Under Review - Extended Abstract Track 1-14, 2024 Symmetry and Geometry in Neural Representations

Modeling dynamic neural activity by combining naturalistic
video stimuli and stimulus-independent latent factors

Editors: List of editors’ names

Abstract

Understanding how the brain processes dynamic natural stimuli remains a fundamental
challenge in neuroscience. Current dynamic neural encoding models either take stimuli
as input but ignore shared variability in neural responses, or they model this variability
by deriving latent embeddings from neural responses or behavior while ignoring the visual
input. To address this gap, we propose a probabilistic model that incorporates video inputs
along with stimulus-independent latent factors to capture variability in neuronal responses,
predicting a joint distribution for the entire population. After training and testing our
model on mouse V1 neuronal responses, we found that it outperforms video-only models in
terms of log-likelihood and achieves further improvements when conditioned on responses
from other neurons. Furthermore, we find that the learned latent factors strongly correlate
with mouse behavior, although the model was trained without behavior data.
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1. Introduction

Neural activity is influenced both by sensory stimuli and internal, stimulus-independent
fluctuations (Stringer et al., 2019; Niell and Stryker, 2010; Reimer et al., 2016), which are
often ignored by stimulus-based models. Existing approaches to neural response prediction
largely fall into three main categories: (1) deterministic models that predict neural activity
from visual stimuli, but neglect uncertainty and variability in responses (Wang et al., 2023a;
Turishcheva et al., 2023; Sinz et al., 2018; Vystréilovd et al., 2024; Hofling et al., 2022);
(2) probabilistic models that derive latent embeddings from neuronal responses to predict
behavior but do not account for external sensory inputs (Schneider et al., 2023; Gokcen
et al., 2022; Sussillo et al., 2016; Yu et al., 2009); and (3) models that combine task inputs
and a subset of neural activity to predict the responses of conjugate neurons (Zhou and
Wei, 2020; Kim et al., 2023).

To the best of our knowledge, few works exist that model the correlated variability of
large neuronal populations, that also take visual stimuli as input (Bashiri et al., 2021).
Specifically, none of them are designed for dynamic video-based stimuli. The flow based
approach of Bashiri et al. (2021) can be computationally too expensive for modeling tem-
poral dependencies in the latent variables. This paper addresses this gap by proposing a
predictive model of dynamic neural activity as a function of naturalistic video stimuli and
a temporally varying latent variable that captures correlated, stimulus-independent neural
variability. We demonstrate that this model improves predictive accuracy of mouse V1 re-
sponses and implicitly learns latent variables that are correlated with behavior, which were
not provided to the model during training.
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Figure 1: A 3D convolutional neural network-based core that extracts features of the video-
input x. For predicting a neuron’s response, we take a dot product between the neuron
feature vector w. and core features across channel dimension z at position (ml,y/), de-
termined by a Gaussian readout. B Two readouts are used to extract feature vectors at
positions (z,4), (z",y"). We calculate the parameters of the response’s ZIG-distributions
by computing a dot product between those vectors and the learned neuron feature vectors
w((;q), wg") . C The encoder processes masked neuronal responses y, reduces their dimension-
ality before inputting them into a GRU to compute the posterior ¢(z|y) ~ N (u(y),oI). The
decoder samples z from ¢(z|y) or p(z), computes the dot products g(z) - w,(zq’e), qu,e)
neuron specific learnt vectors, and adds them to B’s output. D Directed graphical model
of video, latent and response variables. f(x) corresponds to B, the dependency between

z,y is described by C. The dashed line indicates the variational approximation.

are

2. Models

Our model predicts time-varying neuronal responses (2-photon calcium traces) y € RV*T
to a video stimulus x € RV*H*T where N is the number of neurons, T the number of time
points, and W and H are the width and height of one frame. The prediction additionally
depends on a dynamic, stimulus-independent latent factor z € R¥*” with latent dimension
k << N (Fig 1). Combining ideas from Bashiri et al. (2021) and Zhu et al. (2022), we
model the distribution of neuronal responses conditioned on the stimulus and the latent
factor as a Zero-Inflated-Gamma (ZIG) distribution (Wei et al., 2019):
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where p is the mixture separation with no overlap, x; the shape parameter per neuron 7, g;;

the nonzero response probability, and 6;; the scale parameter for each neuron at time-step t¢.

