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ABSTRACT

We present a highly efficient, agent-based framework for facial landmark detec-
tion that prioritizes model compactness and computational efficiency over max-
imum accuracy. Unlike conventional approaches that rely on large, fully super-
vised models, our method assigns each agent to a specific landmark, enabling it to
infer its position solely from local observations and prior knowledge without ex-
plicit location awareness or inter-agent communication. Prior knowledge is mod-
eled in two embedding spaces—feature and coordinate—using class-conditional
Gaussian distributions. Agents navigate by minimizing deviations from these pri-
ors via a lightweight policy network. To enhance representation learning, we in-
troduce a proximity-weighted contrastive learning strategy that incorporates spa-
tial proximity into the training objective. A multi-stage detection strategy further
reduces redundant computation by detecting sub-landmarks relative to core land-
marks. While our method produces slightly higher normalized mean error than
state-of-the-art (SoTA) methods, it achieves over 16x and 41X improvements
in space and time complexities, respectively, compared to the SoTA lightweight
model, running at 4.19 and 1.29 frames per second on an i5 CPU (2.5 GHz) for
the COFW and 300W datasets, respectively.

1 INTRODUCTION

Facial landmark detection is a fundamental component in many computer vision applications, in-
cluding face recognition (Zhao et al., 2003)), expression analysis (Yang et al., 2018)), and 3D face
reconstruction (Liu et al.| 2018)). Over the past decade, advances in deep learning have greatly im-
proved detection accuracy. However, the increasing demand for real-time performance on resource-
constrained platforms, such as mobile devices, AR/VR headsets, and embedded Al modules, has
shifted attention toward efficiency-oriented solutions. Such platforms impose strict limits on power
consumption, computation, and memory, motivating the need for new algorithms that balance accu-
racy with efficiency.

Facial landmark detection aims to localize key facial points in 2D images. State-of-the-art (SoTA)
methods often achieve high accuracy using large-scale models, especially those based on supervised
heatmap and coordinate regression (Feng et al.l 2018} [Lin et al.l |2021; Wang et al.| 2020; Huang
et al.}2021;|Dang et al.,[2025)). However, these models incur high computational and memory costs,
making them unsuitable for embedded or low-power environments. In contrast, our method adopts
a lightweight, agent-based approach that leverages prior knowledge and local observations to detect
landmarks efficiently. Although our normalized mean error (NME) is higher than that of SoTA
models, our approach offers orders-of-magnitude gains in efficiency with only 577k parameters and
< 30 MFLOPs, compared to 9.7-67M parameters and 1.2-26.8 GFLOPs for conventional methods.
This trade-off makes our method highly practical for real-time, embedded applications.

Our contributions are as follows:

* We propose an agent-based framework in which each agent independently localizes a spe-
cific landmark using only local observations and learned priors without access to absolute
coordinates.

* We model prior knowledge in both latent feature and coordinate spaces via class-
conditional generative models, enabling effective search under weak supervision.
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* We introduce a spatially aware contrastive learning method that weights positives according
to spatial proximity, improving robustness in occluded or noisy conditions.

* Despite slightly higher NME than SoTA models, our method achieves 16.8x lower space
complexity and 41.1x lower time complexity than the best lightweight baseline, enabling
real-time CPU inference.

2 RELATED WORK

2.1 REGRESSION-BASED METHODS

Facial landmark detection methods are commonly categorized into coordinate regression (CR) and
heatmap regression (HR) approaches. CR methods (Feng et al., [2018; |Qian et al.,|2019; [Lin et al.,
2021)) directly predict landmark coordinates using deep neural networks, learning both spatial map-
pings and local features. While conceptually straightforward, CR approaches are highly sensitive
to noise and bias, and typically require extensive supervision to achieve accurate predictions. HR
methods (Wang et al.| 2020; [Huang et al., |2021)) generate heatmaps for each landmark, from which
coordinates are derived via a decoding step. Despite their strong accuracy, HR models face two
notable limitations:

Quantization error: Because heatmaps are typically of lower resolution than the input image, the
decoding process introduces quantization errors (Bulat et al.| [2021; [Lan et al., 2021), degrading co-
ordinate precision.

