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Abstract

Motivation: Generalizing machine learning models across small, high-dimensional, and heterogeneous
biological datasets remains a critical challenge due to domain shifts caused by variations in data collection,
population differences, and privacy constraints that restrict data sharing. Existing federated domain
adaptation (FDA) approaches primarily rely on deep learning and focus on classification tasks, making
them unsuitable for privacy-sensitive, small-scale regression problems in biomedical research. We introduce
a privacy-preserving federated method for unsupervised domain adaptation in regression, enabling robust
learning across distributed, high-dimensional datasets while maintaining full data privacy.

Results: Our method is the first to enable distributed training of Gaussian Processes for domain adaptation,
ensuring complete privacy through randomized encoding and secure aggregation. Unlike deep learning-
based FDA approaches, our method is specifically designed for small-scale, high-dimensional biological data,
overcoming prior limitations in scalability and generalization. We evaluate our approach on age prediction
from DNA methylation data, demonstrating that it achieves performance comparable to non-private state-of-
the-art methods while fully preserving data privacy. This work enables secure and effective cross-institutional
collaboration in biomedical research without requiring raw data sharing.

Availability: The source code for our method is available at https://github.com/mdppml|/FREDA.
Supplementary Information: Supplementary data are available at Bioinformatics online.

Introduction

Machine learning (ML) has rapidly become a powerful tool collaborative learning approaches.

data often restrict data sharing across institutions, necessitating

with applications across numerous fields, including computational
biology and healthcare, where it has shown great potential
in solving complex problems ( s ;
) ) ) ) )

). However, collecting and labeling biological datasets is
often challenging, costly, and time-consuming. As a result,
many datasets in these fields are small-scale, unlabeled, and
heterogeneous, often collected from different sources under varying
environmental and experimental conditions—such as different
laboratories, hospitals, or institutions ( , ).
These challenges introduce two critical issues: (1) data from
different sources often exhibit distinct statistical distributions
while lacking labeled samples, complicating direct model transfer;
and (2) privacy regulations and the sensitive nature of biomedical

Unsupervised Federated Domain Adaptation (FDA) addresses
these challenges by collaboratively aligning distributions between
training and test data, referred to as source and target domains,
respectively, without requiring direct data sharing ( s

). The primary motivation for unsupervised FDA is the
scarcity of labeled data in the target domain, making it impractical
to train models from scratch. Most existing FDA methods aim to
mitigate distributional differences between domains ( ,

; , ; , ; ; )
While deep learning-based FDA methods have achieved success
in computer vision ( , ; ,

; , ; , ), their application to
biological data remains limited due to high dimensionality and
small sample sizes. Moreover, FDA research has predominantly
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focused on classification tasks, while regression-based approaches

remain significantly underexplored despite their importance in

biomedical applications ( s ; R ;
, 2022).

In this context, we introduce freda (federated domain

adaptation), a novel method for privacy-preserving, federated

Unlike

conventional deep learning-based approaches that struggle with

unsupervised domain adaptation in regression tasks.

data scarcity and high dimensionality, freda is the first method
to leverage distributed training of Gaussian Processes regressors
(GPRs), enabling collaborating entities to model complex features
without pooling their private data.

Gaussian Processes are particularly well-suited for feature
modeling due to their probabilistic nature, providing not
only point predictions but also uncertainty estimates in the
form of Gaussian-distributed confidence intervals. This property
is especially valuable in domain adaptation, where assessing
prediction reliability is crucial when transferring knowledge
across domains. However, like other kernel-based algorithms,
GPRs require pairwise computation of data matrices, making
it extremely challenging to train them when data is distributed
across entities that cannot share raw samples.

To overcome this, freda introduces a novel combination of
randomized encoding and secure aggregation, enabling distributed
training of Gaussian Processes while preserving complete data
privacy. By facilitating robust feature modeling without direct
access to raw data, freda is particularly well-suited for biological
datasets, where privacy constraints, limited sample sizes, and data
heterogeneity pose significant challenges.

We evaluate freda on a challenging benchmark task of age
prediction from DNA methylation data. Our results demonstrate
that freda achieves performance comparable to non-private
methods while preserving complete data privacy. By addressing
the challenges of small-scale, heterogeneous, and privacy-sensitive
regression problems, our approach significantly expands the
applicability of domain adaptation to real-world biomedical
applications. Our contributions are as follows:

e We propose freda, the first method to enable privacy-
preserving, federated unsupervised domain adaptation for
regression tasks, specifically designed for small-scale, high-
dimensional biological datasets.

e Through a novel combination of randomized encoding and
secure aggregation techniques, freda is the first method to
enable the distributed training of GPRs for effective feature
modeling while ensuring complete data privacy.

e We evaluate freda on the challenging task of age prediction
from DNA methylation data,
effectively models complex feature relationships in small-scale,

demonstrating that it

heterogeneous, and distributed biological datasets, achieving
performance comparable to non-private approaches while
preserving privacy.

