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ABSTRACT

For reliable deployment of deep-learning systems, out-of-distribution (OOD) de-
tection is indispensable. In the real world, where test-time inputs often arrive as
streaming mixtures of in-distribution (ID) and OOD samples under evolving covari-
ate shifts, OOD samples are domain-constrained and bounded by the environment,
and both ID and OOD are jointly affected by the same covariate factors. Existing
methods typically assume a stationary ID distribution, but this assumption breaks
down in such settings, leading to severe performance degradation. We empirically
discover that, even under covariate shift, covariate-shifted ID (csID) and OOD
(csOOD) samples remain separable along a discriminative axis in feature space.
Building on this observation, we propose DART, a test-time, online OOD detection
method that dynamically tracks dual prototypes—one for ID and the other for
OOD—to recover the drifting discriminative axis, augmented with multi-layer
fusion and flip correction for robustness. Extensive experiments on a wide range of
challenging benchmarks, where all datasets are subjected to 15 common corruption
types at severity level 5, demonstrate that our method significantly improves per-
formance, yielding 15.32 pp AUROC gain and 49.15 pp FPR@95TPR reduction
on ImageNet-C vs. iNaturalist-C compared to established baselines. These results
highlight the potential of the test-time discriminative axis tracking for dependable
OOD detection in dynamically changing environments.

1 INTRODUCTION

Deep neural networks (DNNs) achieve remarkable performance across applications such as image
classification, object detection, medical imaging, autonomous driving, and speech recognition (Alam
et al., 2020). These successes stem from large-scale datasets, high-performance hardware, and
innovative model architectures (Deng et al., 2009; Krizhevsky et al., 2012; He et al., 2016; Vaswani
et al., 2017), motivating deployment in real-world systems.

In practice, however, deployed models inevitably encounter test inputs that deviate from their training
distributions. One form is semantic shift, where models face unknown semantics—commonly termed
out-of-distribution (OOD) samples. Substantial progress has been made on OOD detection: existing
methods typically assume either abstract characteristics (Hendrycks & Gimpel, 2016; Liu et al., 2020;
Xu et al., 2023) or data-specific characteristics (Lee et al., 2018; Sun et al., 2022) of in-distribution
(ID) data to distinguish ID from OOD. A second form is covariate shift, where data appears under
new conditions such as changes in weather, illumination, or sensor noise (Moreno-Torres et al., 2012;
Dockès et al., 2021). Most OOD methods implicitly assume stationary ID distributions as reference
to separate ID and OOD, however, as shown in Figure 2, in practice they struggle under covariate
shifts (Yang et al., 2024; 2021; 2023a) because shifting covariates alter the space geometry that their
decision rules rely on.

We study test-time OOD detection under covariate shift in a realistic streaming mixture setting: test-
time inputs arrive in mini-batches as mixtures of ID and OOD samples, and both are simultaneously
exposed to the same evolving covariate shifts (e.g., a change in illumination). We denote these
as covariate-shifted ID (csID) and covariate-shifted OOD (csOOD). Within each mini-batch—
as illustrated in Figure 1—spatial and temporal coherence arises from the task environment, so
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Figure 1: Comparison of traditional and real-world ID-
OOD assumptions. (a) Traditional OOD detection assumes
ID data (blue circle) exists within an unbounded OOD
space (gray background). (b) In real-world scenarios, OOD
data is bounded by physical and environmental constraints
(observation boundary, top-left inset), limiting the space
where OOD samples can occur. Furthermore, covariate
shifts such as weather conditions can simultaneously affect
both ID and OOD distributions (dashed regions), causing
them to shift jointly in feature space.
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Figure 2: AUROC comparison on both
covariate shifted and clean ImageNet-
based benchmark. Existing meth-
ods suffer under covariate shift, with
train distribution–informed approaches
dropping to around 0.5. In contrast, the
oracle axis achieves consistently high
performance regardless of shift, and
our method effectively discovers this
axis, attaining near-oracle results.

OOD samples are domain-constrained rather than arbitrary. For instance, in autonomous driving,
encountering an unseen vehicle type is plausible OOD, whereas suddenly observing medical or
satellite images is essentially impossible. Moreover, temporally correlated csID and csOOD typically
undergo the same covariate shift, so their distributions co-evolve during deployment. In our setting,
the test stream is unlabeled, the backbone is frozen, no training data are accessed at test time, and the
algorithm maintains a small, bounded state.

In this practical scenario, we empirically observe a key insight that enables our approach. Across
diverse datasets and shifts, we consistently observe: (i) local coherence—within short windows,
csOOD samples organize into coherent groupings in representation space; and (ii) a recoverable linear
axis—csID and csOOD remain approximately linearly separable along a dominant discriminative
direction that drifts as covariates evolve. As shown in Figure 2 with annotation “Oracle”, computing
our method’s OOD score with the optimal discriminative axis yields very high AUROC, demonstrating
that separability in this direction can lead to strong detection performance. These observations suggest
focusing on tracking the separation direction online rather than relying on a fixed, training-time score.

We propose Discriminative Axis Real-time Tracker (DART), a test-time, online OOD detection
method that continuously tracks a discriminative axis using a class-agnostic ID prototype and an
OOD prototype per feature layer. At each step, incoming test samples update the prototypes via
lightweight, stable rules, yielding the vector connecting them as the discriminative axis. Each
sample is then scored by its relative position to this axis, producing a simple forward-pass detector
aligned with the evolving feature space. To address the fact that covariate shifts affect DNN layers
differently (Hendrycks & Dietterich, 2019; Yin et al., 2019), DART employs multi-layer score fusion
to stabilize detection across heterogeneous, unpredictable shifts. The method requires only forward
passes, no model weight update, no labels, and no access to training data at test time, which suits
privacy-sensitive or on-device deployments where retraining is infeasible. For robustness, prototypes
are initialized conservatively and updated with safeguards to prevent collapse.

Across challenging benchmarks, DART consistently delivers substantial gains over prior approaches.
For example, on the ImageNet benchmark, DART achieves at least 9.04 percentage points (pp)
higher AUROC under covariate shift and 5.10pp AUROC improvement on the clean setting, as shown
in Figure 2, while attaining at least 40.15pp and 19.06pp FPR@95TPR reduction on the covariate
shifted and clean datasets, respectively. Remarkably, the performance of DART comes close to that
of the Oracle, highlighting the effectiveness of our approach.

Our contributions can be summarized as below:

• We formalize test-time OOD detection under covariate shift in a streaming mixture setting, distin-
guishing csID from csOOD and articulating realistic constraints (data stream, frozen backbone,
small memory).
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• We introduce DART, which tracks dual prototypes online to recover the drifting discriminative axis
and fuses multi-layer scores for robustness to layer-specific covariate effects.

• We provide measurements and visualizations showing coherent csOOD groupings and approxi-
mately linear csID–csOOD separation within short test windows.

• We demonstrate consistent gains over strong post-hoc baselines on joint-shift suites, with large
improvements in AUROC and FPR@95, using only forward passes and no retraining.

2 RELATED WORK

2.1 OUT-OF-DISTRIBUTION (OOD) DETECTION: TRAINING-DRIVEN VS. POST-HOC

Research on OOD detection can be broadly categorized into learning-based and post-hoc approaches.

Training-driven approaches. These methods modify training to enhance OOD separability, e.g.,
Outlier Exposure (OE) with auxiliary outliers (Hendrycks et al., 2018; Zhang et al., 2023a; Zhu et al.,
2023) and N+1 classifiers that add an “unknown” class (Bendale & Boult, 2016; Shu et al., 2017;
Chen et al., 2021). While effective, they require additional data or altered objectives and may misalign
with deployment OODs, with potential side effects on ID accuracy. Some methods (Katz-Samuels
et al., 2022; Yang et al., 2023b) update model parameters at test time via backpropagation, which
introduces latency and can compromise ID accuracy under non-stationary streams.

Post-hoc (training-free) approaches. These operate on a frozen classifier without retraining and
have gained widespread adoption due to their ease of use and compatibility with pretrained models.
Categories include: output-based scoring (Hendrycks & Gimpel, 2016; Hendrycks et al., 2019a;
Liu et al., 2020), distance-based methods (Lee et al., 2018; Ren et al., 2021; Mueller & Hein, 2025;
Sun et al., 2022; Park et al., 2023), feature-based approaches (Liang et al., 2017; Wang et al., 2022;
Sun et al., 2021; Djurisic et al., 2022; Xu et al., 2023; Zhang et al., 2022), and gradient-based
methods (Huang et al., 2021; Behpour et al., 2023). Furthermore, training distribution-informed
methods (e.g., Mahalanobis, ViM and KNN) assume access to training statistics (feature means,
covariances, principal subspaces)—assumptions that can become invalid under test-time covariate
drift and are often infeasible when training data are unavailable. In contrast, our method is post-hoc
and relies solely on the unlabeled test stream, without training statistics.

Post-hoc, test-time adaptive approaches. An emerging line of work adapts OOD detection using test-
time batches/streams without weight updates. RTL (Fan et al., 2024) uncovers a linear trend between
OOD scores and features and fits a batch-level discriminator; OODD (Yang et al., 2025) maintains an
online dynamic OOD dictionary to accumulate representative OOD features. These approaches are
closer in spirit to our online setting but typically operate without explicitly addressing the time-varying
covariate shift. DART differs by tracking the discriminative axis with dual prototypes (ID/OOD)
per layer online across a stream; we maintain persistent, memory-light state that adapts smoothly to
drift. Our goal is OOD detection under covariate drift in streaming mixtures; conventional test-time
adaptation (TTA) methods that target closed-set robustness and/or adapt model weights (Wang et al.,
2020; Niu et al., 2023) are orthogonal to this objective and not our focus.

2.2 COVARIATE SHIFT AND JOIN-SHIFT EVALUATION

Covariate corruptions and natural shift. Covariate shift—changes in input distributions with fixed
labels—is commonly studied with corruption suites such as CIFAR-C and ImageNet-C (Hendrycks &
Dietterich, 2019), which introduce noise, blur, weather, and other factors. Recent datasets emphasize
natural sources of shift from environment and sensor variation (Baek et al., 2024; 2025).

Joint semantic and covariate shift. Full-spectrum OOD (FS-OOD) (Yang et al., 2023a)) evaluates
semantic OOD while allowing covariate variation; OpenOOD unifies large-scale OOD evaluation
and includes joint-shift settings (Yang et al., 2022; Zhang et al., 2023b). Dataset design such as
NINCO (Bitterwolf et al., 2023) reduces ID contamination for clearer semantic separation. Our
setting follows this trajectory but explicitly considers streaming mixtures where csID and csOOD
experience the same evolving covariates (e.g., a sudden illumination change). DART is designed to
adapt online in such scenarios via per-layer dual prototypes and multi-layer score fusion, without
requiring training data, training statistics, or weight updates.
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Figure 3: Unit-wise activation analysis. The left panel shows the JS divergence between ID and OOD
activations, with arrows marking units of large divergence. The right panel visualizes the activation
distributions of these units, where ID (blue) and OOD (red) are clearly separable.

3 METHOD

In this section, we introduce our method DART for online test-time OOD detection under covariate
shift. We begin by revisiting a key motivation behind our approach: the empirical emergence of
discriminative axis in pre-trained feature spaces. We then describe how the prototypes that define this
axis are iteratively refined with incoming test batches. Finally, we explain why multi-layer fusion is
essential to maintain robustness across unpredictable types of covariate shift.

3.1 FORMULATION SETUP

We first explain the notations for our problem. We define DID and DOOD as the dataset for ID
and OOD, observed by the OOD detection system. Then, let Bt = {xt,1,xt,2, . . . ,xt,N} denote
an input batch received at test time, where each sample xt,i may belong to one of two categories
under covariate shift: covariate-shifted in-distribution (csID) or covariate-shifted out-of-distribution
(csOOD). We denote the subset of csID samples as BID

t and the csOOD samples as BOOD
t , such that

Bt = BID
t ∪ BOOD

t .

Model is composed of multiple layers, and we extract intermediate feature representations from several
of them. Let fl(·) denote the feature mapping at layer l, where l ∈ L = {1, 2, . . . , L}. For a given
input x, we obtain a set of multi-layer features {z(1), z(2), . . . , z(L)}, where z(l) = fl(x) represents
the feature at layer l. Thus, for a csID sample xID

t ∈ BID
t and a csOOD sample xOOD

t ∈ BOOD
t , their

multi-layer feature sets are ZID
t = {z(1),IDt , . . . , z

(L),ID
t } and ZOOD

t = {z(1),OOD
t , . . . , z

(L),OOD
t },

respectively.

