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Abstract

Large language models (LLMs) are designed001
to perform a wide range of tasks. To improve002
their ability to solve complex problems requir-003
ing multi-step reasoning, recent research lever-004
ages process reward modeling to provide fine-005
grained feedback at each step of the reason-006
ing process for reinforcement learning (RL),007
but it predominantly focuses on English. In008
this paper, we tackle the critical challenge of009
extending process reward models (PRMs) to010
multilingual settings. To achieve this, we train011
multilingual PRMs on a dataset spanning seven012
languages, which is translated from English.013
Through comprehensive evaluations on two014
widely used reasoning benchmarks across 11015
languages, we demonstrate that multilingual016
PRMs not only improve average accuracy but017
also reduce early-stage reasoning errors. Fur-018
thermore, our results highlight the sensitivity019
of multilingual PRMs to both the number of020
training languages and the volume of English021
data, while also uncovering the benefits arising022
from more candidate responses and trainable023
parameters. This work opens promising av-024
enues for robust multilingual applications in025
complex, multi-step reasoning tasks.026

1 Introduction027

Aligning large language models (LLMs) with hu-028

man preferences can significantly improve the029

model performance across various downstream030

tasks (Christiano et al., 2017; Ziegler et al., 2019).031

This requires a reward model that is trained on hu-032

man preference data (Ziegler et al., 2019; Stiennon033

et al., 2020; Shen et al., 2021; Ouyang et al., 2022).034

Typically, reward models are trained based on the035

final outcome of the LLMs’ response, and we refer036

to these as outcome reward models (ORMs) (Cobbe037

et al., 2021a; Uesato et al., 2022; Yu et al., 2023a).038

However, most of recent work demonstrates that039

ORMs fall short on complex multi-step reasoning040

tasks (Uesato et al., 2022; Shao et al., 2024). To041

overcome this limitation, process reward models 042

(PRMs) are introduced, providing fine-grained re- 043

wards at each step of the LLMs’ reasoning (Light- 044

man et al., 2024; Li et al., 2023; Wang et al., 2024b; 045

Ma et al., 2023). Previous research has shown that 046

LLMs supervised by PRMs can effectively produce 047

better responses (Wang et al., 2024b; Shao et al., 048

2024). 049

Despite these significant advances, recent re- 050

search on ORMs and PRMs has predominantly 051

focused on monolingual settings, particularly En- 052

glish (Lightman et al., 2024; Wang et al., 2024a,b). 053

However, the exploration of multilingual PRMs re- 054

mains relatively limited. Therefore, with the advent 055

of multilingual LLMs, a natural research question 056

arises: How can we effectively train multilingual 057

PRMs for complex, multi-step reasoning tasks? 058

To address this research question, we translate 059

the existing PRM datasets, PRM800K (Lightman 060

et al., 2024) and Math-Shepherd (Wang et al., 061

2024b), from English into six additional languages, 062

resulting in a total of seven seen languages for 063

training. We then train multilingual PRMs using 064

the collection of these translated datasets. We 065

define three PRM setups: PRM-MONO, PRM- 066

CROSS, and PRM-MULTI. The PRM-MONO setup 067

is trained and evaluated solely on a single language, 068

the PRM-CROSS setup is trained on one language 069

but evaluated on all test languages, and the PRM- 070

MULTI setup is trained on seven seen languages and 071

evaluated on all test languages. Finally, we conduct 072

a comprehensive evaluation on two popular reason- 073

ing tasks (MATH500 and MGSM) across 11 languages 074

(seven seen languages and four unseen languages) 075

using three LLMs (METAMATH-MISTRAL-7B, 076

LLAMA-3.1-8B-MATH, and DEEPSEEKMATH- 077

7B-INSTRUCT). 078

Our main takeaways are summarized as follows: 079

• Multilingual PRM consistently outper- 080

forms monolingual and cross-lingual PRMs 081

across all three LLMs. Our results demon- 082
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strate that PRM-MULTI significantly im-083

proves model performance, boosting average084

accuracy by up to +1.2 and +1.5 points com-085

pared to PRM-CROSS and PRM-MONO, re-086

spectively (see Section 5.1).087

• Multilingual PRM is sensitive to both the088

number of languages and the amount of En-089

glish training data. Our experiment shows090

that training an optimal multilingual PRM re-091

quires careful consideration of how many lan-092

guages to include (see Section 5.2) and how093

much English data to use (see Section 5.3).094

• Multilingual PRM produces fewer errors095

in the early steps. We identify the first occur-096

rences of wrong predictions made by PRMs097

and observe that PRM-MULTI produces fewer098

errors in the early steps compared to PRM-099

MONO and PRM-CROSS (see Section 6.1).100

• Multilingual PRM can benefit more from101

more candidate responses and trainable pa-102

rameters. Our analysis demonstrates that103

PRM-MULTI becomes more advantageous104

with a larger number of candidate responses105

(see Section 6.2) and when more trainable pa-106

rameters are introduced (see Section 6.3).107

2 Related Work108

Reward Model in Mathematical Reasoning To109

advance the accuracy of mathematical reasoning,110

reward models (RMs) have emerged as powerful111

tools for evaluating and guiding solution generation.112

In particular, two principal RM paradigms have gar-113

nered significant attention: the Outcome Reward114

Models (ORMs) (Cobbe et al., 2021a; Yu et al.,115

2023a) and the Process Reward Models (PRMs)116

(Uesato et al., 2022; Lightman et al., 2024; Li et al.,117

2023; Ma et al., 2023; Wang et al., 2024b; Luo118

et al., 2024; Gao et al., 2024; Wang et al., 2024a).119

ORMs assign a single score to an entire solution120

and thereby focuses on final correctness, whereas121

PRMs score each individual step of the reason-122

ing process, offering more finer-grained evalua-123

tions. As a result, PRMs provide more detailed124

guidance and have demonstrated greater potential125

in enhancing reasoning capabilities compared to126

ORMs (Lightman et al., 2024; Wu et al., 2023).127

Multilingual Reward Model Beyond English-128

language tasks, the integration of RMs into mul-129

tilingual scenarios is still under-explored. Rein-130

forcement learning approaches often rely on RMs131

predominantly trained on English data (Shao et al.,132

Figure 1: Framework of PRM.

