}$ from the posterior class distri-
1013
1014 (iii) Compute the estimate $\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})$.1015
1016 Then, we approximate the expectation $\mathbb{E}[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})]$ by the average of the 1000 estimates to cal-
1017
1018 culate the bias $|\mathbb{E}[\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})] - \text{Err}^*|$.1019 Fig. 7 is a log-log plot showing the empirical bias (the blue solid line) as a function of m for each
1020 setup. The corresponding theoretical bound (3) is also shown by the black dashed line.⁹ We note that
10211022 ⁷This experiment takes around 1 hour for each distribution on a CPU.
10231024 ⁸Note that the choice of base distributions $\mathcal{F}_0, \mathcal{F}_1$ does not matter as long as they satisfy the assumption
1025 (34) because η is determined solely by the label flip rate ν ; see (35).1026 ⁹The expectation $\mathbb{E}[\min\left\{\frac{L_{\text{Err}}(\eta(x))}{m}, \sqrt{\frac{\pi}{2m}}\right\}]$ is approximated by the sample average over 20000 data
1027 points.

the empirically observed bias is smaller than the theoretical bound in all the setups as expected. Our theory accurately predicts the decay of the bias, especially in **(a)** and **(b)**. If we fit a function of the form m^p to a bias curve, the slope of its graph corresponds to the exponent p . The slopes obtained by least-squares fitting are -0.9066 for **(a)**, -0.4970 for **(b)**, and -0.4228 for **(c)**. Recall that, the two class-conditional distributions were completely overlapping with each other in **(b)**. Thus the slope close to -0.5 is as expected. What is somewhat interesting is the result for **(a)**. Although this setup does not satisfy the perfect separation assumption of Corollary 1, the observed bias decay is approximately proportional to m^{-1} . It suggests that the “fast” m^{-1} term dominates the “slow” $m^{-1/2}$ term. As for **(c)**, examining the slope -0.4228 will not make much sense as the shape of the graph Fig. 7c is far from being a straight line.

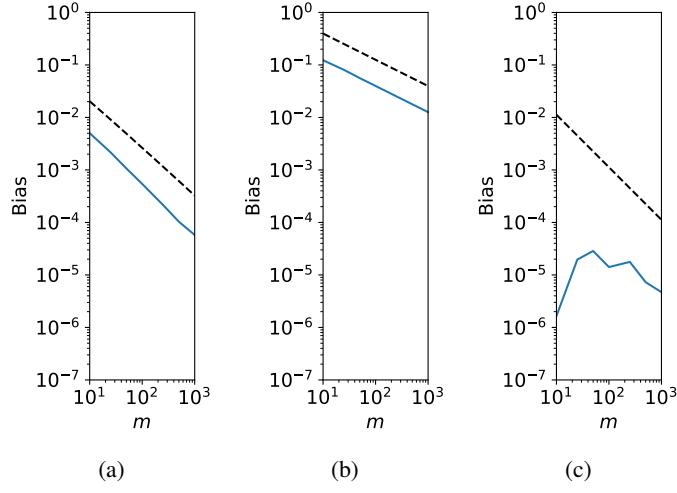


Figure 7: The bias of the hard-label-based estimator $\widehat{\text{Err}}^*(\widehat{\eta}_{1:n})$ as a function of the number m of hard labels per sample. The blue solid lines indicate the experimental results while the black dashed lines indicate the theoretical upper bounds in Theorem 1.

C SUPPLEMENTARY FOR SECTION 3

In this section, we present the proof of Theorem 2. Section C.1 presents a new risk bound for binary isotonic regression (Proposition 2) as well as a useful lemma for general shape-constrained nonparametric regression problems (Lemma 5). Then, we employ these results to prove the theorem in Section C.2.

C.1 RISK BOUND FOR BINARY ISOTONIC REGRESSION

C.1.1 NONPARAMETRIC REGRESSION AND ISOTONIC REGRESSION

Here, we introduce general nonparametric regression problems where we aim to estimate the underlying signal from noisy observations. Then, we describe the isotonic regression setting.

Let T be a set. Assume that, for each design point $t_i \in T$, $i = 1, \dots, n$, we observe

$$y_i = f^*(t_i) + \xi_i, \quad (50)$$

where $f^* : T \rightarrow \mathbb{R}$ is the unknown regression function and $\xi_i \in \mathbb{R}$ are independent and mean-zero noise variables. A natural estimator would be the least squares estimator (LSE)

$$\widehat{f} \in \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (y_i - f(t_i))^2, \quad (51)$$

1080 where \mathcal{F} is some pre-defined function class. In the fixed design setting, the quality of an estimator
 1081 \hat{f} is evaluated by the ℓ^2 risk
 1082

$$1083 \frac{1}{n} \sum_{i=1}^n \left(\hat{f}(t_i) - f^*(t_i) \right)^2. \quad (52)$$

1085 Under this criterion, estimators are evaluated only on the fixed design points t_i so estimating the
 1086 function f^* is equivalent to estimating the sequence/vector $\mu := (f^*(t_1), \dots, f^*(t_n)) \in \mathbb{R}^n$.
 1087

1088 From this perspective, the regression problem can be reformulated as follows. Our observation is an
 1089 n -dimensional random vector $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$ of the form
 1090

$$\mathbf{y} = \mu + \xi. \quad (53)$$

1091 Here $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{R}^n$ is the unknown signal and $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ is a centered noise
 1092 vector whose elements are independent. Let $K \subset \mathbb{R}^n$ be a closed convex subset from which we
 1093 choose our estimates, which corresponds to the function class \mathcal{F} in the function estimation formu-
 1094 lation described above. Often it is assumed that the true signal μ indeed belongs to K . However,
 1095 in our results in Section C.1, we allow model misspecification, i.e., we do not assume $\mu \in K$. The
 1096 LSE $\hat{\mu}$ is the Euclidean projection of \mathbf{y} onto K :

$$1097 \hat{\mu} = \arg \min_{\mathbf{u} \in K} \|\mathbf{y} - \mathbf{u}\|_2^2. \quad (54)$$

1098 **Isotonic regression** *Isotonic regression* is a special case where we choose K to be the collection
 1099 \mathcal{M}_n of all non-decreasing sequences of length n :

$$1101 \mathcal{M}_n := \{\mathbf{u} \in \mathbb{R}^n \mid u_1 \leq \dots \leq u_n\}. \quad (55)$$

1102 Note that \mathcal{M}_n is a closed convex cone. Here the goal is to estimate isotonic, or monotonic, signals
 1103 from noisy observations. Recall that the LSE $\hat{\mu}$ is the Euclidean projection of the observation vector
 1104 \mathbf{y} onto \mathcal{M}_n :

$$1105 \hat{\mu} = \arg \min_{\mathbf{u} \in \mathcal{M}_n} \|\mathbf{y} - \mathbf{u}\|_2^2. \quad (56)$$

1106 It has the following explicit representation (Robertson et al., 1988), which is known as the min-max
 1107 formula:

$$1109 \hat{\mu}_i = \min_{l \geq i} \max_{k \leq i} \bar{y}_{k:l}, \quad i = 1, \dots, n, \quad (57)$$

1110 where $\bar{y}_{k:l} := \frac{1}{l-k+1} \sum_{i=k}^l y_i$ is the average of y_k, \dots, y_l . It can be efficiently computed with the
 1111 *pool adjacent violators* (PAV) algorithm (Ayer et al., 1955).

1112 We are interested in evaluating the risk $\frac{1}{n} \|\hat{\mu} - \mu\|_2^2$ of the LSE $\hat{\mu}$, which has been extensively
 1113 studied in the literature (e.g. Zhang, 2002; Chatterjee, 2014; Chatterjee et al., 2015; Bellec and
 1114 Tsibakov, 2015; Bellec, 2018; Yang and Barber, 2019; Chatterjee and Lafferty, 2019). We will
 1115 cover the results from these existing works later in Section C.1.2.

1117 C.1.2 REVIEW OF THE EXISTING RISK BOUNDS FOR ISOTONIC REGRESSION

1118 First, we introduce some notions that will be needed below. For each non-decreasing sequence
 1119 $\mathbf{u} \in \mathcal{M}_n$, we denote its total variation by

$$1121 V(\mathbf{u}) := \max_i u_i - \min_i u_i. \quad (58)$$

1123 We also let $k(\mathbf{u})$ be the number of constant pieces in \mathbf{u} . In other words, $k(\mathbf{u}) - 1$ is the number of
 1124 the inequalities $u_i \leq u_{i+1}$ that are strict, so the sequence u_1, \dots, u_n has $k(\mathbf{u}) - 1$ jumps in total.

1125 For the cases where $\mu \in \mathcal{M}_n$ and the noises have bounded variance $\mathbb{E} [\xi_i^2] \leq \sigma^2$, the following
 1126 bound on the expected risk was proven by Zhang (2002):
 1127

$$1128 \mathbb{E} \left[\frac{1}{n} \|\hat{\mu} - \mu\|_2^2 \right] \leq C \left\{ \left(\frac{\sigma^2 V(\mu)}{n} \right)^{2/3} + \frac{\sigma^2 \log(en)}{n} \right\}, \quad (59)$$

1130 where $C \leq 12.3$ is an absolute constant. Chatterjee et al. (2015) showed this $n^{-2/3}$ rate is minimax,
 1131 while providing another type of risk bound
 1132

$$1133 \mathbb{E} \left[\frac{1}{n} \|\hat{\mu} - \mu\|_2^2 \right] \leq 6 \min_{\mathbf{u} \in \mathcal{M}_n} \left\{ \frac{1}{n} \|\mathbf{u} - \mu\|_2^2 + \frac{\sigma^2 k(\mathbf{u})}{n} \log \frac{en}{k(\mathbf{u})} \right\} \quad (60)$$

under the assumptions that $\mu \in \mathcal{M}_n$ and ξ_i are i.i.d. with finite variance $\mathbb{E} [\xi_i^2] = \sigma^2$. (60) is adaptive, unlike (59), in the sense that it gives a parametric rate $n^{-1/2}$ up to logarithmic factors when the true signal μ is well-approximated by some $u \in \mathcal{M}_n$ with small $k(u)$ (i.e., a piecewise constant sequence with not too many pieces). Later, Bellec (2018) showed two types of bounds, improving the previous results in the case of i.i.d. Gaussian noise $\xi \sim N(0, \sigma^2 I_n)$. In the first result, they proved that, with probability greater than $1 - e^{-x}$, we have

$$\frac{1}{n} \|\hat{\mu} - \mu\|_2^2 \leq \min_{u \in \mathcal{M}_n} \left\{ \frac{1}{n} \|u - \mu\|_2^2 + 2c\sigma^2 \left(\frac{\sigma + V(u)}{\sigma n} \right)^{2/3} \right\} + \frac{4\sigma^2 x}{n}, \quad (61)$$

where c is an absolute constant. A corresponding bound in expectation also can be derived by integrating this high-probability bound. The second result is that, with probability at least $1 - e^{-x}$, we have

$$\frac{1}{n} \|\hat{\mu} - \mu\|_2^2 \leq \min_{u \in \mathcal{M}_n} \left\{ \frac{1}{n} \|u - \mu\|_2^2 + \frac{2\sigma^2 k(u)}{n} \log \frac{en}{k(u)} \right\} + \frac{4\sigma^2 x}{n}. \quad (62)$$

A similar in-expectation bound

$$\mathbb{E} \left[\frac{1}{n} \|\hat{\mu} - \mu\|_2^2 \right] \leq \min_{u \in \mathcal{M}_n} \left\{ \frac{1}{n} \|u - \mu\|_2^2 + \frac{\sigma^2 k(u)}{n} \log \frac{en}{k(u)} \right\} \quad (63)$$

also holds. Bellec (2018)'s results, (61), (62) and (63), have several features worth mentioning. First, their leading constants are 1. For this reason, these bounds are called *sharp* oracle inequalities. Second, they are valid even under model misspecification, which (59) nor (60) allowed. Third, (61) and (62) were the first oracle inequalities that were shown to hold with high probability, rather than in expectation. The last point is especially important for our purpose, i.e., computing confidence intervals. A major drawback of the results by Bellec (2018) is that they are restricted to Gaussian noise. Yang and Barber (2019) employed their unique sliding window norm technique to prove the following bound for general sub-Gaussian noise with variance proxy σ^2 :

$$\mathbb{E} \left[\frac{1}{n} \|\hat{\mu} - \mu\|_2^2 \right] \leq 48 \left(\frac{\sigma^2 V(\mu) \log(2n)}{n} \right)^{2/3} + \frac{96\sigma^2 \log^2(2n)}{n} \quad (64)$$

Under model misspecification $\mu \notin \mathcal{M}_n$, (64) still remains valid with μ replaced by its projection onto \mathcal{M}_n . A similar high-probability bound also can be derived by almost the same argument, although they did not mention it in their paper.