3.2 ID–OOD SEPARABILITY IN FEATURE SPACE: EXISTENCE OF THE DISCRIMINATIVE AXIS

Prior works (Sun et al., 2021; Xu et al., 2023) have reported that ID and OOD samples exhibit distinct
activation patterns in the feature space. In a similar spirit, we systematically examine unit-level
activations from a distributional perspective. Specifically, we collect unit-wise activation distributions
across multiple ID and OOD samples and compare them. Our analysis reveals that there exists certain
units where distributions of ID and OOD samples diverge substantially, as evidenced by a large
Jensen–Shannon (JS) divergence in Figure 3. Visualization via violin plots further demonstrates that
ID and OOD activations can be sharply distinguished within those units.

Building upon this insight, we leverage these distributional differences to construct a unified dis-
criminative direction. We compute prototype representations by averaging activations across all ID
samples and all OOD samples respectively, yielding two representative points in the feature space1:
pID and pOOD:

pID =
1

|DID|
∑

x∈DID

f(x), pOOD =
1

|DOOD|
∑

x∈DOOD

f(x) (1)

Then, we define the connecting vector between these prototypes as the discriminative axis:

axisoracledisc = pID − pOOD (2)

The key insight of this averaging operation is that it naturally implements an automatic weighting
mechanism: units with substantial ID-OOD divergence are emphasized in the discriminative axis,

1While separability analysis may be conducted for each of the selected feature layers, but for clarity, we omit
the layer index from the notation in this section.
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(a) CIFAR-100 vs. LSUN
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(b) ImageNet vs. iNaturalist

Figure 4: Distribution of ID (blue dots) and OOD (red dots) samples at features space projected with
the oracle discriminative axis as the horizontal axis.

while units with trivial divergence are suppressed. This occurs because discriminative units exhibit
large differences between their ID and OOD mean activations, whereas non-discriminative units show
similar mean values across both distributions. Figure 4 shows that when features are projected along
this axis, ID and OOD samples consistently form distinct clusters. This separation persists regardless
of the presence or type of covariate shift, indicating the existence of discriminative axis.

However, such a discriminative axis is a theoretical construct that presupposes knowledge of OOD
distributions. Since the nature of OOD is inherently unknown before test-time, it is not feasible to
predefine and fix such a discriminative axis in advance. This motivates the need to adaptively identify
the optimal discriminative axis during test-time. To this end, we propose a method that progressively
identifies two prototypes—one associated with ID samples and the other with OOD samples—whose
connecting direction defines a discriminative axis that adapts to the evolving data stream.

3.3 BATCH-WISE PROTOTYPE REFINEMENT: TRACKING THE DISCRIMINATIVE AXIS

To craft and update the discriminative axis in an online manner, we refine prototypes through iterative
pseudo-labeling and prototype updating. Refer to Appendix Sec. B.4 for the detailed algorithm.

Our method initializes and dynamically updates layer-specific prototypes for csID and csOOD based
on current test batch features. Since true ID/OOD labels are unavailable during test-time, we rely on
pseudo-labeling to distinguish between csID and csOOD samples. We employ Otsu algorithm (Otsu
et al., 1975) to automatically determine optimal thresholds by maximizing the between-class variance,
providing a principled way to separate samples based on their score distributions.

Dual-Prototype Initialization. For the initial batch, we use naive baseline score, Maximum Softmax
Probability (MSP) as our reference score. We assign pseudo-labels using MSP with the Otsu-
determined threshold, then compute initial prototypes as the mean feature vectors of their respective
pseudo-labeled groups, i.e. p̄ID

1 = 1
|SID

1 |
∑

i∈SID
1

f(x1,i), p̄
OOD
1 = 1

|SOOD
1 |

∑
i∈SOOD

1
f(x1,i).

Dual-Prototype Tracking. For subsequent batches, we design a more refined scoring function which
better utilizes the built prototypes. We compute Euclidean distances between each sample and the
dual prototypes from the previous timestep, then calculate a Relative Distance Score (RDS) that
reflects each sample’s position relative to both prototypes:

RDS(xt,i) = 1−
∥zt,i − p̄ID

t−1∥2
∥zt,i − p̄ID

t−1∥2 + ∥zt,i − p̄OOD
t−1 ∥2

, (3)

where zt,i denotes the feature of i-th sample in the batch t. The RDS formulation is inherently
scale-invariant, making it robust to variations in feature magnitudes across different layers and
architectures. Using the Otsu algorithm, we determine an optimal threshold to assign pseudo-labels
based on this RDS score. We compute the new prototypes p̂ID

t , p̂OOD
t as the mean feature vectors

of their respective pseudo-labeled groups. To ensure prototype reliability, we incorporate Tukey’s
outlier filtering method (Tukey et al., 1977) to exclude samples that are too far from their assigned
prototypes so that only the remaining samples contribute to the mean computation. Finally, we refine
prototypes using exponential moving average (EMA) to maintain stability:

p̄ID
t = α p̄ID

t−1 + (1− α) p̂ID
t , p̄OOD

t = α p̄OOD
t−1 + (1− α) p̂OOD

t . (4)

This iterative process enables prototypes to progressively converge toward the true underlying
distributions of csID and csOOD samples.

Flip Correction. Due to DART’s pseudo-labeling approach, incorrectly initialized prototypes can
lead to catastrophic misplacement, with prototypes potentially drifting toward opposite sides of

5
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Figure 5: Layer-wise RDS distributions across three covariate shift types. Each plot shows the RDS
distribution of csID (blue curve, CIFAR-100) and csOOD (red curve, LSUN) samples at different
network depths (low, mid, high-level) through three sequential batches. The visualizations reveal how
different corruption types affect feature separability at specific network layers; under Gaussian noise,
separability degrades in high-level layers, whereas under defocus blur, it degrades in low-level layers.

their desirable locations. To address this, we implement a “flip” detection mechanism that identifies
prototype misalignments and automatically swaps them when necessary. We detect flips by comparing
current prototypes with an auxiliary MSP-based prototype. A flip occurs when the csID prototype is
significantly farther from the MSP-based reference than the csOOD prototype, while simultaneously
showing lower cosine similarity. Formally, we swap prototypes when:

∥p̄ID
t − p̂ID

t,MSP∥2 > 2∥p̄OOD
t − p̂ID

t,MSP∥2 and cos
(
p̄ID
t , p̂ID

t,MSP

)
< cos

(
p̄OOD
t , p̂ID

t,MSP

)
We use a weighted comparison (factor of 2) to impose a strict condition that prevents unintended flip
detections, and a value we found works well across all datasets.

3.4 MULTI-LAYER SCORE FUSION

To enhance discriminative axis identification, we extend our approach to multi-layer features. Low-
level features capture local patterns like textures and edges, while high-level features encode semantic
concepts (Guo et al., 2016). However, covariate shifts can selectively disrupt different levels of visual
information (Hendrycks & Dietterich, 2019; Yin et al., 2019)—blur corruptions primarily affect
low-level features, while elastic transformations impair higher-level representations. As a result,
different layers exhibit varying degrees of ID/OOD discriminability depending on the shift type, as
illustrated in Figure 5. Since the nature of covariate shift is typically unknown beforehand, leveraging
information from all feature levels through multi-layer fusion is essential for robust OOD detection.

As the prototypes are updated for each batch, we compute the RDSl for each selected layer l. To
obtain the final OOD score for each sample xt,i in the batch, we fuse the RDS values from the
selected layers L by taking their average, formally given by RDSfinal(xt,i) =

1
|L|

∑
l∈L RDSl(xt,i).

Using the fused OOD score RDSfinal(xt,i), we make the final OOD prediction.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Although DART is designed to adaptively handle challenging covariate shifts, we evaluate
on both clean and covariate-shifted datasets as the shift may be weak or even absent in real-world
scenarios. We use CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) as
ID datasets. For CIFAR-100, we use SVHN (Netzer et al., 2011), Places365 (Zhou et al., 2017),
LSUN (Yu et al., 2015), iSUN (Xu et al., 2015), and Textures (Cimpoi et al., 2014) as OOD datasets.
For ImageNet, we use ImageNet-O (Hendrycks et al., 2021), Places (Zhou et al., 2017), SUN (Xiao
et al., 2010), iNaturalist (Van Horn et al., 2018), and Textures as OOD datasets. To simulate covariate
shift, we apply 15 common corruption types (Hendrycks & Dietterich, 2019) at severity level 5 to
both ID and OOD datasets, resulting in pairs such as CIFAR-100-C vs. SVHN-C.

Models. For CIFAR-100-based benchmarks, we use WideResNet-40-2 (Zagoruyko & Komodakis,
2016) pre-trained with AugMix (Hendrycks et al., 2019b) on clean CIFAR-100, which is available
from RobustBench(Croce et al., 2020). For ImageNet-based benchmarks, we use the pre-trained
RegNetY-16GF (Radosavovic et al., 2020) available from PyTorch. In addition, we also evaluate with
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Table 1: OOD detection performance comparison with CIFAR-100-C and ImageNet-C csID. Results
are the average of all 15 corruptions with severity level 5. (Best: bolded, Second-best: underlined)

ImageNet-C

Method Training dist.
informed

ImageNet-O-C Places-C SUN-C iNaturalist-C Textures-C Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 85.01 62.18 74.41 73.10 73.64 73.65 53.91 82.27 70.88 72.85 71.57 72.81
Energy NO 82.68 63.65 70.13 77.66 69.70 78.79 59.45 82.48 62.58 78.16 68.91 76.13
Max logit NO 83.69 63.51 71.00 76.64 70.11 77.59 53.19 83.76 65.85 76.85 68.77 75.67
GradNorm NO 85.09 58.28 68.15 78.13 64.77 81.23 49.29 85.45 51.70 84.11 63.80 77.44
ViM YES 91.28 54.02 98.75 25.72 99.14 23.46 99.41 18.87 97.90 29.31 97.30 30.28
KNN YES 92.60 53.73 98.17 30.68 98.23 29.94 98.69 24.10 90.21 50.39 95.58 37.77
MDSsingle YES 92.67 50.34 99.11 21.17 99.40 18.89 99.68 14.49 98.29 26.37 97.83 26.25
MDSensemble YES 85.89 58.76 98.08 27.51 98.23 26.49 98.31 21.40 81.15 47.73 92.33 36.38
ODIN NO 86.67 59.91 57.03 83.67 54.88 84.53 44.03 88.03 53.95 83.93 59.31 80.01
ReAct YES 90.46 54.69 89.30 66.71 88.96 68.19 92.42 64.03 86.26 66.59 89.48 64.04
SCALE NO 82.06 65.18 67.20 79.03 65.58 80.33 48.40 85.75 60.80 80.03 64.81 78.06
ASH NO 82.45 63.90 69.82 77.91 69.26 79.08 58.88 82.76 62.00 78.55 68.48 76.44
RTL NO 83.70 65.26 65.44 79.96 64.27 80.32 41.39 87.69 64.08 78.36 63.78 78.32
NNGuide YES 88.94 56.31 81.97 69.88 81.05 73.03 74.75 76.53 58.93 79.60 77.13 71.07
CoRP YES 93.02 52.30 95.18 46.32 95.22 46.33 95.99 43.54 93.05 51.72 94.49 48.04
MDS++ YES 82.39 64.35 90.03 52.53 90.68 52.72 64.23 71.61 66.93 68.57 78.85 61.96
RMDS YES 92.91 58.76 96.74 48.73 97.50 47.40 95.35 53.60 96.64 44.86 95.83 50.69
RMDS++ YES 94.61 57.05 96.02 52.76 96.38 51.52 93.87 64.11 95.33 52.20 95.24 55.53

