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ABSTRACT

For reliable deployment of deep-learning systems, out-of-distribution (OOD) de-
tection is indispensable. In the real world, where test-time inputs often arrive as
streaming mixtures of in-distribution (ID) and OOD samples under evolving covari-
ate shifts, OOD samples are domain-constrained and bounded by the environment,
and both ID and OOD are jointly affected by the same covariate factors. Existing
methods typically assume a stationary ID distribution, but this assumption breaks
down in such settings, leading to severe performance degradation. We empirically
discover that, even under covariate shift, covariate-shifted ID (csID) and OOD
(csOOD) samples remain separable along a discriminative axis in feature space.
Building on this observation, we propose DART, a test-time, online OOD detection
method that dynamically tracks dual prototypes—one for ID and the other for
OOD—to recover the drifting discriminative axis, augmented with multi-layer
fusion and flip correction for robustness. Extensive experiments on a wide range of
challenging benchmarks, where all datasets are subjected to 15 common corruption
types at severity level 5, demonstrate that our method significantly improves per-
formance, yielding 15.32 pp AUROC gain and 49.15 pp FPR@95TPR reduction
on ImageNet-C vs. iNaturalist-C compared to established baselines. These results
highlight the potential of the test-time discriminative axis tracking for dependable
OOD detection in dynamically changing environments.

1 INTRODUCTION

Deep neural networks (DNNs) achieve remarkable performance across applications such as image
classification, object detection, medical imaging, autonomous driving, and speech recognition (Alam
et al.l 2020). These successes stem from large-scale datasets, high-performance hardware, and
innovative model architectures (Deng et al., 2009; Krizhevsky et al.,|2012; |He et al., 2016; Vaswani
et al.| 2017), motivating deployment in real-world systems.

In practice, however, deployed models inevitably encounter test inputs that deviate from their training
distributions. One form is semantic shift, where models face unknown semantics—commonly termed
out-of-distribution (OOD) samples. Substantial progress has been made on OOD detection: existing
methods typically assume either abstract characteristics (Hendrycks & Gimpel, 2016; |Liu et al.| [2020;
Xu et al.,2023) or data-specific characteristics (Lee et al., 2018; Sun et al.,[2022)) of in-distribution
(ID) data to distinguish ID from OOD. A second form is covariate shift, where data appears under
new conditions such as changes in weather, illumination, or sensor noise (Moreno-Torres et al.,|2012;
Dockes et al.;,2021). Most OOD methods implicitly assume stationary ID distributions as reference
to separate ID and OOD, however, as shown in Figure 2] in practice they struggle under covariate
shifts (Yang et al.,[2024} 2021} 2023a) because shifting covariates alter the space geometry that their
decision rules rely on.

We study test-time OOD detection under covariate shift in a realistic streaming mixture setting: test-
time inputs arrive in mini-batches as mixtures of ID and OOD samples, and both are simultaneously
exposed to the same evolving covariate shifts (e.g., a change in illumination). We denote these
as covariate-shifted ID (csID) and covariate-shifted OOD (csOOD). Within each mini-batch—
as illustrated in Figure [T[}—spatial and temporal coherence arises from the task environment, so



Under review as a conference paper at ICLR 2026

Oracle¥¢
0.9
Bounded OOD Joint Covariate Shift kel ours
£ RTL
@ . @ @ .L_;o.s ODINe " L #SCALE
Observation boundary Q00 Covariate Shift ) ASH eMSP
= 0.7
5 MDS++
206 ud
— o RMDS++¢
Unbounde:
OCDISp2cs 0.5 ' Train dist. informed o RMDS
¢ Yes o No CoRP
(a) Traditional (b) Real-world 075 080 085 090 095  1.00
ID-00D Assumption ID-00D data encounters Clean

Figure 1: Comparison of traditional and real-world ID- Figure 2: AUROC comparison on both
OOD assumptions. (a) Traditional OOD detection assumes covariate shifted and clean ImageNet-
ID data (blue circle) exists within an unbounded OOD based benchmark. Existing meth-
space (gray background). (b) In real-world scenarios, OOD ods suffer under covariate shift, with
data is bounded by physical and environmental constraints train distribution—informed approaches
(observation boundary, top-left inset), limiting the space dropping to around 0.5. In contrast, the
where OOD samples can occur. Furthermore, covariate oracle axis achieves consistently high
shifts such as weather conditions can simultaneously affect performance regardless of shift, and
both ID and OOD distributions (dashed regions), causing our method effectively discovers this
them to shift jointly in feature space. axis, attaining near-oracle results.

