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ABSTRACT

We present a highly efficient, agent-based framework for facial landmark detec-
tion that prioritizes model compactness and computational efficiency over max-
imum accuracy. Unlike conventional approaches that rely on large, fully super-
vised models, our method assigns each agent to a specific landmark, enabling it to
infer its position solely from local observations and prior knowledge without ex-
plicit location awareness or inter-agent communication. Prior knowledge is mod-
eled in two embedding spaces—feature and coordinate—using class-conditional
Gaussian distributions. Agents navigate by minimizing deviations from these pri-
ors via a lightweight policy network. To enhance representation learning, we in-
troduce a proximity-weighted contrastive learning strategy that incorporates spa-
tial proximity into the training objective. A multi-stage detection strategy further
reduces redundant computation by detecting sub-landmarks relative to core land-
marks. While our method produces slightly higher normalized mean error than
state-of-the-art (SoTA) methods, it achieves over 16× and 41× improvements
in space and time complexities, respectively, compared to the SoTA lightweight
model, running at 4.19 and 1.29 frames per second on an i5 CPU (2.5 GHz) for
the COFW and 300W datasets, respectively.

1 INTRODUCTION

Facial landmark detection is a fundamental component in many computer vision applications, in-
cluding face recognition (Zhao et al., 2003), expression analysis (Yang et al., 2018), and 3D face
reconstruction (Liu et al., 2018). Over the past decade, advances in deep learning have greatly im-
proved detection accuracy. However, the increasing demand for real-time performance on resource-
constrained platforms, such as mobile devices, AR/VR headsets, and embedded AI modules, has
shifted attention toward efficiency-oriented solutions. Such platforms impose strict limits on power
consumption, computation, and memory, motivating the need for new algorithms that balance accu-
racy with efficiency.

Facial landmark detection aims to localize key facial points in 2D images. State-of-the-art (SoTA)
methods often achieve high accuracy using large-scale models, especially those based on supervised
heatmap and coordinate regression (Feng et al., 2018; Lin et al., 2021; Wang et al., 2020; Huang
et al., 2021; Dang et al., 2025). However, these models incur high computational and memory costs,
making them unsuitable for embedded or low-power environments. In contrast, our method adopts
a lightweight, agent-based approach that leverages prior knowledge and local observations to detect
landmarks efficiently. Although our normalized mean error (NME) is higher than that of SoTA
models, our approach offers orders-of-magnitude gains in efficiency with only 577k parameters and
< 30 MFLOPs, compared to 9.7–67M parameters and 1.2–26.8 GFLOPs for conventional methods.
This trade-off makes our method highly practical for real-time, embedded applications.

Our contributions are as follows:

• We propose an agent-based framework in which each agent independently localizes a spe-
cific landmark using only local observations and learned priors without access to absolute
coordinates.

• We model prior knowledge in both latent feature and coordinate spaces via class-
conditional generative models, enabling effective search under weak supervision.
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• We introduce a spatially aware contrastive learning method that weights positives according
to spatial proximity, improving robustness in occluded or noisy conditions.

• Despite slightly higher NME than SoTA models, our method achieves 16.8× lower space
complexity and 41.1× lower time complexity than the best lightweight baseline, enabling
real-time CPU inference.

2 RELATED WORK

2.1 REGRESSION-BASED METHODS

Facial landmark detection methods are commonly categorized into coordinate regression (CR) and
heatmap regression (HR) approaches. CR methods (Feng et al., 2018; Qian et al., 2019; Lin et al.,
2021) directly predict landmark coordinates using deep neural networks, learning both spatial map-
pings and local features. While conceptually straightforward, CR approaches are highly sensitive
to noise and bias, and typically require extensive supervision to achieve accurate predictions. HR
methods (Wang et al., 2020; Huang et al., 2021) generate heatmaps for each landmark, from which
coordinates are derived via a decoding step. Despite their strong accuracy, HR models face two
notable limitations:
Quantization error: Because heatmaps are typically of lower resolution than the input image, the
decoding process introduces quantization errors (Bulat et al., 2021; Lan et al., 2021), degrading co-
ordinate precision.
Lack of landmark correlation modeling: Standard HR methods generate heatmaps independently
for each landmark, ignoring spatial relationships.
D-ViT (Dang et al., 2025) addresses this via spatial-split and channel-split vision transformers. Both
CR and HR methods require full-image access and combine feature extraction with coordinate pre-
diction in a single large model, leading to high parameter counts and computational cost.