DART NO 68.87 66.63 8.70 92.96 8.08 93.03 7.60 93.18 2.55 99.43 19.16 89.05
CIFAR-100-C

Method Training dist.
informed

SVHN-C Places365-C LSUN-C iSUN-C Textures-C Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 91.48 58.40 87.30 64.23 86.85 64.49 88.40 62.74 91.91 58.24 89.19 61.62
Energy NO 93.13 60.53 84.74 66.56 84.04 68.57 87.14 64.79 90.20 61.10 87.85 64.31
Max logit NO 92.73 60.58 85.04 66.43 84.43 68.24 87.15 64.74 90.74 60.78 88.02 64.15
GradNorm NO 96.07 47.75 92.56 52.99 94.89 45.14 94.79 45.32 84.59 62.52 92.58 50.74
ViM YES 77.24 72.64 90.23 59.74 86.41 64.41 87.65 62.40 93.15 55.11 86.94 62.86
KNN YES 88.45 66.38 85.63 63.99 83.87 70.22 87.06 65.25 90.83 60.93 87.17 65.35
MDSsingle YES 89.04 61.64 91.30 57.42 84.94 65.60 86.68 62.82 95.16 48.58 89.42 59.21
MDSensemble YES 63.57 79.33 92.49 48.49 73.78 60.77 73.95 58.87 75.16 57.51 75.79 60.99
ODIN NO 79.07 70.05 88.23 63.54 89.96 59.13 90.48 59.18 77.69 70.79 85.09 64.54
ReAct YES 95.08 55.32 88.78 62.51 86.39 67.46 88.07 64.76 91.90 60.40 90.04 62.09
SCALE NO 88.88 66.46 85.55 66.91 86.30 65.89 88.06 64.21 81.14 70.69 85.99 66.83
ASH NO 92.05 62.73 85.42 66.48 85.24 67.78 87.99 64.30 87.66 64.61 87.67 65.18
RTL NO 89.27 58.60 84.59 64.62 83.65 66.99 86.90 63.60 89.30 57.65 86.74 62.29
NNGuide YES 91.11 62.78 88.78 63.45 91.30 58.64 91.96 57.62 77.91 68.69 88.21 62.24
CoRP YES 64.51 80.52 89.98 60.28 92.56 59.80 91.30 59.91 55.25 81.49 78.72 68.40
MDS++ YES 95.15 62.58 87.40 64.87 87.25 66.75 89.85 62.90 95.16 59.59 90.96 63.34
RMDS YES 88.78 64.07 86.67 64.65 79.57 71.82 82.68 67.91 94.23 55.06 86.39 64.70
RMDS++ YES 91.52 65.51 85.70 65.59 82.73 70.26 86.08 66.38 93.78 58.41 87.96 65.23

DART NO 48.60 79.82 68.66 68.00 44.14 80.29 50.76 79.75 51.48 80.60 52.73 77.69

Transformer-based models on CIFAR-100 benchmarks, all of which are fine-tuned with CIFAR-100.
Results on ResNet-50 (He et al., 2016) for ImageNet benchmarks are also provided in the Appendix.

Baseline Methods. MSP (Hendrycks & Gimpel, 2016), Max Logit (Hendrycks et al., 2019a),
Energy (Liu et al., 2020), ODIN (Liang et al., 2017), GradNorm (Huang et al., 2021), SCALE (Xu
et al., 2023), ASH (Djurisic et al., 2022), RTL (Fan et al., 2024), like DART, do not require any
precomputed statistics or storage from the training data. In contrast, KNN (Sun et al., 2022),
ViM (Wang et al., 2022), ReAct (Sun et al., 2021), NNGuide (Park et al., 2023), CoRP (Fang et al.,
2024), MDS (Lee et al., 2018) and its variants (Ren et al., 2021; Mueller & Hein, 2025) require
pre-computation or storage of reference information from training samples. As MDS has been
implemented in prior work using either single-layer or multi-layer, we compare against both variants.

4.2 OOD DETECTION RESULTS

4.2.1 RESULTS ON COVARIATE SHIFTED DATASET

As DART is designed to adapt to test-time covariate shift, it demonstrates its full potential in the
covariate-shifted setting. As shown in Table 1, on ImageNet-C benchmark, DART achieves the
best performance on every OOD dataset and both evaluation metrics, with an average FPR@95TPR
reduction of 40.15 pp and average AUROC gain of 9.04 pp compared to the second-best (i.e., ODIN).
On CIFAR-100-C, DART once again achieves the best average performance on both metrics: an
average FPR@95TPR reduction of 23.06 pp and an AUROC gain of 9.29 pp compared to the
second-best. These results highlight the robustness and adaptability of DART in the face of test-time
covariate shift.

An important observation is that methods relying on prior information from training data tend to
perform similarly to, or even worse than, baselines that do not use such priors. This suggests that
the prior information which is typically beneficial for OOD detection on clean datasets may become
misaligned with test-time distributions under covariate shift, leading to degraded performance.
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Batch 1
Cos. Sim.: 0.264

ID
OOD
Oracle Axis
DART Axis

Batch 2
Cos. Sim.: 0.467

Batch 3
Cos. Sim.: 0.684

Batch 4
Cos. Sim.: 0.836

Batch 5
Cos. Sim.: 0.926

Batch 6
Cos. Sim.: 0.962

Figure 6: Progression of axis alignment at CIFAR-100-C vs. LSUN-C under impulse noise corruption

4.2.2 RESULTS ON CLEAN DATASET Table 2: OOD detection performance
without covariate shift. All results are
reported as the mean over all five OOD
datasets for each ID set. (Best: bolded,
Second-best: underlined)

Method ImageNet CIFAR-100

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP 44.64 86.94 80.37 75.29
Energy 38.25 85.52 79.95 76.79
Max logit 37.05 86.43 79.91 77.06
GradNorm 80.50 57.26 94.92 43.62
ViM 56.58 87.60 71.94 75.61
KNN 84.79 75.87 71.48 81.16
MDSsingle 79.19 80.57 80.01 69.98
MDSensemble 55.30 86.86 45.94 86.36
ODIN 60.84 81.86 81.11 69.50
ReAct 86.40 70.67 79.45 76.09
SCALE 35.01 87.02 76.60 77.53
ASH 37.77 85.67 80.44 76.76
RTL 42.30 84.24 64.11 80.76
NNGuide 70.60 70.05 87.55 66.29
CoRP 49.03 90.17 65.54 81.05
MDS++ 41.87 90.48 85.96 75.52
RMDS 46.28 91.03 67.90 82.51
RMDS++ 56.01 89.73 73.91 81.57

DART 15.95 96.13 33.12 89.78

Table 2 reports the OOD detection performance on the
clean CIFAR-100 and ImageNet benchmark. Although
DART mainly targets covariate-shifted environments, it
consistently outperforms all baselines on the clean bench-
marks, achieving the lowest average FPR@95TPR and
the highest average AUROC. DART reduces FPR@95 by
19.06 pp on ImageNet benchmark and 12.72 pp on CIFAR-
100 benchmark compared to the second-best, while im-
proving AUROC by 5.10 pp and 3.42 pp, respectively.
These results suggest that ID and OOD samples are well-
separated in the feature space across most ID and OOD
dataset combinations and that the ID and OOD proto-
types, while not drastically shifted, are finely adjusted by
DART toward more optimal axis for discrimination.

Importantly, baselines that leverage training samples to
extract prior information before test time—Mahalanobis,
KNN, and ViM—tend to outperform those not relying on
such information. DART is a notable exception, perform-
ing the best without any prior information.

4.2.3 RESULTS WITH TRANSFORMER ARCHITECTURES

We also conduct experiments on transformer-based architectures (Vaswani et al., 2017), specifi-
cally ViT-Tiny (Dosovitskiy et al., 2021; Winkawaks, 2023) and Swin-Tiny (Liu et al., 2021), to
demonstrate the robustness of our method across different model architectures. As shown in the
Table 3, DART consistently outperforms all baseline methods on both the covariate-shifted datasets
and original datasets. Specifically, DARTachieves 17.45pp and 37.11pp reductions in FPR@95 on
covariate-shifted benchmarks for ViT-Tiny and Swin-Tiny, respectively. On clean benchmarks, it
demonstrates 8.6pp and 3.42pp FPR@95 improvements for ViT-Tiny and Swin-Tiny, respectively.
This result proves the superiority of our method and the emergence of discriminative axis in the
feature space regardless of the underlying model architecture.

4.3 ABLATION STUDIES

Progression of Axis-alignment. Figure 6 demonstrates the online convergence capability of DART in
discovering the oracle discriminative axis. The stars represent the global centroids of ID and OOD,
with their connecting line forming the oracle discriminative axis. The triangles indicate the ID
and OOD prototypes estimated by DART at each batch, whose connecting line represents the
online discriminative axis. The cosine similarity between these two axes increases dramatically
across batches, demonstrating DART’s ability to navigate the high-dimensional feature space and
progressively align with the true discriminative direction.

Impact of Multi-layer Fusion. Figure 7a compares full DART against its single-layer variants on
CIFAR-100 vs. LSUN, demonstrating the impact of multi-layer fusion. While DART achieves the
highest average performance, the key advantage lies in stability. Single-layer variants occasionally
outperform DART in specific settings (e.g., Block3 on original data, Block1 under Gaussian noise)
but exhibit catastrophic failures under other corruptions due to varying covariate-shift impacts across
layers. Therefore, DART’s multi-layer ensemble provides robustness under diverse covariate shifts.

Impact of Flip Correction. Figure 7b demonstrates the critical role of DART’s flip correction. We
compare DART with DART-NoFlip (without flip correction) on CIFAR-100 vs iSUN for original and
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Table 3: OOD detection performance comparison with ViT-Tiny and Swin-T architectures. We
evaluate with CIFAR-100 ID, CIFAR-100-C csID and the corresponding OODs. All results are
reported as the mean over all five OOD datasets. For covariate shifted datasets, results are the average
of all 15 corruptions with severity level 5. (Best: bolded, Second-best: underlined)

Method Training dist.
informed

Covariate shifted Clean

ViT-Tiny Swin-T ViT-Tiny Swin-T

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 89.56 57.03 85.24 63.39 70.36 79.79 60.16 84.31
Energy NO 87.01 61.20 80.30 68.35 58.77 84.83 41.06 89.80
Max Logit NO 87.58 60.65 81.90 67.73 60.27 84.54 42.11 89.52
GradNorm NO 89.54 58.42 78.77 71.44 78.33 75.24 71.63 74.53
ViM YES 89.49 58.75 96.94 45.76 58.27 85.06 93.00 66.26
KNN YES 90.15 56.81 84.25 64.91 67.35 79.58 45.93 88.51
MDSsingle YES 97.22 32.40 98.76 33.09 96.38 35.57 98.67 41.11
MDSensemble YES 61.73 65.95 98.60 33.75 29.18 88.40 98.42 45.53
ODIN NO 87.53 60.52 84.88 63.63 80.25 71.22 91.20 63.65
ReAct YES 85.94 62.01 76.76 71.14 56.86 81.79 41.78 89.51
SCALE NO 88.84 58.99 76.68 71.57 61.75 83.66 44.84 88.50
ASH NO 92.00 56.00 76.95 71.39 81.17 74.00 50.03 86.97
RTL NO 84.42 58.69 83.71 63.62 40.20 87.75 50.90 84.23
NNGuide YES 86.49 61.17 76.53 73.38 60.30 83.43 38.04 91.06
CoRP YES 88.31 59.85 86.17 63.65 67.28 82.43 50.37 88.53
MDS++ YES 79.15 66.25 76.01 69.80 46.70 87.12 35.28 91.54
RMDS YES 82.63 63.56 91.33 58.14 47.98 86.93 54.00 87.65
RMDS++ YES 81.30 64.05 88.13 61.81 48.11 86.71 47.01 88.90

DART NO 44.28 68.60 38.90 81.28 20.58 94.31 31.86 88.03

Methods
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AU
RO

C 0.6561

0.7974 0.7965

0.6092

0.8196

DART

Block1
Block2
Block3
FC

Average AUROC
0 20 40 60 80 100

Batch
0.0

0.2

0.4

0.6

0.8

1.0

Original

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

Gaussian Noise

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

Defocus Blur
(a) Impact of Multi-layer Feature Utilization

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

  
 

DART
DART-NoFlip

Original

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

Gaussian Noise

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

Shot noise

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

JPEG comp.
(b) Impact of Flip Correction across different corruption types.

Figure 7: Impact of DART’s individual components

corrupted datasets. While both perform identically on original data and under Gaussian noise, Shot
noise reveals a drastic difference. Standard DART recovers via prototype flip and performs robustly,
while DART-NoFlip suffers catastrophic degradation of detection capability due to reversed prototypes
under Shot noise. The flip correction detects and rectifies these inversions by ensuring consistent
prototype proximity. Similar effects with JPEG compression further validate the effectiveness.

5 CONCLUSION

In this work, we addressed the realistic challenge of OOD detection under test-time covariate shift, a
scenario where existing methods often collapse. Our analysis revealed the consistent existence of a
discriminative axis along which covariate-shifted ID and OOD samples remain separable. Building
on this insight, we proposed DART, which dynamically tracks prototypes to recover the evolving
discriminative axis with multi-layer fusion. Extensive experiments across diverse datasets and
architectures confirmed its superiority over strong baselines, underscoring the promise of prototype-
based axis tracking as a practical solution for reliable OOD detection in real-world environments.