2024; Yang et al., 2024a). This over-representation 133

introduces biases, as these RMs may overfit to 134

English-specific syntactic and semantic patterns, 135

limiting their effectiveness in cross-lingual tasks 136

and motivating the development of multilingual 137

RMs (Hong et al., 2024). While there is growing 138

evidence that cross-lingual transfer is feasible (Wu 139

et al., 2024a; Hong et al., 2024), existing research 140

often overlooks the unique challenges of multilin- 141

gual reasoning. After the release of the OpenAI-o1 142

model (OpenAI, 2024), PRMs, with their capabil- 143

ity for fine-grained feedback, have attracted even 144

greater interest. Yet, the performance of multilin- 145

gual PRMs in diverse linguistic contexts remains 146

insufficiently investigated (Yang et al., 2024b). To 147

bridge this gap, we investigate how multilingual 148

PRMs contribute to solving mathematical tasks 149

across different languages, aiming to provide in- 150

sights into how fine-grained process supervision 151

can enhance reasoning capabilities beyond English, 152

thereby contributing to the development of more 153

universally applicable reasoning models. 154

3 Process Reward Modeling 155

3.1 PRM Training 156

Given a question p and its solution s, the ORM 157

assigns a single value to s to indicate if s is correct. 158

We stack a binary classifier on top of the LLM and 159

train the ORM with the binary cross-entropy loss: 160

LORM =

− (ys log(rs) + (1− ys) log(1− rs))
(1) 161

where ys is the ground truth label for the solution s 162

(ys = 1 if s is correct, otherwise ys = 0), and rs is 163

the probability score that s is correct. 164

In contrast, the PRM evaluates each reasoning 165

step of the solution s. The PRM is trained using 166

the following loss function: 167

LPRM =

−
K∑
i=1

ysi log(rsi) + (1− ysi) log(1− rsi)
(2) 168
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where si is the i-th step of the solution s, ysi is the169