OQOD samples are domain-constrained rather than arbitrary. For instance, in autonomous driving,
encountering an unseen vehicle type is plausible OOD, whereas suddenly observing medical or
satellite images is essentially impossible. Moreover, temporally correlated csID and csOOD typically
undergo the same covariate shift, so their distributions co-evolve during deployment. In our setting,
the test stream is unlabeled, the backbone is frozen, no training data are accessed at test time, and the
algorithm maintains a small, bounded state.

In this practical scenario, we empirically observe a key insight that enables our approach. Across
diverse datasets and shifts, we consistently observe: (i) local coherence—within short windows,
¢sOOD samples organize into coherent groupings in representation space; and (ii) a recoverable linear
axis—csID and csOOD remain approximately linearly separable along a dominant discriminative
direction that drifts as covariates evolve. As shown in Figure 2] with annotation “Oracle”, computing
our method’s OOD score with the optimal discriminative axis yields very high AUROC, demonstrating
that separability in this direction can lead to strong detection performance. These observations suggest
focusing on fracking the separation direction online rather than relying on a fixed, training-time score.

We propose Discriminative Axis Real-time Tracker (DART), a test-time, online OOD detection
method that continuously tracks a discriminative axis using a class-agnostic ID prototype and an
OOD prototype per feature layer. At each step, incoming test samples update the prototypes via
lightweight, stable rules, yielding the vector connecting them as the discriminative axis. Each
sample is then scored by its relative position to this axis, producing a simple forward-pass detector
aligned with the evolving feature space. To address the fact that covariate shifts affect DNN layers
differently (Hendrycks & Dietterich,2019; Yin et al., 2019), DART employs multi-layer score fusion
to stabilize detection across heterogeneous, unpredictable shifts. The method requires only forward
passes, no model weight update, no labels, and no access to training data at test time, which suits
privacy-sensitive or on-device deployments where retraining is infeasible. For robustness, prototypes
are initialized conservatively and updated with safeguards to prevent collapse.

Across challenging benchmarks, DART consistently delivers substantial gains over prior approaches.
For example, on the ImageNet benchmark, DART achieves at least 9.04 percentage points (pp)
higher AUROC under covariate shift and 5.10pp AUROC improvement on the clean setting, as shown
in Figure 2| while attaining at least 40.15pp and 19.06pp FPR@95TPR reduction on the covariate
shifted and clean datasets, respectively. Remarkably, the performance of DART comes close to that
of the Oracle, highlighting the effectiveness of our approach.

Our contributions can be summarized as below:
* We formalize fest-time OOD detection under covariate shift in a streaming mixture setting, distin-

guishing csID from csOOD and articulating realistic constraints (data stream, frozen backbone,
small memory).
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* We introduce DART, which tracks dual prototypes online to recover the drifting discriminative axis
and fuses multi-layer scores for robustness to layer-specific covariate effects.

* We provide measurements and visualizations showing coherent csOOD groupings and approxi-
mately linear csID-csOOD separation within short test windows.

* We demonstrate consistent gains over strong post-hoc baselines on joint-shift suites, with large
improvements in AUROC and FPR @95, using only forward passes and no retraining.

2 RELATED WORK

2.1 OUT-OF-DISTRIBUTION (OOD) DETECTION: TRAINING-DRIVEN VS. POST-HOC

Research on OOD detection can be broadly categorized into learning-based and post-hoc approaches.

Training-driven approaches. These methods modify training to enhance OOD separability, e.g.,
Outlier Exposure (OE) with auxiliary outliers (Hendrycks et al., 2018} Zhang et al., 2023a;|[Zhu et al.,
2023)) and N +1 classifiers that add an “unknown’ class (Bendale & Boult, 2016 Shu et al., 2017
Chen et al.| [2021)). While effective, they require additional data or altered objectives and may misalign
with deployment OODs, with potential side effects on ID accuracy. Some methods (Katz-Samuels
et al., [2022} |Yang et al., [2023b) update model parameters at test time via backpropagation, which
introduces latency and can compromise ID accuracy under non-stationary streams.

