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Abstract

Motivation: Generalizing machine learning models across small, high-dimensional, and heterogeneous

biological datasets remains a critical challenge due to domain shifts caused by variations in data collection,

population differences, and privacy constraints that restrict data sharing. Existing federated domain

adaptation (FDA) approaches primarily rely on deep learning and focus on classification tasks, making

them unsuitable for privacy-sensitive, small-scale regression problems in biomedical research. We introduce

a privacy-preserving federated method for unsupervised domain adaptation in regression, enabling robust

learning across distributed, high-dimensional datasets while maintaining full data privacy.

Results: Our method is the first to enable distributed training of Gaussian Processes for domain adaptation,

ensuring complete privacy through randomized encoding and secure aggregation. Unlike deep learning-

based FDA approaches, our method is specifically designed for small-scale, high-dimensional biological data,

overcoming prior limitations in scalability and generalization. We evaluate our approach on age prediction

from DNA methylation data, demonstrating that it achieves performance comparable to non-private state-of-

the-art methods while fully preserving data privacy. This work enables secure and effective cross-institutional

collaboration in biomedical research without requiring raw data sharing.

Availability: The source code for our method is available at https://github.com/mdppml/FREDA.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Introduction

Machine learning (ML) has rapidly become a powerful tool

with applications across numerous fields, including computational

biology and healthcare, where it has shown great potential

in solving complex problems (Angermueller et al., 2016;

Greener et al., 2022; Thumuluri et al., 2022; Valentini et al.,

2009). However, collecting and labeling biological datasets is

often challenging, costly, and time-consuming. As a result,

many datasets in these fields are small-scale, unlabeled, and

heterogeneous, often collected from different sources under varying

environmental and experimental conditions—such as different

laboratories, hospitals, or institutions (Orouji et al., 2024).

These challenges introduce two critical issues: (1) data from

different sources often exhibit distinct statistical distributions

while lacking labeled samples, complicating direct model transfer;

and (2) privacy regulations and the sensitive nature of biomedical

data often restrict data sharing across institutions, necessitating

collaborative learning approaches.

Unsupervised Federated Domain Adaptation (FDA) addresses

these challenges by collaboratively aligning distributions between

training and test data, referred to as source and target domains,

respectively, without requiring direct data sharing (Farahani et al.,

2021). The primary motivation for unsupervised FDA is the

scarcity of labeled data in the target domain, making it impractical

to train models from scratch. Most existing FDA methods aim to

mitigate distributional differences between domains (Sun et al.,

2016; Peng et al., 2019; Liu et al., 2024; Liang et al., 2021).

While deep learning-based FDA methods have achieved success

in computer vision (Ganin and Lempitsky, 2015; Long et al.,

2016; Feng et al., 2021; Sener et al., 2016), their application to

biological data remains limited due to high dimensionality and

small sample sizes. Moreover, FDA research has predominantly

© The Author 2025. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

https://orcid.org/0000-0002-3414-5297
https://orcid.org/0000-0002-7279-620X
https://orcid.org/0000-0002-4647-8566
mailto:cem.baykara@uni-tuebingen.de
https://github.com/mdppml/FREDA


2 Baykara et al.

focused on classification tasks, while regression-based approaches

remain significantly underexplored despite their importance in

biomedical applications (Poplin et al., 2018; Lundberg et al., 2018;

Li et al., 2022).

In this context, we introduce freda (federated domain

adaptation), a novel method for privacy-preserving, federated

unsupervised domain adaptation in regression tasks. Unlike

conventional deep learning-based approaches that struggle with

data scarcity and high dimensionality, freda is the first method

to leverage distributed training of Gaussian Processes regressors

(GPRs), enabling collaborating entities to model complex features

without pooling their private data.

Gaussian Processes are particularly well-suited for feature

modeling due to their probabilistic nature, providing not

only point predictions but also uncertainty estimates in the

form of Gaussian-distributed confidence intervals. This property

is especially valuable in domain adaptation, where assessing

prediction reliability is crucial when transferring knowledge

across domains. However, like other kernel-based algorithms,

GPRs require pairwise computation of data matrices, making

it extremely challenging to train them when data is distributed

across entities that cannot share raw samples.

To overcome this, freda introduces a novel combination of

randomized encoding and secure aggregation, enabling distributed

training of Gaussian Processes while preserving complete data

privacy. By facilitating robust feature modeling without direct

access to raw data, freda is particularly well-suited for biological

datasets, where privacy constraints, limited sample sizes, and data

heterogeneity pose significant challenges.

We evaluate freda on a challenging benchmark task of age

prediction from DNA methylation data. Our results demonstrate

that freda achieves performance comparable to non-private

methods while preserving complete data privacy. By addressing

the challenges of small-scale, heterogeneous, and privacy-sensitive

regression problems, our approach significantly expands the

applicability of domain adaptation to real-world biomedical

applications. Our contributions are as follows:

• We propose freda, the first method to enable privacy-

preserving, federated unsupervised domain adaptation for

regression tasks, specifically designed for small-scale, high-

dimensional biological datasets.