ground truth label for step si, rsi is the score as-170

signed to si by the PRM, and K is the total number171

of reasoning steps in the solution s. Compared to172

ORM, PRM provides more detailed and reliable173

feedback by evaluating individual steps.174

3.2 Ranking for Verification175

Following Wu et al. (2024b); Lightman et al.176

(2024); Wang et al. (2024b), we evaluate the per-177

formance of PRM using the best-of-N selection178

evaluation paradigm (Charniak and Johnson, 2005;179

Cobbe et al., 2021b). Specifically, given a question,180

multiple solutions are sampled from an LLM (re-181

ferred to as the generator) and re-ranked using a182

reward model (referred to as the verifier). For each183

solution, as shown in Figure 1, PRM assesses the184

correctness of each reasoning step. The scores for185

all steps are averaged to compute an overall score186

for the solution. The highest-scoring solution is187

then selected as the final output. This approach en-188

hances the likelihood of selecting solutions contain-189

ing correct answers, thereby improving the success190

rate of solving mathematical problems with LLMs.191

3.3 Reinforcement Learning with Process192

Supervision193

Using the trained PRM, we fine-tune LLMs with194

Policy Optimization (PPO) (Schulman et al., 2017)195

in a step-by-step manner. This method differs from196

the conventional strategy that uses PPO with an197

ORM, that only gives a reward at the end of the198

response. Conversely, our step-by-step PPO offers199

rewards at the end of each reasoning step.200

While we analyse PRM both intrinsically (us-201

ing best-of-N), and extrinsically (using PPO), we202

focus on best-of-N for a clean testbed without con-203

founders from reinforcement learning.204

4 Experimental Setups205

Training Datasets We combine the PRM800K206

(Lightman et al., 2024) and Math-Shepherd (Wang207

et al., 2024b) as training data to finetune PRMs,208

and translate the combined dataset from English209

(en) to six languages: German (de), Spanish (es),210

French (fr), Russian (ru), Swahili (sw), and Chi-211

nese (zh) with using NLLB 3.3B (Costa-jussà et al.,212

2022). The reasoning step statistics are presented213

in Table 4 (Appendix A), and the parallel examples214

across seven languages have the same number of215

reasoning steps. To ensure high translation qual-216

ity, we use regular expressions to filter out trans- 217

lated training instances that contain discrepancies 218

in numbers or equations compared to the original 219

English dataset. 220

Test Dataset We evaluate the performance of 221

LLMs using two widely used math reasoning 222

datasets, MGSM (Shi et al., 2022) and MATH500 223

(Wang et al., 2024b). For the MATH500 datset, we 224

translate it from English to ten languages: Ben- 225

gali (bn), German (de), Spanish (es), French (fr), 226

Japanese (ja), Russian (ru), Swahili (sw), Telugu 227

(te), Thai (th), and Chinese (zh) with Google Trans- 228

late, which is consistent with the languages in- 229

cluded in the MGSM dataset. Furthermore, we also 230

categorize the languages involved in the down- 231

stream tasks into two groups based on the training 232

data of PRM: seen languages (en, de, es, fr, ru, 233

sw, and zh) and unseen languages (bn, ja, te, and 234

th). To ensure the quality of our testset, we employ 235

two human translators to post-edit the translated 236

examples for each high-resource language (de, es, 237

fr, ru, zh, and ja) and leverage GPT-4O to revise the 238

translations in low-resource languages (bn, sw, te, 239

and th). More details are shown in Appendix B. 240

Multilingual PRM Setups To better understand 241

PRMs in the context of multilingual research, we 242

define three setups: PRM-MONO, PRM-CROSS, 243

and PRM-MULTI. The PRM-MONO setup is 244

trained and evaluated on the same single language, 245

serving as the baseline for monolingual PRMs. The 246

PRM-CROSS setup is trained on one language but 247

evaluated on all 11 test languages. Specifically, 248

in this work, we train PRM-CROSS on the En- 249

glish PRM dataset unless otherwise specified. Fi- 250

nally, the PRM-MULTI setup represents the mul- 251

tilingual PRM, which is both trained on all the 252

seen languages and evaluated on all 11 test lan- 253

guages. To enhance the reliability and general- 254

izability of our study, we train our multilingual 255

PRM (verifier) based on the QWEN2.5-MATH- 256

7B-INSTRUCT (Yang et al., 2024a), and leverage 257

three diverse LLMs as the generator: METAMATH- 258

MISTRAL-7B (Yu et al., 2023b), LLAMA-3.1- 259

8B-MATH (fine-tuned with the MetaMath dataset 260

(Dubey et al., 2024)),1 and DEEPSEEKMATH-7B- 261

INSTRUCT (Shao et al., 2024). The details of train- 262

ing these PRMs are presented in Appendix C. 263

1https://huggingface.co/gohsyi/Meta-Llama-3.
1-8B-sft-metamath
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MATH500 µALL µSEEN µUNSEEN en de es fr ru sw zh ja bn te th

METAMATH-MISTRAL-7B

BASELINE 22.1 24.3 18.2 26.8 26.2 28.2 25.4 27.4 13.4 23.0 25.0 18.0 10.6 19.2
PRM-MONO - 42.5 - 49.0 44.4 45.8 45.6 46.0 25.0 41.8 - - - -
PRM-CROSS 39.4 43.1 39.1 49.0 45.4 45.0 46.8 46.4 25.2 43.8 43.6 31.4 22.0 34.6
PRM-MULTI 39.6 43.1 39.4 50.2 45.6 47.4 45.4 45.2 25.2 42.8 43.6 32.6 21.8 35.2

LLAMA-3.1-8B-MATH

BASELINE 22.1 24.3 18.1 30.4 22.4 27.4 25.4 22.0 15.4 27.4 20.0 16.6 16.0 19.8
PRM-MONO - 43.3 - 49.0 46.2 45.8 44.2 45.8 26.2 46.2 - - - -
PRM-CROSS 40.9 43.6 36.3 49.0 48.8 46.6 44.8 44.8 26.0 45.2 43.0 36.0 28.2 37.8
PRM-MULTI 41.7 44.8 36.4 51.0 48.8 45.8 46.0 46.2 28.4 47.2 42.0 34.6 30.2 38.6

DEEPSEEKMATH-7B-INSTRUCT

BASELINE 26.4 32.5 15.7 42.0 35.6 36.4 35.0 36.4 9.6 32.4 33.2 9.8 4.6 15.2
PRM-MONO - 55.1 - 63.0 59.0 60.4 59.0 60.2 29.2 55.0 - - - -
PRM-CROSS 50.2 54.9 41.9 62.4 60.0 59.8 61.4 57.4 29.4 54.0 54.4 38.2 32.4 42.6
PRM-MULTI 51.3 55.6 43.7 63.8 58.6 60.2 60.2 61.4 30.6 54.2 55.8 38.0 35.6 45.4

Table 1: Different PRMs’ best-of-N sampling (N = 64) performance on MATH500 with the generator of METAMATH-
MISTRAL-7B, LLAMA-3.1-8B-MATH, and DEEPSEEKMATH-7B-INSTRUCT. µALL, µSEEN, and µUNSEEN indicate
the macro-average of results across all the languages, the seen languages, and the unseen languages, respectively.

5 Recipes for Multilingual PRM Training264

In this section, we conduct a series of experiments265

to investigate the performance of multilingual PRM.266

We examine how PRM-MULTI compares to PRM-267

MONO and PRM-CROSS (Section 5.1), the impact268

of the number of training languages (Section 5.2),269

and the effect of varying the proportion of English270

in the training data (Section 5.3).271

5.1 Monolingual, Cross-lingual, or272

Multilingual PRMs?273

Building on Wu et al. (2024b)’s findings that cross-274

lingual ORMs outperform monolingual ones, we275

investigate the impact of multilingualism on PRMs.276

Specifically, we compare PRM-MONO, PRM-277

CROSS, and PRM-MULTI to determine which setup278

offers best performance across languages.279

Setup We include three setups in this work. The280

PRM-MONO is trained and evaluated on each in-281

dividual language from the set of seen languages.282

The PRM-CROSS is trained exclusively on an En-283

glish dataset and evaluated on all 11 test languages.284

Finally, the PRM-MULTI is trained on all seen lan-285

guages and tested on all 11 test languages.286

Multilingual PRMs perform best, followed by287

cross-lingual PRMs, while monolingual PRMs288

achieve the worst performance, on the seen lan-289

guages. As shown in Table 1, PRM-MULTI con-290

sistently achieves the highest performance across291

multiple language generators on the seen languages,292

surpassing PRM-MONO and PRM-CROSS by +1.5 293

and +1.2 with LLAMA-3.1-8B-MATH generator, 294

respectively. This indicates that incorporating data 295

from multiple languages for PRM training signif- 296

icantly enhances the model’s ability across differ- 297

ent languages. When comparing PRM-MONO and 298

PRM-CROSS, we observe that PRM-CROSS out- 299

performs the PRM-MONO for the English-centric 300

METAMATH-MISTRAL-7B and LLAMA-3.1-8B- 301

MATH generators. Results with statistical signifi- 302

cance are presented in Appendix G. We hypothe- 303

size that this advantage stems from the pre-training 304

phase: these generators are predominantly trained 305

on English data but have limited exposure to multi- 306

lingual corpora. As a result, fine-tuning on English 307

PRM data enhances the reasoning capabilities of 308

PRMs, facilitating greater cross-lingual transfer. 309

More monolingual results are in Appendix D. 310

Multilingual PRMs generalize better on the un- 311

seen languages. Both PRM-CROSS and PRM- 312

MULTI are evaluated on four additional unseen lan- 313

guages. As shown in Table 1, PRM-MULTI demon- 314

strates superior overall performance on the unseen 315

languages in terms of µUNSEEN. These results sug- 316

gest that training PRMs on multilingual datasets 317

can effectively enhance model generalization to the 318

unseen languages. More results on general-purpose 319

LLM are provided in Appendix F. 320

In conclusion, these findings demonstrate that 321

training a single multilingual PRM is an effective 322

strategy for broad cross-lingual coverage, outper- 323
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Figure 2: Best-of-N Performance on MGSM of PRMs
trained using various subsets of English, German, Span-
ish, French, Russian, Swahili, and Chinese, with the gen-
erator of LLAMA-3.1-8B-MATH. The averages scores
across all 11 languages.