Lack of landmark correlation modeling: Standard HR methods generate heatmaps independently
for each landmark, ignoring spatial relationships.

D-ViT (Dang et al.,2025]) addresses this via spatial-split and channel-split vision transformers. Both
CR and HR methods require full-image access and combine feature extraction with coordinate pre-
diction in a single large model, leading to high parameter counts and computational cost.

2.2 MULTIPLE LANDMARK DETECTION WITH AGENTS

Detecting multiple landmarks with agents is challenging due to the need for coordination and re-
liance on partial visual observations. A key difficulty lies in effectively leveraging prior knowledge
of both morphological and spatial correlations among landmarks. MARL (Vlontzos et alJ 2019)
uses a Deep Q-Network with inter-agent communication to implicitly capture morphological re-
lationships through joint actions. The Multiscale Agent (Alansary et al., [2019) method addresses
spatial relations by incorporating multiscale search. SGMaRL (Wan et al., [2023) integrates a sta-
tistical shape model (Cootes et al., [1995)) to refine landmark positions based on spatial structure.
While these approaches consider landmark correlations, they do so only partially—handling either
morphological or spatial aspects in isolation. None fully integrate both dimensions of prior knowl-
edge, limiting their ability to guide agents efficiently and accurately in complex visual conditions.

2.3 CONTRASTIVE LEARNING

Contrastive learning projects representations into a latent space where similar instances are pulled
together and dissimilar ones are pushed apart (Chen et al., 2020} |Tian et al., 2020). Typically,
two augmented views per sample yield 2N views for a batch of /N samples. In self-supervised
settings, only views from the same source are considered positive pairs. A limitation is that different-
class instances may be treated as negatives, even if semantically related. Supervised Contrastive
Loss (SupConLoss) (Khosla et al., 2020) addresses this by incorporating label information, allowing
multiple positive pairs per class. This improves representation quality, leading to more accurate and
robust classification.

3 METHOD

3.1 ALGORITHM OVERVIEW

Our method employs N, agents, each assigned to search a specific landmark (¢ € C;|Cl| = N,) on
a given image of size C' x H x W. In total, the agents simultaneously search all IV, landmarks, with
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Figure 1: Overview of our algorithm for facial landmark detection.

each agent exclusively responsible for one landmark. Their coordinates © = (xy, x,,) correspond
to multiple fixation points, which are normalized to the image size (2, x,, € [—1,1]). We also use
normalized coordinate for landmarks. Agents have access to:

1. Prior knowledge of landmarks in both the coordinate and latent feature spaces.
2. Multiscale local observations o € R3¢*%@ with ¢ < H,W.

Agents do not know their absolute positions; positions are inferred from observations o. No inter-
agent communication occurs. Fig. [T]illustrates the framework at timestep .

Observation by agents. To let each agent understand how the local visual structure relates to its
spatial context, we consider three patches (ol'): C'xaxa, ol?: C'xs1axs1a, and 0¥ C'x s9ax s9a;
1 < $1 < $9) centered at its current location . The o[?! and ol®! patches are resized to C' X a X a
and concatenated with the ol*) patch to construct the observation o € R*“*%*¢_ Throughout this
study, we set a = 27, s; = 4, and s5 = 10, respectively. When the patches exceeds the original
image boundaries, Constant padding is applied when patches exceed image boundaries.

Data extraction from local observation. Observation o by an agent located at x is processed to
extract the latent feature and coordinate of the local view in its spatial context using the following
models.