0 and q are functions of the video-stimulus, the ZIG-model’s parameters ¢ and the latent
factor while k; is fitted once per neuron:

0i(x,2,9) = sigmoid (£ (x;0) + Wi - g(z:5v) ) (2)
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0i(x,2,0) = BLU (1 (x0) + wi” - gz 0)) ) + 1. (3)

We model fi(tq) and fi(te) using a typical core-readout architecture (Fig 1A) where the core
extracts features of the video-input, and the readout maps the relevant features from the
core-output to the individual neurons (Hofling et al. (2022); Turishcheva et al. (2023);
Vystréilova et al. (2024); Sinz et al. (2018); Wang et al. (2023a)). We additionally introduce
g as a one-layer recurrent neural network with gated recurrent units to capture correlations
in the latents across time. The stimulus-independent latent factor is modeled with a prior
distribution as a standard Gaussian independently across time p(z) = N(0,I). We model an
approximate posterior (Fig. 1C) as a Gaussian with the mean as function of the responses
y, the encoder parameters ¢ and an independent variance: q(zly; ¢) = N (u(y; ¢),ocI). We
fit the model by maximizing its evidence lower bound (see Appendix D).

Baseline models Additionally, we train (1) a video-only ZIG-model (without latent) that
maps video-stimulus x to dynamic responses y, and a (2) non-probabilistic model trained
with the Poisson loss (Turishcheva et al. (2023)). All models share the same hyperparam-
eters wherever possible (Fig 1). Since we aim to use correlations between latent variables
and behavioral variables (Stringer et al., 2019; Bashiri et al., 2021) as external validation
for the model, we excluded behavioral data during training for all models — in contrast to
previous work (Sinz et al., 2018; Wang et al., 2023a).

3. Experiments

We trained and evaluated our models on the data from the five mice of the SENSORIUM
competition (Turishcheva et al., 2023). Responses from ~ 8,000 excitatory neurons in layers
2-5 of the primary visual cortex per mouse were recorded at 8 Hz and upsampled to 30 Hz,
while the head fixed mice viewed naturalistic gray-scale videos at 30 Hz. The video input
of the model has shape (W, H,T) = (64, 36,80). Behavioral variables—locomotion speed,
pupil dilation and center position—were also recorded and resampled to 30 Hz.
Predictive performance When it comes to predicting neuronal responses conditioned on
video-stimulus, the Poisson baseline has the best correlation performance of 0.195, whereas
the latent model has the highest log-likelihood of —0.74 bits per time and neuron show-
ing the increased capabilities of the latent model capturing full response distributions. We
computed the performance of the latent model by marginalizing out the latent variable z
via Monte-Carlo sampling (Appendix C). Since the neuronal responses are continuous and
the Poisson distribution is for discrete values only, we cannot evaluate the log-likelihood of
the Poisson model. The slightly lower correlation performance of the likelihood based ZIG-
models could be due to a trade-off between modelling the distribution (good for likelihood)
and modelling the conditional mean (good for correlation) (Lurz et al., 2023).
Latent-behavior correlation To compute correlations between the latents and behav-
ioral variables, we used canonical correlation analysis (CCA), which finds the best linear
combination of the latent variables z(1), ..., z(*) that has maximal correlation with a chosen
behavioral variable. Although our model has not seen any behavioral data during training
the learned latents show strong correlations with behavioral data (Fig. 2), in accordance
with previous works (Stringer et al., 2019; Bashiri et al., 2021; Niell and Stryker, 2010)
(analysis details in Appendix B).



