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Abstract
Stochastic gradient descent (SGD) is a fundamental optimization method in neural networks, yet
the noise it introduces is often assumed to be uncorrelated over time. This paper challenges that
assumption by examining epoch-based noise correlations in discrete-time SGD with momentum
under a quadratic loss. Assuming that the noise is independent of small fluctuations in the weight
vector, we calculate the exact autocorrelation of the noise and find that SGD noise is anti-correlated
in time. We explore the impact of these anti-correlations on SGD dynamics, finding that for di-
rections with curvature below a hyperparameter-dependent crossover value, the weight variance is
significantly reduced. This reduction leads to decreased loss fluctuations, which we relate to SGD’s
ability to find flat minima, thereby enhancing generalization performance.

1. Introduction

Initially developed to address the challenges of computational efficiency in neural networks, stochas-
tic gradient descent (SGD) has exhibited exceptional effectiveness in managing large datasets com-
pared to the full gradient methods [1]. It has since garnered widespread acclaim in the machine
learning domain [2], with applications spanning image recognition [3–5], natural language process-
ing [6, 7], and mastering complex games beyond human capabilities [8]. Alongside its numerous
variants [9–11], SGD remains the cornerstone of neural network optimization.

SGD’s success can be attributed to several key properties, such as rapid escape from saddle
points [12] and its capacity to circumvent "bad" local minima, instead locating broad minima that
generally lead to superior generalization [13–18]. This is often ascribed to anisotropic gradient
noise [19–25]. Nonetheless, recent empirical research posits that even full gradient descent, with
minor adjustments, can achieve generalization performance comparable to that of SGD [26].

To deepen our understanding, multiple studies have investigated the limiting dynamics of neural
network weights during the latter stages of training [27, 28]. Of particular interest is the behavior
of weight fluctuations in proximity to a minimum of the loss function [15, 29, 30]. Several authors
found empirical evidence that the covariance matrix C of SGD is proportional to the Hessian matrix
H of the loss function [18, 20–23, 31]. Consequently, theory posits that the stationary covariance
matrix of weights Σ exhibits isotropy for sufficiently small learning rates [15, 28, 30]. Nevertheless,
a recent empirical investigation [32] identified profound anisotropy in Σ.

In this work, we delve into both theoretical and empirical analyses of weight fluctuations dur-
ing the later stages of training, accounting for the emergence of anti-correlations in the noise pro-
duced by SGD, which stem from the prevalent epoch-based learning schedule. As a result of these
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anti-correlations, we discover that the covariance matrix Σ displays anisotropy and is smaller than
expected in a subspace of weight directions corresponding to Hessian eigenvectors with small eigen-
values (EVs), while maintaining the isotropy of Σ in directions associated with Hessian eigenvec-
tors possessing large EVs. Our theoretical predictions are validated through the analysis of a neural
network’s training within a subspace of its top Hessian eigenvectors.

In addition, we demonstrate that for a small convolutional network trained in CIFAR10 the anti-
correlations in SGD noise described above significantly increase the test accuracy, and by linking
this result to a previous study on artificially added anti-correlated noise and its benefits [33], we
argue that the anti-correlations in SGD noise suppress diffusion in flat directions, and in this way
contribute to finding flatter minima with better test accuracy.

2. Background

We consider a neural network characterized by its weight vector, θ ∈ Rd. The network is trained
on a set of N training examples, each denoted by xn, with n = 1, ..., N . The loss function, de-
fined as L(θ) := 1

N

∑N
i=1 l(θ, xn), represents the average of individual losses incurred for each

training example, l(θ, xn). To keep the analysis general, we consider a training process that em-
ploys stochastic gradient descent augmented with heavy ball momentum. This approach updates
the network parameters according to the following rules:

gk(θ) =
1

S

∑
n∈Bk

∇l(θ, xn) , vk = −ηgk(θk−1) + βvk−1 , θk = θk−1 + vk . (1)

Here, k signifies the discrete update step index, η is the learning rate, and β is the momentum
parameter. The stochastic gradient at each step is computed with respect to a batch of S ≪ N
random examples. Each batch is denoted by Bk = {n1, ..., nS}, where nj ∈ {1, . . . , N}. The
training process is structured into epochs. During each epoch, every training example is used exactly
once, implying that the examples are drawn without replacement within the same epoch.

In the realm of SGD as opposed to full gradient descent, we introduce noise, denoted as δgk(θ) :=
gk(θ) − ∇L(θ), with a covariance matrix C(θ) := cov

(
δgk(θ), δgk(θ)

)
. Our primary fo-

cus then lies on the asymptotic or limiting covariance matrix (see Appendix C) of the weights
Σ := cov

(
θk,θk

)
caused by the noise.

3. Anti-correlated noise and its Implications

Autocorrelation of the noise. We are considering the correlation between two noise terms which
stem from different update steps. In the case of SGD, when we sample the examples without re-
placement while keeping the weight vector θ constant, there are inherent anti-correlations in the
noise. It follows from the definition of the noise terms δgk(θ) := gk(θ) −∇L(θ) that in this set-
ting the sum over all noise terms of one epoch is equal to zero. This means that if at the beginning
of an epoch a noise term points into one direction, we know that later noise terms from the same
epoch must point into the opposite direction, hence anti-correlations emerge.

Theorem 1 If the total number of examples N is an integer multiple of the batch size S and
the parameters θ of a network are kept fixed, then the autocorrelation formula for the gradient
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noise of an epoch-based learning schedule, where the examples for one epoch are drawn without
replacement, is given by

cov
(
δgk(θ), δgk+h(θ)

)
= C(θ) ·

(
δh,0 − 1{1,...,M}(|h|)

M − |h|
M(M − 1)

)
, (2)

where M := N/S signifies the number of batches per epoch.

Figure 1: Autocorrelations of the SGD noise observed
over a span of 20 epochs, equivalent to 20,000 up-
date steps. This data is collected from a later phase
in the training process. The autocorrelation is pro-
jected onto 5,000 Hessian eigenvectors, and the result
is averaged. The theoretical prediction Equation (2)
is also displayed along with a 2σ-interval, where σ
represents the expected standard deviation of the SGD
noise. The zero-point correlation is omitted as it is in-
herently equal to one.

In the above theorem 1A(k) represents the
indicator function over the set A, which is
one for k ∈ A and zero otherwise and δi,j
represents the Kronecker delta. The actual
noise autocorrelation is illustrated in Figure 1,
with the experimental details elaborated in Ap-
pendix B.2. The complete calculation is avail-
able in Appendix G. It is important to note that
the above formula is only applicable for a static
weight vector. Nevertheless, for later stages of
training, the theoretical prediction Equation (2)
still seems to be a good approximation, as ev-
idenced by the close fit of the data in Fig-
ure 1. When we sample the examples with
replacement during training, there are no anti-
correlations (see Appendix I).

Correlation time definition. To better under-
stand and explain the behavior of the weight
variances, we further examine the covariance
matrix of the velocities Σv := cov

(
vk,vk

)
, show that these two matrices commute under given

assumptions, and proceed to explore their ratio Σ/Σv. The EVs of this matrix ratio are denoted as
τi (see Equation (3)). This definition aligns with that of the velocity correlation time, hence justify-
ing the nomenclature. The equivalence stands under general assumptions (see Appendix F) that are
satisfied in our problem setup of Theorem 3 (see Appendix E.4).

Theorem 2 Under general assumptions, satisfied by the problem setup of Theorem 3, it holds that

τi :=
2σ2

θ,i

σ2
v,i

=

∑∞
n=1 n · cov

(
vk,i, vk+n,i

)∑∞
n=1 cov

(
vk,i, vk+n,i

) , (3)

justifying the label correlation time for this variance ratio. σ2
θ,i and σ2

v,i are the weight and velocity
variance for a projection onto a vector pi, with θk,i := θk · pi and vk,i := vk · pi. The derivation
is presented in Appendix F.

Variance for late training phase. In light of the autocorrelation of the noise calculated earlier,
we want to present the expected weight and velocity variances at a later stage of the training. To
describe the conditions of this phase, we adopt the following assumptions.

Assumption 1: Quadratic Approximation We postulate that we have reached a minimum
point of the loss function, which can be adequately represented with a quadratic form as L(θ) =
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L0 +
1
2(θ − θ∗)

⊤H(θ − θ∗). We can set L0 and θ∗ to zero without any loss of generality, which
simplifies to L(θ) = 1

2θ
⊤Hθ .

Assumption 2: Anti-correlated Noise We presume that the autocorrelation of the SGD noise
follows the relation previously calculated in Equation (2), even for a non static weight vector. For
further motivation we refer to Appendix D.