Related Work

Unsupervised domain adaptation has been widely studied,
primarily in image classification, where abundant labeled data
and low-dimensional features facilitate domain transfer (

, ; , ; ; )
Many approaches focus on aligning feature representations across
domains using adversarial training, such as Domain-Adversarial

Neural Networks ( ,
Discrepancy-based methods like Deep Adaptation Networks (

) and Maximum Mean

, ). Self-supervised learning techniques, including CDAN

( b

to improve adaptation. While these methods perform well on

), further integrate task-specific predictions

image benchmarks, they are less suited to high-dimensional,
small-sample biological datasets.

Domain Adaptation for Regression

Domain adaptation for regression is less explored due to
the complexity of aligning continuous output spaces. DINO

( bl

to mitigate distribution shifts in regression tasks, achieving

) leverages distribution-aware neural networks

strong performance in image-based settings with large datasets.
However, it remains untested on high-dimensional, low-sample-
size biological data. A key method for unsupervised adaptation in
this setting is wenda ( , ), which estimates feature
dependencies and applies adaptive regularization to handle domain
shifts. (

methylation-based age prediction, making it a relevant baseline for

) demonstrated its effectiveness in DNA

evaluating freda.

Federated Domain Adaptation

Federated domain adaptation extends domain adaptation to
distributed settings, addressing both domain shifts and privacy
constraints. Methods such as PartialFed ( , )
dynamically mix global and local model parameters, improving
performance on cross-domain classification tasks.
FedGP ( ,
scenarios by filtering noisy gradients and optimally combining

Similarly,
) enhances adaptation in low-data

source and target information. However, these approaches focus
on image datasets with abundant samples and low-dimensional
features, making their applicability to high-dimensional biological
data uncertain.

The Freda Method

We consider the following distributed setting: there are N
source domain clients, each with a local labeled dataset X% =
{(=3*,y5")}}<, and a sample size of n;. The entire source domain

data, distributed across the N clients, is denoted as X° =
N
i=1

{zt,}_, containing n; samples for the same prediction task, but

X ®i. Similarly, there is a target client with a dataset X7 =

without any available labels. In both the source and target domain
datasets, the samples {:Ej} and {z!,} are P-dimensional vectors,
where P € N, and the labels {y;'} are scalars. The goal is to
leverage source domain data to train a model that generalizes well
to the target domain without explicit data sharing.

Freda follows four key steps: (1) learning feature dependencies
via federated feature models, (2) computing confidence scores
to derive feature weights, (3) predicting optimal regularization
parameters through federated training, and (4) training the final
adaptive model. While we describe the method for a single target
domain, freda can be extended to multiple target domains as
demonstrated in Section 4. A high-level summary of the algorithm
as well as a detailed security analysis of the protocol, including
communication assumptions and privacy guarantees under a semi-
honest model, is provided in the supplementary material.
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Fig. 1: Overview of the freda framework for unsupervised domain adaptation in a federated setting. The framework consists of four
phases: (1) Feature Model Training, where each feature is modeled using federated hyper-parameter optimization and GPRs with

secure aggregation; (2) Feature Weight Computation, where the target client computes confidence scores from the predicted feature
distributions and converts them into weights, which are shared with source clients via an aggregator; (3) Optimal Lambda Prediction,
where multiple weighted elastic nets with varying regularization parameters () are trained, and the optimal X values are selected by the
target client and shared with all participants; and (4) Final Adaptive Model Training, where the final adaptive WEN models are

trained federatively and sent to the target client for inference.

Feature Model Training

Following the motivation of Handl et al. (2019), we begin by
modeling dependencies between features. In the absence of target
labels, this approach allows us to estimate how well each feature
can be explained by the others, based on patterns learned from
the source domain. The intuition is that features with stable
dependency structures across domains are more likely to generalize
and should be weighted more heavily in the final regression model.

In our distributed setting, we must compute these feature
dependencies without sharing raw data between parties. To
achieve this, we leverage Bayesian models, specifically GPRs, to
model the conditional distribution of each feature f given all other
features. For each feature, we train a separate GPR model gy
using the source domain inputs distributed across the participating
clients.

We emphasize that these GPR models are not used for final
prediction. Instead, they serve as intermediate models to compute
confidence-based feature weights, which are later used in the
federated training of the final adaptive weighted elastic net model.

The training data for a given feature f includes Xff, the entire
source domain data with the column corresponding to feature f
removed, as inputs, and X }g , the corresponding feature vector, as
labels. For new data points XT, = [z} _,,... 2},
domain data with the column for feature f removed, the goal is to

. -], the target
predict the corresponding feature vector X% = [a:’i,f, . ,m;t’f}.