Limitations and Future Works. While DART demonstrates strong performance, several avenues
remain for improvement. The reliance on MSP-based initialization may impact performance when
initial pseudo-labeling quality is poor, suggesting a need for more robust initialization strategies.
Additionally, extending DART beyond vision tasks to other modalities presents an opportunity to
validate the universality of discriminative axis tracking across different data representations.
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APPENDIX
A EXPERIMENTAL DETAILS

A.1 DATASETS DETAILS

CIFAR-100 CIFAR-100 (Krizhevsky et al., 2009) consists of 60,000 color images of size 32× 32
across 100 object classes, with 600 images per class. The dataset is divided into 50,000 training and
10,000 test samples. It includes diverse categories such as animals, vehicles, and everyday objects,
and is commonly used for evaluating fine-grained image classification and representation learning. In
our experiments, we use CIFAR-100 as the in-distribution dataset.

SVHN The Street View House Numbers (SVHN) dataset (Netzer et al., 2011) contains real-world
digit images collected from Google Street View. It consists of over 600,000 images, each containing
a single digit cropped from house number signs, with a resolution of 32× 32. The dataset includes 10
classes (digits 0–9) and is known for its relatively low intra-class variability and high image quality.
We use SVHN as an out-of-distribution dataset in our evaluation.

LSUN The Large-scale Scene UNderstanding (LSUN) dataset (Yu et al., 2015) contains millions of
high-resolution images across various indoor and outdoor scene categories such as classroom, church,
and bridge. In OOD detection benchmarks, a subset of LSUN is often used by resizing images to
32 × 32 resolution to match CIFAR-style inputs. In our experiments, we use the resized LSUN
images as out-of-distribution samples.

iSUN The iSUN dataset (Xu et al., 2015) consists of natural scene images collected for saliency
prediction, containing various indoor and outdoor environments. It includes around 6,000 images,
which are typically resized to 32× 32 for compatibility with CIFAR-based architectures. Due to its
scene-centric content, iSUN is commonly used as an out-of-distribution dataset in image classification
tasks. We follow prior works and use the resized version of iSUN for OOD evaluation.

Textures The Textures dataset (Cimpoi et al., 2014), also known as the Describable Textures
Dataset (DTD), contains 5,640 texture images spanning 47 categories such as striped, dotted, and
cracked. The images are collected ”in the wild” and exhibit a wide range of fine-grained, low-level
patterns. Its low semantic content and high texture diversity make it a challenging out-of-distribution
benchmark.

ImageNet ImageNet-1K dataset (Deng et al., 2009) contains 1.28M training images and 50K
validation images across 1,000 object categories.

ImageNet-O ImageNet-O (Hendrycks et al., 2021) is a curated out-of-distribution dataset contain-
ing 2,000 natural images that are semantically distinct from the 1,000 classes in ImageNet-1k. The
images were collected to naturally lie outside the ImageNet taxonomy while maintaining comparable
visual complexity. This dataset serves as a challenging benchmark for evaluating semantic OOD
detection.

SUN The SUN dataset (Xiao et al., 2010) is a large-scale scene understanding benchmark containing
over 130,000 images across a wide variety of indoor and outdoor environments. It covers hundreds of
semantic scene categories such as kitchen, mountain, and library. The diversity and scene-centric
nature of SUN make it a strong candidate for out-of-distribution evaluation.

iNaturalist The iNaturalist dataset (Van Horn et al., 2018) contains high-resolution images of
fine-grained natural categories such as plants, insects, birds, and mammals, collected from citizen
science platforms. Due to its distinct domain and taxonomic diversity, iNaturalist is widely used as
an out-of-distribution benchmark in vision tasks. Its semantic gap from object-centric datasets makes
it a challenging OOD evaluation setting.
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Common corruptions To evaluate robustness under covariate shift, we use a set of common image
corruptions introduced by Hendrycks and Dietterich (Hendrycks & Dietterich, 2019). This benchmark
includes 15 corruption types, grouped into noise (e.g., Gaussian noise, shot noise), blur (e.g., defocus,
motion blur), weather (e.g., snow, fog), and digital distortions (e.g., JPEG compression, pixelation).
We apply these corruptions to both in-distribution and out-of-distribution test samples to simulate
realistic distribution shifts. Each corruption is applied at severity level 5, following the standard
protocol used in prior robustness benchmarks.

A.2 BASELINES DETAILS

We introduce the baselines compared with DART and specify the hyperparameter used for implemen-
tation. The hyperparameter settings mainly follow the settings from the original paper.

MSP Maximum Softmax Probability (Hendrycks & Gimpel, 2016) uses the highest softmax output
value as the confidence score, assuming in-distribution samples yield higher confidence. We extract
this directly from the classifier’s final layer.

Energy Energy-based detection (Liu et al., 2020) computes E(x) = − log
∑

i exp(fi(x)) from
network logits, with lower values indicating in-distribution samples. T = 1.0 is used for temperature
scaling.

Max logit This method (Hendrycks et al., 2019a) uses the maximum pre-softmax logit value as
the score, avoiding the normalization effect of softmax that may mask useful signals in relative logit
magnitudes.

GradNorm GradNorm (Huang et al., 2021) measures the gradient magnitude of the loss with
respect to the penultimate layer features. OOD samples tend to produce larger gradient norms. We
use a temperature of 1.0 for all experiments.

ViM Virtual logit Matching (Wang et al., 2022) projects features into a null space and creates a
virtual logit to enhance separation between ID and OOD samples. We set the dimension of the null
space to 1000 for feature dimensions ≥ 1500, to 512 for feature dimensions ≥ 768, and to half the
size of the feature dimensions otherwise.

KNN K-nearest neighbors (Sun et al., 2022) measures the distance to k-nearest neighbors in feature
space, with OOD samples typically farther from ID samples. We use L2 normalization for features
and set k=50 for CIFAR-based experiments and k=200 for ImageNet-based experiments.

Mahalanobis distance We implement both single-layer and ensemble versions of this method (Lee
et al., 2018). The single-layer version models class-conditional feature distributions using Gaussian
distributions and measures the distance to the nearest class distribution, using the penultimate layer
features. The ensemble version combines layer-wise scores from multiple network layers using
pre-computed weights. These weights are learned by utilizing FGSM-perturbed inputs (magnitude
0.001) as synthetic OOD data and applying logistic regression (regularization strength C=1.0, max
iterations=1000) to determine the contribution of each layer’s feature. We extract features for each
layer or block depending on the model architecture.

ODIN ODIN (Liang et al., 2018) enhances OOD detection by applying input perturbations with
temperature scaling to create a larger gap between ID and OOD confidence scores. FGSM epsilon
values are set as 0.002 for both CIFAR-100 and ImageNet.

ReAct ReAct (Sun et al., 2021) truncates abnormally high hidden activations at test time, reduc-
ing model overconfidence on OOD data while preserving ID performance, thereby improving the
separability between ID and OOD sample.

SCALE SCALE (Xu et al., 2023) is a post-hoc OOD detection method that applies activation
scaling to penultimate features, thereby enlarging the separation between ID and OOD energy scores.
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ASH ASH (Djurisic et al., 2022) prunes a large portion of late-layer activations (e.g., by top-K
percentile) and either leaves the remaining values(ASH-P), binarizes them(ASH-B), or rescales
them(ASH-S), then propagates the simplified representation through the network for scoring. We use
ASH-P for performance comparison.

RTL RTL (Fan et al., 2024) fits a linear regression between OOD scores and network features
at test time, calibrating base detector outputs to improve detection performance through test-time
adaptation.

NNGuide NNGuide (Park et al., 2023) leverages k-nearest neighbor distances in the feature space,
scaled by the model’s confidence scores, to guide OOD detection by measuring how similar a test
sample is to training samples while accounting for prediction confidence.

CoRP CoRP (Fang et al., 2024) applies cosine normalization followed by Random Fourier Features
approximation of a Gaussian kernel, then computes PCA reconstruction errors for OOD detection.

MDS++ MDS++ (Mueller & Hein, 2025) enhances the standard Mahalanobis Distance Score by
applying L2 normalization to feature representations before computing class-conditional statistics,
thereby improving the geometric separation between ID and OOD samples in the normalized feature
space.

RMDS RMDS (Relative Mahalanobis Distance Score) (Ren et al., 2021) computes relative Maha-
lanobis distances by comparing class-conditional scores against global background scores, effectively
measuring how much a sample deviates from both class-specific and overall data distributions.

RMDS++ RMDS++ (Mueller & Hein, 2025) extends RMDS by incorporating L2 feature nor-
malization before computing relative Mahalanobis distances, combining the benefits of normalized
feature spaces with relative distance measurements to achieve more robust OOD detection.

A.3 EVALUATION MODEL DETAILS

For CIFAR-100-based benchmark, we use the pre-trained WideResNet (Zagoruyko & Komodakis,
2016) with 40 layers and widen factor of 2 pretrained with AugMix (Hendrycks et al., 2019b) on
clean CIFAR-100. The pretrained weights for this model is available from RobustBench (Croce et al.,
2020).

For ImageNet-based benchmark, we use the pre-trained RegNetY-16GF (He et al., 2016) with the
PyTorch checkpoint (Paszke et al., 2019), which is trained on ImageNet and widely used for OOD
detection task.

For evaluation on transformer-based architectures, we train two models: ViT-Tiny and Swin-Tiny.
Both models are initialized with ImageNet-pretrained weights provided by HuggingFace model hub.
We then fine-tune the model weights and classifier on the CIFAR-100 dataset. Training continues
until each model reaches its target accuracy threshold (80% for ViT-Tiny and 85% for Swin-Tiny),
after which early stopping is applied.

A.4 EVALUATION DETAILS

For evaluation, we construct each test-time batch to contain 100 in-distribution (ID) samples and
100 out-of-distribution (OOD) samples, resulting in a fixed batch size of 200. We sample a total of
100 such test batches for each experimental setting. For each batch, we compute the AUROC and
FPR@95TPR metrics, and report the final performance by averaging the values across all batches.

A.5 COMPUTE RESOURCES

All experiments were conducted using NVIDIA RTX 3090 and RTX 4090 GPUs.
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B METHOD DETAILS

B.1 OTSU ALGORITHM

To automatically determine a threshold that separates two distributions (e.g., ID and OOD) based on
their scalar scores, we adopt Otsu algorithm (Otsu et al., 1975). Originally proposed for image bina-
rization, Otsu algorithm selects the threshold that minimizes the intra-class variance (or equivalently
maximizes the inter-class variance) when partitioning a set of scalar values into two groups.

Given a histogram of score values, the algorithm exhaustively searches for the threshold τ that
minimizes the weighted sum of within-class variances:

σ2
within(τ) = ω0(τ)σ

2
0(τ) + ω1(τ)σ

2
1(τ), (5)

where ω0(τ) and ω1(τ) are the probabilities of the two classes separated by threshold τ , and
σ2
0(τ), σ

2
1(τ) are the corresponding class variances. This approach allows for an adaptive and data-

driven determination of the decision threshold, without requiring access to ground-truth labels or
distributional assumptions.

In our method, Otsu algorithm is applied to the distribution of OOD scores computed over each
test-time batch. This enables unsupervised, on-the-fly threshold selection for distinguishing ID and
OOD samples, and plays a critical role in decision-making process during inference.

B.2 TUKEY’S METHOD

To ensure robust prototype estimation, we apply outlier filtering prior to aggregating the feature
representations of test samples. Specifically, we adopt Tukey’s method, a non-parametric technique
for identifying outliers based on the interquartile range (IQR) (Tukey et al., 1977).

Given a set of distance values (e.g., Euclidean distances between features and their assigned prototype),
we first compute the lower quartile (Q1) and upper quartile (Q3). The interquartile range is then
defined as:

IQR = Q3 −Q1. (6)

A sample is identified as a potential outlier if its score x satisfies:

x > Q3 + 1.5 · IQR. (7)

We use Tukey’s method with an IQR factor of 1.5 throughout our experiments.

This filtering step is applied independently to the distance scores within each test-time batch, effec-
tively removing extreme values that may otherwise distort the prototype update.

B.3 LAYER SELECTION FOR DART

While it is possible to utilize the output of all intermediate layers for multi-layer aggregation, doing so
incurs additional computational overhead. To reduce this overhead while still capturing hierarchical
representations, we select a subset of representative layers at coarse block granularity, as specified in
Table 4.