2.2 MULTIPLE LANDMARK DETECTION WITH AGENTS

Detecting multiple landmarks with agents is challenging due to the need for coordination and re-
liance on partial visual observations. A key difficulty lies in effectively leveraging prior knowledge
of both morphological and spatial correlations among landmarks. MARL (Vlontzos et al., 2019)
uses a Deep Q-Network with inter-agent communication to implicitly capture morphological re-
lationships through joint actions. The Multiscale Agent (Alansary et al., 2019) method addresses
spatial relations by incorporating multiscale search. SGMaRL (Wan et al., 2023) integrates a sta-
tistical shape model (Cootes et al., 1995) to refine landmark positions based on spatial structure.
While these approaches consider landmark correlations, they do so only partially—handling either
morphological or spatial aspects in isolation. None fully integrate both dimensions of prior knowl-
edge, limiting their ability to guide agents efficiently and accurately in complex visual conditions.

2.3 CONTRASTIVE LEARNING

Contrastive learning projects representations into a latent space where similar instances are pulled
together and dissimilar ones are pushed apart (Chen et al., 2020; Tian et al., 2020). Typically,
two augmented views per sample yield 2N views for a batch of N samples. In self-supervised
settings, only views from the same source are considered positive pairs. A limitation is that different-
class instances may be treated as negatives, even if semantically related. Supervised Contrastive
Loss (SupConLoss) (Khosla et al., 2020) addresses this by incorporating label information, allowing
multiple positive pairs per class. This improves representation quality, leading to more accurate and
robust classification.

3 METHOD

3.1 ALGORITHM OVERVIEW

Our method employs Nc agents, each assigned to search a specific landmark (c ∈ Cl; |Cl| = Nc) on
a given image of size C×H×W . In total, the agents simultaneously search all Nc landmarks, with
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Figure 1: Overview of our algorithm for facial landmark detection.

each agent exclusively responsible for one landmark. Their coordinates x = (xh, xw) correspond
to multiple fixation points, which are normalized to the image size (xh, xw ∈ [−1, 1]). We also use
normalized coordinate for landmarks. Agents have access to:

1. Prior knowledge of landmarks in both the coordinate and latent feature spaces.
2. Multiscale local observations o ∈ R3C×a×a, with a≪ H,W .

Agents do not know their absolute positions; positions are inferred from observations o. No inter-
agent communication occurs. Fig. 1 illustrates the framework at timestep t.

Observation by agents. To let each agent understand how the local visual structure relates to its
spatial context, we consider three patches (o[1]: C×a×a, o[2]: C×s1a×s1a, and o[3]: C×s2a×s2a;
1 < s1 < s2) centered at its current location x. The o[2] and o[3] patches are resized to C × a × a
and concatenated with the o[1] patch to construct the observation o ∈ R3C×a×a. Throughout this
study, we set a = 27, s1 = 4, and s2 = 10, respectively. When the patches exceeds the original
image boundaries, Constant padding is applied when patches exceed image boundaries.

Data extraction from local observation. Observation o by an agent located at x is processed to
extract the latent feature and coordinate of the local view in its spatial context using the following
models.

• FeatNet : R2C×a×a → Rdft . FeatNet projects current local observation o by an agent at x
to an embedding zft ∈ Rdft . This network is trained using proximity-weighted contrastive
learning, which projects observation o to an embedding similar to spatially proximal land-
marks. Tensor o0:2C,:,: is provided as input. zft = FeatNet(o0:2C,:,:). We omit o2C:3C,:,:

due to its minimal contribution. Unless otherwise stated, we fix dft = 128.
• CoordNet : R2C×a×a → R2+dcd , which infers the agent’s current absolute coordinate.

CoordNet function infers the agent’s current coordinate x̂ from the local observation, which
is also trained using proximity-weighted contrastive learning. Simultaneously, CoordNet
projects the observation to a dcd-dimensional vector zcd(≡ x̂). We omit o0:C,:,: due to its
minimal contribution. [x̂, zcd] = CoordNet(oC:3C,:,:). We fix dcd = 128.

• RelCoordNet : R2(C+1)×a×a → R2+dcd . This function infers the agent’s current relative
coordinate (∆x̂; ∆x̂h,∆x̂w ∈ [−2, 2]) with reference to a given coordinate x0. We used
RelCoordNet instead of CoordNet for landmarks with high positional variability.