For a specific source domain i, the vector containing feature
[ is denoted X7 = [z7,,...,z, ], while the (n; x (P — 1))-
matrix of remaining features is X°'; = [z7'_;,..., =, _]. Thus,
for a given feature f, the GPR model g provides a closed-form
predictive distribution:

gr(XZp) ~ N(KLK ' XE Ko — KKK 1)

where:

K=kX5;,X5;)+021n,
K. =k(X3;,XT)) (2)
Kuw = k(XZ;, XT))

Here, k(.,.) computes the linear kernel with the variance of
the prior on the coefficients O’i between the given input matrices
(Williams and Rasmussen, 2006). Additionally, ng denotes the
total number of samples in the entire source domain dataset X*.
Unlike traditional supervised regression models that predict a
single value for a given input, GPRs provide a full predictive
distribution as output (Sceger, 2004), which we later use to
compute feature weights. This GPR model involves two hyper-
parameters that must be optimized for the best performance:

the variance of the kernel, 0%, and the variance of the additive
2

Z, from the closed-form solution in Eq. 1.

Gaussian noise, o
The optimal values of these hyper-parameters are determined by
maximizing the marginal likelihood for each feature. For a specific

source client 4, and the covariance matrix K = k(X°%, X°%) +

021, from Eq. 2, source client i maximizes:
S En ST gm—1 yvsi 1 n;

log L(X ;1| X%,) = (X3) K™ X3 —510g|K|—?log(27r)

®3)

Training feature models is straightforward when both target

1
2

and source domains are accessible simultaneously. However,
significant challenges arise when these datasets are distributed.
The first challenge is that, if the source domain is distributed
across multiple entities, the optimization of hyper-parameters
shown in Eq. 3 cannot be performed across the entire source
domain. The second, and more complex, challenge is that due
to the distribution of the source and target domains, the closed-
form solution of the GPR model (as shown in Eq. 1) cannot
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be computed directly. Since GPRs are non-parametric machine
learning algorithms, obtaining predictions requires computing the
three matrices in Eq. 2, namely K, K., and K.

In our setting, computing K., is straightforward and can be
performed locally by the owner of the target domain, as it requires
only the target domain data. However, computing K and K.
as well as the predictive mean of the feature model K*K_IX}S
presents significant challenges. Computing K is challenging
because, although it only requires source domain data, the data is
distributed across multiple entities, and the entire matrix product
of K cannot be computed trivially. Instead, it must be computed
collaboratively among all source domain owners while preserving
privacy. Similarly, computing K. is challenging because it requires
access to both source domain data and target domain data. Lastly,
computing K*Kle}g is not straightforward because the feature
column for the entire source domain data, X}?, is distributed
between N source clients. Moreover, explicitly sharing X }g would
compromise privacy since the aggregator could reconstruct the
data of all source clients after the feature model training phase
is completed, as each feature is modeled independently.

Freda addresses all of these challenges by employing secure
aggregation and a customized masking scheme for matrix product
computation ( , ).

Federated Hyper-Parameter Optimization

To optimize the GPR model hyper-parameters O'i (prior variance)
and o2 (noise variance) in a federated setting, Freda employs
secure aggregation via zero-sum masking ( , ).
This method ensures privacy by having each client mask its data
with random values that cancel out when aggregated, revealing
only the global sum without exposing individual contributions.
Each source client locally optimizes U;‘: and 02 by maximizing the
marginal likelihood over its dataset. These values are then securely
aggregated to compute global averages, effectively approximating
joint optimization over the entire source domain.

Federated GPR Computation

In the GPR model prediction process, the most challenging
components to compute are K, K., and their product with the
global feature vector X%, as these require access to both the source
domain data and the target domain data to calculate the matrix
product. A naive plaintext approach would compromise privacy.
To overcome this, we utilize a framework for secure and private
), which
allows us to calculate the product of matrices from the source

matrix product computation ( s

and target domains without disclosing their plaintext values.
Privacy-Preserving Masking Process. We use special
masking matrices to hide the input matrices of the matrix product
and reveal only the result of this multiplication to the aggregator.
This protects the privacy of the input matrices as well as their
dimensionality. Specifically, both the source clients and the target
client share a common seed to generate a shared mask matrix
M € R?*P where d is a higher-dimensional space than the
original feature space. To ensure that a left inverse exists, M
is required to be full column rank. Each client p then locally
computes a left inverse LP? € RP*4 such that LPM = Ip, and

applies the mask to its data:

XP = XPLP(MM")/2?, (4)

where XP represents the local dataset of client p (XP = X*si
for a source client or X? = X7 for the target client). The masked
data XP is then sent to the aggregator.
Secure Gram Matriz Computation. The aggregator computes
the Gram matrix for all clients using the masked data. For a pair

of clients p and ¢, the Gram matrix is computed as:

XP(XNDT = (XPLP(MM "Y2) XLy (MM T)/2)T

= XPLP(MM )2 (MM T2 (L) T(x9)T 5
= XP(LPM)(M T (L) T)(X9) T )
— XPxaT

where the masking terms cancel out, revealing only the product
XP(X9)T without exposing the individual data of the clients.
Using the computed Gram matrix GP?, the aggregator

calculates K and K, as follows:

K =03GP7 4+ 021,

: (©)
K, =o0j,GP?