C.1.3 METRIC ENTROPY BOUNDS FOR ISOTONIC CONSTRAINTS

For real numbers $-\infty < a < b < \infty$, we define the truncated version of the isotonic cone \mathcal{M}_n as

$$\mathcal{M}_n(a, b) := \{x \in \mathbb{R}^n \mid a \leq x_1 \leq \dots \leq x_n \leq b\}. \quad (65)$$

$\mathcal{M}_n(a, b)$ is not a cone, unlike \mathcal{M}_n , but it is still a closed convex set. We also define the set of all non-decreasing functions from $[0, 1]$ to $[0, 1]$:

$$\mathcal{M} := \{f : [0, 1] \rightarrow [0, 1] \mid f \text{ is non-decreasing}\}. \quad (66)$$

Let $(\mathcal{F}, \|\cdot\|)$ be a subset of a normed function space. Given two functions $l, u \in \mathcal{F}$ with $\|u - l\| \leq \varepsilon$, the set

$$\{f \in \mathcal{F} \mid l \leq f \leq u\} \quad (67)$$

is called an ε -bracket (Van Der Vaart and Wellner, 1996). The ε -bracketing number $\mathcal{N}_{[]}(\mathcal{F}, \|\cdot\|, \varepsilon)$ of $(\mathcal{F}, \|\cdot\|)$ is the smallest number of ε -brackets needed to cover \mathcal{F} . The logarithm of bracketing numbers is called *bracketing entropy*.

Van Der Vaart and Wellner (1996, Theorem 2.7.5) and Gao and Wellner (2007, Theorem 1.1) proved the ε -bracketing entropy of \mathcal{M} is of order ε^{-1} , i.e.,

$$\log \mathcal{N}_{[]}(\mathcal{M}, \|\cdot\|_{L^p}, \varepsilon) \leq \frac{C_p}{\varepsilon}, \quad \forall \varepsilon > 0, \quad (68)$$

where $C_p > 0$ is a universal constant depending only on $p \in [1, \infty)$ and $\|\cdot\|_{L^p}$ is the L^p norm under Lebesgue measure. Later, Chatterjee (2014, Lemma 4.20) established a tool that enables us to

convert the bracketing entropy bound (68) for monotone functions into a metric entropy bound for monotone sequences. It has been commonly utilized in previous studies (Chatterjee, 2014; Bellec, 2018; Chatterjee and Lafferty, 2019). Although the original result by Chatterjee (2014) was stated for the Euclidean norm $\|\cdot\|_2$, results for other p -norms $\|\cdot\|_p$, $p \in [1, \infty]$ can be obtained by a similar argument. We state and prove this generalized version below.

Theorem 4. *Take any $p \in [1, \infty)$. Then, we have*

$$\log \mathcal{N}(\mathcal{M}_n(a, b), \|\cdot\|_p, \varepsilon) \leq \frac{C_p(b - a)n^{1/p}}{\varepsilon} \quad (69)$$

for $\varepsilon > 0$. Here C_p is the same constant as in (68).

Proof. Without loss of generality, we assume $a = 0$ and $b = 1$. First of all, note the general fact that ε -covering number is upper-bounded by 2ε -bracketing number (see, e.g. Van Der Vaart and Wellner, 1996). This, together with the bracketing number bound (68), implies

$$\log \mathcal{N}(\mathcal{M}, \|\cdot\|_{L^p}, \varepsilon) \leq \log \mathcal{N}_{[]}(\mathcal{M}, \|\cdot\|_{L^p}, 2\varepsilon) \leq \frac{C_p}{2\varepsilon}. \quad (70)$$

Therefore, there exists an ε -net \tilde{N} of the function class \mathcal{M} with $\log |\tilde{N}| \leq \frac{C_p}{2\varepsilon}$. Now set $\delta = 2n^{1/p}\varepsilon$. We will construct a δ -net N of the sequence class $\mathcal{M}_n(0, 1)$ based on \tilde{N} . To this end, for each monotone sequence $\mathbf{u} \in \mathcal{M}_n(0, 1)$, we associate it with a monotone piecewise constant function $g_{\mathbf{u}} \in \mathcal{M}$ of the form

$$g_{\mathbf{u}}(x) = \sum_{i=1}^n u_i \mathbb{1} \left[x \in \left[\frac{i-1}{n}, \frac{i}{n} \right] \right]. \quad (71)$$

For each $f \in \tilde{N}$, we check if f can be approximated by $g_{\mathbf{u}}$ for some $\mathbf{u} \in \mathcal{M}_n(0, 1)$ so that $\|f - g_{\mathbf{u}}\|_{L^p} \leq \varepsilon$. If it can, we put one of the corresponding sequences \mathbf{u} into N . By construction of N , we have $\log |N| \leq \log |\tilde{N}| \leq \frac{C_p}{2\varepsilon}$.

Next, we confirm N is indeed a δ -net of $\mathcal{M}_n(0, 1)$. Take any $\mathbf{u} \in \mathcal{M}_n(0, 1)$. Then, since \tilde{N} is a ε -net of \mathcal{M} and $g_{\mathbf{u}}$ belongs to \mathcal{M} , there exists $f \in \tilde{N}$ approximating $g_{\mathbf{u}}$ so that

$$\|g_{\mathbf{u}} - f\|_{L^p} \leq \varepsilon. \quad (72)$$

Now, observe that (72) implies “ $f \in \tilde{N}$ can be approximated by $g_{\mathbf{u}}$ for some $\mathbf{u} \in \mathcal{M}_n(0, 1)$,” so there is $\mathbf{v} \in N$ such that $\|f - g_{\mathbf{v}}\|_{L^p} \leq \varepsilon$ by the construction of N . So the triangle inequality implies

$$\|g_{\mathbf{u}} - g_{\mathbf{v}}\|_{L^p} \leq \|g_{\mathbf{u}} - f\|_{L^p} + \|f - g_{\mathbf{v}}\|_{L^p} \leq 2\varepsilon. \quad (73)$$

On the other hand, the left-hand side can be explicitly calculated as follows.

$$\begin{aligned} \|g_{\mathbf{u}} - g_{\mathbf{v}}\|_{L^p} &= \left(\int_0^1 (g_{\mathbf{u}} - g_{\mathbf{v}})^p \right)^{1/p} \\ &= \left(\int_0^1 \sum_{i=1}^n (u_i - v_i)^p \mathbb{1} \left[x \in \left[\frac{i-1}{n}, \frac{i}{n} \right] \right] \right)^{1/p} \\ &= \left(\frac{1}{n} \sum_{i=1}^n (u_i - v_i)^p \right)^{1/p} \\ &= \frac{\|\mathbf{u} - \mathbf{v}\|_p}{n^{1/p}}. \end{aligned} \quad (74)$$

Therefore, it follows that, for any $\mathbf{u} \in \mathcal{M}_n(0, 1)$, there exists $\mathbf{v} \in N$ such that

$$\|\mathbf{u} - \mathbf{v}\|_p \leq 2n^{1/p}\varepsilon = \delta, \quad (75)$$

which proves N is a δ -net of $\mathcal{M}_n(0, 1)$ with respect to p -norm. Thus, we have

$$\log \mathcal{N}(\mathcal{M}_n(0, 1), \|\cdot\|_p, \delta) \leq \log |N| \leq \frac{C_p}{2\varepsilon} = \frac{C_p n^{1/p}}{\delta}. \quad (76)$$

□

1242 C.1.4 LEMMA FOR PROVING SHARP ORACLE INEQUALITIES
12431244 Here, we present a general lemma that we can use to prove a sharp oracle inequality for the LSE
1245

1246
$$\hat{\mu} = \arg \min_{\mathbf{u} \in K} \|\mathbf{y} - \mathbf{u}\|_2^2 = \arg \min_{\mathbf{u} \in K} \|(\mu + \xi) - \mathbf{u}\|_2^2 \quad (77)$$

1247

1248 under a convex constraint $K \subset \mathbb{R}^n$ and a general noise ξ . Here ‘‘sharp’’ means that the resulting
1249 oracle inequality has a leading constant 1. Lemma 5 below is a slight extension of the elegant
1250 argument given by Bellec (2018, Theorem 2.3), which was given for the i.i.d. Gaussian noise setting.
1251 In fact, it is essentially just a deterministic statement, so there is no requirement for the stochastic
1252 structure of the noise ξ . Their key idea was to make use of convexity to obtain a stronger basic
1253 inequality than usual. Here *basic inequality* refers to the elementary fact
1254

1254
$$\|\hat{\mu} - \mu\|_2^2 \leq \|\mathbf{u} - \mu\|_2^2 + 2\langle \xi, \hat{\mu} - \mathbf{u} \rangle, \quad \forall \mathbf{u} \in K \quad (78)$$

1255

1256 that holds even if K is non-convex. (78) immediately follows from the optimality of $\hat{\mu}$, i.e.,
1257

1257
$$\|\mathbf{y} - \hat{\mu}\|_2^2 \leq \|\mathbf{y} - \mathbf{u}\|_2^2, \quad \forall \mathbf{u} \in K. \quad (79)$$

1258

1259 Now suppose K is convex. Then, the LSE (i.e., the projection of \mathbf{y} onto K) satisfies the variational
1260 inequality
1261

1261
$$\langle \mathbf{u} - \hat{\mu}, \mathbf{y} - \hat{\mu} \rangle \leq 0, \quad \forall \mathbf{u} \in K, \quad (80)$$

1262

1262 which is an elementary result of convex geometry. Importantly, it implies
1263

1263
$$\|\mathbf{y} - \hat{\mu}\|_2^2 \leq \|\mathbf{y} - \mathbf{u}\|_2^2 - \|\hat{\mu} - \mathbf{u}\|_2^2, \quad \forall \mathbf{u} \in K. \quad (81)$$