Computation of deviation from knowledge. For current observation o, the latent feature and
coordinate embeddings (zft and zcd) are each compared to their respective preferred embeddings
(prior knowledge z∗

c,ft ∈ Rdft and z∗
c,cd ∈ Rdcd for landmarks in class c) to compute the distance D.

D = λftDft + λcdDcd, D(·) = ||z(·) − z∗c,(·)||
2
2, where (·) ∈ {ft, cd} . (1)

The distance D is a weighted combination of distances from each embedding space, using balance
parameters (λft and λcd) such that λft+λcd = 1. If the distance D is lower than a preset threshold θd,
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Algorithm 1 Generative model for prior knowledge.
Input: Training dataset T of NT samples.
Output: Generative model parameters µzft|c, σ2

zft|c, µzcd|c, σ2
zcd|c

1: Kft ← zero tensor of shape (NT , Nc, dft)
2: Kcd ← zero tensor of shape (NT , Nc, dcd)
3: for each sample yi in T do
4: for each landmark cj in C do
5: Compute o for landmark cj in sample yi
6: Kft[i, j]← FeatNet(o0:2C,:,:)
7: Kcd[i, j]← CoordNet(oC:3C,:,:)
8: end for
9: end for

10: µz(·)|cj ← K(·).mean(dim = 0) for (·) ∈ {ft, cd}
11: σ2

z(·)|cj ← K(·).var(dim = 0) for (·) ∈ {ft, cd}

the agent has successfully arrived at the landmark, outputting its current coordinate (x̂ if CoordNet
was used, and x0 +∆x̂ if RelCoordNet was used). Otherwise, the agent continues searching.

Hopping policy. The agent infers optimal hopping direction and distance using PolNet that is fac-
torized into two sub-functions (dirPolNet and HDst): PolNet = HDst · dirPolNet.

• dirPolNet : R2dft+2dcd+2 → R8. dirPolNet is a categorical classifier that infers the
optimal hopping direction u∗ ∈ U . We defined the direction space U as follows:
U = {(u1, u2) | (u1 ∈ U0 ∨ u2 ∈ U0) ∧ (u1, u2 ̸= 0)}, where U0 = {−1, 0, 1}. There-
fore, |U | = 8. This model takes zft/z

∗
c,ft/λft and zcd/z

∗
c,cd/λcd for the current observation

o as input.
• HDst : R→ Z>0. This function determines the hopping distance s ∈ [1, smax] as a function

of the distance D.

3.2 PRIOR KNOWLEDGE MODELING

We built generative models for prior knowledge of landmarks projected to two independent spaces
(latent feature space Rdft and coordinate space Rdcd ).

p (zft, c) = p (zft|c) p (c) for latent features, p (zcd, c) = p (zcd|c) p (c) for coordinate,

where c denotes a landmark class. We modeled the class-conditional probability distribution func-
tion p (z|c) using a Gaussian function:

p (z|c) = N (µz|c,Σz|c) ≈ N (µz|c,σ
2
z|cI), (2)

where we apply a diagonal approximation to the covariance matrix Σz|c for computational simplic-
ity. The parameters µz|c and σ2

z|c were separately computed for each of the two embeddings (to zft

and zcd) over all landmarks of the same class in a given training dataset. This procedure is detailed
in Algorithm 1. Prior knowledge z∗

c,ft and z∗
c,cd is sampled from the conditional generative model in

Eq. 2.

3.3 NETWORK MODELS

FeatNet. This model (2C9(6C9)-9C16-16C32-32C64-FC256-FC128-L2Norm for gray-scale
(RGB) images) projects the local observation o0:2C,:,: by an agent at x to the feature space Rdft .
Inspired by supervised contrastive learning (Khosla et al., 2020), we trained FeatNet using a novel
proximity-weighted contrastive learning algorithm that locates the embedding zft for a given ob-
servation close to landmarks of spatial proximity. To this end, all landmarks within a o[2] patch of
C × s1a × s2a size centered at given x are considered as positive landmarks while the others as
negative ones. Furthermore, we defined the degree of positiveness for the positive landmarks based
on their distances from the coordinate x.
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For proximity-weighted contrastive learning,
the ith sample in a given batch B includes a
single anchor at x(i)

A , which is placed on a
landmark cA(i) (at x(i)

cA(i)
) that is randomly

sampled from total Nc landmarks (x(i)
A =

x
(i)
cA(i)

). We define an augmented batch B′
of the same samples (and sequence) as B but
with a random anchor for each sample, and
thus unnecessarily x

(i)
A = x

(i)
cA(i)

. The key is
the use of a proximity-weighted contrastive
loss (PWConLoss) for B and B′.