• Through a novel combination of randomized encoding and

secure aggregation techniques, freda is the first method to

enable the distributed training of GPRs for effective feature

modeling while ensuring complete data privacy.

• We evaluate freda on the challenging task of age prediction

from DNA methylation data, demonstrating that it

effectively models complex feature relationships in small-scale,

heterogeneous, and distributed biological datasets, achieving

performance comparable to non-private approaches while

preserving privacy.

Related Work

Unsupervised domain adaptation has been widely studied,

primarily in image classification, where abundant labeled data

and low-dimensional features facilitate domain transfer (Yue

et al., 2023; Wang and Deng, 2018; Weng et al., 2023).

Many approaches focus on aligning feature representations across

domains using adversarial training, such as Domain-Adversarial

Neural Networks (Ganin et al., 2016) and Maximum Mean

Discrepancy-based methods like Deep Adaptation Networks (Long

et al., 2015). Self-supervised learning techniques, including CDAN

(Long et al., 2018), further integrate task-specific predictions

to improve adaptation. While these methods perform well on

image benchmarks, they are less suited to high-dimensional,

small-sample biological datasets.

Domain Adaptation for Regression

Domain adaptation for regression is less explored due to

the complexity of aligning continuous output spaces. DINO

(Wu et al., 2022) leverages distribution-aware neural networks

to mitigate distribution shifts in regression tasks, achieving

strong performance in image-based settings with large datasets.

However, it remains untested on high-dimensional, low-sample-

size biological data. A key method for unsupervised adaptation in

this setting is wenda (Handl et al., 2019), which estimates feature

dependencies and applies adaptive regularization to handle domain

shifts. Handl et al. (2019) demonstrated its effectiveness in DNA

methylation-based age prediction, making it a relevant baseline for

evaluating freda.

Federated Domain Adaptation

Federated domain adaptation extends domain adaptation to

distributed settings, addressing both domain shifts and privacy

constraints. Methods such as PartialFed (Sun et al., 2021)

dynamically mix global and local model parameters, improving

performance on cross-domain classification tasks. Similarly,

FedGP (Jiang et al., 2024) enhances adaptation in low-data

scenarios by filtering noisy gradients and optimally combining

source and target information. However, these approaches focus

on image datasets with abundant samples and low-dimensional

features, making their applicability to high-dimensional biological

data uncertain.

The Freda Method

We consider the following distributed setting: there are N

source domain clients, each with a local labeled dataset Xsi =

{(xsi

j , ysi

j )}ni

j=1 and a sample size of ni. The entire source domain

data, distributed across the N clients, is denoted as XS =⋃N
i=1 Xsi . Similarly, there is a target client with a dataset XT =

{xt
m}nt

m=1 containing nt samples for the same prediction task, but

without any available labels. In both the source and target domain

datasets, the samples {xsi

j } and {xt
m} are P-dimensional vectors,

where P ∈ N, and the labels {ysi

j } are scalars. The goal is to

leverage source domain data to train a model that generalizes well

to the target domain without explicit data sharing.

Freda follows four key steps: (1) learning feature dependencies

via federated feature models, (2) computing confidence scores

to derive feature weights, (3) predicting optimal regularization

parameters through federated training, and (4) training the final

adaptive model. While we describe the method for a single target

domain, freda can be extended to multiple target domains as

demonstrated in Section 4. A high-level summary of the algorithm

as well as a detailed security analysis of the protocol, including

communication assumptions and privacy guarantees under a semi-

honest model, is provided in the supplementary material.
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Fig. 1: Overview of the freda framework for unsupervised domain adaptation in a federated setting. The framework consists of four

phases: (1) Feature Model Training, where each feature is modeled using federated hyper-parameter optimization and GPRs with

secure aggregation; (2) Feature Weight Computation, where the target client computes confidence scores from the predicted feature

distributions and converts them into weights, which are shared with source clients via an aggregator; (3) Optimal Lambda Prediction,

where multiple weighted elastic nets with varying regularization parameters (λ) are trained, and the optimal λ values are selected by the

target client and shared with all participants; and (4) Final Adaptive Model Training, where the final adaptive WEN models are

trained federatively and sent to the target client for inference.

Feature Model Training

Following the motivation of Handl et al. (2019), we begin by

modeling dependencies between features. In the absence of target

labels, this approach allows us to estimate how well each feature

can be explained by the others, based on patterns learned from

the source domain. The intuition is that features with stable

dependency structures across domains are more likely to generalize

and should be weighted more heavily in the final regression model.

In our distributed setting, we must compute these feature

dependencies without sharing raw data between parties. To

achieve this, we leverage Bayesian models, specifically GPRs, to

model the conditional distribution of each feature f given all other

features. For each feature, we train a separate GPR model gf
using the source domain inputs distributed across the participating

clients.

We emphasize that these GPR models are not used for final

prediction. Instead, they serve as intermediate models to compute

confidence-based feature weights, which are later used in the

federated training of the final adaptive weighted elastic net model.