Computing the Predicted Mean. Computing the predicted
mean K. K~ 1'X J*? is challenging as the aggregator does not have
access to the label vector X ? (feature column for the modeled
feature gf), which remains distributed across source clients.
Explicitly sharing X }? would also compromise privacy since the
aggregator could reconstruct the data of all source clients after
the feature model training phase is completed, as each feature
is modeled independently. To address this, Freda performs the

following:

1. Aggregator Step: The aggregator computes the intermediate
matrix product K.K ~!, then applies a random mask matrix
C € R™*™ resulting in the masked matrix:

B=CK.K™! (7

The masked matrix B is split row-wise into sub-matrices
corresponding to each source client’s data, denoted B®:. The
aggregator sends B to source client i, and separately sends
C~1! to the target client.

2. Source Client Computation: Each source client i receives
their masked sub-matrix M*: and locally computes:

v% = BY X}, (8)

where X? is the vector of values for feature f held by client
i. The result v%i € R™ X1 is then sent to the target client.

3. Target Client Aggregation: The target client aggregates
the received vectors:

v:ZvS’, 9)

and removes the mask using the inverse matrix C~1:
N
K.K7'X7 =C"lo=C"") B*X} (10)
i=1

This protocol enables the target client to compute the
predicted mean without accessing any raw data from the source
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clients, thereby preserving data privacy. Additionally, the random
masking step ensures that source clients cannot infer information
about other clients or the full matrix K.K ! from their sub-
matrices.

Computing the Predicted Variance.
predictive distribution,

To complete the
the predicted variance term K. —
K.K~'K] is computed by the aggregator using the Gram matrix
GP4 and sent to the target client. With both the predicted mean
and variance available, the target client can reconstruct the full
closed-form predictive distribution for feature f as given in Eq. 1.

Feature Weight Computation

For a sample from the target domain, denoted as z¢,, and a given
feature f, let rﬁn 4 represent the value of feature f in zf,, and

mt

m,—s represent the values of all other features in zt, . Given

t
x'rn,—\f )
describes the expected value of min’f according to the dependency

the feature model gy outputs a posterior distribution that

structure learned from the source domain. For a GPR model,
this posterior is a normal distribution, which is directly obtained
from the closed-form solution shown in Eq. 1 and collaboratively
computed in the previous phase.

To evaluate how well the observed value xﬁn’f fits the predicted
distribution, we apply the confidence measure proposed by

(2016):

(11)

T § — Moy (T —5)

m, gf m,—

cy(@y,) =2® L2 !
a'gj(xnl’—‘f)

where ® denotes the cumulative distribution function of a
standard normal distribution. Here, ug, (z}, _ ) and og, (2}, _ ;)
denote the mean and standard deviation of the predictive
distribution computed in Eq. 1 for the input zinﬁf. Specifically,
they correspond to the closed-form expressions K*K_le and
Kuw — K. K~ 'K, respectively, obtained from the feature model
gs. This confidence score represents the probability that a value
as extreme as :cﬁn’f,
pg, () ﬁf), occurs within the posterior distribution predicted by
gs-

The overall confidence for feature f in the target domain is
then defined as the average of cy(af,) across all target domain

samples:

or more, relative to the predicted mean

e

er = esaly) (12)

i
Where n is the total number of samples in the target domain.
For each feature, cy quantifies how well the source-domain
dependencies for feature f align with those in the target domain.
Once the confidence scores for all features have been computed,
the target client then computes the weight of feature f as follows:

wy = (1—cp)F (13)

Here, k is a hyper-parameter specified by the target client, with
k > 0. This hyper-parameter determines how the confidence scores
are transformed into feature weights. As k increases, progressively
higher penalties are applied to features with low confidence,
while features with higher confidence are penalized less severely.
Both the confidence score formulation and the transformation of
confidence scores into feature weights are identical to those used
in wenda ( , ), which also relies on feature-wise
predictive distributions to guide adaptation.

In our experiments, we empirically evaluate the performance
of our framework with respect to the weighting parameter k and
adjust its value accordingly (Section 4.4.3).