Figure 2: Example of sample augmentation for
proximity-weighted contrastive learning. Right eye,
left eye, nose, mouth left, and mouth right are de-
noted by re, le, no, ml, and mr, respectively.

LPWS =
−1
|B|

∑
i∈B

[
1

N (i)

∑
j∈B\{i}

w(i,j)⊮{cA(i)∈p(j)}l
(i,j)

︸ ︷︷ ︸
between cA(i) and cA(j) (j ̸= i)

+
1

N ′(i)

∑
j∈B′

w(i,j)⊮{cA(i)∈p(j)}l
(i,j)

︸ ︷︷ ︸
between cA(i) and random observations o

]
,

N (i) =
∑

j∈B\{i}

⊮{cA(i)∈p(j)}, N
′(i) =

∑
j∈B′

⊮{cA(i)∈p(j)}, l(i,j) = log
exp(z

(i)
A · z

(j)
A /τ)∑

k∈Bs\{i}
exp(z

(i)
A · z

(k)
A /τ)

,

(3)
where p(j) =

{
c ∈ Cl|x(j)

c ∈ o[2] for x(j)
A

}
. The weight w(i,j) is given by

w(i,j) = 1 + exp
(
−0.025d(i,j)

)
, (4)

where d(i,j) denotes the distance between x
(j)
cA(i)

and x
(j)
A . Note that x(j)

cA(i)
means the coordinate of

the anchor landmark type of the ith sample cA(i) on the jth sample. For j ∈ B\ {i}, the equality
x
(j)
A = x

(j)
cA(j)

holds. In Eq. 3, Bs = concat(B,B′), and z
(i)
c,ft and τ denote the embedding of the

anchor in the ith sample and temperature, respectively. An example of sample augmentation for
proximity-weighted contrastive learning is shown in Fig. 2.

CoordNet/RelCoordNet. CoordNet projects the local observation oC:3C,:,: by an agent at x to
the coordinate space Rdcd . It consists of four convolutional layers and one linear layer: 2C9(6C9)-
9C16-16C32-32C64-FC128-L2Norm for gray-scale (RGB) images. We deploy an additional head
for coordinate regression, Linear(128 → 2) + Tanh, which infers the normalized coordinate x̂
(x̂h, x̂h ∈ [−1, 1]) for the agent at x. Similar to FeatNet, the main network (except the head) is
trained using proximity-weighted contrastive learning using the PWConLoss in Eq. 3 with a weight
function w(i,j) = 2 + 9.26 · 10−3d(i,j) instead of Eq. 4. However, the anchor for each samples in
batch B is placed on a random coordinate on the sample unlike FeatNet (for which the anchor is
on a landmark only), and thus, the embedding zcd for a given observation becomes similar to other
observations of spatial proximity. The additional head is trained using a mean squared error loss
function (MSELoss).

RelCoordNet has the same architecture as CoordNet except the first convolutional layer and head for
coordinate regression: 4C9(8C9)-9C16-16C32-32C64-FC128–L2Norm-FC2-2Tanh for gray-scale
(RGB) images. RelCoordNet takes the reference coordinate x0 (represented using x0

w11×a×a and
x0
h11×a×a; x0

w, x
0
h ∈ [−1, 1]) as its input alongside the local observation oC:3C,:,:, so that the input

consists of 2C + 2 channels. Instead of Tanh, 2Tanh is applied because of the range of relative
coordinate ∆x̂ (∆x̂h,∆x̂w ∈ [−2, 2]). This model is also trained using proximity-weighted con-
trastive learning using PWConLoss in Eq. 3 with random anchors for the samples in batch B as for
CoordNet. The head is trained using MSELoss.
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Algorithm 2 Delayed decision algorithm.