The training data for a given feature f includes XS
¬f , the entire

source domain data with the column corresponding to feature f

removed, as inputs, and XS
f , the corresponding feature vector, as

labels. For new data points XT
¬f = [xt

1,¬f , . . . , x
t
nt,¬f ], the target

domain data with the column for feature f removed, the goal is to

predict the corresponding feature vector Xt
f = [xt

1,f , . . . , x
t
nt,f

].

For a specific source domain i, the vector containing feature

f is denoted Xsi

f = [xsi

1,f , . . . , x
si

ni,f
], while the (ni × (P − 1))-

matrix of remaining features is Xsi

¬f = [xsi

1,¬f , . . . , x
si

ni,¬f ]. Thus,

for a given feature f , the GPR model gf provides a closed-form

predictive distribution:

gf (X
T
¬f ) ∼ N (K∗K

−1XS
f ,K∗∗ −K∗K

−1K⊤
∗ ) (1)

where:

K = k(XS
¬f , X

S
¬f ) + σ2

ϵ1nS

K∗ = k(XS
¬f , X

T
¬f ) (2)

K∗∗ = k(XT
¬f , X

T
¬f )

.Here, k(., .) computes the linear kernel with the variance of

the prior on the coefficients σ2
k between the given input matrices

(Williams and Rasmussen, 2006). Additionally, nS denotes the

total number of samples in the entire source domain dataset XS .

Unlike traditional supervised regression models that predict a

single value for a given input, GPRs provide a full predictive

distribution as output (Seeger, 2004), which we later use to

compute feature weights. This GPR model involves two hyper-

parameters that must be optimized for the best performance:

the variance of the kernel, σ2
k, and the variance of the additive

Gaussian noise, σ2
ϵ , from the closed-form solution in Eq. 1.

The optimal values of these hyper-parameters are determined by

maximizing the marginal likelihood for each feature. For a specific

source client i, and the covariance matrix K = k(Xsi

¬f , X
si

¬f ) +

σ2
ϵ1ni

from Eq. 2, source client i maximizes:

logL(Xsi

f |Xsi

¬f ) = −
1

2
(Xsi

f )⊤K−1Xsi

f −
1

2
log |K| −

ni

2
log(2π)

(3)

Training feature models is straightforward when both target

and source domains are accessible simultaneously. However,

significant challenges arise when these datasets are distributed.

The first challenge is that, if the source domain is distributed

across multiple entities, the optimization of hyper-parameters

shown in Eq. 3 cannot be performed across the entire source

domain. The second, and more complex, challenge is that due

to the distribution of the source and target domains, the closed-

form solution of the GPR model (as shown in Eq. 1) cannot
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be computed directly. Since GPRs are non-parametric machine

learning algorithms, obtaining predictions requires computing the

three matrices in Eq. 2, namely K, K∗, and K∗∗.

In our setting, computing K∗∗ is straightforward and can be

performed locally by the owner of the target domain, as it requires

only the target domain data. However, computing K and K∗

as well as the predictive mean of the feature model K∗K−1XS
f

presents significant challenges. Computing K is challenging

because, although it only requires source domain data, the data is

distributed across multiple entities, and the entire matrix product

of K cannot be computed trivially. Instead, it must be computed

collaboratively among all source domain owners while preserving

privacy. Similarly, computing K∗ is challenging because it requires

access to both source domain data and target domain data. Lastly,

computing K∗K−1XS
f is not straightforward because the feature

column for the entire source domain data, XS
f , is distributed

between N source clients. Moreover, explicitly sharing XS
f would

compromise privacy since the aggregator could reconstruct the

data of all source clients after the feature model training phase

is completed, as each feature is modeled independently.

Freda addresses all of these challenges by employing secure

aggregation and a customized masking scheme for matrix product

computation (Hannemann et al., 2023).

Federated Hyper-Parameter Optimization

To optimize the GPR model hyper-parameters σ2
k (prior variance)

and σ2
ϵ (noise variance) in a federated setting, Freda employs

secure aggregation via zero-sum masking (Bonawitz et al., 2016).

This method ensures privacy by having each client mask its data

with random values that cancel out when aggregated, revealing

only the global sum without exposing individual contributions.

Each source client locally optimizes σ2
k and σ2

ϵ by maximizing the

marginal likelihood over its dataset. These values are then securely

aggregated to compute global averages, effectively approximating

joint optimization over the entire source domain.

Federated GPR Computation

In the GPR model prediction process, the most challenging

components to compute are K, K∗, and their product with the

global feature vector XS
f , as these require access to both the source

domain data and the target domain data to calculate the matrix

product. A naive plaintext approach would compromise privacy.

To overcome this, we utilize a framework for secure and private

matrix product computation (Hannemann et al., 2023), which

allows us to calculate the product of matrices from the source

and target domains without disclosing their plaintext values.

Privacy-Preserving Masking Process. We use special

masking matrices to hide the input matrices of the matrix product

and reveal only the result of this multiplication to the aggregator.