forming models trained either on a target language324

or on English alone. This outcome supports that325

PRM-MULTI is particularly advantageous for ex-326

panding the capabilities of PRMs in multilingual327

settings. More results on MGSM are in Appendix E.328

5.2 Does More Languages Lead to Better329

Multilingual PRMs?330

While multilingual PRMs have demonstrated sig-331

nificant improvements, the question of how many332

languages are needed to achieve the best perfor-333

mance remains an open research problem. In this334

section, we address this research question by ex-335

ploring the relationship between the number of336

training languages and the resulting performance.337

Setup We conduct experiments by training PRMs338

on datasets ranging from a single language up to all339

seven languages. In this section, the number of total340

training examples of all PRMs are fixed. When341

the number of languages exceeds one, the total342

training examples are evenly distributed across all343

the selected languages. For evaluation, we test all344

PRMs on 11 different languages. The evaluation345

scores are averaged for each test language across all346

PRMs trained with the same number of languages.347

More languages do not result in better multi-348

lingual PRMs. As shown in Figure 2, the over-349

all performance (AVG) improves as the number of350

training languages increases up to five languages.351

Beyond this point, adding more languages does not352

lead to further gains. Additionally, results from353

five individual languages (four seen languages and354

one unseen language) demonstrate that, although355

the optimal number of training languages varies356
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34
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Figure 3: Best-of-N sampling performance of LLAMA-
3.1-8B-MATH with PRMs finetuned on a training set
where P% of the data is in English and (100 - P)% is uni-
formly distributed across six other languages. Each tick
on the X-axis represents a specific tuning set configura-
tion. The dash lines in blue, red, and green, indicate the
average scores of all the languages, the seen languages,
and the unseen languages, respectively.

across these languages, increasing the number of 357

languages never leads to better performance. These 358

findings suggest that increasing the number of train- 359

ing languages does not necessarily enhance mul- 360

tilingual PRMs. A key reason for this is the fixed 361

amount of training data: as the number of lan- 362

guages grows, the training examples per language 363

decrease. This reduction hinders sufficient training 364

for seen languages and negatively impacts cross- 365

lingual transfer to unseen languages. 366

5.3 How Much English Data Do We Need for 367

Multilingual PRMs? 368

While multilingual training with equal number 369

of training examples in each language (PRM- 370

MULTI) generally improves performance compared 371

to English-only training (PRM-CROSS), we ob- 372

serve some exceptions on certain languages, as 373

shown in Table 1. This observation prompts us 374

to investigate how varying the number of English 375

examples can affect the multilingual PRMs. 376

Setup To explore this, we create data mixtures 377

with varying percentages of English examples 378

(P%), with the remaining (100− P )% examples 379

evenly distributed among six languages: German, 380

Spanish, French, Russian, Swahili, and Chinese. 381

Each PRM trained on these mixtures is then evalu- 382

ated across all 11 languages. 383
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Figure 4: Percentage distribution of the first error posi-
tions corresponding to the step in the reasoning on the
PRM800K testset.

Moderate amount of English data can lead to384

better multilingual PRMs. As shown in Fig-385

ure 3, incorporating a small amount of English data386

into the training mixture can lead to notable per-387

formance improvements across languages. Specif-388

ically, even as little as 1% of English examples389

significantly enhances performance, particularly390

for unseen languages. Interestingly, the majority of391

performance gains occur when English data consti-392

tutes less than 50% of the training mixture. How-393

ever, when the proportion of English data exceeds394

50%, performance begins to decline slightly across395

languages. Furthermore, training on 70% English396

data outperforms training solely on English (100%),397

suggesting that retaining some multilingual data398

introduces valuable variation and enhances the gen-399

eralization capacity of multilingual PRMs. These400

findings indicate that as the proportion of English401

data increases, the PRMs may not be adequately402

trained on other seen languages, and unseen lan-403

guages may benefit less from cross-lingual trans-404

fer. This highlights the importance of maintaining405

diverse and balanced language representation in406

multilingual training for optimal performance.407

6 Analysis408

In this section, we present a comprehensive analy-409

sis of our multilingual PRM, focusing on five criti-410

cal aspects: error positions (Section 6.1), number of411

solutions (Section 6.2), integration of LoRA with412

PRM (Section 6.3), comparative evaluation with413

multilingual ORM (see Section 6.4), and imple-414

ment PPO with multilingual PRM (see Section 6.5).415

6.1 Which Steps Are More Prone to Errors?416

PRMs provide fine-grained feedback on each in-417

termediate step of a model’s chain-of-thought rea-418
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Figure 5: Best-of-N sampling performance of LLAMA-
3.1-8B-MATH using different verification strategies
across distinct numbers of solutions on MATH500.