1264

1265 (81) can be seen as a strengthened version of (79) with the additional term $-\|\hat{\mu} - \mathbf{u}\|_2^2$. Therefore
1266 it can be used to derive a stronger version of the basic inequality (78), i.e.,
1267

1267
$$\|\hat{\mu} - \mu\|_2^2 \leq \|\mathbf{u} - \mu\|_2^2 + 2\langle \xi, \hat{\mu} - \mathbf{u} \rangle - \|\hat{\mu} - \mathbf{u}\|_2^2, \quad \forall \mathbf{u} \in K \quad (82)$$

1268

1269 This is the inequality (2.3) in Bellec (2018). Following their method, we use this fact as the starting
1270 point of the proof of Lemma 5. Recall that we do not require μ to belong to K . It can be any point
1271 in \mathbb{R}^n , i.e., we allow model misspecification.
12721273 **Lemma 5** (Localized width and projection). *Take any $p \in [2, \infty]$. Let $\xi, \mu \in \mathbb{R}^n$ be arbitrarily
1274 fixed vectors and $K \subset \mathbb{R}^n$ be a convex set. Suppose that a point $\mathbf{u} \in K$ and positive numbers t, s
1275 satisfy*

1275
$$Z(\mathbf{u}, t) := \sup_{\mathbf{v} \in K, \|\mathbf{v} - \mathbf{u}\|_p \leq t} \langle \xi, \mathbf{v} - \mathbf{u} \rangle \leq \frac{t^2}{2} + ts. \quad (83)$$

1276

1277 Then, the projection $\hat{\mu}$ of $\mu + \xi$ onto K satisfies

1278
$$\|\hat{\mu} - \mu\|_2^2 \leq \|\mathbf{u} - \mu\|_2^2 + (t + s)^2. \quad (84)$$

1279

1280 *Proof.* For ease of notation, let
1281

1282
$$K_p(\mathbf{u}, t) := \{\mathbf{v} \in K \mid \|\mathbf{v} - \mathbf{u}\|_p \leq t\}. \quad (85)$$

1283

1284 Note that $Z(\mathbf{u}, t) = \sup_{\mathbf{v} \in K_p(\mathbf{u}, t)} \langle \xi, \mathbf{v} - \mathbf{u} \rangle$. We break our analysis into two cases.
12851286 (i) If $\|\hat{\mu} - \mathbf{u}\|_p \leq t$, then $\hat{\mu} \in K_p(\mathbf{u}, t)$. Therefore the basic inequality (82) implies
1287

1288
$$\|\hat{\mu} - \mu\|_2^2 - \|\mathbf{u} - \mu\|_2^2 \leq 2\langle \xi, \hat{\mu} - \mathbf{u} \rangle - \|\hat{\mu} - \mathbf{u}\|_2^2 \leq 2Z(\mathbf{u}, t) - \|\hat{\mu} - \mathbf{u}\|_2^2 \leq 2Z(\mathbf{u}, t). \quad (86)$$

1289

1290 Now use the assumption (83) to obtain
1291

1292
$$\|\hat{\mu} - \mu\|_2^2 - \|\mathbf{u} - \mu\|_2^2 \leq t^2 + 2ts \leq (t + s)^2. \quad (87)$$

1293

1294 (ii) Next, suppose $\|\hat{\mu} - \mathbf{u}\|_p > t$. Letting $\alpha := t/\|\hat{\mu} - \mathbf{u}\|_p$, we have $\alpha \in (0, 1)$. Now
1295 take $\mathbf{v} := \mathbf{u} + \alpha(\hat{\mu} - \mathbf{u})$. Then, the convexity of K implies $\mathbf{v} \in K$, and clearly, we have

1296 $\|\mathbf{v} - \mathbf{u}\|_p = t$, so \mathbf{v} is a member of $K_p(\mathbf{u}, t)$. Therefore, we can plug $\hat{\boldsymbol{\mu}} - \mathbf{u} = \alpha^{-1}(\mathbf{v} - \mathbf{u})$
 1297 into the basic inequality (82) to obtain
 1298

$$\|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\|_2^2 - \|\mathbf{u} - \boldsymbol{\mu}\|_2^2 \leq 2\langle \boldsymbol{\xi}, \hat{\boldsymbol{\mu}} - \mathbf{u} \rangle - \|\hat{\boldsymbol{\mu}} - \mathbf{u}\|_2^2 \quad (88)$$

$$= \frac{2}{\alpha} \langle \boldsymbol{\xi}, \mathbf{v} - \mathbf{u} \rangle - \frac{\|\mathbf{v} - \mathbf{u}\|_2^2}{\alpha^2} \quad (89)$$

$$\leq \frac{2}{\alpha} Z(\mathbf{u}, t) - \frac{t^2}{\alpha^2} \quad (90)$$

$$= 2 \frac{Z(\mathbf{u}, t)}{t} \frac{t}{\alpha} - \left(\frac{t}{\alpha} \right)^2 \quad (91)$$

$$\leq \left(\frac{Z(\mathbf{u}, t)}{t} \right)^2, \quad (92)$$

1309 where we used $\|\mathbf{v} - \mathbf{u}\|_2^2 \geq \|\mathbf{v} - \mathbf{u}\|_p^2 = t^2$ in (90) and $2ab - b^2 \leq a^2$ in (92). Now, the
 1310 the assumption (83) readily implies
 1311

$$\|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\|_2^2 - \|\mathbf{u} - \boldsymbol{\mu}\|_2^2 \leq \left(\frac{t}{2} + s \right)^2 \leq (t + s)^2 \quad (93)$$

1315 Therefore the claim is true for both cases. \square
 1316

1317 C.1.5 RISK BOUND FOR BINARY ISOTONIC REGRESSION

1319 In the sequel, we apply the general results stated in the previous sections to investigate the *binary*
 1320 *isotonic regression* problem. In binary regression, we are given n binary observations $y_i \in \{0, 1\}$,
 1321 each of which is drawn independently from the Bernoulli distribution with mean $\mu_i \in [0, 1]$. The
 1322 noise distribution can be described as

$$\mathbb{P}(\xi_i = 1 - \mu_i) = \mu_i, \quad \mathbb{P}(\xi_i = -\mu_i) = 1 - \mu_i. \quad (94)$$

1325 Many calibration methods for probabilistic classification, including calibration by isotonic regres-
 1326 sion (Zadrozny and Elkan, 2002), can be seen as an instance of binary regression problems. Some
 1327 authors refer to this setup as the Bernoulli model (Yang and Barber, 2019).

1328 To the best of our knowledge, there is no previous work that investigated risk bounds in binary
 1329 isotonic regression. Here, we derive a new risk bound for this setting. Recall the definitions of the
 1330 isotonic cone \mathcal{M}_n and its truncation $\mathcal{M}_n(a, b)$ (see (55) and (65)):

$$\mathcal{M}_n = \{\mathbf{u} \in \mathbb{R}^n \mid u_1 \leq \dots \leq u_n\}, \quad (95)$$

$$\mathcal{M}_n(a, b) = \{\mathbf{u} \in \mathbb{R}^n \mid a \leq u_1 \leq \dots \leq u_n \leq b\} \quad (-\infty < a < b < \infty). \quad (96)$$

1334 From the min-max formula (57), one can observe that the unbounded set \mathcal{M}_n can be replaced with
 1335 the bounded closed convex set $\mathcal{M}_n(0, 1)$ in binary isotonic regression. In other words, the least
 1336 squares estimator for the binary isotonic regression problem can be written as

$$\hat{\boldsymbol{\mu}} = \arg \min_{\mathbf{u} \in \mathcal{M}_n(0, 1)} \|\mathbf{y} - \mathbf{u}\|_2^2. \quad (97)$$

1339 It leads to the following result.

1340 **Proposition 2.** *With probability at least $1 - e^{-x}$, we have*

$$\frac{1}{n} \|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\|_2^2 \leq \min_{\mathbf{u} \in \mathcal{M}_n(0, 1)} \frac{1}{n} \|\mathbf{u} - \boldsymbol{\mu}\|_2^2 + \left(\left(\frac{C}{n} \right)^{1/3} + \sqrt{\frac{2x}{n}} \right)^2, \quad (98)$$

1345 where C is an absolute constant.

1346 *Remark.*

1348 (i) Thanks to the replacement of the unbounded set \mathcal{M}_n with the bounded set $\mathcal{M}_n(0, 1)$,
 1349 we do not have to go through the additional ‘‘peeling’’ step used in Chatterjee (2014) and
 Chatterjee and Lafferty (2019).

1350 (ii) This result is valid even under model misspecification.
 1351

1352 *Proof.* For any $\mathbf{u} \in \mathcal{M}_n(0, 1)$ and $t > 0$, let
 1353

$$K(\mathbf{u}, t) := \{\mathbf{v} \in \mathcal{M}_n(0, 1) \mid \|\mathbf{v} - \mathbf{u}\|_2 \leq t\}, \quad (99)$$

$$Z(\mathbf{u}, t) := \sup_{\mathbf{v} \in K(\mathbf{u}, t)} \langle \xi, \mathbf{v} - \mathbf{u} \rangle. \quad (100)$$

1356 We first control the expectation $\mathbb{E}[Z(\mathbf{u}, t)]$. To this end, observe that the process $(X_{\mathbf{v}})_{\mathbf{v} \in K(\mathbf{u}, t)}$,
 1357 where $X_{\mathbf{v}} := \langle \xi, \mathbf{v} - \mathbf{u} \rangle$, is a sub-Gaussian process, i.e., for any $\mathbf{v}_1, \mathbf{v}_2 \in T$, we have $\mathbb{E}[X_{\mathbf{v}_1}] = 0$
 1358 and
 1359

$$\log \mathbb{E}[e^{\lambda(X_{\mathbf{v}_2} - X_{\mathbf{v}_1})}] \leq \frac{\lambda^2 \|\mathbf{v}_2 - \mathbf{v}_1\|_2^2}{8}, \quad \forall \lambda \geq 0. \quad (101)$$

1362 Now combining Dudley's chaining technique (see e.g. van Handel, 2016, Corollary 5.25) and the
 1363 metric entropy bound in Theorem 4 gives

$$\begin{aligned} \mathbb{E}[Z(\mathbf{u}, t)] &\leq 6 \int_0^t \sqrt{\log \mathcal{N}(K(\mathbf{u}, \varepsilon), \|\cdot\|_2, \varepsilon)} d\varepsilon \\ &\leq 6 \int_0^t \sqrt{\frac{C_2 \sqrt{n}}{\varepsilon}} d\varepsilon \\ &= 12C_2^{1/2} n^{1/4} t^{1/2}, \end{aligned} \quad (102)$$

1370 where C_2 is the constant appearing in (68).
 1371

1372 Moreover, it is straightforward to see that, for each fixed \mathbf{u} and t , $Z(\mathbf{u}, t)$ is a convex t -Lipschitz
 1373 function of ξ . Therefore, by using Theorem 6.10 in Boucheron et al. (2013) together with (102),
 1374 with probability greater than $1 - e^{-x}$, we have

$$Z(\mathbf{u}, t) \leq \mathbb{E}[Z(\mathbf{u}, t)] + t\sqrt{2x} \leq 12C_2^{1/2} n^{1/4} t^{1/2} + t\sqrt{2x}. \quad (103)$$

1375 Now, define $t^* := 4(9C_2)^{1/3} n^{1/6}$ and observe that we have $12C_2^{1/2} n^{1/4} t^{1/2} \leq \frac{t^2}{2}$ for any $t \geq t^*$.
 1376 Therefore, Lemma 5 yields

$$\|\hat{\mu} - \mu\|_2^2 \leq \|\mathbf{u} - \mu\|_2^2 + (t^* + \sqrt{2x})^2 \leq (\|\mathbf{u} - \mu\|_2 + t^* + \sqrt{2x})^2 \quad (104)$$

1381 with probability at least $1 - e^{-x}$. we obtain the result by dividing both sides by n and taking the
 1382 minimum over all $\mathbf{u} \in \mathcal{M}_n(0, 1)$. \square
 1383

1384 C.2 PROOF OF THEOREM 2

1386 We are just one lemma away from proving our main theorem. The following lemma states that
 1387 the error between the two estimates with different sets of soft labels can be upper bounded by the
 1388 root-mean-square error between them.