This protects the privacy of the input matrices as well as their

dimensionality. Specifically, both the source clients and the target

client share a common seed to generate a shared mask matrix

M ∈ Rd×P , where d is a higher-dimensional space than the

original feature space. To ensure that a left inverse exists, M

is required to be full column rank. Each client p then locally

computes a left inverse Lp ∈ RP×d such that LpM = IP , and

applies the mask to its data:

X̃p = XpLp(MM⊤)1/2, (4)

where Xp represents the local dataset of client p (Xp = Xsi

for a source client or Xp = XT for the target client). The masked

data X̃p is then sent to the aggregator.

Secure Gram Matrix Computation. The aggregator computes

the Gram matrix for all clients using the masked data. For a pair

of clients p and q, the Gram matrix is computed as:

X̃p(X̃q)⊤ = (XpLp(MM⊤)1/2)(XqLq(MM⊤)1/2)⊤

= XpLp(MM⊤)1/2((MM⊤)1/2)⊤(Lq)⊤(Xq)⊤

= Xp(LpM)(M⊤(Lq)⊤)(Xq)⊤

= XpXq⊤

(5)

where the masking terms cancel out, revealing only the product

X̃p(X̃q)⊤ without exposing the individual data of the clients.

Using the computed Gram matrix Gpq, the aggregator

calculates K and K∗ as follows:

K = σ2
kG

pq + σ2
ϵ1nS

K∗ = σ2
kG

pq
(6)

Computing the Predicted Mean. Computing the predicted

mean K∗K−1XS
f is challenging as the aggregator does not have

access to the label vector XS
f (feature column for the modeled

feature gf ), which remains distributed across source clients.

Explicitly sharing XS
f would also compromise privacy since the

aggregator could reconstruct the data of all source clients after

the feature model training phase is completed, as each feature

is modeled independently. To address this, Freda performs the

following:

1. Aggregator Step: The aggregator computes the intermediate

matrix product K∗K−1, then applies a random mask matrix

C ∈ Rnt×nt , resulting in the masked matrix:

B̃ = CK∗K
−1 (7)

The masked matrix B̃ is split row-wise into sub-matrices

corresponding to each source client’s data, denoted B̃si . The

aggregator sends B̃si to source client i, and separately sends

C−1 to the target client.

2. Source Client Computation: Each source client i receives

their masked sub-matrix M̃si and locally computes:

vsi = B̃siXsi

f , (8)

where Xsi

f is the vector of values for feature f held by client

i. The result vsi ∈ Rnt×1 is then sent to the target client.

3. Target Client Aggregation: The target client aggregates

the received vectors:

v =
N∑

i=1

vsi , (9)

and removes the mask using the inverse matrix C−1:

K∗K
−1XS

f = C−1v = C−1
N∑

i=1

B̃siXsi

f (10)

This protocol enables the target client to compute the

predicted mean without accessing any raw data from the source
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clients, thereby preserving data privacy. Additionally, the random

masking step ensures that source clients cannot infer information

about other clients or the full matrix K∗K−1 from their sub-

matrices.

Computing the Predicted Variance. To complete the

predictive distribution, the predicted variance term K∗∗ −
K∗K−1K⊤

∗ is computed by the aggregator using the Gram matrix

Gpq and sent to the target client. With both the predicted mean

and variance available, the target client can reconstruct the full

closed-form predictive distribution for feature f as given in Eq. 1.

Feature Weight Computation

For a sample from the target domain, denoted as xt
m, and a given

feature f , let xt
m,f represent the value of feature f in xt

m, and

xt
m,¬f represent the values of all other features in xt

m. Given

xt
m,¬f , the feature model gf outputs a posterior distribution that

describes the expected value of xt
m,f according to the dependency

structure learned from the source domain. For a GPR model,

this posterior is a normal distribution, which is directly obtained

from the closed-form solution shown in Eq. 1 and collaboratively

computed in the previous phase.

To evaluate how well the observed value xt
m,f fits the predicted

distribution, we apply the confidence measure proposed by Jalali

and Pfeifer (2016):

cf (x
t
m) = 2Φ

(
|xt

m,f − µgf
(xt

m,¬f )|
σgf

(xt
m,¬f )

)
(11)

where Φ denotes the cumulative distribution function of a

standard normal distribution. Here, µgf
(xt

m,¬f ) and σgf
(xt

m,¬f )

denote the mean and standard deviation of the predictive

distribution computed in Eq. 1 for the input xt
m,¬f . Specifically,

they correspond to the closed-form expressions K∗K−1XS
f and

K∗∗ −K∗K−1K⊤
∗ , respectively, obtained from the feature model

gf . This confidence score represents the probability that a value

as extreme as xt
m,f , or more, relative to the predicted mean

µgf
(xt

m,¬f ), occurs within the posterior distribution predicted by

gf .

The overall confidence for feature f in the target domain is

then defined as the average of cf (xt
m) across all target domain

samples:

cf =
1

nt

nt∑
i=1

cf (x
t
m) (12)

Where nt is the total number of samples in the target domain.

For each feature, cf quantifies how well the source-domain

dependencies for feature f align with those in the target domain.