* FeatNet : R2¢xexa _, Rdn_FeatNet projects current local observation o by an agent at x
to an embedding 2 € R This network is trained using proximity-weighted contrastive
learning, which projects observation o to an embedding similar to spatially proximal land-
marks. Tensor 0g.2c,.,. is provided as input. zz = FeatNet(og.oc,:,.). We omit 02¢:3¢:.:
due to its minimal contribution. Unless otherwise stated, we fix dy = 128.

o CoordNet : R2Cxaxa _, R2+dw which infers the agent’s current absolute coordinate.
CoordNet function infers the agent’s current coordinate & from the local observation, which
is also trained using proximity-weighted contrastive learning. Simultaneously, CoordNet
projects the observation to a deq-dimensional vector zeq(= ). We omit 0¢.c. . due to its
minimal contribution. [&, z.q]| = CoordNet(oc.3¢.,.). We fix deg = 128.

* RelCoordNet : R2(CH+1)xaxa _, R2+da  This function infers the agent’s current relative
coordinate (A%; A%y, Az, € [—2,2]) with reference to a given coordinate . We used
RelCoordNet instead of CoordNet for landmarks with high positional variability.

Computation of deviation from knowledge. For current observation o, the latent feature and
coordinate embeddings (zg and z.q) are each compared to their respective preferred embeddings

(prior knowledge 2., € R and zlq € R%« for landmarks in class c) to compute the distance D.
D = M¢Ds + AegDea, D() = ||Z() - Z;()| g, where () € {ft, Cd} (1)

The distance D is a weighted combination of distances from each embedding space, using balance
parameters (Ag and \¢q) such that Ay + A\eq = 1. If the distance D is lower than a preset threshold 6,
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Algorithm 1 Generative model for prior knowledge.

Input: Training dataset 7 of N7 samples.
Output: Generative model parameters po.|c. azﬂ‘c, Pzler O2

Zed|C

1: Ky < zero tensor of shape (N7, N, dy)

2: K q + zero tensor of shape (N7, N, deg)

3: for each sample y; in 7 do

4 for each landmark c; in C do

5: Compute o for landmark c¢; in sample y;

6: Kyi, j] + FeatNet(0o.2¢,:.:)

7: Kli, j] < CoordNet(oc:3c.:.:)

8: end for

9: end for
10: pz e, ¢ K(y.mean(dim = 0) for (-) € {ft,cd}
11: Uﬁ(.)‘cj + K.var(dim = 0) for (-) € {ft,cd}

the agent has successfully arrived at the landmark, outputting its current coordinate (& if CoordNet
was used, and ° + A if RelCoordNet was used). Otherwise, the agent continues searching.

Hopping policy. The agent infers optimal hopping direction and distance using PolNet that is fac-
torized into two sub-functions (dirPolNet and HDst): PolNet = HDst - dirPolNet.

s dirPolNet : R2dn+2da+2 _ RS  dirPolNet is a categorical classifier that infers the
optimal hopping direction ©u* € U. We defined the direction space U as follows:
U = {(u1,u2) | (uy € Uy Vug € Up) A (ug,u2 # 0)}, where Uy = {—1,0,1}. There-
fore, |[U| = 8. This model takes zf /27 /At and zeq/ 274/ Aca for the current observation
o as input.

* HDst : R — Z+ . This function determines the hopping distance s € [1, sy,y] as a function
of the distance D.

3.2 PRIOR KNOWLEDGE MODELING

We built generative models for prior knowledge of landmarks projected to two independent spaces
(latent feature space R% and coordinate space R%).

p (2w, ¢) = p(zw|c) p(c) forlatent features, p (zcq,c) = p (z|c)p(c) for coordinate,

where ¢ denotes a landmark class. We modeled the class-conditional probability distribution func-
tion p (z|c) using a Gaussian function:

p(z|c) :N(lecazz|c) %./\/'(HZ|C,0'3‘CI), (2

where we apply a diagonal approximation to the covariance matrix ¥, for computational simplic-
ity. The parameters p | and o-f‘c were separately computed for each of the two embeddings (to z¢

and z.q) over all landmarks of the same class in a given training dataset. This procedure is detailed
in Algorithmm Prior knowledge 2 and 27, is sampled from the conditional generative model in