Assumption 3: Hessian Noise Approximation We assume that the covariance of the noise
commutes with the Hessian matrix, as discussed in Appendix A.1, [C,H] = 0 .

Moreover, we assume that 0 ≤ β < 1 and 0 < ηλi < 2(1 + β) for all eigenvalues λi of H.
If these conditions are not met, the weight fluctuations would diverge. With the previously stated
assumptions in place, the covariance matrices Σ and Σv commute with C, H, and with each other
(see Appendix E.1). As a result, they all share a common eigenbasis pi, with i = 1, ..., d, which
facilitates the computation of the expected variance (see Appendix M for the case [C,H] ̸= 0). We
define the EVs for the common eigenvector pi as λi for H, σ2

θ,i for Σ, σ2
v,i for Σv, and σ2

δg,i for C.
We denote the number of batches per epoch as M = N/S, presuming it is an integer.

Theorem 3 With the above assumptions and definitions the following relation for the weight and
velocity variances hold: (

σ2
θ,i

σ2
v,i

)
= η2σ2

δg,iFi

[
e1 −

(
Ei +Ei

⊤
)
e1

]
, (4)

where the matrices Fi and Ei are explicitly expressed as:

Fi =
1

(1− β)
(
2(1 + β)− ηλi)

) (1+β
ηλi

2β(ηλi−1−β)
ηλi

2 2(ηλi − 2)

)
(5)

Ei := Di
Di

M + (1−Di)M − 1

(1−Di)2M(M − 1)
e1e

⊤
1 , Di :=

(
1 + β − ηλi −β

1 0

)
. (6)

Figure 2: Relationship between Hessian EVs and the variances of weights and velocities, as well as corre-
lation times. The mean velocity of the weight trajectory has been subtracted (see Appendix B.3). In the left
panel, we present the variances of weights and velocities. The solid lines signify the regions utilized for a
linear fit. The exponents resulting from the power law relationship are 1.077± 0.012 for weight variance and
1.066 ± 0.002 for velocity variance, with a 2σ-error. Our theory suggests these exponents should be equal
to one. The right panel showcases the correlation time together with the theoretical prediction resulting from
Equation (4).

The calculations can be found in Appendix E.2. The exact relation Equation (4) can be easily
evaluated numerically, which shows good agreement with experimental data in Figure 2. But for a
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more intuitive understanding, the relation can also be approximated by assuming that M ≫ 1/(1−
β), which implies that the correlation time induced by momentum is substantially shorter than
one epoch. Consequently, two distinct regimes of Hessian EVs emerge, separated by λcross :=
3(1 − β)/(ηM). For each of these regimes, specific simplifications apply. Notably, at λcross, both
approximations converge.

Corollary 4 Relations for large Hessian EVs: For Hessian eigenvectors with EVs λi > λcross and
when M ≫ 1/(1−β), the effects of noise anti-correlations are minimal. Consequently, we can use
the following approximate relationships, which also hold true in the absence of correlations:

σ2
θ,i ≈

η2σ2
δg,i

(1− β)
(
2(1 + β)− ηλi

) · 1 + β

ηλi
, σ2

v,i ≈
η2σ2

δg,i

(1− β)
(
2(1 + β)− ηλi

) · 2 , (7)

and τi ≈ 1+β
ηλi

. The detailed derivation of these formulas is presented in Appendix E.3.

Corollary 5 Relations for small Hessian EVs: In the case of Hessian eigenvectors associated
with EVs λi < λcross and under the condition that M ≫ 1/(1 − β), the noise anti-correlation
significantly modifies the outcome. We can express the approximate relationships as follows:

σ2
θ,i ≈

η2σ2
δg,i

2(1− β)(1 + β)
· M
3

1 + β

1− β
, σ2

v,i ≈
η2σ2

δg,i

2(1− β)(1 + β)
· 2 (8)

and τi ≈ M
3

1+β
1−β =: τSGD. The derivation of these formulas is provided in Appendix E.3.

By considering the frequent case that the product ηλi is considerably less than one and assuming
that the noise covariance matrix is proportional to the Hessian matrix, we derive the following power
laws for the variances: σ2

v,i ∝ λi independent of the subspace, σ2
θ,i ∝ const. for large Hessian EVs

and σ2
θ,i ∝ λi for small Hessian EVs and therefore smaller than the expected isotropic variance.

4. Discussion

To further assess the impact of anti-correlations of the gradient noise we investigated the difference
in generalization performance for drawing batches in SGD with and without replacement. We have
trained the network described in Appendix B.1 with the same training schedule, with 20 different
seeds, and have considered the maximum of the test accuracies computed after each epoch. We find
that the test accuracy for training without replacement is 0.7% ± 0.2% higher than for training with
replacement. The maximum test accuracy for SGD without replacement was 64.5% on average, and
only 63.8% for SGD with replacement.

The above is in agreement with the results of Orvieto et al. [33], where they considered full
batch gradient descent with artificially added noise that is anti-correlated in time. This noise was
found to be beneficial for test accuracy and led to flatter minima. The anti-correlations considered
have a very short correlation time, but are otherwise essentially equivalent to those of the SGD
without replacement we have described. We therefore propose that the positive effects described by
the study could be extended to SGD without replacement because of the anti-correlations.

Conclusion Our exploration of anti-correlations in SGD noise, which result from drawing ex-
amples without replacement, reveals a lower-than-expected weight variance in Hessian eigendirec-
tions with EVs smaller than the crossover value λcross. This reduced variance is beneficial because
gradients in flat directions can then dominate fluctuations and lead the network towards even flatter
minima with improved generalization performance.
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Appendix A. Related Work

A.1. Hessian Noise Approximation

The equivalence between the gradient sample covariance C0 and the Hessian matrix of the loss
H is an approximation that frequently appears in the literature [15, 22, 30]. Numerous theoretical
arguments have indicated that when the output of a neural network closely matches the example
labels, these two matrices should be similar [15, 20, 21, 23, 34]. However, even a slight deviation
between network predictions and labels can theoretically disrupt this relationship, as highlighted by
Thomas et al. [31]. Despite this, empirical observations suggest a strong alignment between the
gradient sample covariance and the Hessian matrix near a minimum.

Zhang et al. [22] pursued this line of thought and evaluated the assumption numerically. They
examined both matrices in the context of a particular basis that presents both high and low curvature
across different directions. Their findings indicated a close match between curvature and gradient
variance in a given direction for a convolutional image recognition network, and a reasonably good
relationship for a transformer model.

Meanwhile, Thomas et al. [31] presented both a theoretical argument and empirical evidence
across different architectures for image recognition. Although they did not discover an exact match
between the two matrices, they did observe a proportionality between them, indicated by a high
cosine similarity.

Xie et al. [18] also conducted an investigation with an image recognition network. In the
eigenspace of the Hessian matrix, they plotted entries within a specific interval against correspond-
ing entries from the gradient sample covariance and found a close match.

For our theoretical considerations, it is crucial to assume that both matrices commute, [C0,H] =
0. Additionally, we hypothesize that C0 ∝ H, to derive power law predictions for the weight
variance.

A.2. Limiting Dynamics and Weight Fluctuations

Various studies have scrutinized the limiting dynamics, often modeling SGD as a stochastic differ-
ential equation (SDE). Commonly, researchers such as Mandt et al. [29] and Jastrzębski et al. [15]
approximate the loss near a minimum as a quadratic function and present the SDE as a multivari-
ate Ornstein-Uhlenbeck (OU) process. This process proposes a stationary weight distribution with
Gaussian weight fluctuations. Jastrzębski et al. [15] further assume the Hessian noise approxima-
tion, observing under these conditions that the weight fluctuations are isotropic. Kunin et al. [28]
who also incorporate momentum into their analysis, predict and empirically verify isotropic weight
fluctuations. Chaudhari & Soatto [35] also investigate the SDE but without the assumption of a
quadratic loss, nor that it reached equilibrium. They gain insights via the Fokker-Plank equation.

Alternatively, some studies derive relations from a stationarity assumption instead of a con-
tinuous time approximation [25, 27, 30]. Yaida [27] assumes that the weight trajectory follows a
stationary distribution and derives general fluctuation-dissipation relations from that. Liu et al. [30]
go further to assume a quadratic loss function, leading them to derive exact relations for the weight
variance of SGD with momentum. If the additional Hessian noise approximation is made, their
results also predict the weight variance to be approximately isotropic, except in directions where
the product of learning rate and Hessian eigenvalue is significantly high.
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Such computed weight variances are explicitly applied in various contexts, such as computing
the escape rate from a minimum or assessing the approximation error in SGD, which captures the
additional training error attributed to noise [30].