soning process. Errors at intermediate steps can 419

propagate through the reasoning chain, ultimately 420

affecting the final answer. Therefore, we investi- 421

gate the earliest errors made by PRMs during the 422

reasoning process, following Zheng et al. (2024). 423

Setup We select a subset of instances from the 424

PRM800K Russian test set where the final answers 425

made by PRM-MONO, PRM-CROSS, and PRM- 426

MULTI are incorrect. For these instances, we iden- 427

tify the first occurrences of incorrect predictions 428

from these PRMs. We classify the first error posi- 429

tions into three groups: early (steps 1 to 5), middle 430

(steps 6 to 10), and later (steps 11 to 15). 431

Multilingual PRMs produce fewer errors at 432

early steps. The distribution of the earliest error 433

positions, visualized in Figure 4, reveals a clear dis- 434

tinction between the three PRM configurations. In 435

both PRM-MONO and PRM-CROSS, a significant 436

proportion of errors occurs within the early steps. 437

In contrast, PRM-MULTI demonstrates fewer er- 438

rors within this range and exhibits a slightly higher 439

number of errors in later steps. These observa- 440

tions suggest that PRM-MULTI may be less prone 441

to error propagation in the reasoning process, en- 442

abling it to maintain a more reliable reasoning 443

trajectory. Consequently, PRM-MULTI can effec- 444

tively achieve better overall performance. 445

6.2 Do More Candidates Drive Better 446

Performance? 447

Recent research suggests that providing more can- 448

didate solutions can significantly boost the perfor- 449

mance of PRM (Wang et al., 2024a,b). To explore 450

if this applies in multilingual settings, we examine 451

the impact of varying the number of candidates on 452

PRM-MONO, PRM-CROSS, and PRM-MULTI. 453
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MATH500

MISTRAL LLAMA DEEPSEEK

Verifier µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN

BASELINE 22.11 24.34 18.20 22.07 24.34 18.10 26.38 32.48 15.70
SC 29.20 31.80 24.65 30.60 33.31 25.85 44.96 49.29 37.40
ORM 39.54 42.63 34.25 40.49 43.14 35.85 50.96 55.54 42.95
PRM-MULTI 39.55 43.11 33.30 41.71 44.77 36.35 51.25 55.57 43.70

MGSM

MISTRAL LLAMA DEEPSEEK

Verifier µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN

BASELINE 49.63 61.65 28.60 56.18 64.23 42.10 52.95 63.02 35.30
SC 56.51 69.37 34.00 63.13 74.57 43.10 70.76 75.37 62.70
ORM 64.84 76.40 44.60 65.20 77.43 43.80 74.44 79.00 66.45
PRM-MULTI 65.45 77.09 45.10 71.93 82.00 54.30 75.42 80.51 66.50

Table 2: Multilingual PRMs’ best-of-N (N = 64) sampling performance on MATH500 and MGSM with three generators:
METAMATH-MISTRAL-7B, LLAMA-3.1-8B-MATH, and DEEPSEEKMATH-7B-INSTRUCT. We use QWEN2.5-
MATH-7B-INSTRUCT to finetune the ORM and PRM-MULTI. µALL, µSEEN, and µUNSEEN indicate the macro-average
of results across all the languages, the seen languages, and the unseen languages, respectively.

Setup We conduct experiments on the MATH500454

benchmark using the LLAMA-3.1-8B-MATH gen-455

erator to compare the performance of PRM-MULTI,456

PRM-CROSS, and PRM-MONO. For each ap-457

proach, we vary the number of candidates N from458

2 to 64. This allows us to assess how the number of459

candidate solutions influences performance across460

different PRM strategies in a multilingual context.461

Multilingual PRMs yield better performance462

with more candidate solutions. Figure 5 illus-463

trates that PRM-MULTI consistently outperforms464

both PRM-CROSS and PRM-MONO, with its ad-465

vantage growing more pronounced as the number466

of candidates (N) increases. This finding under-467

scores the scalability of multilingual PRM in di-468

verse linguistic scenarios. Overall, these obser-469

vations reinforce the conclusion that multilingual470

PRM not only maintains superior performance but471

also scales well as more candidates are introduced.472

6.3 Are Multilingual PRMs Compatible with473

Parameter-Efficient Finetuning?474

Recent research has demonstrated the effectiveness475

of parameter-efficient finetuning (PEFT) across a476

variety of tasks (Houlsby et al., 2019; Li and Liang,477

2021). Therefore, we explore whether the PEFT478

approaches, such as LoRA (Hu et al., 2022), also479

perform well on multilingual PRMs.480

Setup To investigate this question, we employ481

LoRA on the key, query, and value attention matri-482

ces. Specifically, we use a rank of 8 and a dropout483

rate of 0.05 for both multilingual and cross-lingual 484

PRMs. We train for three epochs with a batch size 485

of 64 and a learning rate of 1e−5. 486

LoRA is computationally efficient, but not as 487

good as its fully-finetuning counterpart in multi- 488

lingual PRMs. Figure 6 demonstrates that fully 489

fine-tuning (FFT) consistently outperforms LoRA 490

in both cross-lingual and multilingual settings. The 491

performance gap becomes larger on the MATH500 492

dataset, which contains more complex questions 493

compared to MGSM, suggesting that FFT is better 494

suited for tasks requiring deeper reasoning and un- 495

derstanding. These findings align with prior re- 496

search, which indicates that while PEFT methods 497

may fall short of FFT when tasks demand higher 498

complexity or reasoning capabilities (Biderman 499

et al., 2024). Interestingly, although LoRA-based 500

methods generally lag behind FFT, multilingual 501

LoRA achieves stronger results than cross-lingual 502

LoRA. This highlights the benefits of leveraging 503

multilingual data during parameter-efficient fine- 504

tuning, as multilingual data likely provides richer 505

data diversity and linguistic coverage. 506

6.4 Does PRM Surpass ORM in the 507

Multilingual Scenario? 508

In this section, we explore whether PRM also out- 509

performs Outcome Reward Model (ORM) and self- 510

consistency (SC) in multilingual settings. 511

Setup Following Lightman et al. (2024); Wang 512

et al. (2024b), we evaluate the performance of 513
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Figure 6: Comparison between parameter-efficient fine-
tuning (LoRA) PRM and fully fine-tuning (FFT) PRM
with LLAMA-3.1-8B-MATH generator.