Input: Λ̂, Dft, Dcd, θd, λft, x̂
Output: Updated SHT and x̂c

1: Dmin ← MAX; x̂c ← NULL
2: for i = 0 to Nλ − 1 do
3: Dtmp ← Λ̂[i]Dft + (1− Λ̂[i])Dcd
4: if SHT[i, 0] > Dtmp then
5: SHT[i, 0]← Dtmp; SHT[i, 1]← x̂
6: end if
7: end for
8: i← 0
9: while Λ̂[i] ≥ λft do

10: if SHT[i, 0] ≤ θd and SHT[i, 0] ≤ Dmin then
11: x̂c ← x̂; Dmin ← SHT[i, 0]
12: end if
13: i← i+ 1
14: end while

PolNet. PolNet infers the optimal hopping direction u∗ and distance s ∈ [1, smax] for the current
local observation o using its sub-functions, dirPolNet and HDst, respectively.

PolNet = HDst(D) · dirPolNet(I),
I = concat(zft, z

∗
c,ft, λft, zcd, z

∗
c,cd, λcd),

HDst(D) = min ((⌈D/∆D⌉) , smax) ,
(5)

where ∆D denotes a unit step for uniform quantization of distance D in Eq. 1. dirPolNet (FC512-
FC256-FC8-Softmax) infers the optimal hopping direction u∗ ∈ U , which is trained using super-
vised learning on a dataset T . We define U = {(u1, u2) | (u1 ∈ U0 ∨ u2 ∈ U0) ∧ (u1, u2 ̸= 0)},
where U0 = {−1, 0, 1}. That is, |U | = 8. For a given image, a pair of coordinate x and landmark
c ∈ Cl are randomly sampled. Similar to the habitual network (Cushman & Morris, 2015), each
sample yi = (Ii, ûi) in T consists of (1) input Ii (in Eq. 5) for the local observation o at the random
coordinate x and (2) ûi = argminAu∈UD for the coordinate x and landmark c.

3.4 HYPERPARAMETER SETTING

Detection threshold. Detection threshold θd is a primary hyperparameter that determines the de-
tection accuracy and speed, which are measured in NME and duration required for detection (Td),
respectively. A lower θd generally yields a lower NME but a larger Td. To balance this trade-off,
threshold θd is initially set to its minimum (θd,min) and is monotonously increased by ∆θd at each
timestep if detection fails.

Balance parameters. Balance parameters λft and λcd(= 1−λft) in Eq. 1 govern the complementary
contributions of the distances from distinct representation spaces (Dft and Dcd) to the total distance
D. A higher λft generally yields a lower NME but a larger Td. We initially set λft is initially set to its
maximum(λft,max and monotonically decrease by ∆λft once every two timesteps if detection fails.

3.5 EFFICIENCY ENHANCEMENTS

Delayed decision algorithm. Critical detection inefficiency with varying hyperparameters (θd and
λft) arises when previously visited locations with previous hyperparameter values yield successful
detection with the current θd. Revisiting such locations and repeatedly recalculating the distance D
leads to redundant computation. To mitigate this issue, we introduce a delayed decision algorithm
for the following case.

θd[t
′] < D[t′] =

∑
i∈{ft,cd}

λi[t
′]Di[t

′] ≤ θd[t] for t′ < t.

We define a balance parameter set Λ = {λ[t]|∀t ∈ [0, tmax]} (|Λ| = Nλ) and a corresponding tuple
Λ̂ of λ(∈ Λ) sorted in descending order. This delayed decision algorithm is based on a Nλ × 2

6
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search history table (SHT). Algorithm 2 explains SHT organization and delayed decision based on
the SHT.

Two-stage detection. To reduce the detection duration Td, we introduce a two-stage detection strat-
egy for all landmarks. The first stage detects coarse coordinates of landmarks using the higher
detection threshold θ

(1)
d and lower balance parameter λ(1)

ft , and the second stage refines the coor-
dinate using the lower threshold θ

(2)
d (< θ

(1)
d ) and higher balance parameter λ(2)

ft (> λ
(1)
ft ). In each

stage, the hyperparameters change following the rule explained in the previous section.

Figure 3: Example of cascaded detection.

Cascaded detection. Facial landmarks can be
grouped based on their spatial proximity in the
latent feature space Rdft . We choose a single
core-landmark for each group and considered
the others in the same group as sub-landmarks.
Agents responsible for detecting landmarks in
the same group often exhibit overlapping tra-
jectories in the initial detection phase, leading
to redundant computation. To address this, we
propose a cascaded detection strategy. In this strategy, a single agent first detects the core-landmark
using FeatNet and CoordNet for local observation o at each timestep t. This core-landmark serves as
a reference. Subsequently, multiple agents simultaneously search the sub-landmarks with reference
to the core-landmark. This approach mitigates redundant agent movements during the early detec-
tion steps, thereby reducing redundant computation and processing time. Fig. 3 shows an example
of cascaded detection for a Right-eye group. Note that we use RelCoordNet in place of CoordNet
for the sub-landmarks in a particular group.