Feng & Tu [32] present a phenomenological theory based on their empirical findings, which also
account for flat directions, unlike Kunin et al. [28]. They describe a general inverse variance-flatness
relation, analyzing the weight trajectory of different image recognition networks via principal com-
ponent analysis. They discovered a power law relationship between the curvature of the loss and
the weight variance σ2

θ,i in any given direction, where a higher curvature corresponds to a higher
variance. They also observed that both the velocity variance σ2

v,i and the correlation time τi are
larger for higher curvatures.1

In our approach, we do not make the continuous time approximation but base our results on the
assumption that the weights adhere to a stationary distribution near a quadratic minimum.

Appendix B. Numerics

B.1. Analysis Setup

In order to corroborate our theoretical findings, we have conducted a small-scale experiment. We
have trained a LeNet architecture, similar to the one described in [32], using the CIFAR10 dataset
[36]. LeNet is a compact convolutional network comprised of two convolutional layers followed
by three dense layers. The network comprises approximately 137,000 parameters. As our loss
function, we employed Cross Entropy, along with an L2 regularization with a prefactor of 10−4.
In the main text we present results for a single seed and specific hyperparameters. However, we
have also performed tests with different seeds and combinations of hyperparameters, all of which
showed comparable qualitative behavior (see Appendix K). Furthermore, in Appendix L we studied
a ResNet architecture [5], a different and more modern network, where we obtained similar results.

We used SGD to train the network for 100 epochs, employing an exponential learning rate
schedule that reduces the learning rate by a factor of 0.98 each epoch. The initial learning rate is set
at 5 · 10−3, which eventually reduces to approximately 7 · 10−4 after 100 epochs. The momentum
parameter and the minibatch size S are set to 0.9 and 50, respectively, which results in a thousand
minibatches per epoch, M = 1000. This setup achieves 100% training accuracy and 63% testing
accuracy. The evolution of loss and accuracy during training can be seen in Appendix J. We then
compute the variances right after the initial schedule over a period of 20 additional epochs, equiv-
alent to 20,000 update steps. Throughout this analysis period, the learning rate is maintained at
7 · 10−4 and the recorded weights are designated by θk, with k = K, . . . ,K + T and T = 20,000.

Given the impracticability of obtaining the full covariance matrix for all weights and biases
over this period due to the excessive memory requirements, we limit our analysis to a specific
subspace. We approximate the five thousand largest eigenvalues and their associated eigenvectors of
the Hessian matrix H(θK), drawn from the roughly 137,000 total, using the Lanczos algorithm [37].
Here, θK represents the weights at the beginning of the analysis period. To compute the Hessian-
vector products required for the Lanczos algorithm, we employ the resource-efficient Pearlmutter
trick [38]. The eigenvectors of the Hessian matrix are represented by pi, and the projected weights

1. Our findings for the three quantities contrast with this previous empirical study [32] to a certain extend. In Ap-
pendix H, we clarify how the different analysis method used in that study impacts the results due to finite size effects.

11
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by θk,i = θk · pi. The variances are computed exclusively for these particular directions. The
distribution of the approximated 5,000 eigenvalues is illustrated in Figure 3.

Figure 3: The distribution of the approximated 5,000 Hessian eigenvalues of the LeNet discussed in
the main text. The inset shows that the smallest approximated eigenvalue has a magnitude of about
0.005.

B.2. Noise Autocorrelations

We scrutinize the correlations of noise by recording both the minibatch gradient gk(θk) and the
total gradient ∇L(θk) at each update step throughout the analysis period, enabling us to capture the
actual noise term δgk(θk). All these are projected onto the approximated Hessian eigenvectors.

The theoretical prediction for the anti-correlation of the noise is proportional to the inverse of
the number of batches per epoch, in our case on the order of 10−3. To extract the predicted relation-
ship from the fluctuating data, we compute the autocorrelation of the noise term for each individual
Hessian eigenvector. We then proceed to average these results across the 5,000 approximated eigen-
vectors. Figure 1 provides a visual representation of this analysis, showcasing a strong alignment
between the empirical autocorrelation of noise and the prediction derived from our theory. This
consistency can be interpreted as a validation of our assumption that the noise is spatially indepen-
dent.

B.3. Variances and Correlation time

Previous studies have observed that network weights continue to traverse the parameter space even
after the loss appears to have stabilized [19, 28, 32]. This behavior persists despite the use of L2
regularization and implies that the recorded weights, θk, do not settle into a stationary distribution.
Notably, however, over the course of the 20 epochs under scrutiny, the weight movement, excluding
the SGD noise, appears to be approximately linear in time. This suggests that the mean velocity
v̄ := ⟨vk⟩ is substantial compared to the SGD noise. To isolate this ongoing movement and uncover
the underlying structure, we redefine θk and vk by subtracting the mean velocity. This results in
θ(s)
k := θk − v̄ · k and v(s)

k := vk − v̄. We then compute the variances of these redefined values, θ(s)
k

and v(s)
k , which exhibit a more stationary distribution.

Again, we limit our variance calculations to the directions of the 5,000 approximated Hessian
eigenvectors. In the two different regimes of Hessian eigenvalues, either greater or lesser than

12
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the crossover value λcross, the weight and velocity variance closely follow the respective power
law predictions from our theory (see upper panel of Figure 2). The slight discrepancy, where the
predicted exponent of one does not lie within the error bars, may arise from minor deviations in the
noise covariance from the Hessian approximation C ∝ H. The calculated correlation time, derived
from the ratio between the weight and velocity variance, aligns reasonably well with our theoretical
predictions (see lower panel of Figure 2). This correlation time prediction remains independent of
the exact relation between C and H, thereby providing a more general result.

Appendix C. Definition of Limiting Quantities

When we speak of a covariance matrix or an average in the main text and in the following sections of
the appendix, we mean the limiting average or the limiting covariance, unless otherwise specified. In
other words, we are interested in the average of a quantity over one infinite run of SGD optimization,
not the mean value for a fixed update step k averaged over multiple runs of SGD optimization. With
this in mind, we define the covariance matrix of two quantities ak and bk as

cov(ak,bk) :=
〈
(ak − ⟨ak⟩k) (bk − ⟨bk⟩k)⊤

〉
k

(9)

and the limiting average is defined as

⟨ak⟩k = lim
K→∞

1

K + 1

k0+K∑
k=k0

ak . (10)

When possible, we will suppress k and denote the average as ⟨·⟩. The average is independent of the
starting value k0, therefore we can shift indices within the average, meaning ⟨ak⟩ = ⟨ak+l⟩ for any
l ∈ Z.

To see this we take any integer l ∈ Z and instead of adding it to the index k we can also subtract
it from the starting value k0 and then separate the sum into two sums,

⟨ak+l⟩ = lim
K→∞

1

K + 1

k0+K∑
k=k0

ak+l

= lim
K→∞

1

K + 1

k0−l+K∑
k=k0−l

ak

= lim
K→∞

1

K + 1

k0−1∑
k=k0−l

ak + lim
K→∞

1

K + 1

k0−l+K∑
k=k0

ak . (11)

The first sum is independent of K except for the factor 1
K+1 , so the limit of the first part is zero.

The second part of the limit can be rearranged as follows,

lim
K→∞

1

K + 1

k0−l+K∑
k=k0

ak = lim
K→∞

K − l + 1

K + 1

1

K − l + 1

k0−l+K∑
k=k0

ak

= lim
K̃→∞

1

K̃ + 1

k0+K̃∑
k=k0

ak (12)

=: ⟨ak⟩ , (13)

13
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where we used limK→∞
K−l+1
K+1 = 1 and renamed K − l in the second to last step. All together this

gives us the desired relation ⟨ak⟩ = ⟨ak+l⟩.
If one were to consider the covariance for a fixed update step k averaged over multiple runs of

SGD optimization, it is possible that this covariance could depend on the index k, but this is not our
case of interest.

Appendix D. Weight independent Noise

It is important to note that Equation (2), the formula for the autocorrelation of the noise described
in Theorem 1 and derived in Appendix G, is strictly speaking only valid for a static weight vector.
During training, the weights change with each update step, which could potentially change this
relationship. However, if the noise terms were independent of the weight vector, the formula would
still hold. A simple case where this assumption of weight independent noise holds is a model where
not only the total loss can be described by a quadratic function,

L(θ) =
1

2
θ⊤Hθ + const. , (14)

but the loss for a single example is described by a quadratic function as well, with the same Hessian,

l(θ,xn) =
1

2
(θ − µn)

⊤H(θ − µn) + const. . (15)

However, in this model, the minimum of the loss function for this single example is offset by
an example-dependent vector. This offset results in a noise term that is independent of the current
weight vector for each individual example,

∇
(
l(θ,xn)− L(θ)

)
= −Hµn

̸= f(θ) . (16)

Therefore, also the noise introduced by SGD in this model would be independent of the current
weight vector. For the later stages of training, such an assumption for the noise could be a good
approximation, as evidenced by the close fit of the data to the theory in Figure 1.