PRM-MULTI by comparing it with other verifier514

methods, including: Direct prediction (BASELINE),515

Self-consistency (majority voting) (SC), and ORM.516

Specifically, we train a multilingual ORM using517

uniform example budgets across seven seen lan-518

guages. Then we assess the performance of veri-519

fiers on seven seen languages as well as on four520

additional unseen languages.521

Multilingual PRM outperforms SC and ORM522

across all languages and generators. The re-523

sults presented in Table 2 confirm that PRM consis-524

tently achieves higher accuracy on two benchmarks525

across multiple languages. Specifically, when using526

the LLAMA-3.1-8B-MATH as the generator, PRM527

improves average accuracy by +19.64 points on the528

MATH500 dataset and by +15.75 points on the MGSM529

dataset in terms of µALL, compared to the BASE-530

LINE of direct prediction. These substantial gains531

suggest PRM’s potential to enhance reasoning per-532

formance in a multilingual setting. Furthermore,533

PRM also surpasses both SC and ORM. For ex-534

ample, PRM exceeds SC and ORM by margins of535

up to +8.80 and +6.73 points on MGSM, respectively,536

when using LLAMA-3.1-8B-MATH as the genera-537

tor. Additionally, PRM demonstrates performance538

improvements for both seen and unseen languages.539

With the DEEPSEEKMATH-7B-INSTRUCT gener-540

ator on MGSM, PRM achieves respective gains of541

+17.49 and +31.20 for the seen and unseen lan-542

guage sets, compared to the BASELINE.543

6.5 Can Multilingual PRM Enhance LLMs?544

In this section, we demonstrate that the multilin-545

gual PRM can be used as the reward model for546

finetuning the LLMs under a RL paradigm.547

Setup We design experiments to improve548

LLAMA-3.1-8B-MATH using RL where we adopt549

BASELINE PPO-ORM PPO-PRM

English 78.40 80.40 82.40
German 68.80 64.00 68.80
Spanish 72.00 71.20 76.00
French 67.60 68.00 71.60
Russian 69.60 68.40 71.20
Swahili 33.60 38.80 41.20
Chinese 59.60 64.00 62.80
Japanese 48.80 46.80 49.20
Bengali 45.20 41.20 40.40
Telugu 17.60 20.40 18.00
Thai 56.80 51.20 56.80

Average 56.18 55.85 58.04

Table 3: Zero-shot evaluation on MGSM for LLAMA-3.1-
8B-MATH improved via PPO with PRM-MULTI.

the PPO strategy (Schulman et al., 2017) on the 550

MetaMathQA training set (Yu et al., 2023b). We 551

then evaluate the resulting policy models on MGSM 552

using top-1 accuracy in a zero-shot setting. Due 553

to the computational constraints, we only generate 554

one response during the fine-tuning process. 555

Reinforcement learning with multilingual PRM 556

further improves the performance of LLMs. 557

The results shown in Table 3 indicate that step-by- 558

step PPO with PRM-MULTI (PPO-PRM) consis- 559

tently outperforms a standard supervised fine-tuned 560

BASELINE and PPO with ORM (PPO-ORM). 561

LLAMA-3.1-8B-MATH with PPO-PRM achieves 562

average boosts of +1.86 and +2.19 across 11 lan- 563

guages, compared to BASELINE and PPO-ORM, 564

respectively. These findings highlight the impor- 565

tance of fine-grained multilingual rewards. These 566

gains demonstrate that process rewards can refine 567

policy decisions for both reasoning steps and final 568

outputs with RL. More results are in Appendix H. 569

7 Conclusion 570

Through comprehensive evaluations spanning 11 571

languages, our work demonstrates that multilingual 572

PRMs significantly enhance the ability to perform 573

complex, multi-step reasoning tasks in various lan- 574

guages, consistently outperforming both monolin- 575

gual and cross-lingual counterparts. Furthermore, 576

our findings highlight that PRM performance is sen- 577

sitive to the number of languages and the volume 578

of English training data. The multilingal PRMs 579

also benefit from more candidate responses and 580

model parameters. These results underscore the 581

importance of diverse language training in provid- 582

ing fine-grained rewards and open up promising 583

avenues for multilingual reasoning. 584
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8 Limitations585

While we have demonstrated the effectiveness of586

multilingual PRMs, our study has not comprehen-587

sively explored the wide range of reward optimiza-588

tion methods (Rafailov et al., 2024; Azar et al.,589

2024), some of which may not benefit from cross-590

lingual reward model transfer. Nevertheless, best-591

of-N and PPO, the two techniques leveraged in592

this paper, are highly representative of current prac-593

tices, particularly given the consistently strong per-594

formance of best-of-N (Gao et al., 2023; Rafailov595

et al., 2024; Mudgal et al., 2023). Furthermore,596

while our results show that multilingual PRMs out-597

perform both cross-lingual and monolingual PRMs,598

our experiments are limited to 11 languages. Ex-599

tending this approach to a broader set of languages600

and evaluating its impact across diverse linguistic601

families is an important avenue for future work.602
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#exam. max min mean
PRM800K trainset 404K 56 1 6.39
Math-Shepherd 445K 30 1 6.23
PRM800K testset 5071 53 1 22.11

Table 4: Dataset statistics of the datasets in this work,
including number of examples, maximum, minimum,
and average number of steps in the answers.