Table 4: Included layers list for DART

Model architecture Included layers list

WideResNet-40-2 block1, block2, block3, fc

RegNetY-16GF
stem, trunk output {block1.block1-0, block1.block1-1,

block2.block2-0 - block2.block2-3, block3.block3-0 - block3.block3-10,
block4.block4-0}, fc

ViT-Tiny vit.encoder.layer{0 - 11}, classifier

Swin-T swin.encoder.layers{0.blocks.0, 0.blocks.1, 1.blocks.0, 1.blocks.1
2.blocks.0 - 2.blocks.5, 3.blocks.0, 3.blocks.1}, classifier

ResNet-50 layer1, layer2, layer3, layer4, fc
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Algorithm 1 DART

Require: Pre-trained model f , layers L = {1, . . . , L}, EMA coefficient α

1: Initialization using the first batch B1:
2: Let o = (o1, . . . , oC) be the logit vector
3: Compute MSP: MSP1,i = maxc

exp(oc)∑C
j=1 exp(oj)

4: Apply Otsu threshold τ1 on MSP scores for pseudo-labeling:

ŷi =

{
ID if MSP1,i ≥ τ1
OOD otherwise

5: Partition features into BID
1 and BOOD

1 based on ŷi
6: for each layer l ∈ L do
7: Initialize prototypes:

p̄
(l),ID
1 = 1

|BID
1 |

∑
x1,i∈BID

1
fl(x1,i), p̄

(l),OOD
1 = 1

|BOOD
1 |

∑
x1,i∈BOOD

1
fl(x1,i)

8: end for
9: for each batch Bt do

10: for each layer l ∈ L do
11: if t mod n = 0 then
12: Apply flip correction if prototypes are misaligned. Refer to Section 3.3 in main paper for

details.
13: end if
14: Extract features: z(l)t,i = fl(xt,i), xt,i ∈ Bt

15: Compute RDS:

RDS(l)
i = 1− ∥z(l)

i −p̄
ID,(l)
t−1 ∥

∥z(l)
i −p̄

ID,(l)
t−1 ∥+∥z(l)

i −p̄
OOD,(l)
t−1 ∥

16: Apply Otsu threshold τt on RDS scores for pseudo-labeling:

ŷi =

{
ID if RDS(l)

i ≥ τt
OOD otherwise

17: Partition features into BID
t and BOOD

t based on ŷi
18: Apply Tukey’s method for outlier filtering:

Let si = ∥z(l)t,i − pproto∥2, where pproto is the corresponding prototype

Filter out z(l)t,i if si > Q3 + k · IQR
19: Compute new centers:

p̂
(l),ID
t = 1

|BID
t |

∑
xt,i∈BID

t
fl(xt,i), p̂

(l),OOD
t = 1

|BOOD
t |

∑
xt,i∈BOOD

t
fl(xt,i)

20: Update prototypes with EMA:
p̄
ID,(l)
t = α · p̄ID,(l)

t + (1− α) · p̂ID,(l)
t−1 , p̄

OOD,(l)
t = α · p̄OOD,(l)

t + (1− α) · p̂OOD,(l)
t−1

21: end for
22: RDSmulti(xi) =

1
L

∑L
l=1 RDS(l)

i
23: end for
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B.4 ALGORITHM OF DART

C FULL RESULTS

Here we show the full results for all OOD datasets which was abbreviated as average in the main
manuscript due to space limits.

C.1 FULL CIFAR-100 RESULTS WITH WIDERESNET ON CLEAN DATASET

Table 5: OOD detection performance comparison with CIFAR-100 ID and the corresponding OODs.
FPR@95TPR (%) is lower the better and AUROC (%) is higher the better. (Best: bolded, Second-best:
underlined)

Clean

Method Training dist.
informed

SVHN Places365 LSUN iSUN Textures Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 79.32 77.27 80.37 74.99 78.39 76.91 81.23 74.56 82.55 72.70 80.37 75.29
Energy NO 80.32 78.74 78.47 75.69 78.39 78.68 83.42 74.53 79.17 76.31 79.95 76.79
Max logit NO 79.85 79.11 78.63 76.01 77.87 78.92 82.49 75.00 79.69 76.25 79.71 77.06
GradNorm NO 96.80 44.47 94.81 51.36 98.22 32.12 98.48 30.97 86.31 59.18 94.92 43.62
ViM YES 54.18 85.44 86.74 64.33 66.48 81.52 66.82 80.95 85.47 65.83 71.94 75.61
KNN YES 63.34 86.06 80.09 73.38 66.57 84.85 72.86 80.60 74.54 80.89 71.48 81.16
Mahalanobissingle YES 77.75 75.58 90.94 59.26 69.56 80.02 70.64 78.54 91.15 56.50 80.01 69.98
Mahalanobisensemble YES 62.92 88.78 93.41 61.12 13.12 97.34 16.44 96.55 43.79 87.99 45.94 86.36
ODIN NO 64.15 80.96 84.30 69.48 90.32 63.24 91.03 61.21 75.75 72.60 81.11 69.50
ReAct YES 87.25 70.36 79.97 75.71 73.91 80.58 75.75 78.48 80.39 75.32 79.45 76.09
SCALE NO 74.38 81.36 78.47 75.55 80.91 75.14 83.88 72.60 65.34 82.98 76.60 77.53
ASH NO 79.20 79.65 79.96 75.11 81.64 77.12 85.45 73.20 75.96 78.72 80.44 76.76
RTL NO 50.15 87.42 73.23 75.59 58.46 85.01 68.38 80.67 70.33 75.12 64.11 80.76
NNGuide YES 86.85 71.34 87.71 67.73 94.66 59.74 95.50 57.33 73.01 75.32 87.55 66.29
CoRP YES 43.43 91.59 86.30 68.31 82.53 77.18 80.56 77.13 34.89 91.04 65.54 81.16
MDS++ YES 83.59 81.25 85.42 70.98 84.16 77.33 86.64 73.88 90.00 74.15 85.96 75.52
RMDS YES 68.73 85.23 77.53 77.11 52.64 88.28 57.46 85.64 83.13 76.29 67.90 82.51
RMDS++ YES 74.20 84.57 76.79 77.67 65.24 85.70 71.02 82.49 82.29 77.44 73.91 82.51
DART NO 9.64 97.67 70.00 75.12 30.24 91.49 14.79 96.62 40.91 88.02 33.12 89.78

C.2 FULL IMAGENET RESULTS WITH REGNET ON CLEAN DATASET

Table 6: OOD detection performance comparison with ImageNet ID and the corresponding OODs.
FPR@95TPR (%) is lower the better and AUROC (%) is higher the better. (Best: bolded, Second-best:
underlined)

Clean

Method Training dist.
informed

IN-O Places SUN iNaturalist Textures Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 52.87 83.02 54.76 84.30 52.16 84.92 20.33 95.25 43.08 87.23 44.64 86.94
Energy NO 57.59 76.17 48.11 81.05 41.17 85.04 8.68 97.49 35.69 87.87 38.25 85.52
Max logit NO 52.30 78.42 47.22 82.29 41.65 85.60 9.50 97.43 34.57 88.39 37.05 86.43
GradNorm NO 93.95 34.15 87.71 52.32 79.27 62.51 74.90 63.44 66.67 73.87 80.50 57.26
ViM YES 30.21 93.82 71.37 82.93 72.21 83.42 50.70 90.12 58.42 87.70 56.58 87.60
KNN YES 69.58 85.71 97.60 69.55 96.05 71.65 99.40 66.69 61.32 85.77 84.79 75.87
Mahalanobissingle YES 48.14 90.43 87.04 76.70 90.16 76.11 88.65 78.79 81.98 80.81 79.19 80.57
Mahalanobisensemble YES 8.69 97.82 78.62 81.37 77.80 82.59 88.75 77.80 22.62 94.71 55.30 86.86
ODIN NO 60.40 82.05 71.28 76.69 68.97 77.47 47.64 88.78 55.90 84.33 60.84 81.86
ReAct YES 97.32 53.19 90.93 65.47 85.13 72.83 74.11 85.74 84.53 76.10 86.40 70.67
SCALE NO 52.97 77.70 45.51 82.83 37.89 86.79 8.72 97.46 29.96 90.30 35.01 87.02
ASH NO 57.04 76.29 47.82 81.17 40.78 85.21 8.43 98.01 34.80 88.15 37.77 85.67
RTL NO 52.60 79.13 49.71 83.58 48.01 82.53 21.53 90.75 39.67 85.22 42.30 84.24
NNGuide YES 87.68 49.90 85.03 61.03 76.69 68.44 49.44 87.67 54.18 83.23 70.60 70.05
CoRP YES 42.37 93.23 68.17 83.92 62.14 86.35 33.19 94.68 39.27 92.67 49.03 90.17
MDS++ YES 34.49 94.26 73.19 81.07 65.30 84.69 9.86 98.01 26.49 94.37 41.87 90.48
RMDS YES 41.02 92.19 63.46 87.29 61.54 88.84 9.41 97.54 55.96 89.27 46.28 91.03
RMDS++ YES 57.33 90.42 73.07 85.76 70.16 87.53 17.70 96.44 61.79 88.50 56.01 89.73
DART NO 0.59 99.82 14.41 96.31 36.14 90.86 20.71 95.28 7.90 98.36 15.95 96.13
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C.3 FULL CIFAR-100 RESULTS WITH VIT-TINY

Table 7: OOD detection performance comparison with ViT-Tiny. We evaluate with CIFAR-100 ID,
CIFAR-100-C csID and the corresponding OODs. (Best: bolded, Second-best: underlined)

Covariate Shifted

Method Training dist.
informed

SVHN-C Places365-C LSUN-C iSUN-C Textures-C Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 88.32 54.65 89.98 57.41 89.13 60.20 90.96 57.75 89.39 55.15 89.56 57.03
Energy NO 83.57 60.42 88.13 60.19 87.47 63.71 89.33 60.96 86.57 60.73 87.01 61.20
Max logit NO 84.66 59.74 88.59 59.76 87.74 63.31 89.76 60.53 87.17 59.93 87.58 60.65
GradNorm NO 89.95 62.39 89.89 56.74 92.07 54.39 92.37 53.47 83.40 65.13 89.54 58.42
ViM YES 86.98 58.01 91.24 57.30 88.56 62.26 90.90 58.85 89.78 57.33 89.49 58.75
KNN YES 90.16 56.65 90.34 54.45 90.01 60.53 92.23 55.79 87.99 56.64 90.15 56.81
Mahalanobissingle YES 97.65 32.82 96.87 34.13 96.77 33.42 97.27 31.31 97.54 30.30 97.22 32.40
Mahalanobisensemble YES 37.91 90.30 94.09 45.50 61.56 61.16 61.78 61.13 53.29 71.68 61.73 65.95
ODIN NO 85.29 61.87 88.93 58.27 89.56 58.57 89.54 59.06 84.33 64.82 87.53 60.52
ReAct YES 82.37 60.08 87.19 61.31 85.39 65.80 87.74 62.86 86.99 59.98 85.94 62.01
SCALE NO 84.84 59.26 89.66 58.25 90.05 60.75 91.51 57.95 88.16 58.76 88.84 58.99
ASH NO 92.41 58.90 91.56 55.26 93.51 52.40 93.88 51.33 88.62 62.12 92.00 56.00
RTL NO 80.17 59.38 86.96 57.54 83.75 62.21 88.03 56.60 83.18 57.72 84.42 58.69
NNGuide YES 86.45 59.03 87.05 59.69 86.04 64.58 88.36 61.35 84.53 61.21 86.49 61.17
CoRP YES 88.45 59.62 89.92 56.64 87.28 63.92 89.22 59.97 86.69 59.10 88.31 59.85
MDS++ YES 77.22 67.31 83.05 61.79 78.16 68.41 80.03 65.75 72.31 68.01 78.15 66.25
RMDS YES 76.29 65.91 87.26 60.66 84.90 65.54 87.27 61.98 77.44 63.73 82.63 63.56
RMDS++ YES 75.35 65.59 86.15 61.22 83.89 66.16 86.10 62.95 75.02 64.35 81.30 64.05
DART NO 36.44 71.92 67.29 57.33 25.08 80.93 31.67 75.50 60.90 57.30 44.28 68.60