Appendix E. Variance Calculation

E.1. Commutativity of the covariance matrices

In this section, we show that if [C,H] = 0 also Σ and Σv will commute with C, with H and with
each other. We make the assumptions one to three of Theorem 3 and therefore the SGD update
equations become

vk = −ηHθk−1 + βvk−1 − ηδgk , (17)

θk = (1− ηH)θk−1 + βvk−1 − ηδgk , (18)

which can be rewritten by using the vector yk :=
(
θk vk

)⊤, combining both the current weight
and velocity variable, to be

yk+1 = Xyk − zk+1 . (19)

14
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Here, zk :=
(
ηδgk ηδgk

)⊤ contains the current noise term, and the matrix governing the deter-
ministic part of the update is defined to be

X :=

(
1− ηH β1
−ηH β1

)
. (20)

By iteratively applying Equation (19) we obtain

yk+h = Xhyk −
h∑

i=1

Xh−izk+i . (21)

Under the assumption 0 ≤ β < 1 and 0 < ηλi < 2(1 + β), for all eigenvalues λi of H, the
magnitude of the eigenvalues of X will be less than one. It is straightforward to show this relation
for the eigenvalues of X by using the eigenbasis of H. Therefore,

lim
h→∞

Xhyk = 0. (22)

As we can shift the index in the weight variance, h can be chosen arbitrarily large, which yields the
following relation for the covariance

⟨yky
⊤
k ⟩ = lim

h→∞

h∑
i,j=1

Xh−i⟨zk+iz
⊤
k+j⟩

(
Xh−j

)⊤
. (23)

Because Equation (21) together with Equation (22) implies ⟨yk⟩ = 0 and therefore ⟨θk⟩ = 0
and ⟨vk⟩ = 0, the left hand side of Equation (23) contains the covariance matrices of interest,

⟨yky
⊤
k ⟩ =

(
Σ ⟨θkv

⊤
k ⟩

⟨vkθ
⊤
k ⟩ Σv

)
. (24)

From Equation (23) we can also infer that ⟨yky
⊤
k ⟩ is finite as the magnitude of the eigenvalues of

X is less than one. Consequently, by Equation (24), the covariance matrices Σ and Σv are finite as
well. The average over the noise terms zk on the right hand side of Equation (23) is by assumption
equal to

⟨zk+iz
⊤
k+j⟩ = η2

(
δi,j − 1{1,...,M}(|i− j|)M − |i− j|

M(M − 1)

)
·
(
C C
C C

)
, (25)

from which it follows that for any finite h every matrix entry of the two by two super matrix on the
right hand side of Equation (23) is a function of C and H. Therefore, when considering the limit
h → ∞, [C,H] = 0 implies that Σ and Σv will also commute with C, with H and with each other.

E.2. Proof of the variance formula for one specific eigenvalue

Since Σ and Σv will commute with C, with H and with each other, it is sufficient to prove the
one dimensional case. For the multidimensional case simply apply the proof in the direction of
each common eigenvector individually. The expectation values discussed below are computed with
respect to the asymptotic distributions of θ and v, since we are only interested in the asymptotic

15
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behavior of training. We want to find σ2
θ := ⟨θkθk⟩ and σ2

v := ⟨vkvk⟩. We assume 0 ≤ β < 1 and
0 < ηλ < 2(1 + β) where λ is the hessian eigenvalue.

The equations describing SGD in one dimension are:

gk(θ) =
∂

∂θ
L(θ) + δgk(θ) (26)

vk = −ηgk(θk−1) + βvk−1 (27)

θk = θk−1 + vk . (28)

Our remaining assumptions can then be described the following way

L(θ) =
1

2
θλθ (29)

δgk(θ) = δgk . . . is independent of θ (30)

⇒ ⟨δgkδgk+h⟩ = σ2
δg

(
δh,0 − 1{1,...,M}(|h|)

M − |h|
M(M − 1)

)
(31)

σ2
δg := ⟨δgkδgk⟩ . (32)

With these assumptions the update equations can be described by a discrete stochastic linear
equation of second order

θk = (1 + β − ηλ)θk−1 − βθk−2 − ηδgk (33)

which can be rewritten into matrix form as follows

xk = Dxk−1 − ηδgke1 (34)

xk :=

(
θk
θk−1

)
(35)

e1 :=

(
1
0

)
(36)

D :=

(
1 + β − ηλ −β

1 0

)
. (37)

We are now interested in the following covariance matrix

Σ̃ :=
〈
xkx

⊤
k

〉
=

(
σ2
θ ⟨θkθk−1⟩

⟨θkθk−1⟩ σ2
θ

)
(38)

where the second equality is due to the fact that ⟨θkθk⟩ = ⟨θk−1θk−1⟩. As we are interested in the
asymptotic covariance, this expectation value is independent of any finite shift of the index k. By
inserting Equation (34) into

〈
xkx

⊤
k

〉
we arrive at the following equality〈

xkx
⊤
k

〉
= D

〈
xk−1x

⊤
k−1

〉
D⊤ + η2 ⟨δgkδgk⟩ e1e⊤1 − η

(
D ⟨xk−1δgk⟩ e⊤1 +

(
D ⟨xk−1δgk⟩ e⊤1

)⊤)
(39)
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which can be simplified to the equivalent equation

Σ̃−DΣ̃D⊤ = η2σ2
δge1e

⊤
1 − η

(
D ⟨xk−1δgk⟩ e⊤1 +

(
D ⟨xk−1δgk⟩ e⊤1

)⊤)
. (40)

If we apply the left-hand side on the vector e1, it can be expressed as[
Σ̃−DΣ̃D⊤

]
e1 = F−1

1 Σ̃e1 (41)

F−1
1 :=

(
ηλ(2− ηλ)− 2β(1 + β − ηλ) 2β(1 + β − ηλ)

−(1 + β − ηλ) 1 + β

)
. (42)

Also notice vk = θk − θk−1 and therefore

σ2
v = 2σ2

θ − 2⟨θkθk−1⟩ , (43)

again due to the fact that the expectation value does not depend on k. Hence, the variances can then
be expressed as (

σ2
θ

σ2
v

)
= F2Σ̃e1 (44)

F2 :=

(
1 0
2 −2

)
. (45)

We define the matrix F := F2F1. By applying both sides of Equation (40) to the vector e1, then
multiplying by the matrix F from the left and using Equations (41) and (44) we obtain(

σ2
θ

σ2
v

)
= F

[
η2σ2

δge1e
⊤
1 − η

(
D ⟨xk−1δgk⟩ e⊤1 +

(
D ⟨xk−1δgk⟩ e⊤1

)⊤)]
e1 . (46)

with

F =
1

(1− β)
(
2(1 + β)− ηλ)

) (1+β
ηλ

2β(ηλ−1−β)
ηλ

2 2(ηλ− 2)

)
. (47)

To simplify Equation (46) further we go back to Equation (34) and iterate it to obtain

xk = Dnxk−n − η

n−1∑
h=0

Dhe1δgk−h . (48)

We note that ⟨xk−nδgk⟩ = 0 for n ≥ M . The correlation between noise terms separated by at least
one epoch vanishes, and xk only depends on past noise terms. By setting n = M we find

⟨xk−1δgk⟩ = DM ⟨xk−1−Mδgk⟩ − η

M−1∑
h=0

Dhe1 ⟨δgkδgk−1−h⟩

= −ησ2
δg

M−1∑
h=0

Dhe1

(
−M − (h+ 1)

M(M − 1)

)
, (49)
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where the assumption about the correlation of the noise terms, Equation (31), was inserted for the
last line. Equation (49) is a sum of a finite geometric series and a derivative of that which can be
simplified to

⟨xk−1δgk⟩ = ησ2
δg

DM + (1−D)M − 1

(1−D)2M(M − 1)
e1 . (50)

Substituting this result back into Equation (46) yields(
σ2
θ

σ2
v

)
= η2σ2

δgF
[
e1 −

(
E+E⊤

)
e1

]
(51)

with the definition

E := D
DM + (1−D)M − 1

(1−D)2M(M − 1)
e1e

⊤
1 . (52)

With Equation (51) we have arrived at the exact formula for the variances which can easily be
evaluated numerically.