Once the confidence scores for all features have been computed,

the target client then computes the weight of feature f as follows:

wf = (1− cf )
k (13)

Here, k is a hyper-parameter specified by the target client, with

k > 0. This hyper-parameter determines how the confidence scores

are transformed into feature weights. As k increases, progressively

higher penalties are applied to features with low confidence,

while features with higher confidence are penalized less severely.

Both the confidence score formulation and the transformation of

confidence scores into feature weights are identical to those used

in wenda (Handl et al., 2019), which also relies on feature-wise

predictive distributions to guide adaptation.

In our experiments, we empirically evaluate the performance

of our framework with respect to the weighting parameter k and

adjust its value accordingly (Section 4.4.3).

Federated Weighted Elastic Net Training

The remaining phases of our framework involves collaboratively

training weighted elastic nets in a federated manner, to preserve

the privacy of individual source clients. By using a weighted elastic

net, source clients scale the contribution of each feature in their

local data to the regularization term based on the feature weights

computed by the target client in the previous step. The weighted

elastic net solves the following optimization problem:

β̂ = argmin
β

(
∥y −Xβ∥2 + λJ(β)

)
(14)

where ∥y−Xβ∥2 represents the residual sum of squares on the

source domain data, λ is the regularization parameter, and J(β)

is the regularization term defined as:

J(β) = α
F∑

f=1

wf |βf |+
1

2
(1− α)

F∑
f=1

wfβ
2
f (15)

Training a weighted elastic net is conceptually similar to

training a neural network with a single linear layer in a federated

setting, where the coefficient for each feature is scaled by its

corresponding confidence-based weight. Since all source clients

share the same fixed feature weights, the federated training focuses

on updating the model coefficients collaboratively.

We employ the FedAvg algorithm (McMahan et al., 2017) to

train the weighted elastic net in a privacy-preserving manner.

Specifically, each client performs local gradient-based updates

using their own data, and the resulting model updates are securely

aggregated at the central server (Tajabadi et al., 2024) using

the secure aggregation protocol (Bonawitz et al., 2016). The

aggregated global model is then broadcast back to all clients for

the next training round. To reflect the differing amounts of data

across clients, each client’s contribution to the global model is

weighted proportionally to its local sample size. This setup ensures

that clients with larger and more representative data pools have a

stronger influence on the global model, which can be particularly

beneficial in imbalanced scenarios.

As shown in Equations 14, 15, freda has two external

parameters: the proportion of L1 and L2 penalties in the weighted

elastic net α, and the regularization parameter λ. Following Handl

et al. (2019), we fix α = 0.8.

Optimal Lambda Prediction

The regularization parameter λ plays a critical role in domain

adaptation by balancing feature penalty strength and model

learning (Handl et al., 2019). If λ is too small, the model

may not sufficiently penalize feature differences, while an

overly large λ could dominate the objective function, limiting

meaningful adaptation. Since cross-validation is impractical in an

unsupervised setting where target labels are unavailable, freda

adopts the prior knowledge approach from Handl et al. (2019),

leveraging domain similarities known by the target client.

The target client partitions its data into subsets Xt1 and Xt2 .

Source clients federatively train weighted elastic nets across a

range of λ values, and the target client selects the best-performing

model for Xt1 based on MAE, assuming labels for this subset

are available. A simple linear model is then fitted to capture the
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relationship between domain similarity and the optimal λ values

obtained from source-trained models. This model is used to predict

λ values for Xt2 , which are then sent back to source clients for the

final training phase.

Final Adaptive Model Training

The source clients federatively train the final weighted elastic net

models by selecting the regularization parameter λ based on the

predicted values received from the target client in the previous

step.

The model obtained at the end of this step is sent to the target

client by the aggregator for the final prediction task on the target

domain data.

Results

To evaluate the performance of our proposed method, we

provide a benchmark on the problem of age prediction from

DNA methylation data across multiple tissues. This section

presents a detailed comparison of freda with existing baselines,

highlighting its effectiveness in preserving data privacy while

achieving competitive predictive accuracy.

Implementation

We implemented our framework in Python 3.8.18, the source

code to reproduce the experiments is available on GitHub

(https://github.com/mdppml/FREDA). For the feature models,

we implemented our own GPR models and used the Python

package GPy1 (gpy, 2012) to compute the optimal values for

the hyper-parameter optimization explained in Section 3.1.1. As

for the weighted elastic nets, we used TensorFlow 2.13.1 with

custom kernel regularization. All federated processes, including

source clients, target client, and aggregator, are simulated

locally to enable reproducible evaluations. To encourage adoption

in broader settings, we also provide a task-agnostic version

of our framework, available at https://github.com/mdppml/

FREDA-CV. This implementation removes the need for prior

domain similarity knowledge by using cross-validation to select

the regularization parameter λ.