¢ ft
Eq.[2
3.3 NETWORK MODELS

FeatNet. This model (2C9(6C9)-9C16-16C32-32C64-FC256-FC128-L2Norm for gray-scale
(RGB) images) projects the local observation 0p.oc.. . by an agent at @ to the feature space R,
Inspired by supervised contrastive learning (Khosla et al.| [2020), we trained FeatNet using a novel
proximity-weighted contrastive learning algorithm that locates the embedding z; for a given ob-
servation close to landmarks of spatial proximity. To this end, all landmarks within a o/? patch of
C X s1a X sga size centered at given x are considered as positive landmarks while the others as
negative ones. Furthermore, we defined the degree of positiveness for the positive landmarks based
on their distances from the coordinate .
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where p() = {c e Clzd) € o for :cfj)}. The weight w(*7) is given by
wi) =1+ exp (-0.025d), )

where d("7) denotes the distance between a:SJA)() and wg). Note that ng}m means the coordinate of

the anchor landmark type of the ith sample c4(;) on the jth sample. For j € B\ {i}, the equality
:ci{) = wgi)(j) holds. In Eq. (3, B; = concat(B,5’), and 22 and  denote the embedding of the

c,ft
anchor in the 7th sample and temperature, respectively. An example of sample augmentation for

proximity-weighted contrastive learning is shown in Fig. 2}

CoordNet/RelCoordNet. CoordNet projects the local observation oc.3c,:,; by an agent at x to
the coordinate space R%:. It consists of four convolutional layers and one linear layer: 2C9(6C9)-
9C16-16C32-32C64-FC128-L2Norm for gray-scale (RGB) images. We deploy an additional head
for coordinate regression, Linear(128 — 2) + Tanh, which infers the normalized coordinate &
(&p,2n € [—1,1]) for the agent at . Similar to FeatNet, the main network (except the head) is
trained using proximity-weighted contrastive learning using the PWConLoss in Eq. 3] with a weight
function w(»7) = 2 4+ 9.26 - 10~3d(»7) instead of Eq. 4l However, the anchor for each samples in
batch B is placed on a random coordinate on the sample unlike FeatNet (for which the anchor is
on a landmark only), and thus, the embedding z.4 for a given observation becomes similar to other
observations of spatial proximity. The additional head is trained using a mean squared error loss
function (MSELoss).

RelCoordNet has the same architecture as CoordNet except the first convolutional layer and head for
coordinate regression: 4C9(8C9)-9C16-16C32-32C64-FC128-L2Norm-FC2-2Tanh for gray-scale
(RGB) images. RelCoordNet takes the reference coordinate a0 (represented using x%llma and
T Lixaxas ¥, 29 € [—1,1]) as its input alongside the local observation o¢3¢.. ., so that the input
consists of 2C' + 2 channels. Instead of Tanh, 2Tanh is applied because of the range of relative
coordinate AL (AZp, Az, € [—2,2]). This model is also trained using proximity-weighted con-
trastive learning using PWConLoss in Eq. [3| with random anchors for the samples in batch B as for
CoordNet. The head is trained using MSELoss.
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Algorithm 2 Delayed decision algorithm.
InplIt- A’ th’ DCd? 0d9 Aftv :ﬁ
Output: Updated SHT and .

1: Dpin + MAX; . < NULL
2: fori =0to Ny —1do

3t Dump < Ali] Dy + (1 — Afi]) Deg

4:  if SHT[i, 0] > Dy then

5: SHT[%, 0] <= Dimp; SHT[i, 1] < &
6: endif

7: end for

8 i+ 0

9: while A[i] > Ay do

10:  if SHTJ[¢, 0] < 64 and SHT([¢, 0] < Dy, then
11: & < &; Dpin < SHTJ3, 0]

12:  end if

13: 1<+ 1+1

14: end while

PolNet. PolNet infers the optimal hopping direction ©* and distance s € [1, Syax] for the current
local observation o using its sub-functions, dirPolNet and HDst, respectively.