1389 **Lemma 6.** For any set of soft labels $\{\eta'_i\}_{i=1}^n \in [0, 1]^n$, it holds that
 1390

$$\left| \widehat{\text{Err}}^*(\eta'_{1:n}) - \widehat{\text{Err}}^*(\eta_{1:n}) \right| \leq \frac{1}{n} \sum_{i=1}^n |\eta'_i - \eta_i| \leq \sqrt{\frac{1}{n} \sum_{i=1}^n (\eta'_i - \eta_i)^2}. \quad (105)$$

1395 *Proof.* Since $x \in [0, 1] \mapsto \min\{x, 1 - x\}$ is 1-Lipschitz, we have
 1396

$$\left| \widehat{\text{Err}}^*(\eta'_{1:n}) - \widehat{\text{Err}}^*(\eta_{1:n}) \right| \leq \frac{1}{n} \sum_{i=1}^n |\min\{\eta'_i, 1 - \eta'_i\} - \min\{\eta_i, 1 - \eta_i\}| \quad (106)$$

$$\leq \frac{1}{n} \sum_{i=1}^n |\eta'_i - \eta_i|. \quad (107)$$

1402 The second inequality follows from Jensen's inequality.
 1403 \square

1404 We can finally prove Theorem 2.
 1405

1406 *Proof.* By the triangle inequality, we have
 1407

$$1408 \left| \widehat{\text{Err}}^*(\widehat{\eta}_{1:n}^{\text{iso}}) - \text{Err}^* \right| \leq \left| \widehat{\text{Err}}^*(\widehat{\eta}_{1:n}^{\text{iso}}) - \widehat{\text{Err}}^*(\eta_{1:n}) \right| + \left| \widehat{\text{Err}}^*(\eta_{1:n}) - \text{Err}^* \right|. \quad (108)$$

1410 Using Lemma 6 for the first term and Proposition 3.2 of Ishida et al. (2023) for the second term, we
 1411 have

$$1412 \left| \widehat{\text{Err}}^*(\widehat{\eta}_{1:n}^{\text{iso}}) - \text{Err}^* \right| \leq \sqrt{\frac{1}{n} \sum_{i=1}^n (\widehat{\eta}_i^{\text{iso}} - \eta_i)^2} + \sqrt{\frac{\log(4/\delta)}{8n}} \quad (109)$$

1415 with probability at least $1 - \delta/2$. Now, we evaluate the first term on the right-hand side by applying
 1416 Proposition 2 for $\mu = (\eta_{(1)}, \dots, \eta_{(n)})$. Conditioned on $\{x_i\}_{i=1}^n$, with probability at least $1 - \delta/2$,
 1417 we have

$$1418 \frac{1}{n} \sum_{i=1}^n (\widehat{\eta}_i^{\text{iso}} - \eta_i)^2 \leq \min_{\mathbf{u} \in \mathcal{M}_n(0,1)} \frac{1}{n} \sum_{i=1}^n (u_i - \eta_{(i)})^2 + \left(\left(\frac{C}{n} \right)^{1/3} + \sqrt{\frac{2 \log(2/\delta)}{n}} \right)^2. \quad (110)$$

1422 Since f is increasing and $\tilde{\eta}_{(1)} = f(\eta_{(1)}) \leq \dots \leq \tilde{\eta}_{(n)} = f(\eta_{(n)})$, we have $\eta_{(1)} \leq \dots \leq \eta_{(n)}$, i.e.,
 1423 $(\eta_{(1)}, \dots, \eta_{(n)}) \in \mathcal{M}_n$. Therefore, $\min_{\mathbf{u} \in \mathcal{M}_n(0,1)} \frac{1}{n} \sum_{i=1}^n (u_i - \eta_{(i)})^2$ is zero as we can choose
 1424 $\mathbf{u} = (\eta_{(1)}, \dots, \eta_{(n)})$. As a result, we have

$$1426 \sqrt{\frac{1}{n} \sum_{i=1}^n (\widehat{\eta}_i^{\text{iso}} - \eta_i)^2} \leq \left(\frac{C}{n} \right)^{1/3} + \sqrt{\frac{2 \log(2/\delta)}{n}}. \quad (111)$$

1430 Plugging (111) into (109) and rewriting $C^{1/3}$ as C , we have

$$1432 \left| \widehat{\text{Err}}^*(\widehat{\eta}_{1:n}^{\text{iso}}) - \text{Err}^* \right| \leq \frac{C}{n^{1/3}} + 2 \sqrt{\frac{2 \log(2/\delta)}{n}} \quad (112)$$

1434 with probability at least $1 - \delta$. \square

1436 We can also prove an extension to the case where random noise is added to the corrupted soft labels.
 1437

1438 *Proof of Theorem 3.* By the same argument as in the main theorem proof, we have
 1439

$$1440 \left| \widehat{\text{Err}}^*(\widehat{\eta}_{1:n}^{\text{iso}}) - \text{Err}^* \right| \leq \sqrt{\frac{1}{n} \sum_{i=1}^n (\widehat{\eta}_i^{\text{iso}} - \eta_i)^2} + \sqrt{\frac{\log(6/\delta)}{8n}} \quad (113)$$

1443 with probability at least $1 - \delta/3$. Also, conditioned on $\{x_i\}_{i=1}^n$, with probability at least $1 - \delta/3$,
 1444 we have

$$1446 \frac{1}{n} \sum_{i=1}^n (\widehat{\eta}_i^{\text{iso}} - \eta_i)^2 \leq \min_{\mathbf{u} \in \mathcal{M}_n(0,1)} \frac{1}{n} \sum_{i=1}^n (u_i - \eta_{(i)})^2 + \left(\left(\frac{C}{n} \right)^{1/3} + \sqrt{\frac{2 \log(3/\delta)}{n}} \right)^2. \quad (114)$$

1449 Now, under the new assumption, f has an inverse function f^{-1} , which is also differentiable and
 1450 increasing. Therefore, the mean value theorem gives
 1451

$$1452 \eta_{(i)} = f^{-1}(\tilde{\eta}_{(i)}) - \frac{\varepsilon_{(i)}}{f'(t_{(i)})} \quad (115)$$

1454 for some $t_{(i)} \in (0, 1)$, which means

$$1456 \min_{\mathbf{u} \in \mathcal{M}_n(0,1)} \frac{1}{n} \sum_{i=1}^n (u_i - \eta_{(i)})^2 \leq \frac{2}{n} \min_{\mathbf{u} \in \mathcal{M}_n(0,1)} \sum_{i=1}^n (u_i - f^{-1}(\tilde{\eta}_{(i)}))^2 + \frac{2}{n} \sum_{i=1}^n \frac{\varepsilon_{(i)}^2}{f'(t_{(i)})^2}. \quad (116)$$

1458 Since f^{-1} is increasing and $\tilde{\eta}_1 \leq \dots \leq \tilde{\eta}_n$, the first term vanishes by choosing $u_i = f^{-1}(\tilde{\eta}_{(i)})$.
 1459 By using the assumption that $f' \geq c$, we obtain
 1460

$$1461 \min_{\mathbf{u} \in \mathcal{M}_n(0,1)} \frac{1}{n} \sum_{i=1}^n (u_i - \eta_{(i)})^2 \leq \frac{2}{c^2 n} \sum_{i=1}^n \varepsilon_{(i)}^2. \quad (117)$$

1464 Since $\varepsilon_{(i)}^2 \in [0, 1]$ and $\mathbb{E} [\varepsilon_{(i)}^2] \leq \sigma^2$ for each i , the Hoeffding's inequality gives
 1465

$$1466 \frac{1}{n} \sum_{i=1}^n \varepsilon_{(i)}^2 \leq \sigma^2 + \sqrt{\frac{\log(3/\delta)}{2n}} \quad (118)$$

1469 with probability at least $1 - \delta/3$.
 1470

1471 By combining the above bounds, there exists a constant $C' > 0$ such that

$$1472 \left| \widehat{\text{Err}}^*(\widehat{\eta}_{1:n}^{\text{iso}}) - \text{Err}^* \right| \leq C' \left(\sigma + \frac{1}{n^{1/3}} + \sqrt{\frac{\log(1/\delta)}{n}} \right) \quad (119)$$

1475 holds with probability at least $1 - \delta$. \square
 1476

1477 D EXPERIMENTAL DETAILS

1479 We utilized the scikit-learn library (Pedregosa et al., 2011), version 1.6.1, for isotonic
 1480 regression. We used the implementation of the histogram binning algorithm provided by the
 1481 uncertainty-calibration package (version 0.1.4; Kumar et al., 2019). We employed the
 1482 beta-calibration implementation provided in the betacal package (version 1.1.0; Kull et al., 2017).
 1483 We used the bootstrap function from the SciPy library (Virtanen et al., 2020), version 1.15.3, to
 1484 obtain 95% bootstrap confidence intervals. For each estimation method, the experiment took around
 1485 20–30 minutes on a CPU.

1486 For the sake of comparison in Fig. 4c, we trained a ResNet-18 (He et al., 2016) on Fashion-MNIST
 1487 for 100 epochs with a batch size of 128 using the Adam optimizer with a learning rate of 0.001. It
 1488 took less than an hour.

1489 Our experiments do not require any special computer resources. All of them were conducted on the
 1490 CPU of a single Apple MacBook Pro (M1 chip, 16GB RAM) except for the ResNet training where
 1491 we used a T4 GPU on Google Colab.