4 EXPERIMENTAL RESULTS

We used the COFW (Burgos-Artizzu et al., 2013) and 300W (Sagonas et al., 2016) datasets as a
proof of concept. COFW comprises 1,345 training and 507 test images (gray-scale), each annotated
with 29 landmarks. COFW with frequent occlusions is well-suited for evaluating our method’s
ability to leverage prior knowledge of landmarks. 300W comprises 3,148 training and 689 test
images (RGB), each annotated with 68 landmarks. This dataset exhibits a wide range of variations
in pose and lighting conditions.

4.1 IMPLEMENTATION DETAILS

Each image is cropped to include the full head, resized to 256×256, then randomly rescaled (±5%)
and horizontally flipped (50%). For cascaded detection, the landmarks in each dataset are grouped
based in their spatial proximity as follows.
COFW: left eye (left pupil), right eye (right pupil), and others (nose tip)
300W: left eye (left inner canthus), right eye (right inner canthus), mouth (Cupid’s bow),
nose (nose tip), jaw line (none).
The landmarks in parentheses indicate core landmarks. We used different FeatNets with different
sets of parameters (but the same CoordNet and RelCoordNet) for each group. For the Others group
in COFW, RelCoordNet was used for detecting the sub-landmarks. Note that we used the means
µzft|c and µzcd|c as prior knowledge z∗

c,ft and z∗
c,ft, respectively, unless otherwise stated. The models

were trained using the Pytorch framework (Paszke et al., 2019) on a GPU workstation (RTX A6000;
Xeon Gold CPU 2.9GHz; 256 GB DRAM). Landmark detection experiments were conducted on
both the GPU workstation and a desktop equipped with an i5 CPU (2.5GHz) and 32 GB DRAM.
The hyperparameters were optimized using Optuna (Akiba et al., 2019). All hyperparameters are
summarized in Technical Appendix.

4.2 PERFORMANCE OF NETWORK MODELS

FeatNet. We analyzed a fully trained FeatNet whose learning curve is shown in Technical Appendix.
Fig. 4a shows L2 distance between landmarks in the same classes in COFW, identifying successful
landmark clustering. Fig. 4b shows L2 distance between a left pupil (Class 17) and the others on the
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Figure 4: Performance of FeatNet embeddings. (a) L2 distances
between embeddings of landmarks within the same class. (b)
L2 distance between a left-pupil embedding and embeddings of
other landmarks. (c) L2 distances as a function of spatial distance
from a given landmark. (d) Comparison with a supervised con-
trastive learning baseline.

Figure 5: L2 distances be-
tween coordinate embeddings
and landmarks at varying spa-
tial distances from the land-
marks in the inset for (a) Coord-
Net and (b) RelCoordNet.

Figure 6: Detected landmarks (red circles) and ground-truth annotations (green circles) on sample
images from COFW and 300W.

Figure 7: Average detection accuracy (NME) and detection duration for each landmark on 300W.

same image. This identifies the separation of landmark clusters based on their spatial proximity. We
analyzed the capability of FeatNet to encode observations o at random coordinates x as zft based on
their distances from landmarks. Fig. 4c highlights (1) a gradual increase in L2 distance with distance
between the observation o and landmark and (2) marginal variability in L2 distance at aero distance
upon different landmarks. As a counterpart, we used the same network trained with supervised
contrastive learning, where spatial proximity was addressed in binary form, employing the same
loss as in Eq. 3 but without the proximity weight w(i,j). The performance of this counterpart is
shown in Fig. 4d. The comparison with this counterpart highlights proximity-weighted contrastive
learning as a means to encode random observations based on spatial separation from the landmarks.

CoordNet/RelCoordNet. Fully trained CoordNet and RelCoordNet (whose learning curves are
shown in Technical Appendix) successfully infer the coordinate of the current observation as zcd-
dimensional embeddings. Fig. 5 shows the L2 distance between the coordinate embedding zcd and
several landmarks (in the inset) with spatial distance. Compared with Fig. 4, CoordNet/RelCoordnet
can infer the coordinate of distal observations with higher precision (lower variability).