Post-hoc (training-free) approaches. These operate on a frozen classifier without retraining and
have gained widespread adoption due to their ease of use and compatibility with pretrained models.
Categories include: output-based scoring (Hendrycks & Gimpel, 2016} Hendrycks et al., [2019a;
Liu et al.,|2020), distance-based methods (Lee et al.,[2018;[Ren et al., 2021; Mueller & Heinl [2025;
Sun et al.| |2022; |Park et al.| 2023)), feature-based approaches (Liang et al.| 2017; Wang et al.| 2022
Sun et al.l 2021} Djurisic et al., 2022} |Xu et al., 2023} [Zhang et al.| 2022}, and gradient-based
methods (Huang et al.| [2021; [Behpour et al., 2023). Furthermore, training distribution-informed
methods (e.g., Mahalanobis, ViM and KNN) assume access to training statistics (feature means,
covariances, principal subspaces)—assumptions that can become invalid under test-time covariate
drift and are often infeasible when training data are unavailable. In contrast, our method is post-hoc
and relies solely on the unlabeled test stream, without training statistics.

Post-hoc, test-time adaptive approaches. An emerging line of work adapts OOD detection using test-
time batches/streams without weight updates. RTL (Fan et al., 2024)) uncovers a linear trend between
OOD scores and features and fits a batch-level discriminator; OODD (Yang et al.,|2025)) maintains an
online dynamic OOD dictionary to accumulate representative OOD features. These approaches are
closer in spirit to our online setting but typically operate without explicitly addressing the time-varying
covariate shift. DART differs by tracking the discriminative axis with dual prototypes (ID/OOD)
per layer online across a stream; we maintain persistent, memory-light state that adapts smoothly to
drift. Our goal is OOD detection under covariate drift in streaming mixtures; conventional test-time
adaptation (TTA) methods that target closed-set robustness and/or adapt model weights (Wang et al.,
2020; N1u et al.| |2023)) are orthogonal to this objective and not our focus.

2.2 COVARIATE SHIFT AND JOIN-SHIFT EVALUATION

Covariate corruptions and natural shift. Covariate shift—changes in input distributions with fixed
labels—is commonly studied with corruption suites such as CIFAR-C and ImageNet-C (Hendrycks &
Dietterich, [2019), which introduce noise, blur, weather, and other factors. Recent datasets emphasize
natural sources of shift from environment and sensor variation (Baek et al., [2024;[2025).

Joint semantic and covariate shift. Full-spectrum OOD (FS-OOD) (Yang et al.,|2023a)) evaluates
semantic OOD while allowing covariate variation; OpenOOD unifies large-scale OOD evaluation
and includes joint-shift settings (Yang et al., [2022; |Zhang et al.| [2023b). Dataset design such as
NINCO (Bitterwolf et al.| [2023)) reduces ID contamination for clearer semantic separation. Our
setting follows this trajectory but explicitly considers streaming mixtures where csID and csOOD
experience the same evolving covariates (e.g., a sudden illumination change). DART is designed to
adapt online in such scenarios via per-layer dual prototypes and multi-layer score fusion, without
requiring training data, training statistics, or weight updates.
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Figure 3: Unit-wise activation analysis. The left panel shows the JS divergence between ID and OOD
activations, with arrows marking units of large divergence. The right panel visualizes the activation
distributions of these units, where ID (blue) and OOD (red) are clearly separable.

3 METHOD

In this section, we introduce our method DART for online test-time OOD detection under covariate
shift. We begin by revisiting a key motivation behind our approach: the empirical emergence of
discriminative axis in pre-trained feature spaces. We then describe how the prototypes that define this
axis are iteratively refined with incoming test batches. Finally, we explain why multi-layer fusion is
essential to maintain robustness across unpredictable types of covariate shift.