1493 D.1 CORRUPTION PARAMETERS

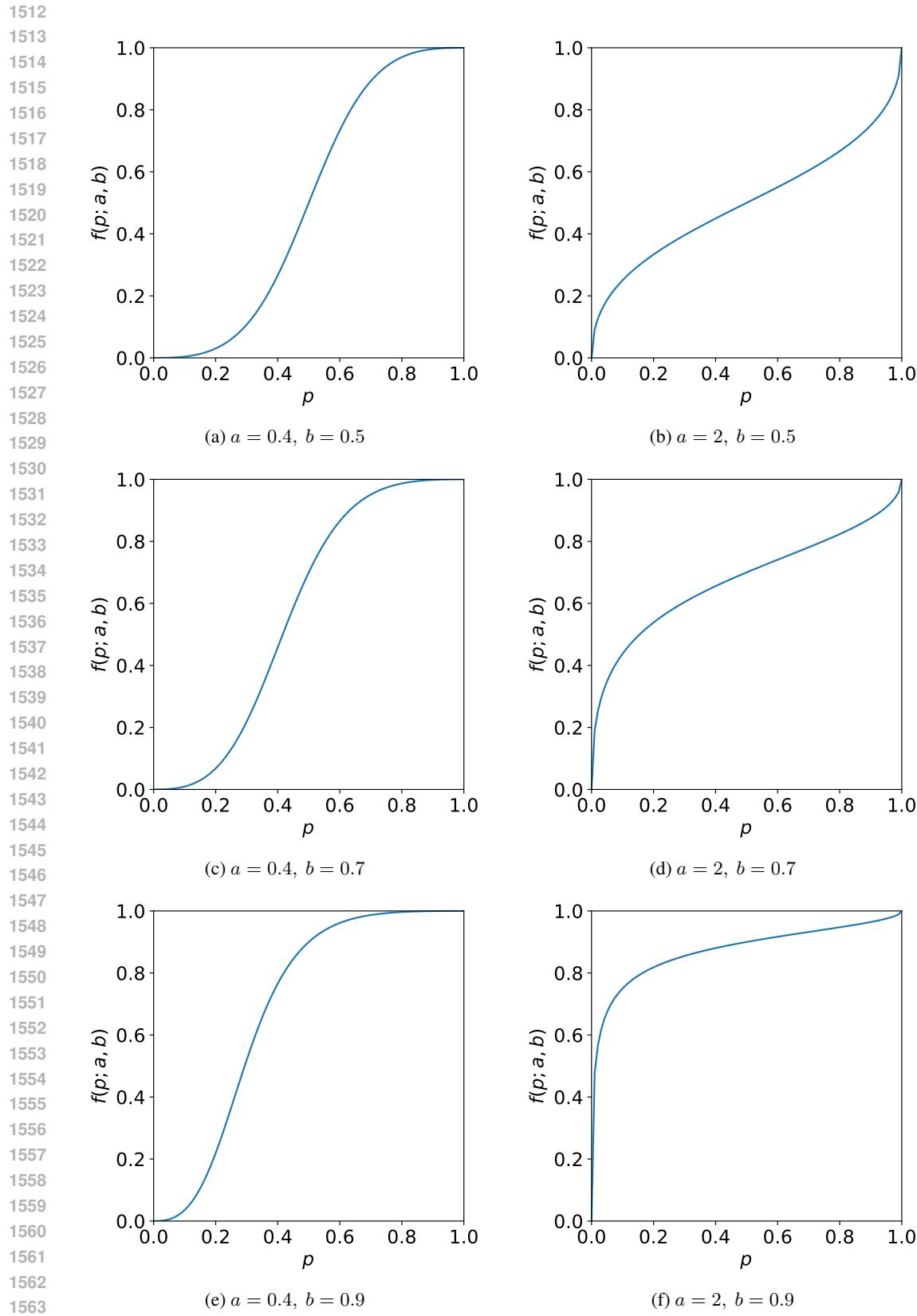
1495 In experiments with synthetic mixture-of-gaussians data, we used the following corruption function:
 1496

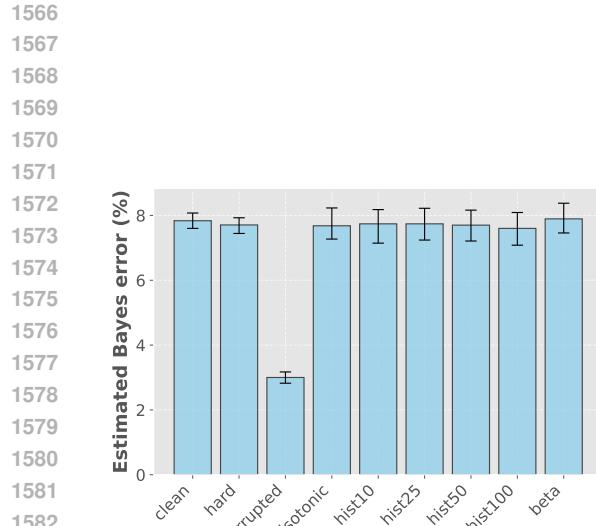
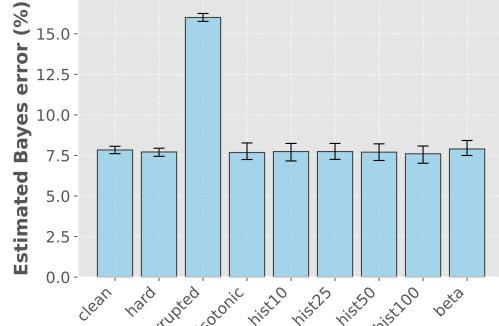
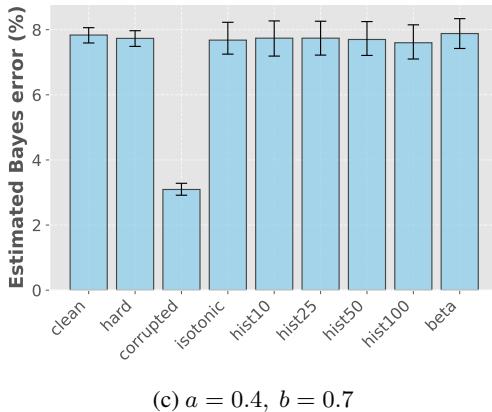
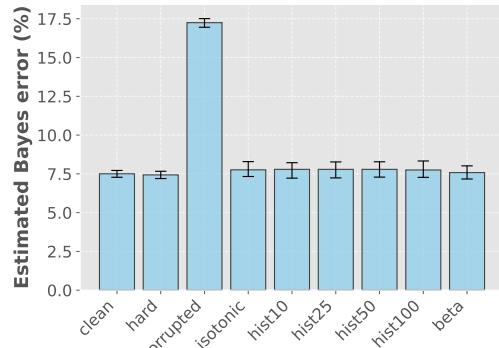
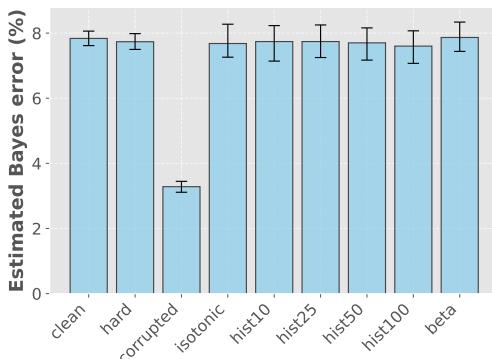
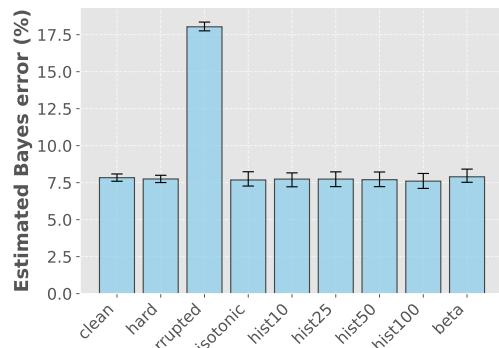
$$1497 f(p; a, b) = \left(1 + \left(\frac{1-p}{p} \right)^{1/a} \frac{1-b}{b} \right)^{-1}, \quad 0 < p < 1, \quad a \geq 0, \quad 0 < b < 1. \quad (120)$$

1500 Fig. 8 shows the graph of $f(p; a, b)$ for various values of the parameters a and b . As you can see, the
 1501 parameter a makes the soft labels over-confident when $a < 1$, leading to an underestimation of the
 1502 Bayes error, and under-confident when $a > 1$, causing an overestimation. On the other hand, setting
 1503 b to values other than 0.5 results in asymmetric, skewed corruption.

1505 We conducted the same experiment as in Fig. 4a for various values of a and b . The results are shown
 1506 in Fig. 9. Our calibration-based estimators consistently succeed in preventing over- or underestima-
 1507 tion of the Bayes error across all sets of parameter values.

1508
 1509
 1510
 1511

Figure 8: The corruption function $f(p; a, b)$ for various parameters a and b .

(a) $a = 0.4, b = 0.5$ (b) $a = 2, b = 0.5$ (c) $a = 0.4, b = 0.7$ (d) $a = 2, b = 0.7$ (e) $a = 0.4, b = 0.9$ (f) $a = 2, b = 0.9$ Figure 9: The estimated Bayes error for the synthetic dataset with various corruption parameters a and b .

1620
1621

D.2 VIOLATION OF THE ASSUMPTION OF THEOREM 3

1622
1623
1624
1625
1626

In Section 3, we presented Theorem 3, which provides a theoretical guarantee for our Bayes error estimator based on isotonic calibration when the corruption is noisy. This result assumes that the derivative of the function f satisfies $f' \geq c$ for some *strictly positive* constant c . Theoretically, it is still unclear what happens when this assumption is violated, i.e., when f' can be arbitrarily close to zero. Here we empirically investigate the effects of such a violation using synthetic data.

1627
1628

D.2.1 EXPERIMENTAL SETTINGS

1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

We draw $n = 10000$ data points $\{x_i\}_{i=1}^n$ from a Gaussian mixture $\mathbb{P}_X = 0.6 \cdot \mathbb{P}_0 + 0.4 \cdot \mathbb{P}_1$, where $\mathbb{P}_0 = N((0, 0), I_2)$, $\mathbb{P}_1 = N((2, 2), I_2)$.¹⁰ For each data point x_i , we generate its soft label $\tilde{\eta}_i$ by sampling $m = 3, 5, 10, 25, 50, 100$ hard labels from the corrupted posterior distribution $\text{Bern}(f(\eta(x_i); a, b))$ ¹¹ and taking their average. In other words, we obtain the soft label for x_i as a draw from $\text{Binom}(m, f(\eta(x_i); a, b))$ divided by m . By drawing from $\text{Binom}(m, f(\eta(x_i); a, b))$ and dividing the result by m . By changing the number m of hard labels, we can create different noise levels $\sigma = O(\frac{1}{\sqrt{m}})$: the smaller m gets, the greater the noise level becomes. We consider two sets of corruption parameters: $(a, b) = (2, 0.5)$ and $(a, b) = (0.4, 0.5)$. As we saw in Section D.1, the former corresponds to under-confident soft labels, and the latter corresponds to over-confident soft labels. Note that the former satisfies the assumption of Theorem 3 while the latter does not, i.e., the derivative f' can be arbitrarily small. You can see this visually in Fig. 8. Then, we estimate the Bayes error from these corrupted soft labels $\{\tilde{\eta}_i\}_{i=1}^n$ using the following methods (which we used in Section 4.1):

1642
1643
1644
1645
1646
1647

- (i) `corrupted`: the estimator with corrupted soft labels, i.e., $\widehat{\text{Err}^*}(\tilde{\eta}_{1:n})$.
- (ii) The estimator with soft labels obtained by calibrating the corrupted soft labels. We use the following calibration algorithms: isotonic calibration (`isotonic`), uniform-mass histogram binning with 10, 25, 50 and 100 bins (`hist10`, `hist25`, `hist50` and `hist100`), and beta calibration (`beta`).