Dataset and Pre-Processing

We used DNA methylation and donor age data from TCGA

(Weinstein et al., 2013) and GEO (Edgar et al., 2002), following

the exact preprocessing steps of Handl et al. (2019). This

included imputing missing values (< 0.5% of samples) and

reducing dimensionality from 466,094 to 12,980 features. Ages were

transformed using Horvath’s method (Horvath, 2013) to account

for nonlinear methylation changes, then standardized. The dataset

was split into a source set (1,866 samples from 19 tissues, ages

0–103) and a target set (1,001 samples from 13 tissues, including

unseen ones like cerebellum). As in Handl et al. (2019), similar

tissue types were aggregated to ensure sufficient sample sizes.

Detailed pre-processing steps is available in the supplementary

material.

1 https://github.com/SheffieldML/GPy

Baselines

We compared freda with two baselines: the state-of-the-art

unsupervised domain adaptation method wenda (Handl et al.,

2019), and the non-adaptive model (Horvath, 2013).

Wenda Baseline

Wenda (weighted elastic net for domain adaptation) is a

state-of-the-art method for unsupervised domain adaptation on

small-scale, high-dimensional biological datasets (Handl et al.,

2019). Like our approach, it leverages the dependency structure

between features across source and target domains, penalizing

discrepant features while emphasizing robust ones. Despite its

strong performance over non-adaptive models, wenda assumes

simultaneous access to both domains, hence it is only suitable

for non-private settings.

Wenda has three key parameters: the weighting parameter

k, the elastic net mixing parameter α, and the regularization

parameter λ. Following Handl et al. (2019), we fix α = 0.8, while

λ is computed using prior knowledge on tissue similarity (wenda-

pn), as cross-validation on the target domain is infeasible in an

unsupervised setting. For k, we select k = 3 based on both our

experiments and prior work (Handl et al., 2019).

Non-Adaptive Baseline

For our non-adaptive baseline, we adopt the method proposed

by Horvath (2013), which combines the elastic net with a least-

squares fit. The idea is to first fit a standard elastic net and

then apply a linear least-squares fit based only on features that

obtained non-zero coefficients in the elastic net. This baseline was

first proposed by Horvath (2013) for age prediction from DNA

methylation data, where he demonstrated that using an elastic net

followed by a least-squares fit resulted in improved performance on

his dataset. We refer to this non-adaptive method as en-ls.

Setup for Freda

We consider a distributed setting with multiple source domain

clients, a target client, and an aggregator, which has no data. The

labeled source domain data is distributed across 2, 4, or 8 source

clients, and we evaluate freda in each of these settings.

Data Distribution

Source domain data is assigned uniformly at random among the

source clients. Given that the DNA methylation dataset contains

1,866 training samples, each client receives approximately 933,

466, or 233 samples in the 2, 4, and 8-client settings, respectively.

To assess the robustness of freda, we do not consider tissue

types when distributing data. Due to the inherent imbalance of

DNA methylation data across tissues, this results in some clients

having only a few or no samples from certain tissues.

Setup for Weighted Elastic Net Models

The weighted elastic net model is trained for 100 global iterations,

with source clients updating their local models for 20 epochs per

iteration before the global model is securely updated. To improve

convergence, we apply an exponential learning rate decay across

iterations, starting at 1× 10−4 and decreasing to 1× 10−5 by the

final iteration (Yan et al., 2022).

https://github.com/mdppml/FREDA
https://github.com/mdppml/FREDA-CV
https://github.com/mdppml/FREDA-CV
https://github.com/SheffieldML/GPy
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Parameter Selection in Freda

Freda has three key parameters: the weighting parameter k, the

elastic net mixing parameter α, and the regularization parameter

λ. We fix α = 0.8 as a design choice and determine λ using the

prior knowledge approach (Section 3.3.1) proposed by Handl et al.

(2019).

For tissue similarity calculations, we use data from the GTEx

consortium, which provides genotype and gene expression data

across 42 human tissues (analysts: Aguet François 1 Brown

Andrew A. 2 3 4 Castel Stephane E. 5 6 Davis Joe R. 7 8 He Yuan

9 Jo Brian 10 Mohammadi Pejman 5 6 Park YoSon 11 Parsana

Princy 12 Segrè Ayellet V. 1 Strober Benjamin J. 9 Zappala

Zachary 7 8 et al., 2017), following the methodology in Handl

et al. (2019). In the federated setting, only the target domain

owner requires access to tissue similarity information.

To evaluate performance, we follow the evaluation strategy of

Handl et al. (2019) for wenda-pn, iteratively splitting test tissues

into subsets: one for fitting domain similarity relationships and

another for evaluation (Section 3.3.1). We iterate over all three-

tissue combinations with at least 20 training samples, assessing

performance on the remaining tissues. Based on our experiments,

the optimal weighting parameter is k = 3.

Experiments

We compare the performance of freda against wenda-pn and the

non-private, non-adaptive baseline model en-ls, as described in

Section 4.3. The main performance metric is the Mean Absolute

Error (MAE) of the predicted chronological ages of the tissues.

For wenda-pn, we calculate the MAE only on samples not used for

fitting the tissue similarity-λ relationship, reporting the mean and

standard deviation across all splits. Similarly, for freda, we report

the MAE exclusively for the target client’s tissues that were not

part of the similarity-λ fit, along with the mean and standard

deviation over all splits.
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Fig. 2: MAE per target tissue and on the full target dataset for

en-ls, wenda-pn (k = 3), and freda (k = 3) with 2, 4, and 8 source

parties.