E.3. Approximation of the exact formula

It is possible to approximate the exact result for the variance assuming small or large eigenvalues,
respectively. For that, it is necessary to approximate DMe1. To do so, we will use the the following
eigendecomposition of D

D = QΛQ−1 (53)

Λ =

(
Λ+ 0
0 Λ−

)
(54)

Q =

(
Λ+ Λ−
1 1

)
(55)

Q−1 =
1

Λ+ − Λ−

(
1 −Λ−
−1 Λ+

)
(56)

Λ± =
1

2
(1 + β − ηλ± s) (57)

s :=
√
(1− β)2 − ηλ

(
2(1 + β)− ηλ

)
(58)

It is straightforward to show that the magnitude of the eigenvalues of D is strictly smaller than one,
|Λ±| < 1, under the conditions 0 < ηλ < 2(1 + β) and 0 ≤ β < 1.

LARGE HESSIAN EIGENVALUES

σ2
θ ≈

η2σ2
δg

(1− β)(2(1 + β)− ηλ)
· 1 + β

ηλ
(59)

σ2
v ≈

η2σ2
δg

(1− β)(2(1 + β)− ηλ)
· 2 (60)
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We will show that this approximation for large hessian eigenvalues is valid under the assumption
M(ηλ)2 ≫ 1 where M is the number of batches per epoch. However, numerical studies indicate
that these relations also hold under the previously mentioned assumptions of Mηλ

1−β ≫ 1, equivalent
to λ ≳ λcross, and M(1− β) ≫ 1.

Inserting the eigendecomposition of D into the expression DMe1 yields

DMe1 =

(
yM+1

yM

)
(61)

yM :=
ΛM
+ − ΛM

−
Λ+ − Λ−

. (62)

From the definition of yM one sees that

yM =
Λ+ + Λ−

2
yM−1 +

ΛM−1
+ + ΛM−1

−
2

, (63)

and by using |Λ±| < 1 as well as y0 = 0 one can show iteratively that

|yM | ≤ M + 1. (64)

Therefore, we have ∥∥DMe1
∥∥
∞ ≤ M + 1 (65)

where ∥·∥∞ is denoting the maximum norm ∥x∥∞ := maxi |xi| for a vector x or its induced matrix
norm ∥A∥∞ := maxi

∑
j |aij | for a matrix A.

Explicit calculations show that ∥∥(1−D)−1
∥∥
∞ ≤ 4

ηλ
(66)

under the assumption that 0 ≤ β < 1 and 0 < ηλ < 2(1 + β). From here it is straightforward to
show that ∥∥∥(E+E⊤

)
e1

∥∥∥
∞

≤ c̃

M(ηλ)2
(67)

where c̃ is a factor of order unity under the constraints 0 ≤ β < 1 and 0 < ηλ < 2(1 + β). By sub-
stituting this result back into Equation (51) one directly sees that a comparison to the approximation
yields ∣∣∣∣∣1− σ2

θ

σ2
θ,large

∣∣∣∣∣ ≤ c1
M(ηλ)2

, (68)∣∣∣∣∣1− σ2
v

σ2
v,large

∣∣∣∣∣ ≤ c2
M(ηλ)2

, (69)
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where c1 and c2 are again of order unity and the approximation is defined as(
σ2
θ,large

σ2
v,large

)
:= η2σ2

δgFe1

=
η2σ2

δg

(1− β)(2(1 + β)− ηλ)
·

(
1+β
ηλ

2

)
. (70)

Interestingly, one can see that the approximation for large hessian eigenvalues is equivalent to the
result we would obtain if we assumed there was no autocorrelation of the noise to begin with.

In the case where the stricter assumption is not true, M(ηλ)2 < 1, but the numerically obtained
conditions still hold, λ ≳ λcross and M(1 − β) ≫ 1, it occurs that

∥∥(E+E⊤) e1∥∥∞ is no longer
small. But in that case, F

(
E+E⊤) e1 can still be neglected compared to Fe1, as numerical

experiments show.

SMALL HESSIAN EIGENVALUES

To obtain the relations for small hessian eigenvalues, we perform a Taylor expansion with respect
to λ with the help of computer algebra. We neglect the terms which are at least of order lambda.
Numerical study indicates that these relations hold under the mentioned assumption of λ ≲ λcross
and M(1− β) ≫ 1.

It is straightforward but lengthy to obtain the following expression using the eigendecomposition
of D (

σ2
θ

σ2
v

)
=

η2σ2
δg

2(1− β)(1 + β)
·

(
M
3

1+β
1−β +O(λ)

2 +O(λ)

)
(71)

where the zeroth order terms are simplified under approximation M(1− β) ≫ 1.

E.4. Satisfying the assumptions of the correlation time relation

In this section we want to show that the weight and velocity variances resulting from stochastic
gradient descent as described above and for Theorem 3 satisfies the necessary assumptions (i) to
(iii) of Appendix F such that the velocity correlation time is equal to τi = 2σ2

θ,i/σ
2
v,i. Validity of

assumption (i) existence and finiteness of Σ := cov(θk,θk), Σv := cov(vk,vk), and ⟨θ⟩ can be
inferred from the calculation presented in Appendix E.1. Therefore, we concentrate on assumption
(ii) limn→∞ cov

(
θk,θk+n

)
= 0 and (iii) limn→∞ n · cov

(
θk,θk+n − θk+n+1

)
= 0. We consider

the one dimensional case, but the extension to the multidimensional case is straightforward. Addi-
tionally ⟨θ⟩ = 0 (see Appendix E.1) and, therefore, the remaining two assumptions (ii) and (iii) can
be written as limm→∞ ⟨θkθk+m⟩ = 0 and limm→∞m

(
⟨θkθk+m⟩ − ⟨θkθk+m+1⟩

)
= 0.

We will now show that for stochastic gradient descent under the assumptions of Theorem 3 the
more restrictive relation limm→∞m⟨θkθk+m⟩ = 0 is satisfied, from which follows (ii) and (iii).
Following Appendix E.2 and using the same notation, we have the relation

⟨xkx
⊤
k−m⟩ = D⟨xk−1x

⊤
k−m⟩ − ηe1⟨δgkx⊤

k−m⟩ , (72)

where xk :=
(
θk θk−1

)⊤. For m > M , with M being the number of batches per epoch, the
correlation with the noise term on the right hand side of Equation (72) is equal to zero as discussed
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in Appendix E.2. By iterating Equation (72), for m > M we have

⟨xkx
⊤
k−m⟩ = Dm−M−1⟨xk−m+M+1x

⊤
k−m⟩

= Dm−M−1⟨xkx
⊤
k−M−1⟩ . (73)

As described in Appendix E.2, the magnitude of both eigenvalues of D is strictly smaller than one.
This implies that there exists a matrix norm ∥·∥D such that ∥D∥D < 1 from which one can deduce∥∥∥⟨xkx

⊤
k−m⟩

∥∥∥
D

≤ ∥D∥m−M−1
D ·

∥∥∥⟨xkx
⊤
k−M−1⟩

∥∥∥
D

. (74)

Taking the limit of m → ∞ we obtain

lim
m→∞

m
∥∥∥⟨xkx

⊤
k−m⟩

∥∥∥
D

≤ const · lim
m→∞

m ∥D∥m−M−1
D

= 0 , (75)

and because

⟨xkx
⊤
k−m⟩ =

(
⟨θkθk−m⟩ ⟨θkθk−m−1⟩
⟨θk−1θk−m⟩ ⟨θk−1θk−m−1⟩

)
(76)

we finally find

lim
m→∞

m⟨θkθk−m⟩ = 0

⇒ lim
m→∞

m⟨θkθk+m⟩ = 0 . (77)

Appendix F. Calculation of the Correlation Time Relation

We want to prove the relation

2σ2
θ,i

σ2
v,i

=

∑∞
n=1 n ⟨vk,ivk+n,i⟩∑∞
n=1⟨vk,ivk+n,i⟩

. (78)

under the following three assumption: (i) Existence and finiteness of Σ := cov(θk,θk), Σv :=
cov(vk,vk), and ⟨θ⟩. (ii) limn→∞ cov

(
θk,θk+n

)
= 0. (iii) limn→∞ n·cov

(
θk,θk+n−θk+n+1

)
=

0. For example, the latter two assumptions hold true if the weight correlation function decays as
cov
(
θk,θk+n

)
∝ n−2 or faster.