Clean

Method Training dist.
informed

SVHN Places365 LSUN iSUN Textures Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 62.06 82.50 78.47 74.69 70.48 81.33 74.85 78.79 65.92 81.63 70.36 79.79
Energy NO 41.79 89.13 73.81 77.71 61.09 86.02 66.13 83.60 51.04 87.68 58.77 84.83
Max logit NO 44.96 88.65 74.40 77.59 61.78 85.80 67.05 83.33 53.15 87.33 60.27 84.54
GradNorm NO 70.09 81.30 83.25 69.27 85.99 72.71 87.16 70.48 65.14 82.44 78.33 75.24
ViM YES 47.34 88.18 71.80 78.03 57.30 87.18 63.52 84.49 51.37 87.41 58.27 85.06
KNN YES 60.23 83.70 79.73 69.78 65.70 83.28 72.82 77.93 58.29 83.19 67.35 79.58
Mahalanobissingle YES 97.62 31.26 94.24 47.56 96.96 31.19 97.67 27.57 95.40 40.26 96.38 35.57
Mahalanobisensemble YES 13.93 97.14 94.58 55.26 3.03 99.06 3.93 98.93 30.44 91.63 29.18 88.40
ODIN NO 75.65 75.47 87.48 64.34 84.41 68.70 83.64 69.79 70.07 77.78 80.25 71.22
ReAct YES 40.18 89.58 72.80 78.53 57.23 68.84 62.69 84.64 51.40 87.38 56.86 81.79
SCALE NO 44.17 88.43 73.71 77.68 67.15 83.85 71.51 81.28 52.19 87.07 61.75 83.66
ASH NO 77.25 79.20 83.45 69.11 86.72 71.52 88.41 69.02 70.01 81.14 81.17 74.00
RTL NO 26.70 89.94 67.55 77.48 27.65 93.41 39.20 89.62 39.88 88.30 40.20 87.75
NNGuide YES 47.09 87.22 76.40 74.95 60.59 85.51 66.31 82.58 51.10 86.91 60.30 83.43
CoRP YES 61.85 85.00 80.76 73.19 64.51 85.81 68.88 82.48 60.42 85.68 67.28 82.43
MDS++ YES 39.14 88.84 66.54 78.57 42.39 90.18 48.78 87.41 36.66 90.59 46.70 87.12
RMDS YES 36.21 89.32 62.15 80.43 47.61 88.92 55.13 85.97 38.81 90.00 47.98 86.93
RMDS++ YES 36.30 89.09 62.64 80.08 48.16 88.67 55.21 85.72 38.26 89.98 48.11 86.71
DART NO 3.24 99.23 62.77 81.73 0.85 99.80 1.04 99.74 35.00 91.04 20.58 94.31
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C.4 FULL CIFAR-100 RESULTS WITH SWIN-TINY

Table 8: OOD detection performance comparison with Swin-Tiny. We evaluate with CIFAR-100 ID,
CIFAR-100-C csID and the corresponding OODs. (Best: bolded, Second-best: underlined)

Covariate Shifted

Method Training dist.
informed

SVHN-C Places365-C LSUN-C iSUN-C Textures-C Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 87.48 58.92 87.20 63.29 82.95 67.03 85.14 64.75 84.33 62.97 85.42 63.39
Energy NO 81.88 67.29 86.20 64.20 78.30 71.63 81.65 68.08 73.47 70.53 80.30 68.35
Max logit NO 83.72 66.10 86.30 64.38 79.40 71.16 82.44 67.79 77.63 69.22 81.90 67.73
GradNorm NO 82.38 68.38 89.90 62.00 80.76 72.92 79.68 73.52 61.12 80.40 78.77 71.44
ViM YES 95.84 51.26 94.98 50.17 97.60 46.77 98.04 43.00 98.22 37.61 96.94 45.76
KNN YES 82.69 68.02 87.62 60.94 82.50 67.52 85.40 62.77 83.06 65.31 84.25 64.91
Mahalanobissingle YES 98.23 38.79 97.74 41.80 99.32 32.79 99.36 30.22 99.13 21.86 98.76 33.09
Mahalanobisensemble YES 97.17 44.72 97.94 39.09 99.35 31.32 99.38 29.27 99.14 24.34 98.60 33.75
ODIN NO 80.78 66.20 89.74 59.86 91.86 58.65 91.08 59.38 70.96 74.06 84.88 63.63
ReAct YES 78.42 69.44 85.84 65.20 76.79 73.35 78.67 71.44 64.09 76.25 76.76 71.14
SCALE NO 79.13 69.57 86.21 65.09 76.71 73.93 78.22 72.28 63.15 76.96 76.68 71.57
ASH NO 78.65 70.33 87.57 63.95 77.48 73.87 78.64 72.06 62.42 76.76 76.95 71.39
RTL NO 86.72 57.38 86.72 62.68 79.41 69.61 83.11 65.84 82.61 62.58 83.71 63.62
NNGuide YES 78.56 72.74 84.64 67.62 73.65 76.11 76.30 73.44 69.52 76.99 76.53 73.38
CoRP YES 84.83 67.05 89.32 59.20 85.16 65.79 86.98 61.99 84.56 64.22 86.17 63.65
MDS++ YES 72.36 75.29 88.15 60.55 78.41 69.66 79.70 66.70 61.44 76.79 76.01 69.80
RMDS YES 91.82 59.47 91.80 56.76 89.66 61.30 91.74 57.40 91.61 55.75 91.33 58.14
RMDS++ YES 89.90 63.59 90.80 58.82 85.84 64.50 88.39 60.72 85.74 61.41 88.13 61.81
DART NO 44.90 70.99 57.62 75.48 14.28 95.53 24.97 87.74 52.74 76.66 38.90 81.28

Clean

Method Training dist.
informed

SVHN Places365 LSUN iSUN Textures Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 59.06 86.09 69.83 79.17 58.09 85.76 62.11 83.42 51.72 87.13 60.16 84.31
Energy NO 35.88 91.83 58.64 83.16 38.61 91.40 44.35 88.95 27.80 93.67 41.06 89.80
Max logit NO 37.54 91.54 58.73 83.04 39.41 91.10 45.02 88.66 29.86 93.28 42.11 89.52
GradNorm NO 85.31 61.74 83.37 67.78 70.06 80.46 68.41 80.33 51.02 82.32 71.63 74.53
ViM YES 83.71 80.08 93.84 62.22 96.72 63.50 97.19 59.52 93.54 65.96 93.00 66.26
KNN YES 31.60 93.26 66.75 80.31 46.95 89.67 53.14 86.22 31.23 93.09 45.93 88.51
Mahalanobissingle YES 97.07 59.75 98.46 43.08 99.67 35.81 99.72 33.62 98.43 33.27 98.67 41.11
Mahalanobisensemble YES 96.51 64.83 98.40 43.33 99.57 38.31 99.65 36.58 97.99 44.61 98.42 45.53
ODIN NO 89.89 67.25 95.52 59.39 97.62 57.25 97.04 57.87 75.93 76.50 91.20 63.65
ReAct YES 42.84 90.56 58.78 82.17 38.80 91.42 42.60 89.57 25.89 93.83 41.78 89.51
SCALE NO 49.51 87.94 62.13 81.02 40.86 91.00 44.03 89.32 27.67 93.21 44.84 88.50
ASH NO 54.51 85.90 67.96 79.09 46.42 89.69 48.93 88.02 32.31 92.14 50.03 86.97
RTL NO 43.25 87.35 70.99 74.76 44.41 87.35 51.83 84.40 44.03 87.30 50.90 84.23
NNGuide YES 37.51 91.82 56.58 84.28 33.61 93.04 38.34 91.40 24.15 94.75 38.04 91.06
CoRP YES 41.14 92.32 68.66 80.55 50.94 89.81 55.48 87.22 35.63 92.77 50.37 88.53
MDS++ YES 30.97 93.67 56.68 83.95 33.31 92.98 39.00 90.82 16.43 96.28 35.28 91.54
RMDS YES 52.84 89.57 64.26 82.37 52.70 88.97 59.42 86.09 40.78 91.23 54.00 87.65
RMDS++ YES 47.14 90.76 58.64 83.56 44.55 90.16 50.92 87.55 33.78 92.48 47.01 88.90
DART NO 7.27 97.88 77.97 64.13 6.31 98.52 6.68 98.49 61.06 81.14 31.86 88.03
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C.5 FULL IMAGENET RESULTS WITH RESNET-50

Table 9: OOD detection performance comparison with ResNet-50 on ImageNet-based benchmark.
Results on covariated shifted dataset are the average of all 15 corruptions with severity level 5. (Best:
bolded, Second-best: underlined)

Covariate Shifted

Method Training dist.
informed

ImageNet-O-C Places-C SUN-C iNaturalist-C Textures-C Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 86.14 55.60 86.79 63.17 84.84 65.27 77.89 69.62 88.52 54.85 84.84 61.70
Energy NO 82.16 58.92 89.03 61.29 87.91 63.58 86.44 64.52 88.05 55.85 86.72 60.83
Max logit NO 83.88 57.81 87.57 63.00 85.79 65.42 81.49 68.07 88.02 55.87 85.35 62.03
GradNorm NO 76.86 64.58 70.84 77.06 65.23 80.51 51.36 85.62 67.11 74.14 66.28 76.38
ViM YES 95.64 38.92 99.50 17.64 99.65 14.90 99.94 8.60 96.94 25.14 98.33 21.04
KNN YES 83.81 63.63 90.93 55.23 91.12 56.45 95.20 45.36 61.31 73.33 84.47 58.80
MDSsingle YES 95.14 38.80 99.52 18.75 99.67 15.95 99.93 9.60 96.20 27.69 98.09 22.16
MDSensemble YES 79.71 62.76 92.44 42.67 92.17 41.57 94.26 33.49 64.44 62.83 84.60 48.66
ODIN NO 76.69 68.04 25.14 92.96 22.70 93.69 27.84 92.22 38.11 85.81 38.10 86.54
ReAct YES 82.24 59.09 84.47 67.56 82.92 69.76 80.76 70.72 84.85 59.33 83.05 65.29
SCALE NO 79.10 63.07 79.87 70.76 76.10 74.05 63.83 79.72 75.88 68.39 74.96 71.20
ASH NO 80.51 61.30 87.83 63.20 86.48 65.88 82.64 68.22 84.77 60.05 84.45 63.73
RTL NO 82.27 57.85 76.94 71.71 73.29 74.47 64.06 78.47 81.14 59.14 75.54 68.33
NNGuide YES 73.91 67.80 68.11 77.74 62.29 81.42 50.54 85.43 57.13 78.16 62.40 78.11
CoRP YES 75.89 73.38 75.07 73.16 71.42 76.37 67.32 78.15 44.54 86.27 66.85 77.47
MDS++ YES 63.76 77.47 81.50 66.32 79.47 69.03 66.54 77.67 36.03 88.92 65.46 75.88
RMDS YES 90.38 50.24 95.39 44.28 95.88 42.31 96.52 45.83 85.80 50.46 92.79 46.62
RMDS++ YES 77.40 64.63 86.31 58.47 85.77 58.86 78.16 68.26 61.45 73.34 77.82 64.71

DART NO 73.52 58.78 2.46 99.34 1.06 99.59 1.18 99.61 23.75 79.75 20.39 87.41
Clean

Method Training dist.
informed

ImageNet-O Places SUN iNaturalist Textures Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP NO 64.81 75.42 56.33 85.09 53.18 85.97 36.95 91.68 53.73 83.95 53.00 84.42
Energy NO 55.18 82.01 42.09 89.64 34.38 91.54 25.30 94.38 33.96 90.49 38.18 89.61
Max logit NO 55.09 81.85 42.79 78.62 35.50 91.39 23.88 95.05 35.07 90.28 38.47 87.44
GradNorm NO 55.97 78.38 47.85 87.45 42.19 88.60 24.01 94.34 42.17 86.85 42.44 87.12
ViM YES 56.20 77.62 42.62 86.49 31.60 90.55 21.81 94.30 33.31 89.08 37.11 87.61
KNN YES 11.09 97.01 72.62 83.16 72.49 84.40 82.54 79.21 16.31 96.53 51.01 88.06
MDSsingle YES 11.10 95.67 54.71 87.07 45.46 90.53 78.67 76.90 19.89 94.97 41.97 89.03
MDSensemble YES 30.76 88.27 95.87 62.81 95.47 62.19 97.37 50.94 49.44 86.03 73.78 70.05
ODIN NO 18.70 94.49 94.09 64.38 93.09 64.67 96.72 51.10 29.60 91.41 66.44 73.21
ReAct YES 16.84 95.44 36.62 89.54 34.89 89.80 38.99 88.92 35.50 88.30 32.57 90.40
SCALE NO 50.55 84.83 37.29 91.44 30.29 93.06 17.02 96.40 31.67 92.22 33.36 91.59
ASH NO 42.77 87.82 32.37 92.47 24.55 94.22 10.87 97.60 19.80 94.77 26.07 93.38
RTL NO 56.98 75.34 42.41 86.56 36.48 87.81 23.85 91.29 38.71 85.14 39.69 85.23
NNGuide YES 38.59 88.32 28.59 93.10 20.02 95.18 17.82 96.20 21.11 94.17 25.23 93.39
CoRP YES 30.01 89.25 64.00 84.28 55.98 87.82 83.16 73.97 23.66 94.53 51.36 85.97
MDS++ YES 14.92 97.16 61.42 84.92 49.94 88.97 33.84 93.72 1.69 99.49 32.36 92.85
RMDS YES 61.88 88.56 87.73 79.15 88.16 80.24 65.98 90.30 51.95 88.58 71.14 84.97
RMDS++ YES 56.42 86.76 75.65 82.07 73.61 83.96 36.83 93.50 29.65 91.97 54.43 87.65

DART NO 0.60 99.83 33.90 89.31 15.90 95.77 14.29 96.46 23.68 94.78 17.67 95.23

D EFFECT OF EMA α

We employ an exponential moving average (EMA) to update the prototype, where the smoothing
coefficient α is treated as an only hyperparameter of DART. To examine the sensitivity of our
method to this hyperparameter, we conduct an ablation study on the CIFAR-100-C vs. SVHN-C and
ImageNet-C vs. iNaturalist-C benchmark, and report the results as AUROC(%) in Table ??. Results
in Table 10 demonstrates that our method is robust to the choice of the EMA coefficient α.

