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Abstract
Implicit neural representation (INR) excels in
high-fidelity flow field reconstruction through
flexible enhancement of numerical precision and
grid resolution. However, its broader adoption
faces two barriers: the absence of standardized
benchmarks for flow reconstruction tasks, and
the impractical grid independence assumption
in real-world simulations. Current INR frame-
works also struggle to resolve fine-scale structures
and spatiotemporal dynamics, particularly under
severe temporal-spatial data imbalance, where
temporal sensitivity degrades significantly. Tack-
ing these issues, we first introduce HFR-Bench,
a 5.4 TB public large-scale CFD dataset with
33,600 unsteady 2D and 3D vector fields for re-
constructing high-fidelity flow fields. We further
present PEINR, a physics-enhanced INR frame-
work, which is mainly composed of physical
encoding and transformer-based spatiotemporal
fuser (TransSTF). Physical encoding decouples
temporal and spatial components through Gaus-
sian temporal encoding, which can enhance high-
dimensional features and nonlinear characteristics
in temporal information, and localized spatial en-
coding, which can implement stencil-based dis-
cretization in the spatial dimension. TransSTF
fuses both spatial and temporal information via
transformer for capturing long-range temporal de-
pendencies. Qualitative and quantitative experi-
ments demonstrate that PEINR outperforms state-
of-the-art INR-based methods in reconstruction
quality. Code and dataset are released here.
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1. Introduction
High-fidelity flow fields contain richer flow information
and finer-scale flow structures, which play a crucial role
in understanding the flow behaviors in various physical
and natural phenomena. In computational fluid dynamics
(CFD), increasing the grid-resolution and employing higher-
order numerical schemes can typically generate high-fidelity
flow fields, but the simulations require several days to com-
plete and incur substantial computational costs. Recently,
inspired by their success in computer vision, deep-learning-
based super-resolution (SR) methods have increasingly been
used to reconstruct high-fidelity flow fields from low-fidelity
counterparts without repeatedly solving complex partial dif-
ferential equations (Fukami et al., 2023).
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Figure 1. The red circles explain the error in the assumption of grid
independence, showing that as the grid resolution (in the row direc-
tion) and numerical accuracy (in the column direction) increase, the
attribute values at the same location differ and the high-frequency
part becomes more pronounced in the corresponding frequency
domain representations, which means that the structure of the flow
field is more complex and refined.

Existing methods of high-fidelity flow field reconstruction
based on convolutional neural networks (CNNs) (Fukami
et al., 2021; Yousif et al., 2021; Xu et al., 2023; Hu et al.,
2024; Shen et al., 2024b;a) are clearly confined to equally-
spaced Cartesian meshes because the nodes of the computa-
tional grid are reinterpreted as pixels. Nevertheless, irregular
meshes are widely used in the industry because they can
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adequately delineate complex geometries and easily deal
with localized regions that require different resolution, e.g.
cells are small near walls to capture the boundary layer
where flow transitions are sharp whereas they are large in
the freestream where gradients are smooth. A grid can also
be regarded as a graph and graph neural networks (GNNs)
are reasonable candidates. However, in order to propagate
information over long distances between nodes, many graph
convolutional layers need to be stacked. Moreover, although
pooling is a cheap operation in CNNs, it is rather challeng-
ing in GNNs (Grattarola et al., 2022; Kashefi et al., 2021).

The implicit neural representation (INR) frameworks (Han
& Wang, 2023; Pan et al., 2023; Tang & Wang, 2024; Jiao
et al., 2024) typically learn to represent a flow field as a
continuous function which can map the spatiotemporal coor-
dinates to their corresponding values, thus are highly adapt-
able for different mesh types and having emerged as a new
mesh-agnostic paradigm for flow reconstruction. However,
these INR-based methods still face several limitations in
high-fidelity flow field reconstruction: (1) In the absence of
standard benchmarks datasets, existing INR-based methods
assume grid independence, where attribute values at the
same location in the flow field remain unchanged across
different mesh resolutions. However, in the case of real
simulation data, this assumption does not hold. As shown
in Figure 1, the red circles highlight the same locations in
flow fields with varying mesh resolutions and numerical
accuracies, where the corresponding density values clearly
differ. (2) Due to the I/O bottleneck (Fajardo et al., 2018),
only selective time steps can be saved. There is a significant
disparity between temporal and spatial complexity. Exist-
ing methods overlook this gap by simply coupling space
and time, thus failing to fully simulate the complex spa-
tiotemporal dynamics. (3) The spectral bias issue of INR
method (Xu, 2018; Rahaman et al., 2019) concentrate more
on the low-frequency information, which can have deficien-
cies in capturing fine-scale structures of flow fields. As
shown in Figure 1, the corresponding frequency domain
representations illustrate that high-fidelity flow fields cap-
turing small-scale flow features more effectively can exhibit
a richer presence of high-frequency information.

In this paper, we first introduce HFR-Bench, a truly large-
scale dataset containing 24,000 unsteady flow fields of three
canonical two-dimensional (2D) flow problems, 1,600 un-
steady flow fields of a three-dimensional (3D) flow problem
with uniform Cartesian mesh, and 8,000 2D unsteady flow
fields with non-uniform mesh, amounting to a total of 5.4
TB of data. For each problem, we discretize the domain into
four different grid-resolution configurations, and perform
a simulation at each grid-resolution using four different
numerical-precision settings. Low- and high-fidelity sim-
ulations in each pair start from identical initial conditions
and share the same physical parameters. The maximum

grid-resolution gap and the highest numerical-precision can
reach up to 64 times and 7th-order, respectively.