We assume that that ⟨θ⟩, Σθ and Σv exist and are finite. Without loss of generality, let ⟨θ⟩ = 0.
We consider only the one-dimensional case. For the multidimensional case, simply apply the proof
in the direction of any basis vector individually. Note, that the relation still holds if [Σ,Σv] ̸= 0.
In this case, σ2

θ,i and σ2
v,i would just be the variances of the weight and the velocity in the given

direction but no longer necessarily eigenvalues of Σ and Σv.
The remaining two assumptions (ii) and (iii) can now be written as

lim
m→∞

⟨θkθk+m⟩ = 0 (79)

lim
m→∞

m
(
⟨θkθk+m⟩ − ⟨θkθk+m+1⟩

)
= 0 . (80)
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We begin the proof with the following chain of equations

σ2
θ =

〈
θ2k
〉

=
〈
(θk − θk+J + θk+J)

2
〉

=
〈
(θk − θk+J)

2
〉
− 2

〈
θ2k+J

〉
+ 2 ⟨θkθk+J⟩+

〈
θ2k+J

〉
, (81)

which holds for any integer J . We have
〈
θ2k+J

〉
=
〈
θ2k
〉

since the expectation value cannot depend
on k. Additionally, by definition we have vk = θk − θk−1 which yields

θk − θk+J =

J∑
i=1

vk+i . (82)

Therefore, we can rewrite Equation (81) as follows

2σ2
θ = 2 ⟨θkθk+J⟩+

J∑
i,j=1

⟨vk+ivk+j⟩

= 2 ⟨θkθk+J⟩+
J∑

i,j=1

⟨vkvk+j−i⟩

= 2 ⟨θkθk+J⟩+
J−1∑
m=0

m∑
n=−m

⟨vkvk+n⟩ , (83)

where we first shifted the index within the expectation value and then restructured the sum by
defining m := max(i, j) − 1 and n := j − i. We now take the limit of J → ∞ and because of
Equation (79) and the assumption of a finite σ2

θ we have

∞∑
m=0

m∑
n=−m

⟨vkvk+n⟩ < ∞ (84)

⇒
∞∑

n=−∞
⟨vkvk+n⟩ = 0 . (85)

We note that ⟨vkvk+n⟩ = ⟨vkvk−n⟩ because we can shift the index, and the two factors com-
mute. Substituting this relation into Equation (85) yields

∞∑
n=1

⟨vkvk+n⟩ = −1

2
⟨vkvk⟩

= −1

2
σ2
v . (86)

For the second part of the proof we will start again with vk = θk − θk−1 and the following sum

m∑
n=1

n⟨vkvk+n⟩ =
m∑

n=1

n
(
2⟨θkθk+n⟩ − ⟨θk−1θk+n⟩ − ⟨θkθk+n−1⟩

)
= −⟨θkθk⟩+ ⟨θkθk+m⟩+m

(
⟨θkθk+m⟩ − ⟨θkθk+m+1⟩

)
, (87)
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where nearly all terms cancel each other again due to the fact that we can shift the index within
the expectation value. By taking the limit m → ∞ and using the assumptions (ii) and (iii) (Equa-
tions (79) and (80)) we have

∞∑
n=1

n⟨vkvk+n⟩ = −⟨θkθk⟩ . (88)

Finally, by dividing Equation (88) by Equation (86) we arrive at the final expression

2σ2
θ,i

σ2
v,i

=

∑∞
n=1 n ⟨vkvk+n⟩∑∞
n=1⟨vkvk+n⟩

. (89)

Appendix G. Calculation of the Noise Autocorrelation

We want to calculate the autocorrelation function of epoch-based SGD for a fixed weight vector θ
and under the assumption that the total number of examples is an integer multiple of the number of
examples per batch. For that we repeat the following definitions:

δgk(θ) :=
1

S

∑
n∈Bk

∇
(
l(θ, xn)− L(θ)

)
(90)

Bk = {n1, ..., nS} . . . batch of step k, sampeling without replacement within epoch (91)

nj ∈ {1, . . . , N} (92)

N . . . total number of examples (93)

S . . . number of examples per batch (94)

We can rewrite the noise terms as follows:

δgk(θ) =
1

S

∑
n∈Bk

δge(n,θ)

=
1

S

N∑
n=1

δge(n,θ)s
n
k (95)

snk := 1Bk
(n)

=

{
1 if n ∈ Bk

0 if n /∈ Bk

(96)

δge(n,θ) := ∇
(
l(θ, xn)− L(θ)

)
. (97)

Let h ≥ 0 be fixed. The correlation matrix can be expressed as

cov
(
δgk(θ), δgk+h(θ)

)
= E

[
δgk(θ)δgk+h(θ)

⊤
]

=
1

S2

N∑
n,ñ=1

δge(n,θ)δge(ñ,θ)
⊤E
[
snks

ñ
k+h

]
. (98)

with E[·] denoting the limiting average (see Appendix C).
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The expectation value of snk = 1Bk
(n) is the probability that example n is part of batch k.

Because every example is equally likely to appear in a given batch, this probability is equal to S/N .

E [snk ] = P(snk = 1)

=
S

N
. (99)

Similarly we can calculate the desired correlation:

E
[
snks

ñ
k+h

]
= P

(
snk = 1, sñk+h = 1

)
= P(snk = 1)P

(
sñk+h = 1 | snk = 1

)
=

S

N
P
(
sñk+h = 1 | snk = 1

)
. (100)

The last term can be split up into different probabilities for different values of h. We can also
distinguish the case where the two steps k and k+h are within the same epoch (ep(k) = ep(k+h))
or in different epochs (ep(k) ̸= ep(k + h)).

P
(
sñk+h = 1 | snk = 1

)
= δh,0 · P

(
sñk = 1 | snk = 1

)
+ (1− δh,0) ·[

P
(
ep(k) = ep(k + h)

)
P
(
sñk+h = 1 | snk = 1, ep(k) = ep(k + h)

)
+

P
(
ep(k) ̸= ep(k + h)

)
P
(
sñk+h = 1 | snk = 1, ep(k) ̸= ep(k + h)

)]
.

(101)

The first term of the right hand side of Equation (101) is the probability that a given example
occurs in a batch, assuming that we already know one of the examples of that batch.

P
(
sñk = 1 | snk = 1

)
= P(snk = 1 | snk = 1) · δn,ñ + P

(
sñk = 1 | snk = 1, n ̸= ñ

)
(1− δn,ñ)

= 1 · δn,ñ +
S − 1

N − 1
(1− δn,ñ)

=
N − S

N − 1
δn,ñ + const. (102)

The second term of Equation (101) is multiplied by (1− δh,0). Therefore, we assume h ≥ 1 for
the following argument. That is, we want to know the probabilities under the assumption that we
are comparing examples from different batches. If the two batches are still from the same epoch,
examples cannot repeat as the total number of examples is an integer multiple of the number of
examples per batch and because of that every example is shown only once per epoch. Therefore, for
h ≥ 1 holds:

P
(
sñk+h = 1 | snk = 1, ep(k) = ep(k + h)

)
= 0 · δn,ñ +

S

N − 1
(1− δn,ñ)

= − S

N − 1
δn,ñ + const. (103)

If we consider batches from different epochs, the probability becomes independent of the given
examples:

P
(
sñk+h = 1 | snk = 1, ep(k) ̸= ep(k + h)

)
=

S

N
= const. (104)
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Lastly, we need to know the probability that two given batches k and k + h are from the same
epoch:

P
(
ep(k) = ep(k + h)

)
= 1{1,...,M}(h)

M − h

M
, (105)

where M = N/S is again the number of batches per epoch.
We can now combine all derived probabilities and arrive at the following relation:

E
[
snks

ñ
k+h

]
= δn,ñ

S

N

N − S

N − 1

(
δh,0 − 1{1,...,M}(h)

S

N − S

M − h

M

)
+ const.

= δn,ñ S
2

(
1

S
− 1

N

)
1

N − 1

(
δh,0 − 1{1,...,M}(h)

M − h

M (M − 1)

)
+ const. (106)

If we now also consider negative values for h, the expression depends only on the absolute value
of h due to symmetry.

By using the following two helpful relations:

N∑
n,ñ=1

δge(n,θ)δge(ñ,θ)
⊤ δn,ñ =

N∑
n=1

δge(n,θ)δge(n,θ)
⊤

=: (N − 1)C0(θ) , (107)
N∑

n,ñ=1

δge(n,θ)δge(ñ,θ)
⊤ · 1 =

(
N∑

n=1

δge(n,θ)

)(
N∑

n=1

δge(n,θ)
⊤

)
= ∇

(
L(θ)− L(θ)

)
∇⊤(L(θ)− L(θ)

)
= 0 , (108)

we can insert the expectation value E
[
snks

ñ
k+h

]
into Equation (98) and arrive at the final expression:

cov
[
δgk(θ), δgk+h(θ)

]
= cov

[
δgk(θ), δgk(θ)

]
·
(
δh,0 − 1{1,...,M}(|h|)

M − |h|
M(M − 1)

)
, (109)

cov
[
δgk(θ), δgk(θ)

]
=

(
1

S
− 1

N

)
C0(θ) . (110)

Appendix H. Comparison with principal component analysis

Our approach to analysis sets itself apart from that of Feng & Tu [32] principally in the selection
of the basis {pi, , i = 1, . . . , d} used for examining the weights. While they employ the principal
components of the weight series - the eigenvectors of Σ - we use the eigenvectors of the hessian
matrix H(θK) computed at the beginning of the analysis period.