1648

As in Section 4, we use 1000 bootstrap resamples to compute a 95% confidence interval for each method.

1649
1650
1651

D.2.2 RESULTS

1652
1653
1654
1655
1656

Fig. 10 shows the estimated Bayes error for various numbers m of hard labels per data point. The black dashed lines indicate the Bayes error estimated with clean soft labels, which is expected to be a good approximation of the true Bayes error. All the non-parametric calibration methods (`isotonic` and `hist*`) perform similarly. However, parametric beta calibration (`beta`) performs poorly.

1657
1658
1659
1660
1661
1662
1663
1664

Particularly, when $(a, b) = (0.4, 0.5)$ and the assumption of Theorem 3 is violated, the more we add hard labels per data point the worse the estimation performance gets even though the noise level decreases. In the large- m (i.e., small noise level) regime, beta calibration goes “too far” and consistently overestimates the Bayes error. On the other hand, isotonic calibration and histogram binning perform consistently well, even for relatively small m . When $(a, b) = (2, 0.5)$ and the assumption of Theorem 3 is satisfied, the performance of all the methods tends to improve as the noise level decreases. However, isotonic calibration and histogram binning still outperform beta calibration, especially for small m .

1665
1666
1667
1668
1669

These results suggest that isotonic calibration and histogram binning are relatively robust to corruption functions with small derivative, whereas beta calibration is not. It is interesting that beta calibration performs so poorly when it is a *well-specified* parametric model in a sense, i.e., the corruption function f is an inverse function of the beta calibration map. This fact suggests that choosing appropriate calibration methods, such as isotonic calibration, is crucial in our algorithm design.

1670
1671
1672

Another interesting thing is that `corrupted`’s performance becomes worse as the number m of hard labels per data point increases when $(a, b) = (2, 0.5)$. This would be because, as we sample

1673

¹⁰This is the same distribution as we used in Section 4.1.

¹¹ $\text{Bern}(p)$ is the Bernoulli distribution with mean p .

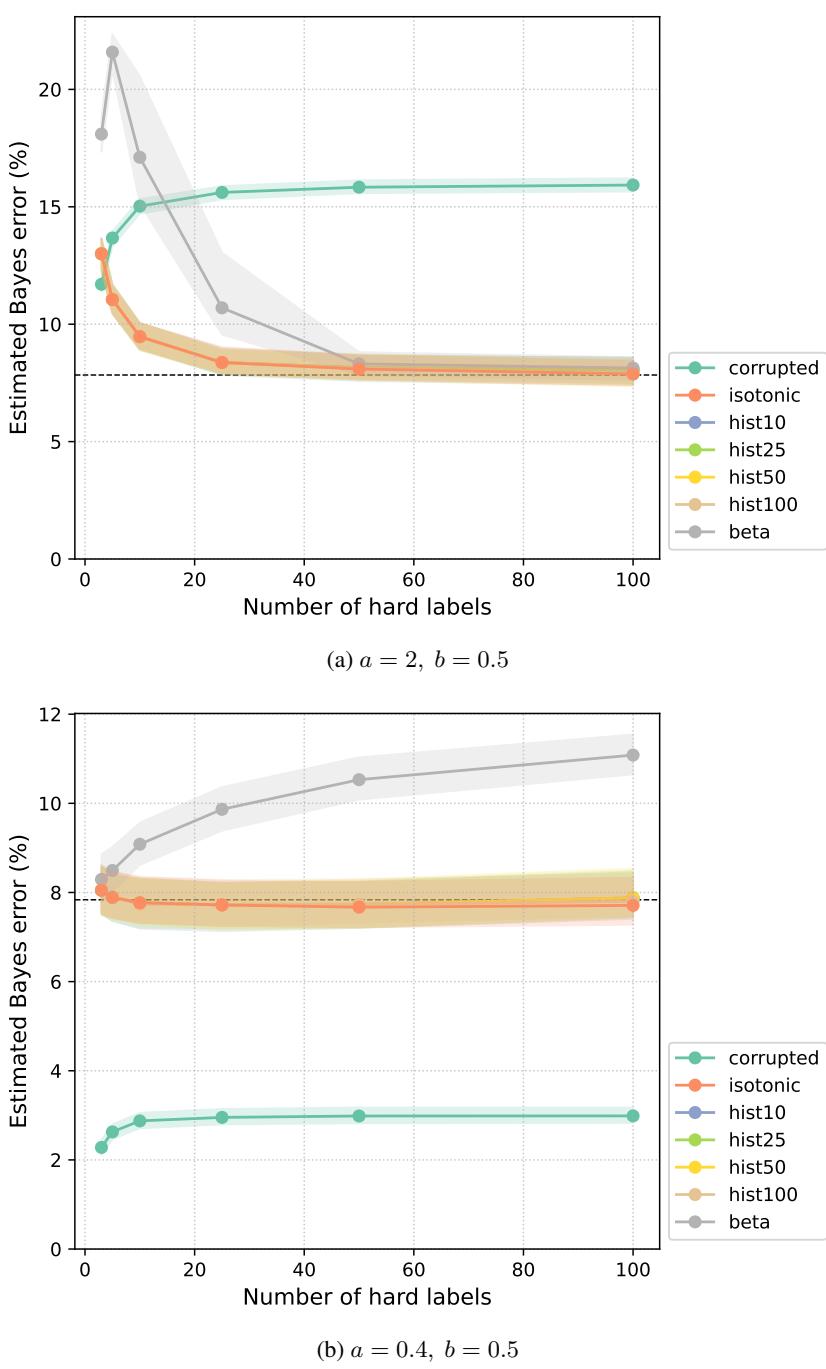


Figure 10: The Bayes error estimated by directly using corrupted soft labels (corrupted) and by calibrating them (others) for various numbers m of hard labels per data point. The 95% bootstrap confidence intervals are shown as shaded regions around each line. The black dashed lines indicate the Bayes error estimated with clean soft labels, which is expected to be a good approximation of the true Bayes error.

more hard labels, the resulting soft labels are pulled towards the corrupted posterior mean, which makes them more biased. This result highlights the need to calibrate soft labels.

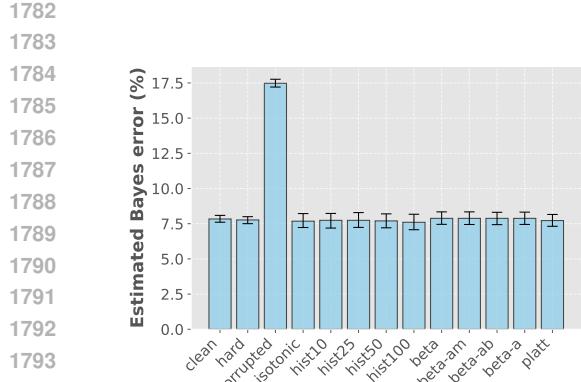
1728 D.3 FURTHER EXPERIMENTS
17291730 In this section, we conduct the experiment that we saw in Section 4.1 for a broader range of datasets
1731 and calibration algorithms.
17321733 D.3.1 DATASETS
17341735 In Section 4.1, we used Synthetic, CIFAR-10, and Fashion-MNIST, each of which contains $n =$
1736 10,000 data points. Here, we describe the additional datasets that we use in this section.
17371738 **ICLR peer-review datasets** We put together new datasets, which consist of $n = 32,829$ instances
1739 of peer-review results for the past ICLR conferences. Peer-review can be considered as a binary
1740 classification task (accept/reject). We used our datasets to estimate the Bayes error of the ICLR
1741 reviews, which is the probability that the ideal, most prominent possible reviewer mistakenly rejects
1742 a good paper or accepts a bad paper. It can be regarded as representing the inherent difficulty of the
1743 review task.
17441745 For each paper submission x_i , we utilized the OpenReview API to retrieve:
17461747

- 1748 • Scores $s_i^{(j)}$ and confidences $c_i^{(j)}$ by the reviewers ($j = 1, \dots, \#\text{reviewers}$)
1749
- 1750 • The final decision y_i : accept ($y_i = 1$) or reject ($y_i = 0$)
1751

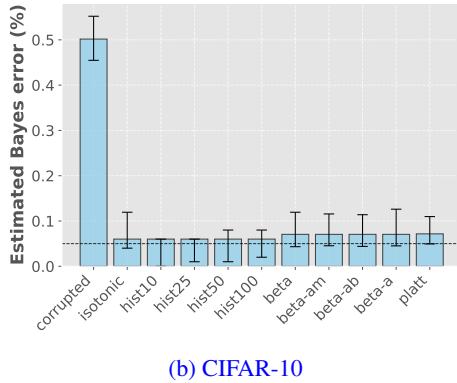
1752 The averaged score s_i is calculated as $s_i = \frac{\sum_j c_i^{(j)} s_i^{(j)}}{\sum_j c_i^{(j)}}$. We can then obtain a soft label \tilde{y}_i for x_i by
1753 normalizing the averaged score s_i to fit into $[0, 1]$. Of course, this soft label \tilde{y}_i should be considered
1754 as corrupted, so we apply isotonic calibration (and other calibration algorithms) before using them
1755 to estimate the Bayes error.
17561757 We merged data from ICLR 2017–2025 to construct a dataset consisting of $n = 32,829$ examples,
1758 each of which has a corrupted soft label (i.e., normalized average score) and a single hard label (i.e.,
1759 final decision) for calibration. We also conducted experiments with single-year datasets (ICLR2017,
1760 ..., ICLR2025).
17611762 **ChaosNLI** ChaosNLI (Nie et al., 2020; Zhou et al., 2022) is a natural language processing dataset
1763 with 100 hard labels per data point. It consists of three sub-datasets: SNLI ($n = 1,514$), MNLI
1764 ($n = 1,599$) and AbductiveNLI ($n = 1,532$).
17651766 D.3.2 CALIBRATION ALGORITHMS
17671768 In addition to the calibration algorithms mentioned in Section 4.1 (`isotonic`, `hist10`, `hist25`,
1769 `hist50`, `hist100`, `beta`,), here we also investigate the following four parametric calibration
1770 algorithms: `platt`, `beta-am`, `beta-ab`, and `beta-a`. `platt` is the classic Platt scaling (Platt,
1771 1999) and each `beta-*` is a variant of beta calibration. Beta calibration is a calibration method
1772 with three adjustable parameters a, b, m , and this is what we have been using as `beta` since the
1773 initial submission. The ‘`beta-*`’ variants are beta calibration with restricted parameters, which were
1774 also mentioned in the original beta calibration paper (Kull et al., 2017):
17751776

- 1777 • `beta-am`: a and m are adjustable; b is fixed to $b = a$.
1778
- 1779 • `beta-ab`: a and b are adjustable; m is fixed to $m = 1/2$.
1780
- 1781 • `beta-a`: only a is adjustable; b, m is fixed to $b = a, m = 1/2$.
1782