Federated Weighted Elastic Net Training

The remaining phases of our framework involves collaboratively
training weighted elastic nets in a federated manner, to preserve
the privacy of individual source clients. By using a weighted elastic
net, source clients scale the contribution of each feature in their
local data to the regularization term based on the feature weights
computed by the target client in the previous step. The weighted
elastic net solves the following optimization problem:

B:arg;nin(Hy*XﬁHQ+)‘J(f8)) (14)

where ||y — X || represents the residual sum of squares on the
source domain data, A is the regularization parameter, and J(8)
is the regularization term defined as:

F F
I =a Y wilbsl+ 50 -) Y wst  (19)
F=1 f=1

Training a weighted elastic net is conceptually similar to
training a neural network with a single linear layer in a federated
setting, where the coefficient for each feature is scaled by its
corresponding confidence-based weight. Since all source clients
share the same fixed feature weights, the federated training focuses
on updating the model coefficients collaboratively.

We employ the FedAvg algorithm ( , ) to
train the weighted elastic net in a privacy-preserving manner.
Specifically, each client performs local gradient-based updates
using their own data, and the resulting model updates are securely
aggregated at the central server ( , ) using
). The
aggregated global model is then broadcast back to all clients for

the secure aggregation protocol ( R

the next training round. To reflect the differing amounts of data
across clients, each client’s contribution to the global model is
weighted proportionally to its local sample size. This setup ensures
that clients with larger and more representative data pools have a
stronger influence on the global model, which can be particularly
beneficial in imbalanced scenarios.

As shown in Equations 14, 15, freda has two external
parameters: the proportion of L and L2 penalties in the weighted
elastic net a, and the regularization parameter A. Following

( ), we fix a = 0.8.

Optimal Lambda Prediction

The regularization parameter A\ plays a critical role in domain
adaptation by balancing feature penalty strength and model
If X\ is too small, the model

may not sufficiently penalize feature differences,

learning ( , ).
while an
overly large A could dominate the objective function, limiting
meaningful adaptation. Since cross-validation is impractical in an
unsupervised setting where target labels are unavailable, freda
adopts the prior knowledge approach from ( ),
leveraging domain similarities known by the target client.

The target client partitions its data into subsets X% and X*2.
Source clients federatively train weighted elastic nets across a
range of X\ values, and the target client selects the best-performing
model for X*' based on MAE, assuming labels for this subset
are available. A simple linear model is then fitted to capture the
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relationship between domain similarity and the optimal A\ values
obtained from source-trained models. This model is used to predict
A values for X*2, which are then sent back to source clients for the
final training phase.

Final Adaptive Model Training
The source clients federatively train the final weighted elastic net
models by selecting the regularization parameter A\ based on the
predicted values received from the target client in the previous
step.

The model obtained at the end of this step is sent to the target
client by the aggregator for the final prediction task on the target
domain data.

Results

To evaluate the performance of our proposed method, we
provide a benchmark on the problem of age prediction from
DNA methylation data across multiple tissues. This section
presents a detailed comparison of freda with existing baselines,
highlighting its effectiveness in preserving data privacy while
achieving competitive predictive accuracy.

Implementation

We implemented our framework in Python 3.8.18, the source
code to reproduce the experiments is available on GitHub
(https://github.com/mdppml/FREDA). For the feature models,
we implemented our own GPR models and used the Python
package GPy! (gpy, 2012) to compute the optimal values for
the hyper-parameter optimization explained in Section 3.1.1. As
for the weighted elastic nets, we used TensorFlow 2.13.1 with
custom kernel regularization. All federated processes, including
source clients, target client, and aggregator, are simulated
locally to enable reproducible evaluations. To encourage adoption
in broader settings, we also provide a task-agnostic version
of our framework, available at https://github.com/mdppml/
FREDA-CV. This implementation removes the need for prior
domain similarity knowledge by using cross-validation to select
the regularization parameter A.

Dataset and Pre-Processing

We used DNA methylation and donor age data from TCGA
(Weinstein et al., 2013) and GEO (Edgar et al., 2002), following
(2019). This
included imputing missing values (< 0.5% of samples) and

the exact preprocessing steps of Handl et al

reducing dimensionality from 466,094 to 12,980 features. Ages were
transformed using Horvath’s method (Ilorvath, 2013) to account
for nonlinear methylation changes, then standardized. The dataset
was split into a source set (1,866 samples from 19 tissues, ages
0-103) and a target set (1,001 samples from 13 tissues, including
unseen ones like cerebellum). As in Handl et al. (2019), similar
tissue types were aggregated to ensure sufficient sample sizes.
Detailed pre-processing steps is available in the supplementary
material.

1 https://github.com/SheffieldML/GPy

Baselines

We compared freda with two baselines: the state-of-the-art
unsupervised domain adaptation method wenda (Handl et al.,
2019), and the non-adaptive model (Horvath, 2013).

Wenda Baseline
Wenda (weighted elastic net for domain adaptation) is a
state-of-the-art method for unsupervised domain adaptation on
small-scale, high-dimensional biological datasets (Ilandl et al.,
2019). Like our approach, it leverages the dependency structure
between features across source and target domains, penalizing
discrepant features while emphasizing robust ones. Despite its
strong performance over non-adaptive models, wenda assumes
simultaneous access to both domains, hence it is only suitable
for non-private settings.