Compared to high-fidelity simulation, the coarse discretiza-
tion of the low-fidelity simulation introduces inaccuracies
and truncation errors. As shown in Figure 2(a), we cal-
culate the correction errors between low and high-fidelity
flow fields. Effectively representing the error field is the
target we strive to reach with the application of the INR net-
work. We propose a physics-enhanced INR (PEINR) which
can simultaneously enhancing the numerical-precision and
grid-resolution of flow fields. PEINR consists of physi-
cal encoding and transformer-based spatiotemporal fuser
(TransSTF).In physical encoding, as shown in Figure 2(b),
spatial coordinates C⃗ are expanded from neighbors, taking
into account the nature of stencil discretization. Temporal
information is expanded by Gaussian kernel encoding to ad-
dressing the issue of disproportionate spatiotemporal dimen-
sions. As shown in Figure 2(c), TransSTF, a temporal-aware
encoder based on the multi-head attention mechanism, aims
to fuse both spatial and temporal information and capture
long-range temporal dependencies. We also leverage spec-
tral block (Patro et al., 2023), to capture the high frequency
components of high fidelity flow fields. We perform quali-
tative and quantitative analyses, to experimentally demon-
strate that our approach is well-suited for high-fidelity flow
field reconstruction tasks.

The key contributions of our work are summarized as fol-
lows: (1) We release HFR-Bench, a truly large-scale CFD
dataset including both uniform Cartesian and non-uniform
meshes with 33,600 unsteady 2D and 3D vector fields,
amounting to a total of 5.4 TB of data. For each simulation,
data are provided at both low and high resolution, making
the dataset suitable for the specific task of reconstructing
high-fidelity flow fields. (2) We propose a novel physics-
enhanced INR model for concurrently handling numerical-
precision and grid-resolution enhancement for both uniform
and non-uniform meshes. The physical encoding can allevi-
ate the disparity between temporal and spatial complexities,
capture the nonlinear characteristics of spatiotemporal dy-
namics and the stencil discretization of spatial dimensions.
(3) We utilize the spectral block in TransSTF to alleviate the
spectral bias on flow field learning. The result of ablation
study can further illustrate that our method can alleviate the
negative impact.

2. Related Work
This section discusses the related works of implicit neural
representation, and super-resolution for flow field.

Implicit neural representation. Implicit neural represen-
tation (INR) is a powerful framework that seeks to train a
neural network to parameterize a continuous, implicit func-
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Figure 2. Overview of our method PEINR. (a) We first calculate the difference field between the high-fidelity flow field and low-fidelity
counterpart. (b) In physical encoding, we leverage Gaussian coordinate encoding and localized encoding to handle temporal information
and spatial coordinates. (c) The TransSTF block fuses temporal and spatial information and consists of ResuMLP, multi-head attention
and spectral block. (d) The generated high-fidelity flow fileds are obtained by combining diffenrence fields and low-fidelity counterparts.

tion. This function maps a given spatiotemporal position,
which consists of both spatial and temporal coordinates, to
its corresponding value.

Recently, incorporating Fourier features (Mildenhall et al.,
2021), periodic activations (Sitzmann et al., 2020), or multi-
resolution Hash tables (Müller et al., 2022) has significantly
improved the performance of INR for scene reconstruc-
tion (Jiang et al., 2020; Chabra et al., 2020) and shape
modeling (Genova et al., 2020; Atzmon & Lipman, 2020).
Recent work by de Vito et al. (de Vito et al., 2024) in im-
plicit neural representation for accurate CFD flow field pre-
diction demonstrates the potential of INR architectures for
steady-state CFD simulations. However, their method pri-
marily focuses on single-resolution flow fields with station-
ary boundary conditions and does not address the critical
challenges of reconstructing unsteady, multi-resolution flow
fields with spatiotemporal coupling – a key limitation our
PEINR framework resolves through physical encoding and
TransSTF.

PINNs (Karniadakis et al., 2021; Dong & Polak, 2024; Hos-
seini & Shiri, 2024) are an extended application of implicit
neural representations in scientific computing. Nevertheless,
our CFD data are solved based on discrete meshes, which
inherently introduce numerical dissipation and truncation
errors, deviating from the Navier-Stokes equations govern-
ing fluid flow. Forcing PINNs to simultaneously fit this data
and satisfy the equation residuals may lead to network con-
vergence issues or generate non-physical solutions (Farea
et al., 2024).

Super-resolution for flow field. In the past several years,
various deep learning-based methods have been applied to
tackle single image super-resolution (SISR) tasks (Lu et al.,
2022; Zhang et al., 2022; Chen et al., 2023) . Inspired by
their success in computer vision, SISR methods have in-
creasingly been used to reconstruct high-fidelity flow fields

by simply replacing the red, green, and blue components
with physical variables (Fukami et al., 2023). Among these
works, CNN-based super-resolution models (Zhenglei et al.,
2017; Fukami et al., 2019; 2021; Liu et al., 2020; Obiols-
Sales et al., 2021; Gao et al., 2021) have been actively
studied for a range of flows. To further improve the model
performance, many works complicate their model by incor-
porating GAN (You et al., 2018; Zhiwen et al., 2019; Yousif
et al., 2021; 2022; Yu et al., 2022; Han & Wang, 2019; 2020;
Wurster et al., 2023; Hyojin et al., 2021), transformer (Wang
et al., 2022; Xu et al., 2023; Hu et al., 2024; Shen et al.,
2024b;a), for capturing fine-scale flow features. However,
these methods are limited to flow field data on Cartesian
grids.

Neural operators (Kovachki et al., 2023) leverage function
space mappings and efficient spectral-domain computations
to overcome the fixed-grid limitations of traditional meth-
ods. However, when high-frequency energy decays rapidly,
neural operators may struggle to retain fine details compared
to INR. Additionally, INR supports on-demand generation
of localized regions, such as boundary layers or vortex struc-
tures, without requiring full-field computation, making it
more adaptable and efficient.

Existing INR metods for flow field (Han & Wang, 2023; Pan
et al., 2023; Tang & Wang, 2024; Jiao et al., 2024) only fo-
cuse on grid-resolution enhancement, and PEINR is the first
attempt to simultaneously enhance the grid-resolution and
numerical-precision by leveraging transformer and physical-
enhanced INR model.