For the non-adaptive baseline en-ls, Handl et al. emphasize

that the heterogeneous nature of the data and the random splitting

of the training data used for 10-fold cross-validation significantly

influence its performance. Therefore, we follow their approach

and report the mean ± standard deviation over 10 runs for en-

ls. For wenda-pn, the mean ± standard deviation is calculated
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Fig. 3: MAE per target tissue, as well as on full target data, for

en-ls, wenda-pn (k = 3), and freda (k = 3) under uniform and two

imbalanced 4-client data distributions.

over all splits of the test tissues where the tissue of interest was

included in the evaluation set. For freda, we report the mean ±
standard deviation for each setting (2, 4, and 8 sources) over 5

different uniform random distributions of source data across the

source parties, considering all splits where the tissue of interest

was included in the evaluation set.

For wenda-pn, Handl et al. (2019) treat each tissue in the test

dataset as a separate target domain, training the final weighted

elastic net models independently for each tissue. Specifically,

Handl et al. (2019) compute the average confidences, as defined in

Equation 12, only over the samples of the same tissue and train

a separate model for each tissue, always using the entirety of the

training (source) data but applying tissue-specific feature weights.

We follow the same approach for freda in all our experiments,

where the clients inside the federated learning system train a

separate weighted elastic net model for each tissue in the target

domain (for further information see Section 3).

The performance of en-ls, wenda-pn, and freda for 2, 4, and

8 source parties on the relevant tissues of the target domain, as

well as on all samples of the target domain data, is shown in

Figure 2. For the full target dataset, the non-private baseline

methods en-ls and wenda-pn yield an MAE of 6.34 ± 1.21 and

5.31±0.29, respectively. These results indicate that when the entire

target domain data is considered, wenda-pn provides only a slight

improvement in performance compared to the non-adaptive en-ls.

The effect of distribution shift is most visible when we observe the

performance of our baselines on cerebellum samples. As shown in

Figure 2, the non-adaptive en-ls yields a significantly higher MAE

on cerebellum samples compared to other tissues.

Figure 4 show the predicted versus true ages for the samples

of the target domain data, colored by tissue, for freda with k = 3

for 2, 4, and 8 source parties, en-ls and wenda-pn, respectively.

From Figures 4d and 4e, we can clearly see that both non-

private methods perform well on most tissues, except for en-ls

on cerebellum samples. As shown in Figure 4d, the ages predicted

by en-ls for cerebellum samples are consistently lower than the

true chronological ages. In contrast, Figure 4e demonstrates that

wenda-pn achieves much closer alignment between the predicted

and true ages for cerebellum samples.

Additionally, for the remaining target domain tissues, the

predictions of wenda-pn are comparable to those of en-ls, as
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(a) (b) (c) (d) (e)

Fig. 4: Predicted versus true chronological age under various settings. Figures (a), (b), and (c) correspond to freda with k = 3 for 2, 4,

and 8 source parties, respectively. Predictions are averaged over all splits where the tissue of interest was included in the evaluation set,

as well as over 5 different distributions for each setting. Panels (d) and (e) correspond to en-ls and wenda-pn, respectively. For en-ls,

predictions are averaged over 10 runs of 10-fold cross-validation, while for wenda-pn, predictions are averaged over all splits where the

tissue of interest was included in the evaluation set.

confirmed by the quantitative results in Figure 2. Wenda-pn not

only yields significantly lower errors than en-ls on cerebellum

samples but also maintains similar or better performance on other

test tissues. Specifically, on cerebellum samples, en-ls produces a

mean absolute error (MAE) of 7.63± 0.26. These results highlight

the significance of improving prediction performance on cerebellum

samples without a drop in performance on other tissues.

Our experimental results, presented in Figures 2 and 4, are

consistent with the findings of Handl et al. (2019), who highlight

the difficulty of predicting the age of cerebellum samples. These

samples are not represented in the training data and are known

to be biologically distinct, even from other brain tissues, in

terms of function and gene expression patterns (Fraser et al.,

2005; analysts: Aguet François 1 Brown Andrew A. 2 3 4 Castel

Stephane E. 5 6 Davis Joe R. 7 8 He Yuan 9 Jo Brian 10

Mohammadi Pejman 5 6 Park YoSon 11 Parsana Princy 12

Segrè Ayellet V. 1 Strober Benjamin J. 9 Zappala Zachary 7 8

et al., 2017). Hence, our evaluation focuses on whether federated

privacy-preserving domain adaptation, as implemented by freda,

can achieve comparable performance on these samples to the

non-private method wenda-pn.

For the full target dataset, freda achieves a MAE of 5.41 ±
0.44, 5.41 ± 0.44, and 5.81 ± 0.24 for the 2, 4, and 8

source domain settings, respectively. These results indicate that,

when considering the full target domain data, freda provides

a performance level almost identical to that of wenda-pn and

consistently better than en-ls across all configurations, despite

operating in a distributed environment.