PolNet = HDst(D) - dirPolNet(]),
I = concat(zt, z¢ i, Aty Zeds Zecdy Aed)s (5)
HDst(D) = min (([D/Ap]) , Smax) »

where Ap denotes a unit step for uniform quantization of distance D in Eq.[I} dirPolNet (FC512-
FC256-FC8-Softmax) infers the optimal hopping direction ©* € U, which is trained using super-
vised learning on a dataset 7. We define U = {(u1,u2)|(u; € Uy V ug € Up) A (u1,uz # 0)},
where Uy = {—1,0,1}. Thatis, |U| = 8. For a given image, a pair of coordinate = and landmark
¢ € Cl are randomly sampled. Similar to the habitual network (Cushman & Morris, 2015), each
sample y; = (I;, 4;) in T consists of (1) input I; (in Eq.[5) for the local observation o at the random
coordinate « and (2) @; = arg min A, gy D for the coordinate & and landmark c.

3.4 HYPERPARAMETER SETTING

Detection threshold. Detection threshold 6, is a primary hyperparameter that determines the de-
tection accuracy and speed, which are measured in NME and duration required for detection (7y),
respectively. A lower 64 generally yields a lower NME but a larger Ty. To balance this trade-off,
threshold 64 is initially set to its minimum (64 min) and is monotonously increased by Ay at each
timestep if detection fails.

Balance parameters. Balance parameters Ay and A\cq(= 1 — Ag) in Eq.[l|govern the complementary
contributions of the distances from distinct representation spaces (Dy and D) to the total distance
D. A higher )\ generally yields a lower NME but a larger Ty. We initially set Ag is initially set to its
maximum(Ag max and monotonically decrease by Ay once every two timesteps if detection fails.

3.5 EFFICIENCY ENHANCEMENTS

Delayed decision algorithm. Critical detection inefficiency with varying hyperparameters (64 and
Ag) arises when previously visited locations with previous hyperparameter values yield successful
detection with the current f4. Revisiting such locations and repeatedly recalculating the distance D
leads to redundant computation. To mitigate this issue, we introduce a delayed decision algorithm
for the following case.

Oult) < DIt = > N['|Di[t'] < 6aft] fort' < t.
ie{ft,ed}
We define a balance parameter set A = {\[t]|Vt € [0, tmax]} (JA| = N») and a corresponding tuple
A of M\(e A) sorted in descending order. This delayed decision algorithm is based on a Ny x 2
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search history table (SHT). Algorithm [2]explains SHT organization and delayed decision based on
the SHT.

Two-stage detection. To reduce the detection duration 7y, we introduce a two-stage detection strat-
egy for all landmarks. The first stage detects coarse coordinates of landmarks using the higher

detection threshold 951) and lower balance parameter )\Ell), and the second stage refines the coor-
dinate using the lower threshold 052) (< 0((11)) and higher balance parameter )\gf) (> )\Etl)). In each

stage, the hyperparameters change following the rule explained in the previous section.

Cascaded detection. Facial landmarks can be

grouped based on their spatial proximity in the

latent feature space R%. We choose a single .

core-landmark for each group and considered - - -

the others in the same group as sub-landmarks. N N 1 |

Agents responsible for detecting landmarks in  Core-landmark two-stage detection Sub-landmark two-stage detection
the same group often exhibit overlapping tra-

jectories in the initial detection phase, leading Figure 3: Example of cascaded detection.

to redundant computation. To address this, we

propose a cascaded detection strategy. In this strategy, a single agent first detects the core-landmark
using FeatNet and CoordNet for local observation o at each timestep ¢. This core-landmark serves as
a reference. Subsequently, multiple agents simultaneously search the sub-landmarks with reference
to the core-landmark. This approach mitigates redundant agent movements during the early detec-
tion steps, thereby reducing redundant computation and processing time. Fig. 3| shows an example
of cascaded detection for a Right-eye group. Note that we use RelCoordNet in place of CoordNet
for the sub-landmarks in a particular group.