3.1 FORMULATION SETUP

We first explain the notations for our problem. We define D;p and Dpop as the dataset for ID
and OOD, observed by the OOD detection system. Then, let B, = {x1,X¢2,...,%X; n} denote
an input batch received at test time, where each sample x; ; may belong to one of two categories
under covariate shift: covariate-shifted in-distribution (csID) or covariate-shifted out-of-distribution
(csOOD). We denote the subset of csID samples as B:° and the csOOD samples as BPOP, such that
B; = BIP U BOOP,

Model is composed of multiple layers, and we extract intermediate feature representations from several
of them. Let f;(-) denote the feature mapping at layer [, where [ € £ = {1,2,..., L}. For a given
input x, we obtain a set of multi-layer features %z(l), z? ... 21}, where z() = f;(x) represents
the feature at layer [. Thus, for a csID sample x> € BiP and a csOOD sample xP°P € BPOP | their
{Zgl)JD ’ZEL)JD} and ZOOP — {Z§1)7OOD (L),OOD}’

multi-layer feature sets are Zi° = sy Ty

respectively.

P

3.2 ID-OOD SEPARABILITY IN FEATURE SPACE: EXISTENCE OF THE DISCRIMINATIVE AXIS

Prior works (Sun et al.l 2021j Xu et al.,2023)) have reported that ID and OOD samples exhibit distinct
activation patterns in the feature space. In a similar spirit, we systematically examine unit-level
activations from a distributional perspective. Specifically, we collect unit-wise activation distributions
across multiple ID and OOD samples and compare them. Our analysis reveals that there exists certain
units where distributions of ID and OOD samples diverge substantially, as evidenced by a large
Jensen—Shannon (JS) divergence in Figure[3] Visualization via violin plots further demonstrates that
ID and OOD activations can be sharply distinguished within those units.

Building upon this insight, we leverage these distributional differences to construct a unified dis-
criminative direction. We compute prototype representations by averaging activations across all ID
samples and all OOD samples respectively, yielding two representative points in the feature spaceﬂ

P and Poop:

1 1
P = 5 Z f(x),  Poop = Doop] Z f(x) ey
b x€Dp oob x€Doop
Then, we define the connecting vector between these prototypes as the discriminative axis:
axisa’ﬁﬁde = Pm — Poob 2)

The key insight of this averaging operation is that it naturally implements an automatic weighting
mechanism: units with substantial ID-OOD divergence are emphasized in the discriminative axis,

'While separability analysis may be conducted for each of the selected feature layers, but for clarity, we omit
the layer index from the notation in this section.
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Figure 4: Distribution of ID (blue dots) and OOD (red dots) samples at features space projected with
the oracle discriminative axis as the horizontal axis.

while units with trivial divergence are suppressed. This occurs because discriminative units exhibit
large differences between their ID and OOD mean activations, whereas non-discriminative units show
similar mean values across both distributions. Figure ] shows that when features are projected along
this axis, ID and OOD samples consistently form distinct clusters. This separation persists regardless
of the presence or type of covariate shift, indicating the existence of discriminative axis.

However, such a discriminative axis is a theoretical construct that presupposes knowledge of OOD
distributions. Since the nature of OOD is inherently unknown before test-time, it is not feasible to
predefine and fix such a discriminative axis in advance. This motivates the need to adaptively identify
the optimal discriminative axis during test-time. To this end, we propose a method that progressively
identifies two prototypes—one associated with ID samples and the other with OOD samples—whose
connecting direction defines a discriminative axis that adapts to the evolving data stream.

3.3 BATCH-WISE PROTOTYPE REFINEMENT: TRACKING THE DISCRIMINATIVE AXIS

To craft and update the discriminative axis in an online manner, we refine prototypes through iterative
pseudo-labeling and prototype updating. Refer to Appendix Sec. B.4 for the detailed algorithm.

Our method initializes and dynamically updates layer-specific prototypes for csID and csOOD based
on current test batch features. Since true ID/OOD labels are unavailable during test-time, we rely on
pseudo-labeling to distinguish between csID and csOOD samples. We employ Otsu algorithm (Otsu
et al.,|1975) to automatically determine optimal thresholds by maximizing the between-class variance,
providing a principled way to separate samples based on their score distributions.