Effect of Data Distribution on Performance

To evaluate the robustness of freda under more realistic

deployment scenarios, we extended our benchmark by introducing

non-uniform data distributions across source clients. While our

primary experiments used a uniform random distribution of

samples among clients, real-world federated settings often exhibit

substantial data imbalance. In our context, where the task is

regression and the data is already highly tissue-imbalanced, we

focus on sample-wise imbalance.

We simulate two increasingly imbalanced scenarios in the 4

source-client setting. In the first, mildly imbalanced setting, clients

receive data according to a skewed distribution of [0.5, 0.2, 0.2, 0.1],

and in the second, highly imbalanced setting, sample proportions

follow [0.533, 0.266, 0.133, 0.068], where each client has roughly

double the number of samples of the next. These distributions

mimic real-world scenarios where certain institutions contribute

significantly more data than others.

As shown in Figure 3, freda maintains strong predictive

performance even under considerable sample imbalance. Although

minor degradations in MAE can be observed specifically for

cerebellum samples, the overall performance remains competitive

with non-private baselines.

Discussion

Cerebellum samples continue to represent the most challenging

case for age prediction under domain shift, consistent with prior

findings (Handl et al., 2019; Fraser et al., 2005; analysts: Aguet

François 1 Brown Andrew A. 2 3 4 Castel Stephane E. 5 6 Davis

Joe R. 7 8 He Yuan 9 Jo Brian 10 Mohammadi Pejman 5 6

Park YoSon 11 Parsana Princy 12 Segrè Ayellet V. 1 Strober

Benjamin J. 9 Zappala Zachary 7 8 et al., 2017). These samples

differ biologically from other brain and non-brain tissues, and are

not well represented in training data. Despite this, freda achieves

comparable performance to the non-private method wenda-pn in

the 2- and 4-source scenarios, with MAEs of 7.99 ± 1.39 and

8.64 ± 0.86, respectively. In contrast, the non-adaptive baseline

en-ls consistently underestimates the ages of cerebellum samples,

leading to poor performance on this difficult target domain.

Across all test tissues, freda closely matches the performance

of wenda-pn while significantly outperforming en-ls. Notably,

despite being trained in a privacy-preserving federated setting,

freda maintains high predictive performance and effectively

captures domain-specific distribution shifts. This confirms that the

federated adaptation strategy does not sacrifice performance, even

though clients operate under strict data privacy constraints.

We also investigated the impact of scaling to more source

clients. As the number of source domains increases from 2 to 8,

a slight degradation in performance is observed on cerebellum

samples, with MAE increasing to 10.77 ± 0.99. This suggests

that partitioning the source data too finely can hinder adaptation

performance, possibly due to reduced statistical power per client.

Nonetheless, even in the 8-party case, freda still outperforms the

non-private and non-adaptive baseline.

To further assess robustness in more realistic settings, we

extended our evaluation with experiments using imbalanced
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data distributions across source clients. These scenarios simulate

common federated learning situations where data contributions

vary widely across institutions. Interestingly, we observe that

predictive performance on some target tissues actually improves

as the degree of imbalance increases. We attribute this to two

main factors: first, our randomized encoding scheme for feature

modeling allows the aggregator to compute global feature statistics

as if all data were pooled, despite privacy constraints. Second,

during the federated training of the weighted elastic nets, weighted

aggregation implicitly favors clients with larger datasets, which

can lead to more stable model updates when the dominant

client has a representative sample distribution. Performance on

cerebellum, however, remains more sensitive to imbalance possibly

due to its distinct biological characteristics. Despite this, freda

maintains competitive performance, demonstrating robustness to

imbalanced real-world settings.

Together, these findings demonstrate that freda successfully

balances privacy, performance, and adaptability, even in

challenging domain adaptation tasks and realistic federated

learning settings.

Conclusion

In this article, we introduced freda, the first privacy-preserving

framework for federated unsupervised domain adaptation in

regression tasks on high-dimensional, small-scale biological

datasets. Freda enables multiple entities to collaboratively

model complex feature relationships while maintaining complete

data privacy. By combining randomized encoding and secure

aggregation, it addresses the challenge of training Gaussian

Processes in distributed settings, eliminating the need for pooled

pairwise computations on non-shareable data.

Our evaluation on an age prediction task from DNA

methylation data demonstrates that freda achieves performance

comparable to non-private methods, including on challenging

tissues such as cerebellum, while preserving data privacy. In

addition, we observe that freda remains robust under increasingly

imbalanced data distributions.

While freda demonstrates competitive performance to the

non-private state-of-the-art even in distributed settings, we

acknowledge that training a separate feature model for each feature

in high-dimensional settings can be computationally intensive.

However, there are several directions to improve scalability that

we plan to explore in future work. First, since feature models

are independent, they can be trained in parallel across multiple

processors or compute nodes to reduce runtime. Second, recent

work (Hannemann et al., 2025) proposes a more efficient masking

strategy for the same randomized encoding framework used in

freda, which reduces computation time significantly by speeding

up the masking process.
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