Table 1: Predictive performance of models

Poisson Baseline Video-only Latent ZIG
721G

Pearson Correlation 0.195 0.183 0.182

Log Likelihood in Bits
per Neuron and Time

- -0.98 -0.74

Figure 2: Canonical correlation of behav- Table 2: Average canonical correlation for be-
ior and latent for each mouse. Error bars havior and latent with standard error of mean
indicate standard error of mean of cross

validation. Mice IDs are from SENSO- Latent Model
RIUM data. Pupil Dilation  0.57 4 0.009
1.0 Treadmill Speed 0.40 4+ 0.014
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Neuron Conditioning We assessed the predictive correlation of the model by providing
half of the responses as input, with the latent model achieving a correlation of 0.229, out-
performing the Poisson Baseline’s 0.195. This indicates that the latent model has learned to
capture relevant information from neuronal responses. Additionally, we analyzed neuron re-
sponses at time ¢, using data only untile time t—1. The latent model outperformed baselines,
indicating its capacity for accurately forecasting neuron responses. The forecasting-trained
model (Appendix E) did not notably increase forecasting performance compared to the
default latent model.

4. Discussion

In this work we showed that adding latent factors to a video encoding model enables the
prediction of a joint dynamic response distribution and captures biological variables by
implicitly learning correlations between latent factors and behavior. Future work could
investigate modeling the latent state further, such as experimenting with the number of
neurons needed, the optimal dimensionality k£, and distributional assumptions in the gen-
erative model, potentially learning latent variables with temporal dependencies.
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Appendix A. Related Works Overview

We give in 4 an overview of related work, which either predicts neuron responses for given
natural stimuli, uses latent representations for encoding neuron responses or takes behavior
of the animal into account.

Appendix B. Behavior Analysis

For the pupil dilation and the treadmill speed of each mouse we performed one CCA anal-
ysis each. The CCA analysis was done with 5-fold cross validation. We split the recording
time with a 80/20 ratio. This was repeated on five different seeds. The correlations were
computed between the CCA combination ), wgcm)z(i) on the test time, where wgcca) are the
CCA weights and z(1), ..., z®) € RT are the latent variables. For two selected videos and
mice we plotted their normalized pupil dilation and treadmill speed against the correspond-
ing normalized CCA combination of the latent over whole videos time, which correspond

to ~ 300 time points (3).
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Figure 3: Normalized behavior and CCA combination of latent factors during two selected
videos

Appendix C. Training and Marginalization

Training In order to train our model, we maximize pzig(y|x) via its evidence lower bound
(ELBO) via variational inference (Kingma and Welling, 2022; Blei et al., 2017):

log pzic (y[x) = (10g p(¥|2, X)) zrgy (zy) + Dri(as(2]y)|p(2)), (4)

where (-) represents expected value and Dy, Kullback-Leibler divergence.
Marginalization The marginalized performance of the latent model is obtained by calcu-



lating:
p(ylx) = [ p(y,zx)d (5)

(y|x,2z)p(z|x) dz (6)

\\\

|x,2z)p (7)

p(y

L
=5 plylx.a (8)
!

The last equality is obtained, since x and z are independent (Fig. 1 D). The last integral
is approximated via Monte-Carlo sampling. We found 5000 samples to be sufficient for
convergence (4).
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Figure 4: Convergence plots demonstrating the effect of sample size on model prediction
correlation and log-likelihood measured in Bits per Neuron and Time

Appendix D. Model Architecture and Hyperparmeters Setting

The video processing part consists of a factorized 3D-CNN block followed by a Gaussian
readout (Hofling et al. (2022)). Each convolutional layer consists of a factorized 3D convo-
lution across spatial and temporal dimension followed by a batch normalization layer and
an ELU activation function. We use a variational autoencoding approach for the latent
representations. A dropout layer is applied to the neuron responses before they are fed into
the encoder. This prevents the model from learning correlations between specific neurons
thereby encouraging the learning of global latent representations. The encoder applies a
linear layer reducing the dimensionality of neuron responses N ~ 8,000 (N ranging from
7800 to 8200 depending on the mouse as part of the SENSORIUM dataset (Turishcheva
et al., 2024)) to n << N. For each time step the same linear layer is applied independently.
The linear layer is followed by a layer normalization and an ELU activation function. An
individual linear layer was trained for each mouse. The output is processed by a one-layer
recurrent neural network with gated recurrent units producing the means p(y;¢) of the
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approximate posterior q(z|y; ¢) = N (u(y;¢),cl). o is a learnable model parameter of the
encoder. The resulting latent variables are decoded with another one-layer GRU, denoted
as g. The GRUs are shared among the mice. ¢(z;¢) is combined with the outputs from
the video encoding part computing the parameters for the probability log p(y|z,x) as in 2,
3. For a graphical illustration see 1. We searched over various hyperparameters (Table 5)
using Optuna (Akiba et al., 2019).