3. Method
We propose a framework with an INR-based model for high-
fidelity flow field reconstruction. The framework consists
of 4 components: inverse problem input encoding, physi-
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Figure 3. (a) The NTK without mapping exhibits irregular patterns, indicating dependency on absolute time positions and leading to
inconsistent predictions. (b) Applying the Gaussian kernel mapping results in a structured diagonal pattern, ensuring translation invariance
and improved generalization. (c) The NTK spatial decay plot shows how kernel values diminish across input space, with smaller σ
emphasizing local interactions and larger σ capturing broader dependencies. (d) The NTK Fourier spectrum demonstrates that larger σ
values allow high-frequency variations, while smaller σ favor smooth, low-frequency behaviors.

cal encoding, TransSTF, and inverse problem solutions, as
shown in Figure 2. Our method allows approximating the
accurate variables (density ρ, the components u, v and w
of vector variable velocity V ) of high-fidelity flow field by
learning its time information and the dependency of spa-
tial information. We detail all framework components and
learning schemes in the following subsections.

3.1. Inverse Problem Input Encoding and Solutions

The inverse problem refers to reconstructing high-fidelity
physical fields from sparse data (Chen et al., 2024). The
CFD simulation flow field is closely related to the numerical
accuracy and grid resolution, and these two factors influence
each other. Finer grids can better capture flow details and re-
duce discretization errors, which can lead to discrepancies in
flow field property values at the same location. To enhance
the applicability of INR, we chose to use INR to learn the
error field δF between high-fidelity and low-fidelity flow
fields.

The process is as follows: to establish the connection be-
tween the low-fidelity flow field FL

ti at timestep ti and its
high-fidelity counterpart FH

ti , we need to address the in-
accuracies and truncation errors introduced by the coarse
discretization in low-fidelity simulations. First, we upscale
the low-fidelity flow field to match the spatial resolution
of the high-fidelity field using BI (bicubic interpolation)
method. Although traditional upscaling methods or trans-
ferring existing mature super-resolution models could be
chosen, we opted for the traditional BI method due to the
diversity of flow field grid types. BI method estimates the
value at each point by considering the surrounding 4 × 4
grid of known values and applying cubic interpolation along
both axes, resulting in a smoother and more accurate up-
scaled flow field compared to simpler methods like bilinear
interpolation. The resulting upscaled flow field, denoted
as FB

ti , provides a better approximation of the high-fidelity

field but still contains residual errors.

As shown in Figure 2 (a), to quantify these discrepancies, we
compute the error field δFti = FH

ti − FB
ti , which captures

the missing fine-grained details. We obtain δFti through the
BI method, which allows us to efficiently handle the discrep-
ancies between the low-fidelity and high-fidelity flow fields,
thus laying the foundation for subsequent error learning and
precise reconstruction. The goal of the PEINR network is to
effectively learn and represent the error field δFti , enabling
the accurate reconstruction of high-fidelity flow fields from
low-fidelity counterparts. As shown in Figure 2 (d), to ob-
tain the inverse problems solutions, we use the error field
generated by INR model along with the low-fidelity flow
field to reconstruct the high-fidelity flow field.

3.2. Physical Encoding

To accurately capture the spatial and temporal dependen-
cies in flow field representations, we introduce specialized
encoding techniques for both spatial and temporal informa-
tion.

3.2.1. SPATIAL DISCRETIZATION

Spatial discretization in computations typically involves
stencil-based methods, whether using finite volume, finite
difference, or finite element methods. These approaches
rely on information from grid cells and their neighboring
cells to construct the discretized equations. In most con-
ventional INR methods, the network learns to represent a
flow field as a continuous function with the input of depen-
dent coordinates C⃗ and temporal information t, ignoring the
importance of spatial dependency.

To address this, after randomly sampling a sufficient number
of points, we expand the input spatial coordinates to include
not only the original coordinates but also those of nearby
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neighboring points:

Ψ(C⃗) =
[
C⃗, C⃗neighbors

]
(1)

This localized encoding aligns with stencil-based computa-
tion paradigm of CFD, where numerical solutions inherently
depend on local neighborhood interactions (e.g., finite vol-
ume discretization). By embedding this locality into our
spatial localization encoding, PEINR explicitly leverages
the template computation logic to resolve fine-scale flow
structures. For instance, in a 2D case, we consider the near-
est 4 points (up, down, left, right), transforming the input
from a single coordinate tensor of shape (batchsize, 2) to
an augmented tensor of shape (batchsize, 5, 2). This design
explicitly encodes the local spatial correlations required for
solving discretized Navier-Stokes equations, where the so-
lution of each grid point depends on physical quantities of
its neighbors.

Spatial discretization allows the model to capture spatial
derivatives more effectively, reflecting the underlying prop-
erties of partial differential equations (PDEs) that govern
flow field computations. By considering spatial derivatives,
the model can better account for the local gradients and
variations in the flow field, enhancing its ability to represent
fine-scale structures and accurately approximate the dynam-
ics dictated by the governing PDEs, as shown in Figure 2
(b).

3.2.2. NONLINEAR TEMPORAL ENCODING

To effectively model the nonlinear temporal dynamics in
flow fields, we employ a two-step approach that combines
the Gaussian Radial Basis Function (RBF) kernel and Kernel
Principal Component Analysis (Kernel PCA). This method
transforms the one-dimensional temporal input into a high-
dimensional, nonlinear feature space and then reduces the
dimensionality while preserving essential temporal features.

Step 1: Temporal Encoding Using RBF Kernel. The RBF
kernel maps the one-dimensional temporal input t into a
high-dimensional feature space where nonlinear temporal
patterns can be better represented. The RBF kernel function
is defined as:

K (t, t′) = exp

(
−|t− t′|2

2σ2

)
, (2)

where t and t′ are two time instances. σ is a hyperparameter
controlling the kernel’s width, determining how quickly the
similarity between t and t′ decays with their distance.