Wenda has three key parameters: the weighting parameter
k, the elastic net mixing parameter «, and the regularization
parameter A. Following Handl et al. (2019), we fix a = 0.8, while
A is computed using prior knowledge on tissue similarity (wenda-
pn), as cross-validation on the target domain is infeasible in an
unsupervised setting. For k, we select k = 3 based on both our
experiments and prior work (Handl et al.; 2019).

Non-Adaptive Baseline

For our non-adaptive baseline, we adopt the method proposed
by Horvath (2013), which combines the elastic net with a least-
squares fit. The idea is to first fit a standard elastic net and
then apply a linear least-squares fit based only on features that
obtained non-zero coefficients in the elastic net. This baseline was
first proposed by Horvath (2013) for age prediction from DNA
methylation data, where he demonstrated that using an elastic net
followed by a least-squares fit resulted in improved performance on
his dataset. We refer to this non-adaptive method as en-Is.

Setup for Freda

We consider a distributed setting with multiple source domain
clients, a target client, and an aggregator, which has no data. The
labeled source domain data is distributed across 2, 4, or 8 source
clients, and we evaluate freda in each of these settings.

Data Distribution
Source domain data is assigned uniformly at random among the
source clients. Given that the DNA methylation dataset contains
1,866 training samples, each client receives approximately 933,
466, or 233 samples in the 2, 4, and 8-client settings, respectively.
To assess the robustness of freda, we do not consider tissue
types when distributing data. Due to the inherent imbalance of
DNA methylation data across tissues, this results in some clients
having only a few or no samples from certain tissues.

Setup for Weighted Elastic Net Models

The weighted elastic net model is trained for 100 global iterations,
with source clients updating their local models for 20 epochs per
iteration before the global model is securely updated. To improve
convergence, we apply an exponential learning rate decay across
iterations, starting at 1 x 10~ and decreasing to 1 x 10~5 by the
final iteration (Yan et al., 2022).
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Parameter Selection in Freda
Freda has three key parameters: the weighting parameter k, the
elastic net mixing parameter «, and the regularization parameter
A. We fix @ = 0.8 as a design choice and determine A using the
prior knowledge approach (Section 3.3.1) proposed by Handl et al.
(2019).

For tissue similarity calculations, we use data from the GTEx
consortium, which provides genotype and gene expression data

across 42 human tissues (analysts: Aguet Francois 1 Brown
Andrew A. 2 3 4 Castel Stephane E. 5 6 Davis Joe R. 7 8 He Yuan
9 Jo Brian 10 Mohammadi Pejman 5 6 Park YoSon 11 Parsana
Princy 12 Segre Ayellet V. 1 Strober Benjamin J. 9 Zappala

Zachary 7 8 et al, 2017), following the methodology in Handl
et al. (2019). In the federated setting, only the target domain
owner requires access to tissue similarity information.

To evaluate performance, we follow the evaluation strategy of
Handl et al. (2019) for wenda-pn, iteratively splitting test tissues
into subsets: one for fitting domain similarity relationships and
another for evaluation (Section 3.3.1). We iterate over all three-
tissue combinations with at least 20 training samples, assessing
performance on the remaining tissues. Based on our experiments,

the optimal weighting parameter is k = 3.

Experiments

We compare the performance of freda against wenda-pn and the
non-private, non-adaptive baseline model en-ls, as described in
Section 4.3. The main performance metric is the Mean Absolute
Error (MAE) of the predicted chronological ages of the tissues.
For wenda-pn, we calculate the MAE only on samples not used for
fitting the tissue similarity-A relationship, reporting the mean and
standard deviation across all splits. Similarly, for freda, we report
the MAE exclusively for the target client’s tissues that were not
part of the similarity-A fit, along with the mean and standard
deviation over all splits.

en-Is (non-private)
wenda-pn (non-private)
freda with 2 sources

freda with 4 sources
freda with 8 sources

mean abs. error [years]

SJ » e ]

Brain CRBM blood

ot

CD4+ cells Full data

Brain Frontal Brain Occipital

Fig. 2: MAE per target tissue and on the full target dataset for
en-ls, wenda-pn (k = 3), and freda (k = 3) with 2, 4, and 8 source
parties.

For the non-adaptive baseline en-ls, Handl et al. emphasize
that the heterogeneous nature of the data and the random splitting
of the training data used for 10-fold cross-validation significantly
influence its performance. Therefore, we follow their approach
and report the mean + standard deviation over 10 runs for en-
ls. For wenda-pn, the mean + standard deviation is calculated

en-Is (non-private)
wenda-pn (non-private)

freda with 4 sources (uniform)

freda with 4 sources (mildly imbalanced)
4 freda with 4 sources (highly imbalanced)

mean abs. error [years]

L.