Dual-Prototype Initialization. For the initial batch, we use naive baseline score, Maximum Softmax
Probability (MSP) as our reference score. We assign pseudo-labels using MSP with the Otsu-
determined threshold, then compute initial prototypes as the mean feature vectors of their respective

pseudo-labeled groups, i.e. piP° = @ ZieS{D f(xLi),f)?OD = W#OD\ Ziesloon f(x14)-

Dual-Prototype Tracking. For subsequent batches, we design a more refined scoring function which
better utilizes the built prototypes. We compute Euclidean distances between each sample and the
dual prototypes from the previous timestep, then calculate a Relative Distance Score (RDS) that
reflects each sample’s position relative to both prototypes:

1D
.
RDS (x;,1) = 1 - Pl oo 3)
2

Izt = Pi24 ll2 + llzes — PPS

where z, ; denotes the feature of i-th sample in the batch ¢{. The RDS formulation is inherently
scale-invariant, making it robust to variations in feature magnitudes across different layers and
architectures. Using the Otsu algorithm, we determine an optimal threshold to assign pseudo-labels
based on this RDS score. We compute the new prototypes pIP, pPOP as the mean feature vectors
of their respective pseudo-labeled groups. To ensure prototype reliability, we incorporate Tukey’s
outlier filtering method (Tukey et al.,|1977) to exclude samples that are too far from their assigned
prototypes so that only the remaining samples contribute to the mean computation. Finally, we refine

prototypes using exponential moving average (EMA) to maintain stability:
by’ =abili+(1- )b, PP = by + (1) pi™. @)

This iterative process enables prototypes to progressively converge toward the true underlying
distributions of csID and csOOD samples.

Flip Correction. Due to DART’s pseudo-labeling approach, incorrectly initialized prototypes can
lead to catastrophic misplacement, with prototypes potentially drifting toward opposite sides of
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Figure 5: Layer-wise RDS distributions across three covariate shift types. Each plot shows the RDS
distribution of csID (blue curve, CIFAR-100) and esOOD (red curve, LSUN) samples at different
network depths (low, mid, high-level) through three sequential batches. The visualizations reveal how
different corruption types affect feature separability at specific network layers; under Gaussian noise,
separability degrades in high-level layers, whereas under defocus blur, it degrades in low-level layers.

their desirable locations. To address this, we implement a “flip” detection mechanism that identifies
prototype misalignments and automatically swaps them when necessary. We detect flips by comparing
current prototypes with an auxiliary MSP-based prototype. A flip occurs when the csID prototype is
significantly farther from the MSP-based reference than the csOOD prototype, while simultaneously
showing lower cosine similarity. Formally, we swap prototypes when:
_ID _ AID —00D _ AID —ID ATD —00D AID
IP;” — Diausellz > 2[|p; —DPiruspllz2 and  cos (Pt vpt,MSP) < cos (Pt 7pt,MSP)

We use a weighted comparison (factor of 2) to impose a strict condition that prevents unintended flip
detections, and a value we found works well across all datasets.

3.4 MULTI-LAYER SCORE FUSION

To enhance discriminative axis identification, we extend our approach to multi-layer features. Low-
level features capture local patterns like textures and edges, while high-level features encode semantic
concepts (Guo et al.}[2016). However, covariate shifts can selectively disrupt different levels of visual
information (Hendrycks & Dietterich|, 2019} [Yin et al, 2019)—blur corruptions primarily affect
low-level features, while elastic transformations impair higher-level representations. As a result,
different layers exhibit varying degrees of ID/OOD discriminability depending on the shift type, as
illustrated in Figure[5] Since the nature of covariate shift is typically unknown beforehand, leveraging
information from all feature levels through multi-layer fusion is essential for robust OOD detection.

As the prototypes are updated for each batch, we compute the RDS; for each selected layer [. To
obtain the final OOD score for each sample x; ; in the batch, we fuse the RDS values from the
selected layers £ by taking their average, formally given by RDSgpa(x:,;) = ﬁ > e RDS;(x¢4).
Using the fused OOD score RDSgpai(x:,;), we make the final OOD prediction.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Although DART is designed to adaptively handle challenging covariate shifts, we evaluate
on both clean and covariate-shifted datasets as the shift may be weak or even absent in real-world
scenarios. We use CIFAR-100 (Krizhevsky et al, [2009) and ImageNet (Deng et al., 2009) as
ID datasets. For CIFAR-100, we use SVHN (Netzer et al. 2011])), Places365 (Zhou et al., [2017)),
LSUN 2013), iSUN (Xu et al.| 2015), and Textures (Cimpoi et al.l 2014) as OOD datasets.