Appendix E. Forecasting Model

For the forecasting, we consider the latent representations to be a Markov process developing
smoothly over the time (Fig. 5). Thus, we trained a forecasting model, where we adapted
variational autoencoder architecture to an autoregressive model by shifting the objective
from reconstructing the original data point to predicting the subsequent time point as in
Wang et al. (2023b). Hence, we minimize:

5 (10801181 Dt Dralalye b)) ()
t

Again, p(yi+1|2t+1,%, 1) is the ZIG likelihood of responses at time ¢ + 1 given a latent z;11,
a video x and 1 are the parameters of the video-encoding model (Fig. 1B). q(z¢+1]yt, ¢) =
N(u(yt, ¢),ol) is the approximate posterior of the future latent at time 2,41 given the
responses .

4 )

N j

Figure 5: Illustration of the forecasting model. The dashed arrow shows the variational
approximation of the Encoder ¢(z;+1|y). The solid lines show the dependencies of the
current and future latent z;, 2,41 and the current and future responses yy, Y1
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Table 4: Summary of Reviewed Literature: Column 2 categorizes, if the recorded neural
activities are dynamic or static, and its role as input/output of the model. Column 3

details the type of stimulus components.

Column 4 indicates if the used model has a

latent space and if a distribution is computable for the latent (probabilistic). Column
5 describes the involvement and role of behavioral data. Column 6 lists the datasets,
including subject types, data collection methods, tasks performed during recordings, and

neuron sample sizes.

Literature work Neural activity Stimulus Learned latent Behavior

Datasets

Schneider et al. (2023) Dynamic No Yes, Input Rats, Mice, Monkey
Input probabilistic 2p and electro-
physiology
10-1000 Neurons
Wang et al. (2023a) Dynamic Video  No Input Mice, 2p, passive
Output ~ 140,000 Neurons
Turishcheva et al. (2023) ~ 40,000 Neurons
Sinz et al. (2018)
Kim et al. (2023) Dynamic Audio  Yes, No Synthetic and Rats,
In/Output probabilistic audio decision-making
67 Neurons
Antoniades et al. (2024) Dynamic Video  Yes, not Output  Mice, 2p, passive
Output probabilistic 386 Neurons
Azabou et al. (2023) No Monkey
27,373 Neurons
Gokcen et al. (2022) Dynamic No Yes, No Macaque V1-3
Input probabilistic 120 Neurons
Sussillo et al. (2016) Synthetic
30 Neurons
Zhou and Wei (2020) Dynamic No Yes, Task Monkey, reaching-task
In/Output probabilistic  Input Rat, running
192,120 Neurons
Wang et al. (2023c) No Monkey, Rat task
200 x 200 Neurons
Bjerke et al. (2023) No Mouse,Rats
26 and 149 Neurons
Jensen et al. (2021) Macaque, reaching-task
200 Neurons
Geenjaar et al. (2023)  Dynamic No Yes not, No fMRI
In/Output probabilistic
Seeliger et al. (2021) Dynamic Video  No No fMRI
Output
Bashiri et al. (2021) Static Image  Yes, Output  Mouse V1/LM,
Output probabilistic 2p,passive
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Table 5: Hyperparamter Configuration

General

Learning rate 0.005
Core

Number Layers 3
Temporal Kernel Size 11
first Layer

Spatial Kernel Size (11,11)
first Layer

Spatial Kernel Size (5,5)
other Layer

Spatial Kernel Size (5,5)
other Layer

Channels per Layer (32,64,128)
Encoder

Dropout probability 50%
Output Dim Linear Layer 42
Output Dim 12
Encoder GRU

Decoder

Output Dim 12

Decoder GRU
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