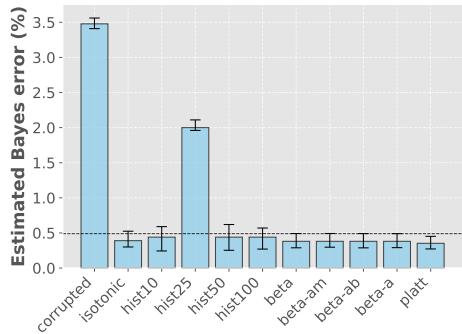
1783 D.3.3 RESULTS
17841785 The results are shown in Fig. 11p. For ChaosNLI datasets (SNLI, MNLI, AbductiveNLI), their
1786 GitHub repository provides predictions of some pre-trained models. As a reference value, we show
1787 the best error rates among them as the dashed horizontal lines in Figures 11d to 11f. A problem
1788 in these experiments is that, especially for real-world (non-synthetic) datasets, it is hard to decide
1789 which calibration algorithm is the best, since the true Bayes error is unknown. We will solve this
1790 problem in Section D.4.
1791



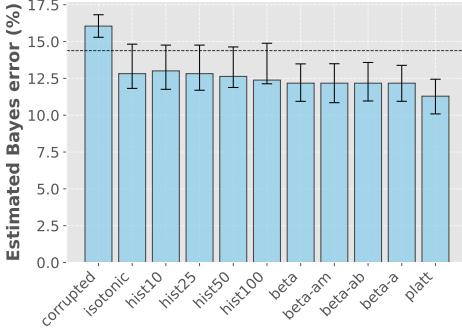
(a) Synthetic (BCa)



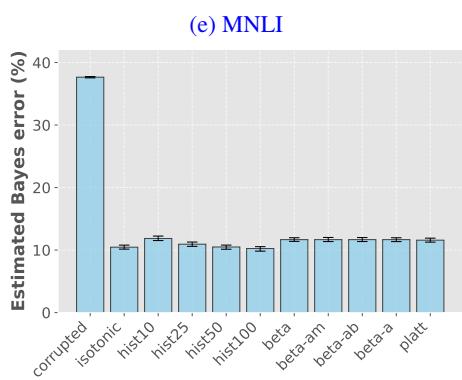
(b) CIFAR-10



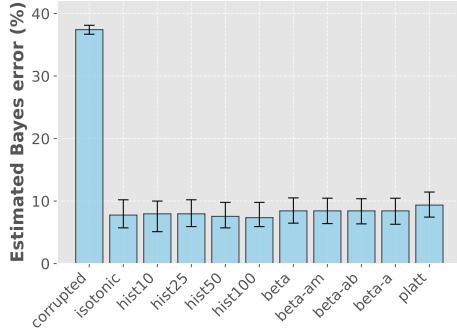
(c) Fashion-MNIST



(d) SNLI



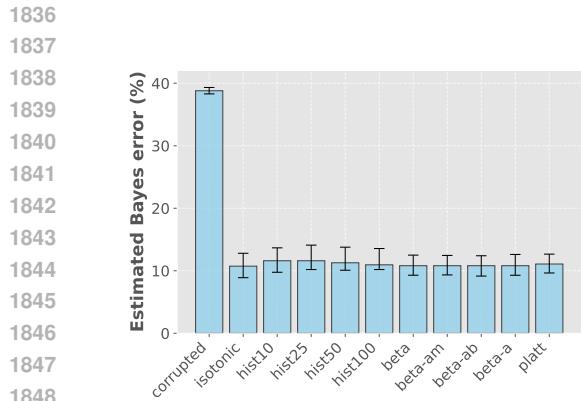
(e) MNLI



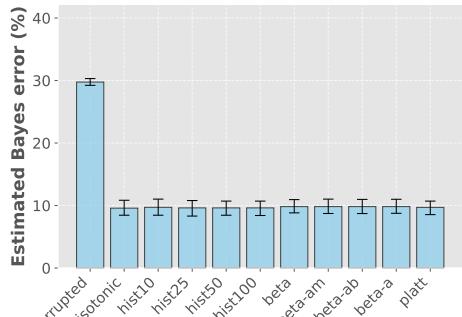
(f) AbductiveNLI

(g) ICLR2017–2025

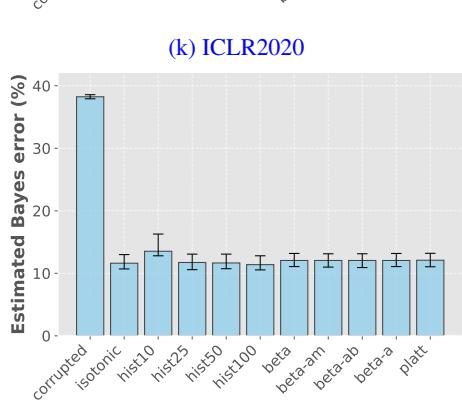
(h) ICLR2017



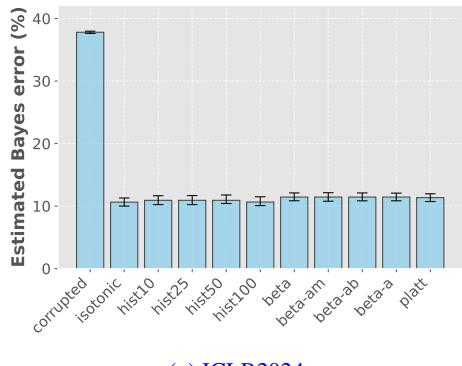
(i) ICLR2018



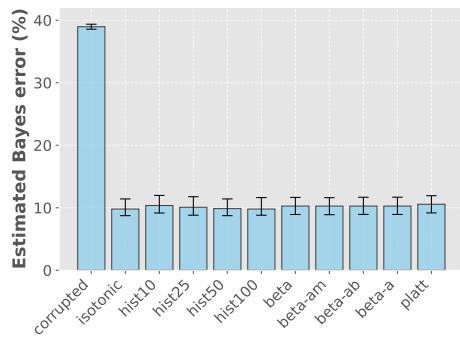
(j) ICLR2019



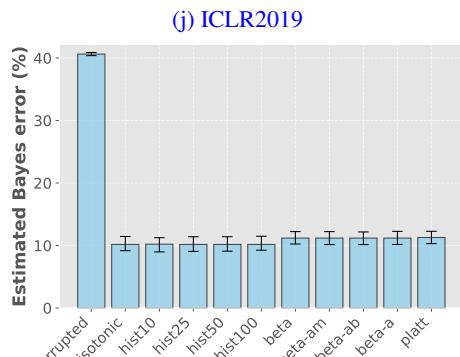
(k) ICLR2020



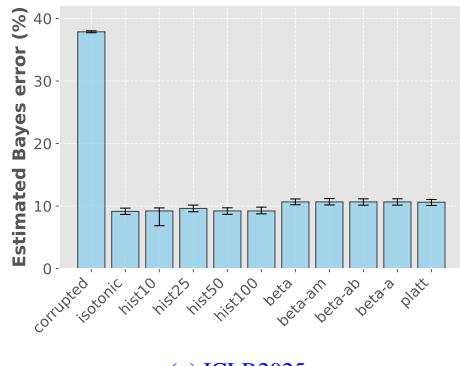
(l) ICLR2021



(m) ICLR2022



(n) ICLR2023



(o) ICLR2024

(p) ICLR2025

Figure 11: Estimated Bayes error across various calibration algorithms and datasets (continued).

1890 D.4 EVALUATING CALIBRATION ALGORITHMS AGAINST REAL-WORLD DATASETS WITH
1891 FEEBEE
18921893 In this section, we first review FeeBee (Renggli et al., 2021), a real-world evaluation framework
1894 for Bayes error estimators. Then, we present experimental results of various calibration algorithms
1895 evaluated using FeeBee.1896 D.4.1 REVIEW OF FEEBEE
18971898 In the long history of the field of Bayes error estimation, evaluation of estimators on real-world
1899 datasets has been a challenging task. For synthetic datasets, one can easily compute exact or ap-
1900 proximate Bayes error rates; however, for real-world datasets, it is practically impossible to obtain
1901 ground-truth Bayes error rates as they depend on the unknown data distribution. Of course, it is
1902 trivial to obtain a lower bound and an upper bound of the Bayes error rate: if we have a classifier
1903 with error rate E on a dataset, then the Bayes error rate should be somewhere between 0 and E .
1904 However, such bounds are not informative enough. For example, constant estimators that always
1905 return any value between 0 and E are technically valid from this perspective, but they are obviously
1906 useless in practice.1907 To address this issue, Renggli et al. (2021) proposed an evaluation framework called FeeBee. The
1908 key idea of FeeBee is to generate a series of datasets from a given real-world dataset by injecting
1909 various levels of synthetic label noise. To be more specific, for a noise level $\rho \in [0, 1]$, FeeBee
1910 generates a new dataset by replacing each original label Y with a uniformly random label U with
1911 probability ρ :

1912
$$Y_\rho := Z \cdot U + (1 - Z) \cdot Y, \quad (121)$$

1913 where $Z \sim \text{Bernoulli}(\rho)$. Importantly, there is a simple relationship between the Bayes error rates
1914 Err^* on the original dataset and Err_ρ^* on the noise-injected dataset:

1915
$$\text{Err}_\rho^* = \rho \cdot \frac{1}{2} + (1 - \rho) \cdot \text{Err}^*. \quad (122)$$

1916 Since $0 \leq \text{Err}^* \leq E$, we can derive the following bounds on Err_ρ^* :

1917
$$L(\rho) := \frac{\rho}{2} \leq \text{Err}_\rho^* \leq \frac{\rho}{2} + (1 - \rho)E =: U(\rho). \quad (123)$$

1918 Based on this observation, FeeBee first generates many noise-injected datasets with different noise
1919 levels $\rho \in [0, 1]$, and then evaluates a given Bayes error estimator on each of them. Ideally, the
1920 resulting estimates $\widehat{\text{Err}}_\rho^*$ should lie within the bounds $[L(\rho), U(\rho)]$ given in (123). If the estimates
1921 fall outside the bounds, we penalize the estimator by the amount of violation. By aggregating the
1922 penalties over all noise levels, we can obtain a single score for the estimator on the given real-world
1923 dataset:

1924
$$\text{FeeBee} := \int_0^1 \left[\left(\widehat{\text{Err}}_\rho^* - U(\rho) \right)_+ + \left(L(\rho) - \widehat{\text{Err}}_\rho^* \right)_+ \right] d\rho, \quad (124)$$

1925 where $(x)_+ := \max\{x, 0\}$. In practice, the integral can be approximated by a finite sum: for a
1926 sufficiently large $N \in \mathbb{N}$, the approximate FeeBee score can be computed as

1927
$$\text{FeeBee} \approx \frac{1}{N+1} \sum_{i=0}^N \left[\left(\widehat{\text{Err}}_{\rho_i}^* - U(\rho_i) \right)_+ + \left(L(\rho_i) - \widehat{\text{Err}}_{\rho_i}^* \right)_+ \right], \quad (125)$$

1928 where $\rho_i := \frac{i}{N}$ ($i = 0, 1, \dots, N$). The lower the FeeBee score is, the better the estimator is. FeeBee
1929 provides a practical way to evaluate Bayes error estimators on real-world datasets without requiring
1930 knowledge of the true Bayes error rates.1931 D.4.2 COMPARING CALIBRATION ALGORITHMS USING FEEBEE
19321933 Here, we present experimental results where various calibration algorithms are evaluated using the
1934 FeeBee framework. We use the following real-world datasets: CIFAR-10/CIFAR-10H, Fashion-
1935 MNIST/Fashion-MNIST-H, SNLI, MNLI, AbductiveNLI, ICLR2017-2025, ICLR2017, ..., and
1936 ICLR2025. For each dataset, we compare the FeeBee scores of the following calibration algorithms:

1944 Table 1: FeeBee scores of calibration algorithms across real-world datasets (lower is better). The
 1945 best scores for each dataset are highlighted in **bold**.