Given a set of temporal data points {t1, t2, . . . , tN}, we
construct the RBF kernel matrix K of dimensions N ×N ,
encoding pairwise temporal relationships. This transforma-
tion ensures translation invariance by making the kernel

solely dependent on relative differences:

K (ti, tj) = K (ti − tj) . (3)

This property allows the INR model to maintain consistency
across different time steps, improving long-term reconstruc-
tion accuracy.

To analyze the impact of the RBF kernel on model stability
and generalization, we apply Neural Tangent Kernel (NTK)
theory, which describes the training evolution of infinitely
wide neural networks and is essential for convergence anal-
ysis. Traditional NTKs derived from MLPs lack translation
invariance, making them unsuitable for temporal modeling.
By incorporating the RBF kernel, we convert the NTK into
a stationary kernel that depends on relative time differences,
improving stability, especially in solving time-dependent
PDEs. As shown in Figure 3, the RBF-enhanced NTK ex-
hibits structured patterns that better capture temporal depen-
dencies, promoting smoothness and consistency over time,
which enhances generalization and robustness in dynamic
environments. The spectral properties of the NTK reveal
that adjusting the kernel bandwidth σ allows for flexible
adaptation to various time scales, balancing local and global
temporal interactions.

Step 2: Extracting Temporal Components with Kernel
PCA. Kernel PCA is applied to extract significant temporal
features from the kernel matrix by first centering the ma-
trix to ensure zero-mean data. This is achieved using the
equation:

K̃ = K − 1NK −K1N + 1NK1N (4)

where 1N is an N × N matrix with all elements equal to
1/N .

Next, eigenvalue decomposition of the centered kernel ma-
trix K̃ yields eigenvalues and eigenvectors, from which the
top m eigenvectors are selected to form a low-dimensional
representation. Temporal inputs are projected into this sub-
space to obtain their encoded representations:

Φ (ti) = V ⊤
mK (ti) (5)

where Φ(t) is the nonlinear feature representation of t in the
reduced space, Vmis the matrix of the top m eigenvectors,
and K (ti) is the similarity vector of time point ti with all
other points (i.e., the i-th column of the kernel matrix).

The combination of the RBF kernel and Kernel PCA cap-
tures complex temporal relationships, retaining key features
through dimensionality reduction, ensuring smooth tran-
sitions in representation, and enhancing the INR model’s
efficiency and stability in learning nonlinear temporal dy-
namics.

The encoded temporal features Φ(t) are concatenated with
the localized encoding spatial coordinates Ψ(C⃗) and fed
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into the INR model. The INR framework approximates the
error field δF (x, y, z, t) by learning a continuous mapping:

δF (x, y, z, t) ≈ N (Φ(t),Ψ(C⃗), θ), (6)

where N is the neural network parameterized by θ. This ap-
proach enables the model to leverage the enriched temporal
features for improved reconstruction accuracy.

3.3. TransSTF

As shown in Figure 2 (c), TransSTF combines spatial and
temporal information to generate complex embeddings us-
ing higher-order features. It consists of multi-head attention
(MHA) layers, ResuMLPs, and spectral blocks. The MHA
layer with query (Q), key (K), and value (V ) inputs aims
to refine feature maps, where Q, K, and V come from a
mixture of spatial-temporal data and ResuMLP-extracted
features. The output matrix of MHA (M) is shown as fol-
lows:

M(Q,K, V ) = Concat ( att 1, . . . , att h )W
O

where att i = softmax

(
QiW

Q
i KT

i W
K
i√

dk

)
ViW

V
i

(7)

ResuMLP. The ResuMLP (Han & Wang, 2022) improves
gradient propagation by adding depth and complexity to
the network. It includes residual blocks and a SIREN (Sitz-
mann et al., 2020) activation function (sin(ωx)), with ω
set to 30, as recommended (Sitzmann et al., 2020). The
output is scaled to the [−1, 1] range, suitable for sinusoidal
activations.

Spectral Block. The spectral block (Patro et al., 2023) cap-
tures different frequency components and reduces spectral
bias. It includes a spectral gating network with FFT for
converting to spectral space, weighted gating to adjust fre-
quency component weights, and an inverse FFT (IFFT) to
return the signal to physical space, enhancing the capture of
high-frequency features like edges.

4. Experiment
Dataset. We generate a truly large-scale dataset HFR-
Bench, containing 2D and 3D unsteady flow fields including
both uniform Cartesian and non-uniform meshes in different
high-order weighted essentially non-oscillatory (WENO)
schemes, amounting to a total of 5.4 TB of data. In uniform
Cartesian meshes, we choose the Rayleigh-Taylor instabil-
ity (RT), Riemann (RM), and Forward Facing Step (FFS)
problems for the 2D flow fields, and the shock-longitudinal
vortex interaction (SV) case in 3D. In non-uniform struc-
tured meshes, we simulate the problem of a flow past a
cylinder (Cylinder). The discrepancy in grid-resolution and

numerical-precision between FL and FH data can be de-
scribed by the upscaling factor α and the improvement factor
β:

α = STHF /STLF , β = SPHF /SPLF , (8)

where ST denotes the number of grid points and SP de-
notes the number of points in the stencil.

Baselines. We compare our method with three classic meth-
ods: (1) Bicubic interpolation (BI) is a common traditional
image processing algorithm based on interpolation. (2)
NIF (23’JMLR) (Pan et al., 2023) consists of two modi-
fied MLPs: ShapeNet, which isolates and represents spatial
complexity, and ParameterNet, which represents other in-
puts, such as time. (3) CoordNet (23’TVCG) (Han & Wang,
2023) is coordinate-based and leverages an encoder-decoder
based INR to learn a mapping from coordinates to values.

Implementation Details. All experiments are conducted
on a single NVIDIA A100 80GB GPU. The batch size
(BS), memory (MM) and experimental variable and time
per epoch are listed in Table 1.