A Data Statistics843

The dataset statistics are summarized in Table 4.844

These include the total number of examples, as well845

as the maximum, minimum, and average number846

of reasoning steps in the answers across all exam-847

ples. For the selection criteria for the six languages,848

there are two key desiderata for the language se-849

lection in our work. Firstly, the examples must be850

accurately translatable into the target language by851

MT systems. Secondly, the target language must852

allow for proper evaluation. With these desiderata853

in mind, we selected six high-resource languages854

covered by the MGSM dataset. This choice en-855

sures that the translated data closely aligns with856

the original English dataset and allows us to focus857

on comparing model strategies without introducing858

the added variability that lower-resource language859

translations might cause. We will clarify this in our860

future revision.861

B Translation Details862

Due to imbalanced resources across languages,863

translation has become a standard method for multi-864

lingual research. Recent research has demonstrated865

that machine-translated datasets are comparable to866

human-translated ones and can be directly used for867

training and evaluation (Chen et al., 2024; Thell-868

mann et al., 2024).869

In this study, after translating the English dataset870

into foreign languages, we use regular expressions871

to filter out the translated training instances that872

contain discrepancies in numbers or equations com-873

pared to the original English dataset. This ensures874

the correctness of the mathematical content. For875

the translated multilingual MATH500 test set, we876

employ two human translators to post-edit the test877

instances in high-resource languages (de, es, fr, ru,878

zh, and ja) by correcting inaccurate translations879

and verifying the consistency of mathematical no-880

tations. We pay $0.05 USD for each example, re-881

sulting in a total cost of $150 USD for post-editing.882

For the low-resource languages (bn, sw, te, and th)883
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Figure 7: Performance of PRM-MONO trained on seven
seen languages and evaluated on all 11 languages based
on the MATH500 with LLAMA-3.1-8B-MATH generator.

in MATH500, we leverage GPT-4O to post-edit the 884

translations. 885

To verify the quality of our translations, we use 886

Google Translate to back-translate the multilingual 887

MATH500 and 1,000 random training instances from 888

each training set into English. We then calculate the 889

BLEU score using the original English instances 890

as the reference translation. As shown in Table 5, 891

the high BLEU scores confirm the quality of the 892

translations in our datasets. 893

C Training Details 894

We train the PRMs by fine-tuning all parame- 895

ters of QWEN2.5-MATH-7B-INSTRUCT using the 896

AdamW optimizer with a learning rate of 10−5 897

and a batch size of 8. This process is conducted 898

over two epochs on 4 NVIDIA A100 GPUs (80GB). 899

During training, we use a linear learning rate sched- 900

ule with a warm-up phase that constitutes 10% of 901

the total training steps. 902

D Cross-lingual Transfer of PRMs 903

Following Wu et al. (2024b), we assess the perfor- 904

mance of cross-lingual PRMs to inspect if language 905

similarity like the script or mutual intelligibility 906

might affect the levels of reasoning verification 907

cross-lingual transfer. 908

Setup We train PRMs on monolingual versions 909

of the data in German, Spanish, French, Russian, 910

Swahili, and Chinese, and evaluate their transfer to 911

other languages. 912

No clear signal indicates that language similar- 913

ity strongly correlates with cross-lingual trans- 914

fer. We present the cross-lingual transfer results 915
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de es fr ru sw zh ja bn te th

Train 81.2 88.4 87.3 74.0 87.3 80.8 - - - -
Test 85.9 91.5 91.0 73.0 90.3 84.4 84.3 65.3 65.8 80.9

Table 5: BLEU scores of back-translation examples with using the original English data.

in Figure 7 and observe that there is no clear conclu-916

sion regarding the factors that impact cross-lingual917

transfer. For instance, the PRM trained on Russian918

data achieves the highest accuracy when evaluating919

French, Swahili, Chinese, Telugu, and Thai. No-920

tably, these languages neither share the same script921

nor belong to the same language family as Russian.922

This observation suggests that linguistic similarity,923

in terms of script or language family, may not be924

a decisive factor in cross-lingual transfer. These925

findings underscore the uncertainty in predicting926

cross-lingual transfer performance based solely on927

language similarity. In practice, selecting a diverse928

set of representative languages for training a mul-929

tilingual PRM may be a more effective strategy to930

address this uncertainty and improve performance931

across a wide range of target languages.932

E Breakdown Results of MGSM for933

PRM-MONO, PRM-CROSS, and934

PRM-MULTI935

We present the breakdown of results for each lan-936

guage on the MGSM in Table 6. The results indi-937

cate that the PRM-MULTI consistently outperforms938

both the PRM-MONO and PRM-CROSS models939

across languages. This observation aligns with the940

conclusion drawn in Section 5.1, highlighting the941

advantages of multilingual training for PRMs.942

F Results on General-Purpose LLM943

We provide the results of the general LLM944

Qwen2.5-7B-Instruct on MATH500 in Table 7. It can945

be observed that the multilingual PRM achieves946

consistent conclusions when applied to the general947

LLM.948

G Statistical Significance Results949

We follow Koehn (2004) to perform bootstrap re-950

sampling for statistical significance testing. We951

present the average results across 30 random seeds952

along with their corresponding standard deviations953

in Table 8. We observe that PRM-MULTI outper-954

forms the other two baselines with statistical signif-955

icance in terms of µALL, µSEEN, and µUNSEEN. The956

symbol † indicates that the improvement achieved 957

by PRM-MULTI is statistically significant at sig- 958

nificance level α = 0.05 when compared to PRM- 959

CROSS. These results confirm that the contribution 960

of multilingual training is significant, improving 961

generalizability and aligning well with the conclu- 962

sion that “Multilingual PRMs generalize better on 963

the unseen languages”. 964

H Influence of Checkpoint Selection 965

We observe a decline in Bengali performance in 966

both ORM and PRM, as shown in Table 3. Upon 967

evaluating the performance at each intermediate 968

checkpoint, our analysis indicates that this behav- 969

ior stems from the PPO training process and the 970

strategy used for selecting the final checkpoint, as 971

illustrated in Table 9. Specifically, since the check- 972

point is selected based on the average loss across all 973

languages, the one that minimizes the overall loss 974

does not necessarily yield optimal performance for 975

individual languages. In this case, Bengali appears 976

to follow a distinct learning rate trajectory com- 977

pared to other languages. We acknowledge this 978

limitation and plan to investigate language-specific 979

adjustments to the training process in future work. 980

981
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MGSM µALL µSEEN µUNSEEN en de es fr ru sw zh ja bn te th