For ImageNet, we use ImageNet-O (Hendrycks et al.l 2021), Places (Zhou et al., [2017), SUN
2010)), iNaturalist (Van Horn et al., [2018), and Textures as OOD datasets. To simulate covariate

shift, we apply 15 common corruption types (Hendrycks & Dietterichl [2019) at severity level 5 to
both ID and OOD datasets, resulting in pairs such as CIFAR-100-C vs. SVHN-C.

Models. For CIFAR-100-based benchmarks, we use WideResNet-40-2 (Zagoruyko & Komodakis|
pre-trained with AugMix (Hendrycks et all2019b) on clean CIFAR-100, which is available
from RobustBench(Croce et al.| [2020). For ImageNet-based benchmarks, we use the pre-trained
RegNetY-16GF (Radosavovic et al., 2020) available from PyTorch. In addition, we also evaluate with
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Table 1: OOD detection performance comparison with CIFAR-100-C and ImageNet-C csID. Results
are the average of all 15 corruptions with severity level 5. (Best: bolded, Second-best: underlined)

ImageNet-C
Method | Training dist. |  ImageNet-O-C | Places-C | SUN-C | iNawralist:C | Textures-C I Average
\ informed | FPR95 | AUROC * | FPR95 | AUROC t | FPR95 | AUROC t | FPR95 | AUROC t | FPR95 | AUROC 1 || FPR9S | AUROC 1
MSP NO 8501  62.18 7441 73.10 7364 73.65 5391 8227 7088 72.85 7157 7281
Energy NO 82.68  63.65 7013 77.66 69.70  78.79 59.45 8248 62.58  78.16 6891  76.13
Max logit NO 83.69 6351 7100 76.64 7011 77.59 53.19 8376 65.85  76.85 68.77  75.67
GradNorm NO 85.09 5828 68.15  78.13 6477  81.23 4929 8545 5170 84.11 63.80 7744
ViM YES 9128  54.02 98.75 2572 99.14  23.46 99.41  18.87 97.90 2931 97.30 3028
KNN YES 9260  53.73 98.17  30.68 9823 29.94 98.69  24.10 90.21  50.39 95.58 3777
MDSiingle YES 9267 5034 99.11 2117 99.40  18.89 99.68 1449 9829 2637 97.83 2625
MDSensemble YES 8589 5876 98.08  27.51 9823 26.49 98.31 2140 81.15  47.73 9233 3638
ODIN NO 86.67 5991 57.03  83.67 54.88  84.53 4403 88.03 53.95 8393 59.31  80.01
ReAct YES 90.46  54.69 89.30 6671 88.96  68.19 9242 64.03 8626  66.59 89.48  64.04
SCALE NO 82.06  65.18 6720  79.03 65.58  80.33 4840 8575 60.80  80.03 64.81  78.06
ASH NO 8245  63.90 69.82 7791 69.26  79.08 58.88 8276 62.00 7855 68.48  76.44
RTL NO 8370 6526 6544  79.96 6427  80.32 4139 87.69 64.08 7836 6378 7832
NNGuide YES 88.94 5631 8197  69.88 81.05  73.03 7475 7653 5893 79.60 7713 71.07
CoRP YES 93.02 5230 95.18  46.32 9522 4633 9599  43.54 93.05  51.72 9449 48.04
MDS++ YES 8239 6435 90.03  52.53 90.68  52.72 6423 7161 66.93  68.57 78.85  61.96
RMDS YES 9291 5876 96.74 4873 97.50  47.40 9535 53.60 96.64  44.86 95.83  50.69
RMDS++ YES 9461 57.05 9.02 5276 9638  51.52 93.87  64.11 9533 5220 9524 5553
DART \ NO | 6887 6663 | 870 9296 | 808 9303 | 7.60 9318 | 255 9943 || 1916 89.05
CIFAR-100-C
Method | Training dist. | SVHN-C | Places365-C | LSUN-C | iSUN-C | Textures-C I Average
\ informed | FPR95 | AUROC * | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 || FPR95 | AUROC 1