4.3 DETECTION PRECISION AND EFFICIENCY

The detected landmarks on several samples in COFW and 300W are shown in Fig. 6, demonstrating
successful landmark detection using our algorithm. Nevertheless, our method has higher NME
than regression-based SoTA techniques as listed in Table 1. This is largely due to the fact that our
approach rely on not supervised learning but prior knowledge of landmarks’ features. For instance,
although our method well detects the jaw-line landmarks in 300W samples (Fig. 6), NME for these
landmarks is large due to their deviation from the semi-automatically annotated jaw-line landmarks

8
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Table 1: Comparison of our method with SoTA approaches on COFW and 300W datasets. The
NME value in parentheses for 300W excludes the jaw line landmarks.

Method
COFW 300W

# Params (M) FLOPs Duration TdNME-ocular NME-pupil NME-pupil
LAB (Wu et al., 2018) 3.92 5.58 3.49 25.1 18.9G -
AWing (Wang et al., 2019) - 4.94 3.07 24.2 26.8G -
AVS (Qian et al., 2019) - 4.43 3.86 28.3 2.40G -
HRNet (Wang et al., 2020) 3.45 - 3.32 9.66 4.75G -
PIP (Jin et al., 2021) - - 3.36 12.0 2.40G -
ADNet (Huang et al., 2021) - 4.69 2.93 13.4 17.0G -
SDFL (Lin et al., 2021) 3.63 - - - 5.17G -
HIH (Lan et al., 2021) 3.21 4.63 3.09 22.7 17.2G -
SLPT (Xia et al., 2022) 3.32 4.63 3.17 13.2 6.12G -
STARLoss (Zhou et al., 2023) - 4.62 2.87 13.4 - -
D-ViT (Dang et al., 2025) - 4.13 2.85 67.3 21.8G -
PoPos (Xiang et al., 2025) - 3.80 3.28 9.70 1.20G -
Ours on COFW/300W 8.28 11.96 9.36 (8.33) 0.577 21.1M/29.1M 10.42/12.77

Table 2: FPS on different processors.

CPU i5 2.5GHz CPU Xeon 2.9GHz GPU A6000
COFW 4.19±0.11 3.00 ± 0.14 19.73 ± 1.15
300W 1.29±0.19 1.25 ± 0.15 5.21 ± 0.68

on 300W samples. Fig. 7 plots the average NME and detection duration Td for each landmark on
300W sample, identifying high NME for the jaw line landmarks.

However, our method demonstrates significantly low computational complexity.
Space complexity: Total 577k parameters (FeatNet/CoordNet/PolNet with 123k/58k/396k parame-
ters).
Time complexity: Total 21.1 MFLOPs for a 10.42 Td on COFW and 29.1 MFLOPs for a 12.77
Td on 300W. Relative to the lightweight PoPos (Xiang et al., 2025) model with 9.70M parameters,
our method reduces space complexity by 16.8× and time complexity by 41.1×. Our method with
extremely low complexity runs at 4.19 (COFW) and 1.29 (300W) frames per second (FPS) on a
desktop with an i5-13400 CPU (Table 2).

4.4 ABLATION STUDY

The balance parameter λft is an important hyperparam-
eter that governs both detection accuracy and duration,
and its value is scheduled over time. We analyzed the
impact of λft on detection accuracy and duration by
varying its value over the range [0, 1] while keeping it
fixed during each detection run. As shown in Fig. 8,
λft exhibits a clear trade-off between accuracy and du-
ration, highlighting the need for parameter scheduling
to achieve optimal performance.

Figure 8: Relationship between detec-
tion accuracy and detection duration for
different fixed values of λft on COFW.

5 CONCLUSION

We proposed a lightweight, agent-based framework for facial landmark detection that leverages
prior knowledge and local observations without relying on strong supervision. Each agent infers
its location independently using embeddings from dual spaces—feature and coordinate—guided by
class-conditional generative models. To train robust embeddings, we introduced proximity-weighted
contrastive learning, and we further improved efficiency with a multi-stage detection strategy and
delayed decision mechanism to reduce redundant computation. While our method shows slightly
higher NME than SoTA approaches, it achieves exceptional efficiency by reducing space complexity
by 16.8× and time complexity by 41.1× compared to the SoTA lightweight model, making it ideal
for real-time or embedded applications. This work demonstrates that prior knowledge-guided agent-
based detection is a practical and scalable alternative for efficient landmark localization.
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