Our method and all the baseline methods are trained with
the MSE loss in 2000 epochs and every method including
ours can converge within 1000 epochs. Learning ratio is
set to 1e − 5 and decrease after 20 epochs if there is no
loss degradation and we adopt the AdamW optimizer for
optimization. In spatial discretization, for 2D cases, we
consider the nearest 4 points, and for 3D cases, the nearest
9 points. In temporal nonlinear encoding, we set the σ as 10
with time steps normalized to [0,1]. During design, we set
the number of residual layers of a ResuMLP to 10 and the
max number of neutrons in a ResuMLP is 64. Experiments
are conducted within a range of ±10% around the optimal
hyperparameters, using the inference results as the standard
to confirm that the hyperparameters are indeed optimal. For
the other models compared in the table, we utilized their
original code and conducted experiments by only varying
the input length.

Experiments are conducted on a single channel for construct-
ing ρ in flow fields, and two (three) channels for constructing
velocity fields in 2D (3D). For uniform Cartesian meshes,
flow fields from timesteps 460 to 480 (out of 500) are used
for training, with the final 20 steps as test samples. Results
for uniform meshes (FFS, RM, RT, SV) are shown for step
500. For non-uniform meshes, training samples are taken
from steps 400 to 500 at intervals of 5, with the remaining
non-multiples of 5 used for testing. Results for non-uniform
meshes are presented for step 494.

4.1. Quantitative Comparison

We take MSE (Mean Squared Error) as the loss function and
report PSNR (Peak Signal-to-Noise Ratio), SSIM (Struc-
tural Similarity Index), CORR (Correlation Coefficient) and
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Figure 4. Comparison results of the variable ρ flow field of uniform Cartesian meshes. given by NIF, CoordNet and our method in the 2D
(upscaling α = 16) and 3D datasets (upscaling α = 64). Results of FFS datasets in (a) WENO3 (β = 1), (b) from WENO3 to WENO7 with
β = 2.6. Results of RM datasets in (c) WENO3 (β = 1), (d) from WENO3 to WENO5 with β = 1.4. Results of RT datasets in (e) WENO3
(β = 1), (f) from WENO3 to WENO5 with β = 1.4. (g) (h) Results of SV datasets from WENO3 to WENO5 with β = 1.4 from different
viewpoints.

DD (Dissipation difference) results as the evaluation metrics.
The dissipation operator is used to assess the model perfor-
mance in terms of capturing the discontinuities and rotating
features with lower values indicating better performance
with lower values indicating better performance.

The quantitative results are shown in Table 2, which quan-
titatively compares PEINR with different grid-resolution
and numerical-precision against the results generated by
baselines using data-level metrics (higher values are bet-
ter except for DD). In Table 2, all experiments are one-
channel, conducted to reconstruct the variable ρ of flow
fields. PEINR can generally outperform the baselines, ex-
cept for the slightly inferior PSNR with respect to Coord-
Net (Han & Wang, 2023) in the RM dataset. The observed
PSNR difference stems from PEINR’s design prioritizing
physical accuracy over numerical optimization for discon-
tinuous flows. Riemann problems involve strong discon-
tinuities (shocks, contact surfaces) where PEINR’s local-
ized spatial encoding intentionally preserves sharp gradients,
making it more sensitive to errors in these regions. While
this approach leads to slightly lower PSNR (a mean-squared-
error metric favoring smoothness), it avoids the physical dis-
tortions visible in CoordNet’s results (Figure 4(c)(d)) where
large errors near discontinuities appear.

As shown in 5, we also present the four evaluation met-

rics for Table 2 (a) across all extrapolated timesteps. The
results clearly demonstrate that PEINR exhibits an absolute
advantage in generalization performance.

Ablation Study To evaluate the effectiveness of importance
sampling and spectral block of PEINR, we compare with
two baseline methods PEINR1 and PEINR2. PEINR1 re-
moves both spectral block and the physical encoding, while
PEINR2 only removes the physical encoding. As shown in
Table 2, PEINR outperforms PEINR2 in the metric DD in
all cases, which indicates that our physical encoding method
can preserve more physical peculiarity. The superiority of
PEINR2 compared with PEINR1 highlights that the added
spectral block can also help the model to perform better.

4.2. Qualitative Comparison

The qualitative evaluation provides several contour plots
and streamline rendering results. Figure 4 displays syn-
thesized flow fields of density ρ of FFS datasets in (a) (b),
RM datasets in (c) (d), RT datasets in (e) (f) and 3D SV
datasets in (g) (h) with different upscaling factors α and
improvement factors β. To facilitate analysis, we normal-
ized all results to the interval [−1, 1] for ease of observation.
The areas of interest to domain experts are marked with red
squares in the first column, and we zoom in on these areas
in the following columns. BI can not capture complex fluids
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Table 1. The details of each data set. GR, NP, BS and MM denote grid resolution, numerical precision, batch size and memory,
respectively.

dataset Variable Input Output Train Inference
GR NP GR NP BS Time(s) MM(GB) Time(s)

RT ρ,u,v 120×480 WENO3 480×1920
WENO3 8000 10 22.68 16.71WENO5

RM ρ,u,v 200×200 WENO3 800×800
WENO3 8000 11 10.53 13.59WENO5

FFS ρ,u,v 36×12
180×48

WENO3 144×48
720×192

WENO3 8000 11 17.29 15.4WENO7

Cylinder u,v 51×381 WENO3 101×761
WENO3 8000 19 5.11 9.59WENO5

SV ρ,u,v,w 96×32× 32 WENO3 384×128× 128 WENO5 36000 23 68.45 75.31

Table 2. PSNR, SSIM×102, CORR×102 and DD×105 values with different upscaling factors α and improvement factors β. The best
values are highlighted in bold.