4 EXPERIMENTAL RESULTS

We used the COFW (Burgos-Artizzu et al., 2013) and 300W (Sagonas et al., 2016) datasets as a
proof of concept. COFW comprises 1,345 training and 507 test images (gray-scale), each annotated
with 29 landmarks. COFW with frequent occlusions is well-suited for evaluating our method’s
ability to leverage prior knowledge of landmarks. 300W comprises 3,148 training and 689 test
images (RGB), each annotated with 68 landmarks. This dataset exhibits a wide range of variations
in pose and lighting conditions.

4.1 IMPLEMENTATION DETAILS

Each image is cropped to include the full head, resized to 256 x 256, then randomly rescaled (+5%)
and horizontally flipped (50%). For cascaded detection, the landmarks in each dataset are grouped
based in their spatial proximity as follows.

COFW: left _eye (left pupil), right_eye (right pupil), and ot hers (nose tip)

300W: left_eye (left inner canthus), right _eye (right inner canthus), mouth (Cupid’s bow),
nose (nose tip), jaw_line (none).

The landmarks in parentheses indicate core landmarks. We used different FeatNets with different
sets of parameters (but the same CoordNet and RelCoordNet) for each group. For the Others group
in COFW, RelCoordNet was used for detecting the sub-landmarks. Note that we used the means
Mz, and pz - as prior knowledge 2z and 2y, respectively, unless otherwise stated. The models
were trained using the Pytorch framework (Paszke et al..[2019) on a GPU workstation (RTX A6000;
Xeon Gold CPU 2.9GHz; 256 GB DRAM). Landmark detection experiments were conducted on
both the GPU workstation and a desktop equipped with an i5 CPU (2.5GHz) and 32 GB DRAM.
The hyperparameters were optimized using Optuna (Akiba et al.,2019). All hyperparameters are
summarized in Technical Appendix.

4.2 PERFORMANCE OF NETWORK MODELS

FeatNet. We analyzed a fully trained FeatNet whose learning curve is shown in Technical Appendix.
Fig.@a shows L2 distance between landmarks in the same classes in COFW, identifying successful
landmark clustering. Fig. @b shows L2 distance between a left pupil (Class 17) and the others on the
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Figure 7: Average detection accuracy (NME) and detection duration for each landmark on 300W.

same image. This identifies the separation of landmark clusters based on their spatial proximity. We
analyzed the capability of FeatNet to encode observations o at random coordinates  as zg based on
their distances from landmarks. Fig. A highlights (1) a gradual increase in L2 distance with distance
between the observation o and landmark and (2) marginal variability in L2 distance at aero distance
upon different landmarks. As a counterpart, we used the same network trained with supervised
contrastive learning, where spatial proximity was addressed in binary form, employing the same
loss as in Eq. [3| but without the proximity weight w(/). The performance of this counterpart is
shown in Fig. 4d. The comparison with this counterpart highlights proximity-weighted contrastive
learning as a means to encode random observations based on spatial separation from the landmarks.

CoordNet/RelCoordNet. Fully trained CoordNet and RelCoordNet (whose learning curves are
shown in Technical Appendix) successfully infer the coordinate of the current observation as z.q-
dimensional embeddings. Fig.[5]shows the L2 distance between the coordinate embedding z.q and
several landmarks (in the inset) with spatial distance. Compared with Fig. ] CoordNet/RelCoordnet
can infer the coordinate of distal observations with higher precision (lower variability).

4.3 DETECTION PRECISION AND EFFICIENCY

The detected landmarks on several samples in COFW and 300W are shown in Fig.[6] demonstrating
successful landmark detection using our algorithm. Nevertheless, our method has higher NME
than regression-based SoTA techniques as listed in Table[I} This is largely due to the fact that our
approach rely on not supervised learning but prior knowledge of landmarks’ features. For instance,
although our method well detects the jaw-line landmarks in 300W samples (Fig.[6), NME for these
landmarks is large due to their deviation from the semi-automatically annotated jaw-line landmarks
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Table 1: Comparison of our method with SoTA approaches on COFW and 300W datasets. The
NME value in parentheses for 300W excludes the jaw_11ine landmarks.