This choice enables us to directly create plots of variances and correlation time against the
hessian eigenvalue for each corresponding direction. Feng & Tu devised a landscape-dependent
flatness parameter Fi for every direction pi. However, with the assistance of the second derivative

Fi ≈
(
∂2L(θ)/∂θ2i

)− 1
2 , where θi = θ · pi, this parameter can be approximated, provided this

second derivative retains a sufficiently positive value. Hence, in the eigenbasis of the hessian matrix,
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the flatness parameter can be approximated as Fi ≈ λ
− 1

2
i , facilitating comparability between our

analysis and that of Feng & Tu.
The principal component basis, as used by Feng & Tu, holds a distinct advantage. For our

analysis, we needed to eliminate the near-linear trajectory of the weights by deducting the mean
velocity. However, in Feng & Tu’s analysis, this movement is automatically subsumed in the first
principal component due to its pronounced variance. Hence, there’s no necessity for additional
subtraction of this drift in the weight covariance eigenbasis.

Yet, the weight covariance eigenbasis has a significant shortcoming: it yields artifacts. This
is because Σ is calculated as an average over a finite data set, skewing its eigenvalues from the
anticipated distribution. Consequently, the resultant eigenvectors may not align perfectly with the
expected ones. This issue is further exacerbated due to the high dimensionality of the underlying
space.

The artifact issue becomes evident in Figure 4, which displays synthetic data generated through
stochastic gradient descent within an isotropic quadratic potential coupled with isotropic noise. With
2,500 dimensions, the model mirrors the scale of a layer in the fully connected neural network that
Feng & Tu investigated. The weight series comprises 12,000 steps, which correspond to ten epochs
of training this network. Analyzing this data with the weight covariance eigenbasis seemingly
suggests anisotropic variance and correlation time. However, if the data is inspected without any
basis change, both the variance and correlation time appear isotropically distributed as anticipated.

To navigate around this key issue associated with the eigenbasis of Σ, we adopted the eigenvec-
tors of the Hessian matrix. Unlike Σ, the Hessian is not computed as an average over update steps
but can, in theory, be precisely calculated for any given weight vector. Consequently, the Hessian
matrix does not suffer from finite size effects. The difference between these two bases for actual
data is visible in Figure 5. Here, we analyzed only the weights of the first convolutional layer of
the LeNet from the main text to ensure comparability with Feng & Tu’s results. In this specific
comparison, the network was trained without weight decay. Due to this and the fact that we are only
investigating the weights of one layer, λcross is significantly larger than all Hessian eigenvalues. As a
result, when analyzing in the eigenbasis of the Hessian matrix related to this layer, both the variance
and the correlation time align well with the prediction for smaller Hessian eigenvalues.

However, analyzing in the eigenbasis of the weight covariance matrix, the correlation time ap-
pears heavily dependent on the second derivative of the loss in the given direction. Additionally, the
relationship between the weight variance and the second derivative shifts and more closely aligns
with Feng & Tu’s results as the power law exponent is significantly larger than one. The first princi-
pal component, which Feng & Tu referred to as the drift mode, stands out due to its unusually long
correlation time. This is to be expected, as this is the direction in which the weights are moving at
an approximately constant velocity.
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Figure 4: Comparison of weight and velocity fluctuations for synthetic data analyzed in two different
bases. We define the variance in weight, σ2

θ,i, as pi
⊤Σpi, and the variance in velocity, σ2

v,i, as
pi

⊤Σvpi. The correlation time, τi, is given by 2σ2
θ,i/σ

2
v,i. The synthetic data was generated by

simulating SGD for 12,000 steps within a 2,500-dimensional space featuring an isotropic quadratic
potential and isotropic noise. In the original basis analysis, both the variance and correlation time, as
expected, retain isotropy. However, when the analysis is conducted in the eigenbasis of the weight
covariance matrix, a pronounced anisotropy emerges.
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Figure 5: Comparison of weight and velocity variances for all 450 weights of the first convolutional
layer of the LeNet, as discussed in the main text, analyzed in two different bases. In order to
facilitate a more directly comparable analysis to Feng & Tu [32], the network was trained without
weight decay for this specific analysis and the analysis period was limited to 10 epochs, as opposed
to the usual 20 epochs. The columns represent different bases: for the left column pi are the
eigenvectors of Σ and for the right column pi are the eigenvectors of H. The mean velocity was
subtracted in the right column. The rows illustrate the weight and velocity variance, σ2

θ,i = pi
⊤Σpi,

σ2
v,i = pi

⊤Σvpi (top row), and the correlation time τi = 2σ2
θ,i/σ

2
v,i (bottom row). The second

derivative of the corresponding direction is depicted on the x-axis, λi = pi
⊤Hpi. The top row solid

lines indicate fit regions for a linear fit. For the H eigenbasis, the respective exponent of the power
law relation is 1.018 ± 0.008 for weight variance and 1.017 ± 0.002 for velocity variance with a
2σ-error. For the Σ eigenbasis, the corresponding exponent is 1.537 ± 0.012 for weight variance
and 1.134± 0.002 for velocity variance.
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Appendix I. Drawing with replacement

To confirm that the results obtained are indeed affected by the correlations present in SGD noise,
due to the epoch-based learning strategy, we reapply the analysis described in the main text. In this
instance, however, we deviate from our previous method of choosing examples for each batch within
an epoch without replacement. Instead, we select examples with replacement from the complete
pool of examples for every batch. This modification during the analysis period allows a more
complete assessment of the impact of correlations on the derived results.

Figure 6 offers clear visual proof that when examples are selected with replacement, the previ-
ously noted anti-correlations within the SGD noise vanish. This observation confirms our hypothe-
sis that the anti-correlations mentioned in the main text are indeed an outcome of the epoch-based
learning technique. Consequently, we can predict that this change will influence the behaviour of
the weight and velocity variance. As previously discussed, the theoretical results we have achieved
for Hessian eigenvectors with eigenvalues exceeding λcross conform to what one would predict in
the absence of any correlation within the noise. Therefore, when examples are drawn with replace-
ment, we anticipate the weight variance to be isotropic in all directions, while the velocity variance
should remain unchanged.

Figure 6: Autocorrelations of the SGD noise compared for drawing examples without replacement
(left) and with replacement (right).

Upon reviewing Figure 7, it is clear that the velocity variance stays unchanged as predicted.
However, while the weight variance remains constant for a broader subset of Hessian eigenvalues,
it reduces for extremely small eigenvalues. Likewise, the correlation time is still limited for these
minuscule Hessian eigenvalues. These deviations can be attributed to the finite time frame of the
analysis period, comprising 20,000 update steps. This limited time window sets a cap on the maxi-
mum correlation time, consequently leading to a decreased weight variance for these small Hessian
eigenvalues. Despite this, it is noteworthy that this maximum correlation time is still roughly one
order of magnitude longer than the maximum correlation time induced by the correlations arising
from the epoch-based learning approach.
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Figure 7: Relationship between Hessian eigenvalues and the variances of weights and velocities, as
well as correlation times. For the left column the examples are drawn in epochs without replacement
and for the right column the examples are drawn with replacement.

Appendix J. Loss and Accuracy during Training

Figure 8: The evolution of the loss (left) and accuracy (right) during training of LeNet described in
the main text. The statistics are shown for both training and test set. For the first 100 epochs, the
exponential learning rate decay was used, and for the last 20 epochs, the learning rate was fixed at
the final value of the exponential decay.
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Appendix K. Testing different Hyperparameters

In this section we examine the dependence of the theoretical predictions on the three hyperparam-
eters learning rate η, momentum β and batch size S. For this, we train the LeNet again for 100
epochs, using an exponential learning rate schedule that reduces the learning rate by a factor of 0.98
every epoch and afterwards we perform the numerical analysis as described in the main text.