Table 10: The effect of EMA α on the performance of DART

α 0.5 0.6 0.7 0.8 0.9 std.

CIFAR-100-C vs. SVHN-C 78.79 78.68 78.84 78.58 78.11 ± 0.29

ImageNet-C vs. iNaturalist-C 93.18 93.18 93.18 93.18 93.19 ± 0.00
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E EXTENDED RDS DISTRIBUTION VISUALIZATIONS

In the main paper, we present representative visualizations of RDS distributions for a subset of
corruption types, to illustrate how ID and OOD samples are separated across different feature levels.
These visualizations support our observation that the most discriminative layer can vary depending
on the type of corruption. For completeness, we provide the full set of visualizations covering all 15
corruption types in this appendix.

E.1 RDS DISTRIBUTION VISUALIZATIONS
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(f) RDS under motion blur
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(g) RDS under zoom blur
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Figure 8: Full corruptions visualizations for RDS distributions. Each plot shows at different network
depths (low, mid, high-level) through five sequential batches. The visualizations reveal how different
corruption types affect RDS separability at specific network layers.

F THEORETICAL ANALYSIS

In this section, we provide a mathematical derivation of the feature amplification phenomenon
observed in OOD data. We demonstrate how the mismatch between the frozen statistics of Batch
Normalization (BN) derived from ID data and the statistics of OOD data leads to an explosion in
feature magnitude for specific units.

F.1 SETUP AND DEFINITIONS

Consider a specific channel (or neuron) index k in a hidden layer. Let x denote the input to this layer
(or the output of the previous layer). We define the pre-activation feature Zk as a random variable:

Zk(x) = w⊤
k x+ bk, (8)

where wk and bk are the weight vector and bias for unit k, respectively.

F.2 THE SILENT UNIT ASSUMPTION

We focus on a specific type of unit, which we term a Silent Unit. This unit typically corresponds to
a feature that is either irrelevant for classifying In-Distribution (ID) data or represents a direction
orthogonal to the ID manifold. Consequently, its activation on ID data is minimal and stable.

Mathematically, let DID be the ID dataset and PID be the underlying ID distribution. We assume the
variance of Zk over DID is very small and of the same order as the BN stability constant ϵ (vanishing
but non-zero variance). The running statistics, µID and σ2

ID, which are frozen after training, are
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given by:
µID = Ex∼PID

[Zk(x)], (9)

σ2
ID = Varx∼PID

[Zk(x)] = O(ϵ). (10)

F.3 INFERENCE LOGIC OF BATCH NORMALIZATION

During the inference phase, BN normalizes the input using the frozen ID statistics. The normalized
output Ẑk(x) is computed as:

Ẑk(x) = γk · Zk(x)− µID√
σ2
ID + ϵ

+ βk, (11)

where γk and βk are learnable affine parameters, and ϵ is a small constant for numerical stability
(e.g., 10−5).

Crucially, due to the silent unit assumption (σ2
ID = O(ϵ)), the scaling factor λk satisfies:

λk ≜
1√

σ2
ID + ϵ

= Θ

(
1√
ϵ

)
. (12)

For typical choices such as ϵ = 10−5, this corresponds to a large constant amplification.

F.4 FEATURE AMPLIFICATION ON OOD DATA

Now, consider a bounded OOD input xOOD ∼ POOD. Since xOOD does not share the specific
semantic structure of ID data that suppresses the activation of unit k, Zk(xOOD) follows a distribution
determined by random projection in the high-dimensional feature space.

Let ∆ be the deviation of the OOD pre-activation from the ID mean:
∆ = |Zk(xOOD)− µID|. (13)

Unlike ID data, OOD data is not concentrated around µID, implying that ∆ is a non-negligible value
of order O(1) with respect to ϵ.

We now compare the magnitude of the normalized feature |Ẑk| for ID and OOD inputs (assuming
βk ≈ 0 for simplicity):

Case 1: ID Data. For x ∼ PID, the deviation of Zk(x) from µID is controlled by the standard
deviation:

|Zk(xID)− µID| = O(σID) = O(
√
ϵ). (14)

Using σ2
ID = O(ϵ), the denominator satisfies

√
σ2
ID + ϵ = Θ(

√
ϵ), and thus the normalized

activation remains stable:

|Ẑk(xID)| = |γk| ·
O(

√
ϵ)

Θ(
√
ϵ)

= Θ(|γk|) = O(1). (15)

Case 2: OOD Data. For x ∼ POOD, the deviation ∆ is constant with respect to ϵ. However,
the denominator remains of order

√
ϵ due to the silent unit statistics. This leads to an explosion in

magnitude:

|Ẑk(xOOD)| ≈ |γk| ·
∆√

σ2
ID + ϵ

= Ω

(
1√
ϵ

)
. (16)

Consequently, for sufficiently small ϵ, we obtain

|Ẑk(xOOD)| = Ω

(
1√
ϵ

)
, (17)

which is much larger than the ID magnitude (e.g., two orders of magnitude larger when ϵ = 10−5).
This amplified signal passes through the ReLU activation function (if positive), resulting in abnormally
high activation values for OOD data compared to ID data.
Remark. This theoretical framework elucidates the phenomenon observed in Fig 3, where specific
units exhibit significantly higher activation values for OOD samples. As derived above, the variance
mismatch amplifies the OOD signals in silent units, thereby facilitating the clear separation between
ID and OOD distributions in the feature space.
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F.5 VALIDITY UNDER SHARED COVARIATE SHIFT

We next argue that the above amplification mechanism remains valid even when ID and OOD inputs
undergo covariate shift (e.g., changes in weather, illumination, or sensor characteristics).

Let e denote an environment configuration that induces a covariate shift via a transformation Te on
the input space, and assume that this transformation is applied identically to ID and OOD samples:

xe = Te(x), x ∼ PID or x ∼ POOD. (18)
The pre-activation of unit k in environment e can then be written as

Z
(e)
k (x) = w⊤

k xe + bk = w⊤
k Te(x) + bk = Zk(x) + δk(e, x), (19)

where δk(e, x) ≜ w⊤
k (Te(x)− x) captures the effect of the covariate shift along the k-th direction.

We assume that the covariate shift transformation Te is bounded in the input space, i.e., there exists a
constant Benv such that

∥Te(x)− x∥2 ≤ Benv for all x in the support of PID and POOD. (20)
Then the induced perturbation along unit k satisfies

|δk(e, x)| = |w⊤
k (Te(x)− x)| ≤ ∥wk∥2 ∥Te(x)− x∥2 ≤ ∥wk∥2Benv. (21)

Thus we can choose
Cenv ≜ ∥wk∥2Benv, (22)

which is a finite constant independent of the BN hyperparameter ϵ.

Importantly, BN still uses the frozen statistics (µID, σ2
ID) computed from the original ID distribution

(before the shift). Thus, the normalization scale√
σ2
ID + ϵ = Θ(

√
ϵ) (23)

is unchanged.

ID under covariate shift. For x ∼ PID, we have

|Z(e)
k (xID)− µID| = |Zk(xID)− µID + δk(e, xID)| ≤ |Zk(xID)− µID|+ |δk(e, xID)|. (24)

Under the silent-unit assumption, |Zk(xID)− µID| = O(
√
ϵ), while the covariate shift contribution

is bounded by Cenv. Hence

|Z(e)
k (xID)− µID| ≤ O(

√
ϵ) + Cenv. (25)

Dividing by
√
σ2
ID + ϵ = Θ(

√
ϵ) yields a bounded normalized activation:

|Ẑ(e)
k (xID)| = |γk| ·

|Z(e)
k (xID)− µID|√

σ2
ID + ϵ

, (26)

which remains a finite constant determined by (γk, Cenv, ϵ) and does not diverge with the OOD
amplification discussed below.

OOD under covariate shift. For x ∼ POOD, recall that in the original environment we have
∆0 ≜ |Zk(xOOD)− µID| = O(1), (27)

reflecting the fact that OOD samples are not concentrated around the ID mean. Under the shared
covariate shift, we obtain

|Z(e)
k (xOOD)− µID| = |Zk(xOOD)− µID + δk(e, xOOD)| ≥ ∆0 − |δk(e, xOOD)| ≥ ∆0 −Cenv.

(28)
For bounded shifts with Cenv < ∆0, the deviation remains of constant order, i.e.,

|Z(e)
k (xOOD)− µID| = Ω(1). (29)

After BN normalization, this yields

|Ẑ(e)
k (xOOD)| = |γk| ·

|Z(e)
k (xOOD)− µID|√

σ2
ID + ϵ

= Ω

(
1√
ϵ

)
, (30)

which is still much larger than the ID magnitude. Therefore, even when ID and OOD undergo the
same covariate shift, the mismatch between frozen ID statistics and OOD activations, combined with
the silent-unit scaling, continues to produce systematically amplified responses for OOD data.
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Remark on Layer Normalization. The above derivation characterizes feature amplification under
Batch Normalization, which relies on frozen ID statistics at test time. However, many modern archi-
tectures in our experimental setup (e.g., ViT, Swin-Transformer) primarily use Layer Normalization
instead of Batch Normalization. It is therefore natural to ask whether a similar unit-wise OOD
amplification effect can also arise under Layer Normalization. To clarify why this may plausibly
occur, we briefly recall how LN affects the per-sample feature energy.

Let h(x) ∈ Rd be a feature vector with components hi(x). LN computes the sample mean and
variance as

µ(x) =
1

d

d∑
i=1

hi(x), σ2(x) =
1

d

d∑
i=1

(
hi(x)− µ(x)

)2
, (31)

and produces normalized activations

h̃i(x) =
hi(x)− µ(x)√

σ2(x) + ϵ
, (32)

(optionally followed by an affine transform with γi and βi). Ignoring the small stability constant ϵ for
clarity, we obtain

1

d

d∑
i=1

h̃i(x)
2 =

1

d

d∑
i=1

(
hi(x)− µ(x)

)2
σ2(x)

=
1

σ2(x)
· 1
d

d∑
i=1

(
hi(x)− µ(x)

)2
= 1, (33)

so that
d∑

i=1

h̃i(x)
2 = d. (34)

Thus, LN enforces a fixed per-sample variance (and hence a fixed “energy”
∑

i h̃
2
i ) and effectively

redistributes this energy across feature dimensions for each input x. Here, by “energy” we simply
refer to the squared ℓ2-norm (or variance) of the normalized feature vector, not to the energy-based
OOD score (e.g., negative log-sum-exp of logits) commonly used in energy-based OOD detection.

While our formal analysis focuses on Batch Normalization, it is plausible that an analogous mech-
anism can operate under Layer Normalization. In particular, under LN the per-sample variance is
fixed, and OOD inputs may induce large excursions along directions that remain nearly silent for
ID data. In such cases, the fixed energy budget would be concentrated on these silent directions,
potentially leading to much larger normalized activations on OOD samples in the corresponding
units than on ID samples. A rigorous theoretical and empirical study of this LayerNorm case—for
example, characterizing how per-sample variance redistribution interacts with silent directions in
high-dimensional feature spaces—is an interesting direction that we leave for future work.