Dataset (a) RT α=16 β=1 (d) RM α=16 β=1 (g) FFS α=16 β=1
Metric PSNR SSIM CORR DD PSNR SSIM CORR DD PSNR SSIM CORR DD

NIF 17.53 87.70 94.04 22.46 24.83 92.85 98.33 26.45 35.09 86.44 95.78 2991.72
CoordNet 23.33 93.17 98.40 10.25 45.34 99.67 99.98 21.80 42.71 94.88 98.61 98.46
PEINR1 24.82 94.51 98.86 9.31 34.16 98.70 99.80 4.93 50 96.47 98.96 72.92
PEINR2 26.91 95.85 99.28 8.17 37.10 98.96 99.90 3.28 70.03 99.80 99.98 15.93

PEINR 26.96 95.91 99.31 7.76 44.22 99.76 99.98 2.51 74.15 99.84 99.98 4.61
Dataset (b) RT α=16 β=1.4 (e) RM α=16 β=1.4 (h) FFS α=16 β=2.6
Metric PSNR SSIM CORR DD PSNR SSIM CORR DD PSNR SSIM CORR DD×104

NIF 15.15 83.81 89.98 85.02 23.93 90.002 97.95 17.46 48.43 95.64 98.81 193.82
CoordNet 20.73 89.20 97.16 71.38 37.98 98.46 99.91 8.78 41.16 93.92 98.41 246.5
PEINR1 21.45 89.65 97.61 26.32 33.27 97.57 99.75 7.20 37.14 96.50 99.10 314.26
PEINR2 22.40 91.01 97.88 24.58 37.55 98.66 99.90 3.71 51.10 99.40 99.92 58.97

PEINR 22.46 91.07 97.93 22.09 37.81 98.62 99.91 3.18 70.91 99.46 99.96 25.38
Dataset (c) Cylinder α=4 β=1 (f) Cylinder α=4 β=1.4 (i) SV α=64 β=1.4
Metric PSNR SSIM CORR DD PSNR SSIM CORR DD PSNR SSIM CORR DD×104

NIF 16.28 80.12 82.88 131.58 19.08 78.20 84.80 286.9 27.47 89.67 99.21 20.75
CoordNet 21.80 84.32 92.20 12.76 19.31 85.09 90.30 172.7 27.34 89.57 99.19 21.96
PEINR1 39.15 98.52 99.85 11.53 35.7 98.88 99.86 49.6 42.21 99.12 99.97 9.91
PEINR2 39.47 98.52 99.85 7.63 38.9 98.89 99.81 11.25 43.55 99.29 99.98 11.22

PEINR 40.04 99.10 99.89 2.35 40.34 99.28 99.88 1.27 45.26 99.50 99.98 4.21

due to its simple interpolation, and the low-fidelity and high-
fidelity data are very different in near-real circumstances, as
shown in Figure 4 (g) (h). NIF tends to blur the turbulence
structures, resulting in poor reconstructions of the small-
scale ground-truth features, regardless of α or β. PEINR
can efficiently handle the simultaneous enhancement of the
numerical-precision and grid-resolution.

In Figure 6, we compare streamline rendering results of the
synthesized vector fields generated by baselines. Figure 6
(a) and (b) display 48 streamlines generated from different
seeds in the SV data set. While NIF and CoordNet can
capture more details compared with BI but the tail of vor-
tex obtainted are diverging and they fail to produce more
complex flow details. In contrast, our approach not only
maintains a high level of detail but also ensures that the
complex behaviors of the flow, including vortex dynamics
and the underlying fluid structure, are consistently preserved

throughout the simulation. Figure 7 displays the compar-
ison results of Cylinder dataset in non-uniform structured
meshes, and it can illustrate that our method achieves better
results on both uniform Cartesian grid data and non-uniform
structured data compared to other baselines.

5. Conclusion
We introduce a large-scale comprehensive flow simulation
dataset covering 5 canonical flow problems of 2D and 3D in
both uniform Cartesian and non-uniform meshes. For each
problem, results were obtained using four grid-resolution
and four numerical-precision settings. In total, the dataset
contains 33,600 vector fields, resulting in approximately 5.4
TB of data. Using this dataset, we creatively propose the
coordinate-based INR method with the attention mechanism
and physical encoding, which achieves satisfactory results
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Figure 5. Comparison of model generalization performance on unseen timesteps beyond the training range. The PEINR method
consistently achieves higher PSNR, SSIM and CORR values while maintaining lower DD compared to other methods, demonstrating its
superior generalization capability in long-term flow field predictions.

(a)

(b)

BI CoordNet Ground TruthNIF Ours

Figure 6. Comparison of streamline rendering results of three-
channel experiments of SV dataset. Results given by BI, NIF
and CoordNet are the inferred results (i.e., the networks do not
see these vector fields during training). (a) and (b) display 48
streamlines from different seeds.

in the field of high-fidelity flow fields reconstruction, so that
domain experts can observe high-fidelity flow fields with
less storage cost. However, the PEINR model is, thus far,
tailored and appraised for particular flow scenarios. In the
future, we would like to explore meta-learning approaches
to enhance the performance on out-of-distribution samples
by considering the relationship among different flow fields.

Impact Statement
This work introduces HFR-Bench, the first large-scale
benchmark dataset for high-fidelity flow field reconstruction.
By integrating physics-based encoding with transformer ar-
chitectures, our proposed PEINR framework significantly
improves the accuracy and robustness of implicit neural
representations. These contributions pave the way for more
generalizable and physically consistent AI solutions in fluid
simulation tasks.
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A. Dataset Details
This section provides a detailed introduction to the large-scale high-fidelity flow field dataset, HFR-Bench, which was
developed in-house. The dataset covers various grid types, including Cartesian grids, structured grids, and unstructured
grids, to accommodate different fluid dynamics simulation needs. In terms of numerical simulation methods, HFR-Bench
includes unsteady compressible Direct Numerical Simulations (DNS) and unsteady incompressible Reynolds-Averaged
Navier-Stokes (RANS) methods, ensuring the capture of complex dynamic behaviors in the flow fields. Moreover, the
dataset employs high-precision numerical techniques, with Cartesian and structured grids using the commonly applied
Weighted Essentially Non-Oscillatory (WENO) scheme, while the unstructured grids are modeled using the Discontinuous
Galerkin (DG) method to enhance the accuracy and reliability of the simulations. For each flow configuration, there are four
grid resolutions and four levels of numerical precision, with high-fidelity and low-fidelity flow fields aligned based on real
simulation time. Each flow field contains corresponding grid information and raw variables. With its diverse simulation
settings, HFR-Bench provides rich data support for fluid dynamics research, advancing the development and validation of
related algorithms and models.