[3

* x

Brain CRBM blood Brain Frontal Brain Occipital CDA4+ cells Full data

Fig. 3: MAE per target tissue, as well as on full target data, for
en-ls, wenda-pn (k = 3), and freda (k = 3) under uniform and two
imbalanced 4-client data distributions.

over all splits of the test tissues where the tissue of interest was
included in the evaluation set. For freda, we report the mean =+
standard deviation for each setting (2, 4, and 8 sources) over 5
different uniform random distributions of source data across the
source parties, considering all splits where the tissue of interest
was included in the evaluation set.

For wenda-pn, Handl et al. (2019) treat each tissue in the test
dataset as a separate target domain, training the final weighted
elastic net models independently for each tissue. Specifically,
[Handl et al. (2019) compute the average confidences, as defined in
Equation 12, only over the samples of the same tissue and train
a separate model for each tissue, always using the entirety of the
training (source) data but applying tissue-specific feature weights.
We follow the same approach for freda in all our experiments,
where the clients inside the federated learning system train a
separate weighted elastic net model for each tissue in the target
domain (for further information see Section 3).

The performance of en-ls, wenda-pn, and freda for 2, 4, and
8 source parties on the relevant tissues of the target domain, as
well as on all samples of the target domain data, is shown in
Figure 2. For the full target dataset, the non-private baseline
methods en-ls and wenda-pn yield an MAE of 6.34 4+ 1.21 and
5.3140.29, respectively. These results indicate that when the entire
target domain data is considered, wenda-pn provides only a slight
improvement in performance compared to the non-adaptive en-Is.
The effect of distribution shift is most visible when we observe the
performance of our baselines on cerebellum samples. As shown in
Figure 2, the non-adaptive en-Is yields a significantly higher MAE
on cerebellum samples compared to other tissues.

Figure 4 show the predicted versus true ages for the samples
of the target domain data, colored by tissue, for freda with k = 3
for 2, 4, and 8 source parties, en-Is and wenda-pn, respectively.
From Figures 4d and 4e, we can clearly see that both non-
private methods perform well on most tissues, except for en-ls
on cerebellum samples. As shown in Figure 4d, the ages predicted
by en-ls for cerebellum samples are consistently lower than the
true chronological ages. In contrast, Figure 4e demonstrates that
wenda-pn achieves much closer alignment between the predicted
and true ages for cerebellum samples.

Additionally, for the remaining target domain tissues, the
predictions of wenda-pn are comparable to those of en-ls, as
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Fig. 4: Predicted versus true chronological age under various settings. Figures (a), (b), and (c) correspond to freda with k = 3 for 2, 4,

and 8 source parties, respectively. Predictions are averaged over all splits where the tissue of interest was included in the evaluation set,

as well as over 5 different distributions for each setting. Panels (d) and (e) correspond to en-ls and wenda-pn, respectively. For en-Is,

predictions are averaged over 10 runs of 10-fold cross-validation, while for wenda-pn, predictions are averaged over all splits where the

tissue of interest was included in the evaluation set.

confirmed by the quantitative results in Figure 2. Wenda-pn not
only yields significantly lower errors than en-lIs on cerebellum
samples but also maintains similar or better performance on other
test tissues. Specifically, on cerebellum samples, en-Is produces a
mean absolute error (MAE) of 7.63 +0.26. These results highlight
the significance of improving prediction performance on cerebellum
samples without a drop in performance on other tissues.

Our experimental results, presented in Figures 2 and 4, are
consistent with the findings of Handl et al. (2019), who highlight
the difficulty of predicting the age of cerebellum samples. These
samples are not represented in the training data and are known
to be biologically distinct, even from other brain tissues, in
terms of function and gene expression patterns (Fraser et al.,
2005; analysts: Andrew A. 2 3 4 Castel
Stephane E. 5 6 Davis Joe R. 7 8 He Yuan 9 Jo Brian 10
Mohammadi Pejman 5 6 Park YoSon 11 Parsana Princy 12
Segre Ayellet V. 9 Zappala Zachary 7 8
et al., 2017). Hence, our evaluation focuses on whether federated

Aguet Frangois 1 Brown

1 Strober Benjamin J.

privacy-preserving domain adaptation, as implemented by freda,
can achieve comparable performance on these samples to the
non-private method wenda-pn.

For the full target dataset, freda achieves a MAE of 5.41 +
0.44, 541 + 0.44, and 5.81 + 0.24 for the 2, 4, and 8
source domain settings, respectively. These results indicate that,
when considering the full target domain data, freda provides
a performance level almost identical to that of wenda-pn and
consistently better than en-ls across all configurations, despite
operating in a distributed environment.