Method NME-oculaCrOF“;\IME-pupil NI\?I(];(?}\)KL/\piI # Params (M) FLOPs Duration Ty
LAB (Wu et al.}[2018) 3.92 5.58 3.49 25.1 18.9G

AWing (Wang et al.{[2019) - 4.94 3.07 24.2 26.8G

AVS (Qian et al.|[2019) - 443 3.86 28.3 2.40G

HRNet (Wang et al.}|2020) 3.45 - 3.32 9.66 4.75G

PIP (Jin et al.}[2021) - - 3.36 12.0 2.40G

ADNet (Huang et al.}|2021) - 4.69 2.93 134 17.0G

SDFL (Lin et al.}|2021) 3.63 - - - 5.17G

HIH (Lan et al.}[2021) 3.21 4.63 3.09 22.7 17.2G

SLPT (Xia et al.,[2022) 3.32 4.63 3.17 13.2 6.12G

STARLoss (Zhou et al.} [2023) - 4.62 2.87 13.4 -

D-ViT (Dang et al.,[2025) - 4.13 2.85 67.3 21.8G

PoPos (Xiang et al.|[2025) - 3.80 3.28 9.70 1.20G -
Ours on COFW/300W 8.28 11.96 9.36 (8.33) 0.577 21.1M/29.1M 10.42/12.77

Table 2: FPS on different processors.

CPUi52.5GHz  CPU Xeon 2.9GHz ~ GPU A6000
COFW 4.19+£0.11 3.00 £0.14 19.73 £ 1.15
300W 1.29+0.19 1.25+0.15 5.21 +0.68

on 300W samples. Fig.[/|plots the average NME and detection duration Ty for each landmark on
300W sample, identifying high NME for the jaw_1ine landmarks.

However, our method demonstrates significantly low computational complexity.

Space complexity: Total 577k parameters (FeatNet/CoordNet/PolNet with 123k/58k/396k parame-
ters).

Time complexity: Total 21.1 MFLOPs for a 10.42 T4 on COFW and 29.1 MFLOPs for a 12.77
T4 on 300W. Relative to the lightweight PoPos (Xiang et al.l [2025)) model with 9.70M parameters,
our method reduces space complexity by 16.8x and time complexity by 41.1x. Our method with
extremely low complexity runs at 4.19 (COFW) and 1.29 (300W) frames per second (FPS) on a
desktop with an i5-13400 CPU (Table[2).

4.4 ABLATION STUDY

The balance parameter Ay is an important hyperparam-

eter that governs both detection accuracy and duration, 3

and its value is scheduled over time. We analyzed the u;

impact of Ay on detection accuracy and duration by e

varying its value over the range [0, 1] while keeping it e

fixed during each detection run. As shown in Fig. ) ) )

Ar exhibits a clear trade-off between accuracy and du- Figure 8: Relationship between detec-
ration, highlighting the need for parameter scheduling tion accuracy and detection duration for
to achieve optimal performance. different fixed values of Ay on COFW.

5 CONCLUSION

We proposed a lightweight, agent-based framework for facial landmark detection that leverages
prior knowledge and local observations without relying on strong supervision. Each agent infers
its location independently using embeddings from dual spaces—feature and coordinate—guided by
class-conditional generative models. To train robust embeddings, we introduced proximity-weighted
contrastive learning, and we further improved efficiency with a multi-stage detection strategy and
delayed decision mechanism to reduce redundant computation. While our method shows slightly
higher NME than SoTA approaches, it achieves exceptional efficiency by reducing space complexity
by 16.8x and time complexity by 41.1x compared to the SoTA lightweight model, making it ideal
for real-time or embedded applications. This work demonstrates that prior knowledge-guided agent-
based detection is a practical and scalable alternative for efficient landmark localization.
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