		Dataset			
Calibration algorithm		CIFAR-10	Fashion-MNIST	SNLI	MNLI
isotonic		0.1131	0.1200	0.1025	0.0908
	min.	0.1644	0.1568	0.1117	0.0941
hist	max.	0.1670	0.1592	0.1163	0.0986
beta		0.1701	0.1782	0.1167	0.0966
beta-am		0.1694	0.1792	0.1138	0.0971
beta-ab		0.1698	0.1806	0.1168	0.0974
beta-a		0.1702	0.1785	0.1144	0.0995
platt		0.1677	0.1659	0.1297	0.1106
		Dataset			
Calibration algorithm		ICLR2017-2025	ICLR2017	ICLR2018	ICLR2019
isotonic		0.0276	0.0104	0.0195	0.0235
	min.	0.0660	0.0824	0.0716	0.0702
hist	max.	0.0670	0.0852	0.0739	0.0727
beta		0.0565	0.0539	0.0536	0.0556
beta-am		0.0562	0.0542	0.0567	0.0576
beta-ab		0.0556	0.0551	0.0543	0.0584
beta-a		0.0551	0.0537	0.0554	0.0570
platt		0.0610	0.0544	0.0579	0.0611
		Dataset			
Calibration algorithm		ICLR2021	ICLR2022	ICLR2023	ICLR2024
isotonic		0.0288	0.0089	0.0092	0.0351
	min.	0.0688	0.0675	0.0677	0.0653
hist	max.	0.0712	0.0693	0.0696	0.0669
beta		0.0599	0.0460	0.0487	0.0612
beta-am		0.0600	0.0483	0.0482	0.0598
beta-ab		0.0595	0.0458	0.0481	0.0606
beta-a		0.0592	0.0441	0.0476	0.0604
platt		0.0631	0.0520	0.0536	0.0661

1979 isotonic calibration (`isotonic`), histogram binning (`hist`), full three-parameter beta calibration
 1980 (`beta`), beta calibration with $b = a$ (`beta-am`), beta calibration with $m = \frac{1}{2}$ (`beta-ab`), beta
 1981 calibration with $b = a, m = \frac{1}{2}$ (`beta-a`), and Platt scaling (`platt`). For histogram binning, we
 1982 test various numbers of bins ($10, 15, 20, \dots, \frac{n}{2}$, where n is the number of data points) and report the
 1983 best and the worst scores among them. We set $N = 100$ for the approximation of FeeBee scores.

1984 **Choosing E** To compute the FeeBee scores, we need to choose a classifier error rate E for each
 1985 dataset. For image classification datasets (CIFAR-10 & Fashion-MNIST), we use the error rates
 1986 of Vision Transformer (ViT) models as we have seen in Section 4. For natural language inference
 1987 datasets (SNLI, MNLI & AbductiveNLI), the ChaosNLI GitHub repository provides predictions of
 1988 some pre-trained models. We use the best error rates among them as E . For the ICLR peer-review
 1989 datasets, we do not have any pre-trained models, so we simply set E to the overall acceptance rate,
 1990 which is the error rate of a trivial reviewer who rejects any given paper no matter what.

1991 **Results** The results are shown in Table 1. Isotonic calibration (`isotonic`) performs the best
 1992 among the calibration methods across *all* datasets, often by a large margin. It strongly supports our
 1993 choice of isotonic calibration as the soft label calibrator for Bayes error estimation. It not only has
 1994 a solid theoretical guarantee (Theorem 2 and Theorem 3) but has also been shown to perform the
 1995 best empirically for various real-world datasets. This again highlights that choosing an appropriate
 1996 calibration algorithm is key to successful estimation of the Bayes error.

1998
1999

D.5 ORDER BREAKAGE

2000 Theorem 2 and Theorem 3 assume that the corruption function f is order-preserving although the
2001 latter theorem allows random noise to be added after the order-preserving transformation. To analyze
2002 how much the estimation performance degrades when the order-preserving assumption is violated,
2003 we conducted experiments on synthetic datasets where we can control the degree of order breakage.2004 Let f be the corruption function used in Section 4. We define a new, non-order-preserving corruption
2005 f_σ as follows:

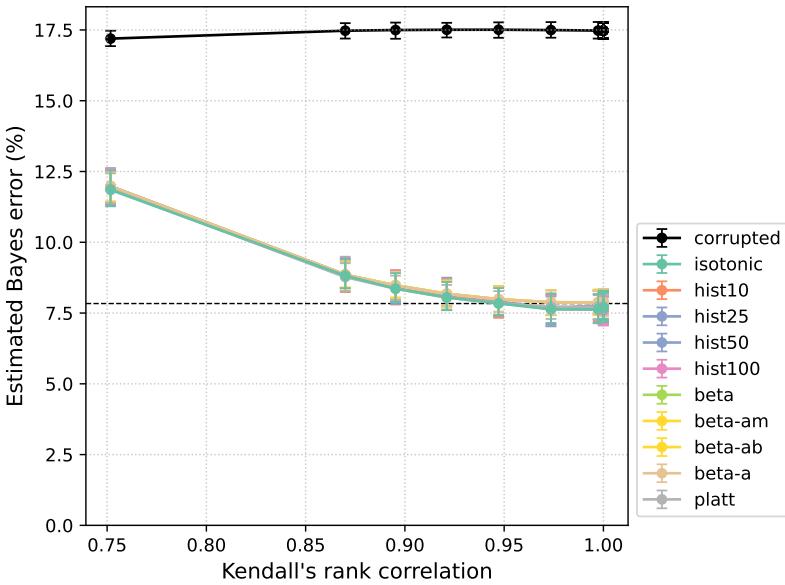
2006
$$f_\sigma(\eta) = \text{sigmoid}(\text{logit}(f(\eta)) + z), \quad \text{where } z \sim \mathcal{N}(0, \sigma^2). \quad (126)$$

2007 Here, σ controls the amount of fluctuation added after the order-preserving transformation f . By in-
2008 creasing σ , we can increase the degree of order breakage. We first consider the case where corrupted
2009 soft labels are obtained as $\tilde{\eta}_i = f_\sigma(\eta_i)$. We also consider the “non-monotonic skew + random noise”
2010 setting, i.e., we obtain corrupted soft labels as an average of m independent hard labels sampled from
2011 posteriors skewed by the above non-order-preserving corruption:

2012
2013
$$\tilde{\eta}_i = \frac{1}{m} \sum_{j=1}^m y_i^{(j)}, \quad (127)$$

2014
2015
$$\text{where } y_i^{(j)} \sim \text{Bernoulli}(f_\sigma(\eta_i)), \quad z \sim \mathcal{N}(0, \sigma^2). \quad (128)$$

2016 To quantify the degree of order breakage, we use the Kendall tau (Kendall, 1938) between η_i and
2017 $f_\sigma(\eta_i)$. The Kendall tau or Kendall’s rank correlation coefficient is a non-parametric measure of
2018 ordinal correspondence or monotonicity between two variables. It takes values in $[-1, 1]$. If the
2019 relationship between two variables is completely increasing, the Kendall tau becomes 1. If they
2020 are in a completely decreasing relationship, it takes a value of -1 . Given the Kendall tau τ , the
2021 probability of order breakage (in our case, the frequency that we have $\eta_i \leq \eta_j$, $f_\sigma(\eta_i) > f_\sigma(\eta_j)$ or
2022 vice versa for a randomly picked pair $i < j$) can be obtained as $\frac{1-\tau}{2}$.2023 We conducted experiments as below using the same Gaussian mixture model as in Section 4. For
2024 various order breakage levels $\sigma = 10^{-10}, 10^{-9}, \dots, 10^0$, we estimated the Bayes error from a
2025 dataset containing $n = 10,000$ corrupted soft labels generated as $\tilde{\eta}_i = f_\sigma(\eta_i)$ or from $m = 50$ hard
2026 labels sampled from posteriors skewed by f_σ . Fig. 12 shows the estimated Bayes error as a function
2027 of the Kendall tau between η_i and $f_\sigma(\eta_i)$. The black dashed line indicates the Bayes error estimated
2028 using the clean/true soft labels and is supposed to be a good approximation of the true Bayes error.2029 As expected, the estimation performance degrades as the degree of order breakage increases (i.e., as
2030 the Kendall tau decreases). However, in the noiseless setting (Fig. 12a), all the estimators produced
2031 estimates almost indistinguishable from the true Bayes error when the Kendall tau is sufficiently
2032 large (say, when $\tau \geq 0.95$ or when the order breakage probability is less than 2.5%). For the noisy
2033 setting (Fig. 12b), the results are a bit different. Overall, the estimation performance improves as
2034 the Kendall tau increases, but for beta calibration and its variants, the estimates never get very close
2035 to the true Bayes error even when the Kendall tau is nearly 1. Other calibration methods, including
2036 isotonic calibration, produced estimates fairly close to the true Bayes error (but not as close as in the
2037 noiseless setting) for sufficiently high Kendall tau values.2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051



(a) Non-order-preserving corruption without additional noise.

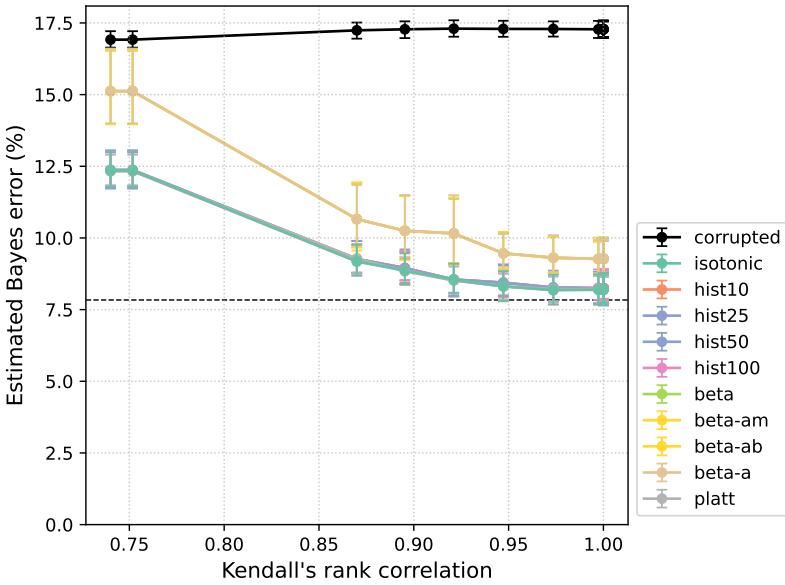
(b) Non-order-preserving corruption with additional noise, i.e., the case where corrupted soft labels are obtained by averaging $m = 50$ independent hard labels sampled from posteriors skewed by the non-order-preserving corruption.

Figure 12: Kendall tau and order breakage on synthetic logit Gaussian datasets with and without binomial noise.