However, we now train the network several times, always varying one of the hyperparameters
while keeping the other two fixed. If not varied, the momentum was set to 0.90 and the batch
size was set to 64. To ensure that training is always successful and 100% training accuracy is
achieved, the initial learning rate was set to 0.005 when the batch size is varied and to 0.02 when the
momentum is varied. Five different values are examined for each hyperparameter. To investigate
the dependencies on the learning rate, the values 0.005, 0.01, 0.02, 0.03, and 0.04 were used for
training. For momentum, the values 0.00, 0.50, 0.75, 0.90, and 0.95 were examined, and for batch
size, the values 32, 50, 64, 100, and 128 were examined.

In addition, the training was repeated for five different seeds for each hyperparameter combi-
nation in order to obtain reliable results. This results in a relatively high computational cost. To
reduce this, for the analysis in this section the weight and velocity variances are examined only in
the subspace of the 2,000 largest Hessian eigenvalues and associated eigenvectors.

Figure 9 shows as an example the weight and velocity variances as well as the correlation times
for different values of the batch size for one training seed each. It can be seen that the theory is
not only valid for the hyperparameter combination from the previous section, but is also generally
applicable for different hyperparameters. In particular, we see that there is still good agreement
with the theory even if the strictly necessary condition for the theoretical derivation of the noise
autocorrelation, that the number of batches per epoch M = N/S is an integer, is not met.

To further examine the predictions of the theory for the hyperparametric dependencies, we now
focus on the two quantities of the maximum correlation time τSGD and the Hessian eigenvalue
crossover value λcross and recall the theoretical predictions for these quantities:

τSGD =
N

3S

1 + β

1− β
, (111a)

λcross =
3S(1− β)

ηN
, (111b)

where N is the number of examples in the training data set.
For the evaluation of the dependence of these variables on the hyperparameters, they were de-

termined as follows for the various hyperparameter combinations using the data from the respective
correlation time plot. For the maximum correlation time τSGD, the average of all correlation times
was taken for which the corresponding Hessian eigenvalue is smaller than the theoretical crossover
value. However, the result for the numerically determined maximum correlation time is not sig-
nificantly different when simply taking the average of all determined correlation times for a hy-
perparameter combination, since only very few Hessian eigenvalues are larger than the crossover
value.

For the numerical determination of the crossover value λcross, a linear function was first fitted to
the correlation times of the 20 largest Hessian eigenvalues in the log-log plot of the correlation times
against the Hessian eigenvalues. In this region of the first 20 values, the correlation time is always
clearly dependent on the Hessian eigenvalue and does not yet belong to the region of constant
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Figure 9: Testing the LeNet training with different hyperparameters. Here the relationship between
the Hessian eigenvalues and the variances and correlation times for varying batch size is shown as
an example. The momentum was set to 0.90 and the initial learning rate was set to 0.005.

correlation times. The intersection of the fitted line with the numerically determined maximum
correlation time τSGD is then taken as the crossover value λcross. If the numerically determined
correlation times follow the theory exactly, then the correlation times determined in this way for
τSGD and λcross would also follow the theory accurately.

And indeed, Figure 10 shows a good agreement between the theory and the numerically deter-
mined values, although it should be noted that the deviations are larger than the random fluctuations
between the different seeds.
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Figure 10: The empirically determined maximum correlation time, τSGD, and the empirically deter-
mined crossover value λcross for the training of the LeNet with different hyperparameters, averaged
over five different seeds for each set of hyperparameters. The predictions of our theory are shown
as a solid line. The fluctuations between different seeds are smaller than the marker size and are
therefore not included in the figure.

Appendix L. Different Network Architecture

To further confirm our theoretical predictions within trained networks, in this section we turn to a
more modern architecture. Instead of the previously used LeNet network, we examine the ResNet-
20 network [5]. It is a convolutional network with significantly more convolutional layers than
LeNet. It also uses residual blocks with residual connections, which allows for deeper network
structures. As our loss function, we again employed Cross Entropy, along with an L2 regularization
with a prefactor of 10−4 and we did not use batch normalization. The number of layers, which is
already indicated in the name with 20, is significantly higher than in the LeNet with just five layers.
With approximately 272,000 parameters, the ResNet-20 also has significantly more parameters and
the computational cost is significantly higher.

Therefore, in this section we limit ourselves to examining the weight and velocity variances in
the subspace of the 400 largest Hessian eigenvalues and associated eigenvectors. The network was
trained with SGD for 100 epochs using the same exponential learning rate schedule as before, with
a learning rate of 5 · 10−3, a momentum parameter of 0.9, and a minibatch size of 50. This setup
achieves 100% training accuracy and 73% testing accuracy. In Figure 11 one can observe a good
agreement between the theory predictions for the variances and correlation times and the numerical
observations.
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Figure 11: Relationship between Hessian eigenvalues and the variances and correlation times for a
ResNet-20 trained on CIFAR10. The mean velocity of the weight trajectory was subtracted. The
solid lines in the left panel indicate the regions utilized for a linear fit. The exponents resulting from
the power law relationship are 0.820 ± 0.099 for weight variance and 0.965 ± 0.005 for velocity
variance, with a 2σ-error. The analysis was performed for the 400 largest Hessian eigenvalues and
corresponding eigendirections.

Appendix M. Effects of Non-Commutativity

The exact variance equation of Theorem 3 and the calculation shown in Appendix E are to some
extent still valid even if the previously mentioned assumption [C,H] ̸= 0 is not given. In particular,
the result for the correlation time holds independently of the commutativity assumption. However,
the calculated weight and velocity variances are no longer eigenvalues of the corresponding co-
variance matrices, but only the variances in the directions of the chosen eigenvector of the Hessian
matrix.

Assuming that C and H do not necessarily commute, we can still project the update equations
onto an arbitrary Hessian eigenvector pi with eigenvalue λi, which gives us

vk,i = −ηλiθk−1,i + βvk,i − ηpi · δgk , (112a)

θk,i = (1− ηλi)θk−1,i + βvk,i − ηpi · δgk . (112b)

Since pi ·δgk is independent of weights and velocity, these two equations are decoupled for each
individual Hessian eigenvector. As pi · δgk still follows the proposed anti-correlation, the calcula-
tions of Appendix E can be performed similarly. Therefore, the theory prediction for the correlation
time τi, defined as the ratio between the weight and the velocity variance in the eigendirection pi of
the Hessian, is still valid. However, the weight and the velocity variance in the eigendirection pi are
no longer eigenvalues of the covariance matrices Σ and Σv if pi is not also an eigenvector of C.

To better understand the consequences of a situation where C and H do not commute, we
perform an SGD simulation in an artificial quadratic loss landscape where we introduce epoch-
based noise with anti-correlations as described in Theorem 1. However, we choose the Hessian
matrix H of the loss and the gradient noise covariance matrix C to be non-commuting. The results
are shown in Figure 12.

When H and C are approximately proportional to each other, to an extent reported in the litera-
ture [31], the results still show good agreement with our theory and there are only small deviations
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for very small Hessian eigenvalues. If there is no similarity between H and C, then the results for
the variances no longer follow our theory, but the prediction for the correlation time τi still shows
good agreement with the numerical data, as expected.

Figure 12: Variances and correlation times of an SGD trajectory in an artificial quadratic potential
with epoch-based noise. The quantities are examined in the Hessian eigenbasis and plotted against
the corresponding eigenvalue. For the top two panels, the covariance matrix of the noise C is equal
to the Hessian H plus a random matrix M of small magnitude (M = 1

dXX⊤ with X ∈ Rd×d

and Xij ∼ N (0, σ2), σ = 0.02, d = 500). The cosine similarity between C and H is 0.96
which is a value that has been found empirically in real networks before [31]. Here, our theory
for the variances still holds except below a certain small eigenvalue. For the bottom two panels,
the Hessian and the covariance matrix are two independent random matrices. There is no longer a
relationship between the Hessian eigenvalue and the velocity covariance. However, the theoretical
prediction for the correlation time still holds.

35


	Introduction
	Background
	Anti-correlated noise and its Implications
	Discussion
	Related Work
	Hessian Noise Approximation
	Limiting Dynamics and Weight Fluctuations

	Numerics
	Analysis Setup
	Noise Autocorrelations 
	Variances and Correlation time

	Definition of Limiting Quantities
	Weight independent Noise
	Variance Calculation
	Commutativity of the covariance matrices
	Proof of the variance formula for one specific eigenvalue
	Approximation of the exact formula
	Satisfying the assumptions of the correlation time relation

	Calculation of the Correlation Time Relation
	Calculation of the Noise Autocorrelation
	Comparison with principal component analysis
	Drawing with replacement
	Loss and Accuracy during Training
	Testing different Hyperparameters
	Different Network Architecture
	Effects of Non-Commutativity