METAMATH-MISTRAL-7B

PRM-MONO - 76.0 - 90.8 78.8 81.2 81.6 86.0 36.0 77.6 - - - -
PRM-CROSS 65.2 76.7 45.2 90.8 84.4 85.2 82.4 86.8 27.2 80.0 76.2 43.0 7.6 54.0
PRM-MULTI 65.5 77.1 45.1 89.2 83.2 86.0 82.4 86.4 33.2 79.2 75.6 43.2 8.0 53.6

LLAMA-3.1-8B-MATH

PRM-MONO - 81.7 - 92.4 83.2 88.0 80.4 82.4 62.4 83.2 - - - -
PRM-CROSS 68.8 79.3 50.6 92.4 82.0 88.0 82.0 79.2 50.4 80.8 72.8 39.6 20.8 69.2
PRM-MULTI 71.9 82.0 54.3 90.4 87.6 88.0 83.6 83.2 59.6 81.6 74.0 48.0 23.6 71.6

DEEPSEEKMATH-7B-INSTRUCT

PRM-MONO - 80.5 - 96.4 86.4 90.4 85.2 88.0 32.0 85.0 - - - -
PRM-CROSS 74.0 79.0 65.1 96.4 86.0 91.2 85.6 87.2 18.4 88.4 80.0 57.6 51.6 71.2
PRM-MULTI 75.4 80.5 66.5 95.2 84.0 92.4 86.4 89.2 30.0 86.4 80.8 60.8 52.4 72.0

Table 6: Different PRMs’ best-of-N sampling (N = 64) performance on MGSM with the generator of METAMATH-
MISTRAL-7B, LLAMA-3.1-8B-MATH, and DEEPSEEKMATH-7B-INSTRUCT. µALL, µSEEN, and µUNSEEN indicate
the macro-average of results across all the languages, the seen languages, and the unseen languages, respectively.

MATH500 µALL µSEEN µUNSEEN en de es fr ru sw zh ja bn te th

BASELINE 36.3 37.9 33.4 44.2 40.6 41.6 40.2 40.8 20.8 37.4 40.6 38.2 20.2 34.4
PRM-MONO - 54.2 - 61.0 57.6 58.0 57.0 58.2 31.6 56.2 - - -
PRM-CROSS 53.2 57.1 55.7 63.6 60.8 60.4 60.4 61.6 33.8 59.4 60.8 58.8 36.8 56.4
PRM-MULTI 54.0 58.2 56.7 64.8 61.6 61.8 61.2 62.2 35.2 60.6 61.2 58.6 38.2 57.8

Table 7: Performance on general LLM Qwen2.5-7B-Instruct.

µALL µSEEN µUNSEEN en de es fr ru sw zh ja bn te th

METAMATH-MISTRAL-7B

PRM-MONO - 42.5
±0.6 - 49.0

±0.4
44.3
±0.6

45.9
±0.5

45.6
±0.5

45.9
±0.6

25.0
±1.0

41.9
±0.8 - - - -

PRM-CROSS
39.3
±0.6

43.1
±0.5

32.8
±0.7

49.0
±0.4

45.3
±0.5

45.1
±0.5

46.7
±0.4

46.4
±0.6

25.2
±0.9

43.8
±0.5

43.5
±0.4

31.3
±0.9

22.0
±0.7

34.5
±0.6

PRM-MULTI
39.6
±0.5

43.1
±0.5

33.3
±0.6†

50.3
±0.3†

45.6
±0.5

47.4
±0.3†

45.3
±0.4

45.2
±0.5

25.2
±0.8

42.9
±0.4

43.6
±0.4

32.5
±0.8†

21.9
±0.7

35.2
±0.5†

LLAMA-3.1-8B-MATH

PRM-MONO - 43.3
±0.5 - 49.0

±0.4
46.2
±0.5

45.9
±0.4

44.2
±0.5

45.7
±0.5

26.3
±0.8

46.1
±0.4 - - - -

PRM-CROSS
40.9
±0.6

43.6
±0.5

36.2
±0.7

49.0
±0.4

48.8
±0.4

46.5
±0.4

44.8
±0.5

44.8
±0.4

26.1
±0.8

45.2
±0.5

43.1
±0.8

35.9
±0.7

28.1
±0.6

37.6
±0.6

PRM-MULTI
41.8
±0.4†

44.8
±0.4†

36.4
±0.5

51.1
±0.2†

48.9
±0.4

45.8
±0.4

46.1
±0.4†

46.3
±0.3†

28.4
±0.7†

47.3
±0.3†

42.0
±0.6

34.7
±0.5

30.3
±0.5†

38.6
±0.4†

DEEPSEEKMATH-7B-INSTRUCT

PRM-MONO - 55.1
±0.4 - 63.0

±0.3
59.0
±0.3

60.3
±0.4

59.1
±0.4

60.3
±0.4

29.2
±0.4

54.9
±0.3 - - - -

PRM-CROSS
50.2
±0.4

54.9
±0.4

41.9
±0.6

62.5
±0.3

59.9
±0.4

59.8
±0.4

61.4
±0.3

57.4
±0.5

29.5
±0.5

54.0
±0.3

54.4
±0.4

38.1
±0.5

32.5
±0.7

42.6
±0.6

PRM-MULTI
51.3
±0.4†

55.6
±0.3†

43.8
±0.5†

63.8
±0.2†

58.7
±0.3

60.2
±0.2

60.3
±0.3

61.4
±0.4†

30.5
±0.3†

54.2
±0.3

55.9
±0.3†

38.0
±0.5

35.6
±0.5†

45.5
±0.6†

Table 8: The average results across 30 random seeds along with their corresponding standard deviations on MATH500.
† indicates that the improvement achieved by PRM-MULTI is statistically significant when compared to PRM-
CROSS.
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Checkpoint Bengali English French

BASELINE 45.2 78.4 67.6
Checkpoint-500 46.8 80.0 69.2
Checkpoint-1150 (final) 40.4 82.4 71.6

Table 9: The influence of final checkpoint selection
strategy during the PPO training process.
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