Effect of Data Distribution on Performance

To evaluate the robustness of freda under more realistic
deployment scenarios, we extended our benchmark by introducing
non-uniform data distributions across source clients. While our
primary experiments used a uniform random distribution of
samples among clients, real-world federated settings often exhibit
substantial data imbalance. In our context, where the task is
regression and the data is already highly tissue-imbalanced, we
focus on sample-wise imbalance.

We simulate two increasingly imbalanced scenarios in the 4
source-client setting. In the first, mildly imbalanced setting, clients
receive data according to a skewed distribution of [0.5,0.2,0.2,0.1],
and in the second, highly imbalanced setting, sample proportions

follow [0.533,0.266,0.133,0.068], where each client has roughly
double the number of samples of the next. These distributions
mimic real-world scenarios where certain institutions contribute
significantly more data than others.

As shown in Figure 3, freda maintains strong predictive
performance even under considerable sample imbalance. Although
minor degradations in MAE can be observed specifically for
cerebellum samples, the overall performance remains competitive
with non-private baselines.

Discussion

Cerebellum samples continue to represent the most challenging
case for age prediction under domain shift, consistent with prior

findings (Handl et al., 2019; Fraser et al., 2005; analysts: Aguet
Francois 1 Brown Andrew A. 2 3 4 Castel Stephane E. 5 6 Davis
Joe R. 7 8 He Yuan 9 Jo Brian 10 Mohammadi Pejman 5 6
Park YoSon 11 Parsana Princy 12 Segre Ayellet V. 1 Strober
Benjamin J. 9 Zappala Zachary 7 8 et al,, 2017). These samples

differ biologically from other brain and non-brain tissues, and are
not well represented in training data. Despite this, freda achieves
comparable performance to the non-private method wenda-pn in
the 2- and 4-source scenarios, with MAEs of 7.99 + 1.39 and
8.64 £ 0.86, respectively. In contrast, the non-adaptive baseline
en-ls consistently underestimates the ages of cerebellum samples,
leading to poor performance on this difficult target domain.
Across all test tissues, freda closely matches the performance
Notably,
despite being trained in a privacy-preserving federated setting,

of wenda-pn while significantly outperforming en-Is.

freda maintains high predictive performance and effectively
captures domain-specific distribution shifts. This confirms that the
federated adaptation strategy does not sacrifice performance, even
though clients operate under strict data privacy constraints.

We also investigated the impact of scaling to more source
clients. As the number of source domains increases from 2 to 8§,
a slight degradation in performance is observed on cerebellum
samples, with MAE increasing to 10.77 £ 0.99. This suggests
that partitioning the source data too finely can hinder adaptation
performance, possibly due to reduced statistical power per client.
Nonetheless, even in the 8-party case, freda still outperforms the
non-private and non-adaptive baseline.

To further assess robustness in more realistic settings, we
extended our evaluation with experiments using imbalanced
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data distributions across source clients. These scenarios simulate
common federated learning situations where data contributions
vary widely across institutions. Interestingly, we observe that
predictive performance on some target tissues actually improves
as the degree of imbalance increases. We attribute this to two
main factors: first, our randomized encoding scheme for feature
modeling allows the aggregator to compute global feature statistics
as if all data were pooled, despite privacy constraints. Second,
during the federated training of the weighted elastic nets, weighted
aggregation implicitly favors clients with larger datasets, which
can lead to more stable model updates when the dominant
client has a representative sample distribution. Performance on
cerebellum, however, remains more sensitive to imbalance possibly
due to its distinct biological characteristics. Despite this, freda
maintains competitive performance, demonstrating robustness to
imbalanced real-world settings.

Together, these findings demonstrate that freda successfully
balances privacy, performance, and adaptability, even in
challenging domain adaptation tasks and realistic federated
learning settings.

Conclusion

In this article, we introduced freda, the first privacy-preserving
framework for federated unsupervised domain adaptation in
regression tasks on high-dimensional, small-scale biological
datasets. Freda enables multiple entities to collaboratively
model complex feature relationships while maintaining complete
data privacy. By combining randomized encoding and secure
aggregation, it addresses the challenge of training Gaussian
Processes in distributed settings, eliminating the need for pooled
pairwise computations on non-shareable data.

Our evaluation on an age prediction task from DNA
methylation data demonstrates that freda achieves performance
comparable to non-private methods, including on challenging
tissues such as cerebellum, while preserving data privacy. In
addition, we observe that freda remains robust under increasingly
imbalanced data distributions.

While freda demonstrates competitive performance to the
non-private state-of-the-art even in distributed settings, we
acknowledge that training a separate feature model for each feature
in high-dimensional settings can be computationally intensive.
However, there are several directions to improve scalability that
we plan to explore in future work. First, since feature models
are independent, they can be trained in parallel across multiple
processors or compute nodes to reduce runtime. Second, recent
work ( R ) proposes a more efficient masking
strategy for the same randomized encoding framework used in
freda, which reduces computation time significantly by speeding
up the masking process.
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