A.1. Cartesian Grid Flow Field Data

For the 2D flow fields with uniform Cartesian mesh, we choose the Riemann (RM), Rayleigh–Taylor instability (RT),
and forward facing step (FFS) problems, which contain both discontinuities and complex flow features (Jing et al., 2003).
The physical laws underlying our 2D flow fields are represented by the compressible Euler equations for the conservative
variables, which can be expressed as

ut + f(u)x + g(u)y = 0, (9)

where
u = (ρ, ρu, ρv, E)T,

f(u) =
(
ρu, ρu2 + p, ρuv, u(E + p)

)T
,

g(u) =
(
ρv, ρuv̄, ρv2 + p, v(E + p)

)T
.

(10)

Here, ρ is the density, (u, v) is the velocity, E is the total energy, p is the pressure, and f (u) and g(u) are the convective fluxes.
Four different high-order weighted essentially non-oscillatory (WENO) schemes are employed to solve these equations. For
the conservation laws, the derivative f (u)x at (xi, yj) is approximated along the line y = yj by a convective flux difference:

f(u)x|x=xi
≈ 1

∆x
(f̂i+ 1

2
− f̂i− 1

2
), (11)

where, for the kth-order WENO scheme, the numerical flux f̂ i+ 1
2

depends on 2k-1 values f (umj), m = i-k-1,...,i+k-1. We set
k to 3, 5, 7, or 9 to give third-order (WENO3), fifth-order (WENO5), seventh-order (WENO7), and ninth-order (WENO9)
versions. Time discretization is achieved via the third-order Runge–Kutta method, and the Lax–Friedrichs building blocks
and local characteristic decomposition are employed.

Riemann (RM) Problem. The two-dimensional RM problem containing multiple dimensions in the flow field is a common
example of testing the efficiency of numerical methods. It solves the two-dimensional Euler equations in the unit square
region [0, 1]×[0, 1], with initial conditions as follows:

(ρ, u, v, p) =


(1.5, 0, 0, 1.5), for 0 ≤ x < 0.8, 0 ≤ y < 1

(0.5323, 0, 1.206, 0.3), for 0.8 ≤ x < 1, 0 ≤ y < 0.8

(0.138, 1.206, 1.206, 0.029), for 0.8 ≤ x < 1, 0.8 ≤ y < 1

(0.532, 1.206, 0, 0.3), for 0 ≤ x < 0.8, 0.8 ≤ y < 1

(12)

The computational grid sizes used are 200× 200, 400× 400, 800× 800, and 1600× 1600, with the simulation time set
to t = 0.8. The time step for storage is set to 0.0016. Figure 8(a) illustrate the flow field results generated by the WENO
method under different grid resolutions. At the same grid resolution, the flow field generated by WENO methods with
different accuracies exhibit distinct multi-scale flow field structures. Similarly, for the same accuracy of the WENO method,
flow field cloud plots at different grid resolutions also display varying multi-scale flow field structures. Both numerical
precision and grid resolution significantly enhance the multi-scale resolution.
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Rayleigh–Taylor Instability (RT) Problem. In this problem, two fluids with different densities interact under gravity, with
the denser fluid moving downward and the lighter fluid moving upward, which leads to the development of instability. The
computational domain is defined as [0, 0.25]×[0, 1] with initial conditions:

(ρ, u, v, p) =

{
(2, 0,−0.025

√
γp/ρ cos(8πx), 2y + 1), 0 ≤ y < 0.5

(1, 0,−0.025
√

γp/ρ cos(8πx), y + 1.5), 0.5 ≤ y ≤ 1
(13)

where the heat parameter is specified as γ = 5/3. The boundary conditions for the left and right sides are taken as reflective,
while the top and bottom boundaries are assigned with constant values:

(ρ, u, v, p)(x, y, t) =

{
(1, 0, 0, 2.5), y = 1

(2, 0, 0, 1.0), y = 0
(14)

The computation ends at t = 1.95, with a flow field storage timestep of 0.0039. The grid resolutions used are 120× 480,
240× 960, 480× 1920, and 960× 3840. Figure 8(b) shows the flow field results generated using different accuracy WENO
methods at the same grid resolution. As observed, with increases in numerical precision and grid resolution, the vortex
structures in the flow field become clearer and more intricate.

Forward Facing Step (FFS) Problems. This problem is commonly used in high-order numerical schemes and has been
well-received in numerical testing, particularly for its ability to capture the instabilities in the fluid flow due to the presence
of a source at the Mach stem and the resulting vortex formations, which are of great interest in fluid dynamics. The
computational domain is defined as [0, 0.6]× [0, 0.2] ∪ [0, 3]× [0.2, 1], which corresponds to a small wind tunnel with a
length of 3 and a height of 1, where a step with a length of 2.4 and a height of 0.2 is placed at a position 0.6 units away from
the left inlet of the wind tunnel. The initial flow field in the computational region is given by:

(ρ, u, v, p) = (1.4, 3.0, 0, 1). (15)

The simulation ends at t = 4, with a flow storage timestep of 0.008. The grid resolutions used are 180 × 48 ∪ 36 × 12,
360× 96∪ 72× 24, 720× 192∪ 144× 48, and 1440× 384∪ 288× 96. Figure 9(a) present the flow field results generated
using different accuracy WENO methods at the same grid resolution. As can be observed, as the numerical precision and
grid resolution increase, the vortex structures become clearer.