G CROSS-DOMAIN EVALUATION

In the main body of the paper, we reported results under evaluation settings where each test stream
contains a single OOD dataset and a single type of covariate shift. In this appendix, we further
evaluate our method in a more challenging regime with multiple OOD datasets and multiple covariate
shifts.

G.1 MIXED OOD

We believe our bounded OOD setting reflects realistic deployment scenarios where OOD inputs
tend to concentrate within a limited semantic space due to observation boundaries of the data
stream. However, to further demonstrate robustness beyond this assumption, we conducted additional
experiments where two different OOD sources are mixed simultaneously during test time while the
ID stream remains fixed. Concretely, at each time step, OOD samples are randomly drawn from two
diverse sources rather than a single homogeneous distribution.

Results in Table 11 show that DART maintains the best detection performance even under this
mixed-OOD scenario, indicating that our OOD prototype successfully finds the discriminative axis
when OOD samples span multiple semantic categories. We observe performance degradation only in
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Table 11: Mixed OOD evaluation

Method ImageNet-O + Places Places + SUN SUN + Textures

FPR@95TPR AUROC FPR@95TPR AUROC FPR@95TPR AUROC

MSP 48.43 83.70 48.65 84.26 43.65 85.52
Energy 51.56 78.42 44.24 82.57 38.31 85.65
Max Logit 48.14 80.20 42.85 83.49 37.29 86.24
GradNorm 86.49 43.25 77.26 57.44 67.54 66.80
ODIN 62.28 79.44 66.10 76.78 60.37 80.13
SCALE 47.62 80.09 40.36 84.39 33.92 87.81
RTL 46.82 81.46 44.77 82.94 40.64 83.98
DART 19.23 94.45 25.96 91.15 18.65 94.80

an extreme case where all five OOD sets are mixed simultaneously—a scenario that fundamentally
violates our bounded OOD assumption. However, we believe such extreme mixing rarely occurs in
practice, and our assumption holds within realistic deployment boundaries.

G.2 CONTINUAL OOD

We additionally evaluate a more challenging scenario in which the type of OOD data itself changes
abruptly over time while the ID stream is fixed. Concretely, we partition the test stream into several
temporal segments. In every segment, ID samples are drawn from the same ID distribution, but OOD
samples are drawn from a different OOD set in each temporal segment, and we switch the OOD
source abruptly at segment boundaries without any prior knowledge of these switches.

Table 12: Continual OOD evaluation

Method ImageNet-O → Places Places → SUN SUN → Textures

FPR@95TPR AUROC FPR@95TPR AUROC FPR@95TPR AUROC

MSP 48.99 83.63 47.93 84.36 43.77 85.52
Energy 51.07 78.46 44.29 82.38 38.26 85.65
Max Logit 47.58 80.29 43.53 83.40 37.29 86.24
GradNorm 86.24 43.53 76.87 57.52 67.52 66.80
ODIN 62.14 79.40 66.44 76.84 60.41 80.11
SCALE 47.35 80.15 40.91 84.31 33.98 87.81
RTL 48.19 79.64 45.50 80.94 39.65 83.97
DART 12.05 95.49 23.40 93.51 18.80 94.81
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(a) ImageNet-O → Places
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Figure 9: AUROC vs. batch

Results in Table 12 indicate that DART continues to exhibit stable OOD detection performance
across segments, with only modest fluctuations when the OOD set changes, whereas non-adaptive
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baselines suffer noticeable drops whenever a new OOD set appears. This suggests that our prototype-
based tracking does not rely on a single globally fixed linear discriminative axis, but can adaptively
re-estimate the relevant axis over time, even under abrupt semantic shifts in the OOD distribution.

G.3 MIXED COVARIATE SHIFT

We conduct additional experiments where a test batch contains samples from multiple different
covariate shifts. We designed two specific scenarios: a mixture of two shifts and a mixture of all 15
shifts.

In the setting with the mixture of two shifts, we evaluated settings where two different covariate
shift types are mixed within a single batch. In this scenario, DART maintains robust performance,
significantly outperforming all baseline methods by a large margin, as shown in Table 13.

Table 13: Performance comparison under mixed-shift scenarios

Original + Gaussian noise Gaussian noise + Snow Snow + JPEG compression

Method FPR@95TPR AUROC FPR@95TPR AUROC FPR@95TPR AUROC

MSP 82.63 67.43 85.01 62.49 83.07 68.22
Energy 72.01 76.77 83.91 69.82 89.72 66.83
Max Logit 77.19 73.34 85.40 67.10 85.73 68.66
GradNorm 54.72 83.51 65.33 81.94 72.16 79.49
ODIN 66.85 77.72 45.20 83.46 12.08 97.39
SCALE 66.99 78.21 80.27 71.68 79.15 73.94
RTL 79.84 67.73 81.92 65.32 79.86 71.65
DART 22.04 93.93 0.85 99.62 0.79 99.72

While unrealistic in real-world data accumulation, to push the limits of our method, we also test a
more extreme scenario involving a mixture of all 15 covariate shifts and report in Table 14. In this
challenging setting, the performance gap between DART and the baselines slightly narrows compared
to the independent or 2-mixture scenarios. We attribute this slight reduction in the margin to the
influence of a few specific shift types that are inherently difficult to separate linearly. However, even
under this extreme condition, DART consistently maintains the top-ranking performance (Rank 1)
among all compared methods.

Table 14: Performance comparison under the mixture of all 15 shifts (Extreme Case)

Method FPR@95TPR AUROC

MSP 86.64 62.71
Energy 86.27 63.02
Max Logit 86.46 63.67
GradNorm 69.55 77.45
ODIN 25.45 92.16
SCALE 78.20 71.19
RTL 81.27 65.63
DART 19.68 92.70

G.4 CONTINUAL COVARIATE SHIFT

We additionally evaluate on streams where the covariate shift explicitly evolves over time. Concretely,
we construct time-varying streams in which the corruption type changes (e.g., from “clean” to
“gaussian noise”, from “gaussian noise” to “snow”, and from “snow” to “jpeg compression”), while
samples within each segment remain temporally correlated. This reflects evolving acquisition
conditions rather than a single static corruption. In Table 15, DART maintains strong OOD detection
performance after each environment change.
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Table 15: Continual covariate shift evaluation

Clean → Gaussian noise Gaussian noise → Snow Snow → JPEG compression

Method FPR@95TPR AUROC FPR@95TPR AUROC FPR@95TPR AUROC

MSP 68.33 77.90 78.90 71.78 76.98 72.87
Energy 60.76 81.66 78.54 77.16 75.70 76.83
Max Logit 62.29 80.57 77.78 75.59 75.45 76.31
GradNorm 74.72 69.77 71.01 78.73 79.89 72.13
ODIN 68.45 79.06 67.32 80.97 59.59 84.23
SCALE 61.05 81.35 76.72 77.30 70.10 78.89
RTL 69.69 75.57 82.20 70.10 76.42 73.90
DART 15.70 96.15 0.81 99.75 0.98 99.69
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(a) Clean → Gaussian noise
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(c) Snow → JPEG compression

Figure 10: AUROC vs. batch

H SYSTEM OVERHEAD

We measure wall-clock inference time for all methods on the same device, after the backbone
forward pass, and only for the OOD-score computation (Figure 11). Concretely, we report the total
time required to process 100 mini-batches of size 200 (20k test samples in total), using RegNetY-
16GF. Under this protocol, DART falls into the group of fast methods: it is markedly faster than
recent baselines such as RTL, NNGuide, and MDS-based variants, which require regression fitting,
KNN-style searches, or repeated Mahalanobis evaluations.
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Figure 11: Inference time
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I IMPACT OF FLIP CORRECTION

To quantitatively assess the impact of flip correction, we compare with a variant that does not perform
flip correction, DART-NoFlip, using CIFAR-100-C as the csID dataset. As shown in Table 16, flip
correction improves the performance of our method.

Table 16: Performance comparison between DART-NoFlip and DART

Method SVHN-C Places365-C LSUN-C iSUN-C Textures-C Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
DART-NoFlip 51.14 71.84 70.14 66.08 44.17 80.15 52.30 78.58 55.37 75.01 54.62 74.33
DART 48.60 79.82 68.66 68.00 44.14 80.29 50.76 79.75 51.48 80.60 52.73 77.69

To further illustrate the effect on performance over time, we additionally analyze CIFAR-100-C
vs Textures-C on a per-corruption basis. Figure 12 visualizes the detection performance over time
(per-batch AUROC) before and after applying flip correction. For several corruptions—glass blur,
snow, fog, and contrast—we observe that once flip correction is triggered, the dual prototype axis
is realigned toward the oracle discriminative direction, leading to an abrupt jump and sustained
improvement in performance. For shot noise, flip correction occurs early in the stream at the 20-th
batch, after which the subsequent batches exhibit much more stable and higher performance compared
to DART-NoFlip.

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

gaussian_noise

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

shot_noise

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

impulse_noise

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

defocus_blur

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

glass_blur

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

motion_blur

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

zoom_blur

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

snow

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

frost

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

fog

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

brightness

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

contrast

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

elastic_transform

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

pixelate

0 20 40 60 80 100
Batch

0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

jpeg_compression

DART DART-NoFlip

Figure 12: Impact of Flip Correction over time (CIFAR-100-C vs. Textures-C)

J IMPACT OF MULTI-LAYER FUSION

We extend Figure 7a to report, for all 15 corruption types, the AUROC of each single-layer variant
(Block1, Block2, Block3, FC) and compare them against full DART with multi-layer fusion, using
CIFAR-100-C as csID and Textures-C as csOOD. See Figure 13 for all results.

This extended analysis reveals that the best-performing layer is highly shift-dependent: under noise-
type corruptions such as Gaussian or impulse noise, deeper layers suffer larger degradation, whereas
under corruptions such as motion blur and brightness, earlier layers are more severely affected and
later layers remain relatively more informative. As a result, relying on any single fixed layer for OOD
detection is brittle when the covariate shift type is unknown a priori. In contrast, the fused DART score
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achieves both the highest mean performance and the most stable behavior: averaged over all corruption
types, DART not only outperforms every single-layer variant, but also exhibits substantially smaller
variation than the strongest single-layer baseline (Block3), with standard deviation 0.1661 versus
0.2582 for Block3. These results quantitatively support our claim that multi-layer fusion is crucial for
robust OOD detection under unpredictable covariate shift.
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Figure 13: Impact of Multi-layer Fusion (CIFAR-100-C vs. Textures-C)

K ANALYSIS ON COLLAPSING SCENARIO

Although very rarely, the discriminative axis tracking of DART can sometimes collapse at a particular
layer. We further investigated the collapsing cases where perfect alignment was not achieved and
identified two distinct failure modes: large angle drift and axis flip. See Figure 14 for for the evolution
of the angle in each case.
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(a) Successful case
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(b) Large angle drift
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(c) Axis flip

Figure 14: Visualization of Collapsing Scenario

Large angle drifts (Figure 14b) were primarily observed in early layers (e.g., Defocus Blur and
Contrast at Layer 0), which we attribute to the limited linear separability of features at this stage;
notably, this issue resolves naturally in deeper layers as features become more discriminative.

On the other hand, axis flipping (Figure 14c) was observed in deeper layers (e.g., “Glass Blur” at
Layer 5, “Contrast” at Layers 3 and 4). We attribute this primarily to the limitations of the baseline
score (MSP), which serves as the reference for prototype initialization and flip detection. Under
severe corruptions, the baseline performance degrades significantly, yielding a noisy reference signal
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that leads to incorrect initialization or a failure to detect directional flips. This observation implies that
the stability of the discriminative axis depends on the quality of the reference score, and employing a
more robust reference signal could potentially resolve these flipping issues. Crucially, despite these
isolated local instabilities, we emphasize that our Multi-layer Fusion strategy effectively mitigates
these risks. By aggregating decisions across multiple layers, DART compensates for occasional drifts
or flips occurring in individual layers, ensuring robust overall performance. Consequently, even in
scenarios where specific layers struggle to align, the ensemble model maintains an AUROC greater
than 0.9 across all covariate shifts, validating the practical effectiveness of our approach.

L VISUALIZATION OF ROC CURVES

We visualize the ROC curves of our method and the baselines across several evaluation settings. As
shown in Figure 15, DART achieves lower FPR in this high-TPR region even when overall AUROC
is comparable to baselines. Since real-world deployment requires maintaining high ID acceptance
while minimizing false alarms, FPR@95TPR better captures the performance that matters in practice.
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Figure 15: ROC curves for CIFAR-100 vs. LSUN under different corruptions
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