Shock-longitudinal Vortex Interaction (SV) Problem. For our 3D SV flow field, the underlying physical laws are
represented by the following 3D unsteady Navier–Stokes equations for the conservative variables:

ut + f(u)x + g(u)y + h(u)z =
1

Re
(fv(u)x

+gv(u)y + hv(u)z),
(16)

where Re is the Reynolds number and f v(u), gv(u), hv(u) are the viscous fluxes. A stationary shock is initially located at the
x = 0 plane. Upstream of the shock (x ¡ 0),

ρ = 1, ux = −γ0.5M1, ur = uθ = 0, p = 1, (17)

where ux, ur, and uθ are the axial, radial, and azimuthal velocity components. The downstream mean solution (x ¿ 0) is

ρ =
(γ + 1)M2

1

(γ − 1)M2
1 + 2

, ux = −γ0.5((γ − 1)M2
1 + 2)

(γ + 1)M2
1

,

ur = uθ = 0, p =
2γM2

1 − (γ − 1)

γ + 1
.

(18)

An isentropic vortex is superimposed on the mean flow upstream of the shock. The axis of the vortex is along the x-axis (y =
z = 0). The perturbations in the azimuthal velocity and temperature associated with the vortex are expressed as

u′
θ =

εr

2π
e0.5(1−r2),

T ′ = − (γ − 1)ε2

8γπ2r20
e(1−r2),

(19)
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Figure 8. (a) x-direction velocity component u of dataset RM contours with 25 equally spaced isosurfaces in diffenrent grids and
computation accuracy. (b) ρ flow field of RT in different grids and computation accuracy.

where r =
√

y2 + z2 is the radius to the vortex axis, r0 is the vortex core radius, and ε is a dimensionless circulation at r = 1.
In our simulations, the value of Re, γ, M1, and ε are set to 106, 1.4, 2, and 7, respectively. The grid sizes are 96×32×32,
192×64×64, 384×128×128, and 768×256×256. Moreover, the final simulation time is 11.0 s and the time step is 0.11 s.
Therefore, 1,600 (1×4×4×100) 3D snapshots are separately collected. Figure 9(b) display the component u and v contours
for SV for WENO3 and WENO5 using the 96× 32× 32 and 384× 128× 128 grids, respectively. We can clearly observe a
significant difference between the high-fidelity results and their low-fidelity counterparts. The grid-resolution (GR) and
numerical-precision (NP) of four datasets are listed in Table 1.

A.2. Flow Field Data with Non-uniform meshes

For the non-uniform meshes, we select the circular jet standard test case. The maximum grid spacing difference and the
highest precision can reach 64 times and 9 orders of magnitude, respectively. The control method is a two-dimensional
incompressible RANS equation group. The Reynolds number re is 200, and the calculation time is stopped at t = 600.0,
with a time step dt = 0.11. Figure 10 shows the flow field contours under different precision WENO grid models for the
same grid model. As can be seen from the figures, as the precision and grid refinement increase, the flow field’s turbulence
becomes clearer.

B. Experimental Details
Our model is implemented with Pytorch 1.10 (Paszke et al., 2019), and all experiments are conducted on a single NVIDIA
A100 80GB GPU. The batch size (BS), memory (MM) and experimental variable and time per epoch are listed in Table 1.
Our method and all the baseline methods are trained with the MSE loss in 2000 epochs. Learning ratio is set to 1e − 5
and decrease after 20 epochs if there is no loss degradation on the traning set and the max epochs is 2000. (Every
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Figure 9. (a) x-direction velocity component u of dataset FFS contours with 25 equally spaced isosurfaces in diffenrent grids and
computation accuracy and the bottom rows displays the difference between low-resolution and high-resolution within the same computation
scheme. (b) The two rows displays x-direction velocity component u and y-direction velocity component v in the flow field of SV in
different grids and computation accuracy.

method including ours can converge within 1000 epochs). During the trainin process, we adopt the AdamW optimizerfor
optimization. During design, we can set the number of residual layers of a Resu MLP to 10 and the max number of neutrons
in a Resu MLP is 64. To promote the learning of bases and ensure consistency of time series across different dimensions, we
normalized the time series during training and performed inverse normalization when outputting the results. For the other
models compared in the table, we utilized their original code and conducted experiments by only varying the input length.

PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), CORR (Correlation Coefficient) and DD (Dissipa-
tion difference) results are used to evaluate the quality of the synthesized HF flow fields. These three metrics are defined
below, where the high-fidelity flow field and synthesized flow field are FH and FS , respectively.

PSNR. This represents the ratio of the maximum possible power of the signal and the destructive noise power that affects its
representation accuracy. PSNR is computed using the mean squared error by the following formula:

PSNR(FH , FS) = 10× log10

(
(2n − 1)

2

MSE(FH , FS)

)
. (20)

WENO3 WENO5
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Figure 10. x-direction velocity component u of dataset cylinder contours with 25 equally spaced isosurfaces in diffenrent grids and
computation accuracy.
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SSIM. This is a measure of the similarity of two images, mimicking human perception by focusing primarily on edge and
texture similarity. It is calculated by the following formula:

SSIM(FH , FS) =
(2µFHµFS + c1) (2σFHFS + c2)(

µ2
FH + µ2

FS + c1
) (

σ2
FH + σ2

FS + c2
) , (21)

where µFH and µFS are the average values of FH and FS , respectively. σ2
V and σ2

V̂
are the variance of FH and FS ,

respectively. σFHFS is the covariance of FH and FS .

CORR. The correlation coefficient reflects the degree of correlation between variables, and is defined as:

CORR
(
FH , FS

)
=

∑n
i=1

(
FS − µFS

) (
FH − µFH

)√∑n
i=1 (F

S − µFS )
2
√∑n

i=1 (F
H − µFH )

2
. (22)

Dissipation difference. The dissipation operator is used to assess the model performance in terms of capturing the
discontinuities and rotating features. The dissipation of each velocity component (u, v, and w) is evaluated. The dissipation
operator is defined by

χ(F ) =

(
∂F

∂x

)2

+

(
∂F

∂y

)2

+

(
∂F

∂z

)2

. (23)

The dissipation experiments aim to measure the difference in flow gradient between the ground truth data (GT) and the
reconstructed data given by baselines and our method. This is represented by

∣∣∣χ (Qd
)
− χ

(
Q̂d
)∣∣∣, with lower values

indicating better performance.
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