MSP NO 91.48  58.40 8730 6423 86.85  64.49 88.40 6274 9191 5824 89.19  61.62
Energy NO 93.13  60.53 8474 66.56 84.04 6857 87.14 6479 9020  61.10 87.85 6431
Max logit NO 9273 60.58 85.04 6643 84.43 6824 87.15  64.74 90.74  60.78 88.02  64.15
GradNorm NO 96.07 4775 92.56  52.99 94.89  45.14 9479 4532 8459 6252 92.58 5074
ViM YES 7724 72.64 9023 59.74 86.41  64.41 87.65 6240 93.15  55.11 8694  62.86
KNN YES 88.45 6638 85.63  63.99 83.87 7022 87.06 6525 90.83  60.93 87.17 6535
MDSqingte YES 89.04  61.64 9130 5742 84.94  65.60 86.68  62.82 95.16  48.58 89.42 5921
MDS enemble YES 63.57 7933 9249 4849 7378 60.77 7395  58.87 7516 57.51 7579 60.99
ODIN NO 79.07  70.05 88.23  63.54 89.96  59.13 90.48  59.18 7769  70.79 8509  64.54
ReAct YES 9508  55.32 88.78  62.51 8639  67.46 88.07  64.76 91.90  60.40 90.04  62.09
SCALE NO 88.88  66.46 8555 6691 8630  65.89 88.06 6421 81.14  70.69 8599  66.83
ASH NO 9205 6273 8542 6648 8524  67.78 87.99  64.30 87.66  64.61 87.67  65.18
RTL NO 89.27  58.60 8459  64.62 83.65  66.99 86.90  63.60 8930  57.65 86.74  62.29
NNGuide YES 911 6278 8878 6345 9130  58.64 91.96  57.62 7791 68.69 8821 6224
CoRP YES 64.51  80.52 89.98  60.28 92.56  59.80 9130 5991 5525  81.49 7872 68.40
MDS++ YES 95.15  62.58 87.40  64.87 8725 66.75 89.85  62.90 95.16  59.59 9096  63.34
RMDS YES 88.78  64.07 86.67  64.65 79.57  71.82 82.68 6791 9423 55.06 86.39  64.70
RMDS++ YES 9152 65.51 8570  65.59 8273 7026 86.08 6638 9378 5841 87.96  65.23
DART \ NO | 4860 7982 | 6866 68.00 | 4414 8029 | 5076 7975 | 5148 8060 | 5273  77.69

Transformer-based models on CIFAR-100 benchmarks, all of which are fine-tuned with CIFAR-100.
Results on ResNet-50 (He et al., 2016) for ImageNet benchmarks are also provided in the Appendix.

Baseline Methods. MSP (Hendrycks & Gimpel, |2016), Max Logit (Hendrycks et al., [2019al),
Energy (Liu et al.,[2020), ODIN (Liang et al.;, 2017, GradNorm (Huang et al.,[2021)), SCALE (Xu
et al., 2023)), ASH (Djurisic et al., 2022), RTL (Fan et al., [2024), like DART, do not require any
precomputed statistics or storage from the training data. In contrast, KNN (Sun et al., [2022),
ViM (Wang et al.||2022), ReAct (Sun et al.,[2021), NNGuide (Park et al., 2023)), CoRP (Fang et al.,
2024), MDS (Lee et al., [2018) and its variants (Ren et al., [2021; Mueller & Hein| [2025) require
pre-computation or storage of reference information from training samples. As MDS has been
implemented in prior work using either single-layer or multi-layer, we compare against both variants.

4.2 OOD DETECTION RESULTS

4.2.1 RESULTS ON COVARIATE SHIFTED DATASET

As DART is designed to adapt to test-time covariate shift, it demonstrates its full potential in the
covariate-shifted setting. As shown in Table [} on ImageNet-C benchmark, DART achieves the
best performance on every OOD dataset and both evaluation metrics, with an average FPR@95TPR
reduction of 40.15 pp and average AUROC gain of 9.04 pp compared to the second-best (i.e., ODIN).
On CIFAR-100-C, DART once again achieves the best average performance on both metrics: an
average FPR@95TPR reduction of 23.06 pp and an AUROC gain of 9.29 pp compared to the
second-best. These results highlight the robustness and adaptability of DART in the face of test-time
covariate shift.

An important observation is that methods relying on prior information from training data tend to
perform similarly to, or even worse than, baselines that do not use such priors. This suggests that
the prior information which is typically beneficial for OOD detection on clean datasets may become
misaligned with test-time distributions under covariate shift, leading to degraded performance.
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Batch 4
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oop
—— Oracle Axis
—— DART Axis

Figure 6: Progression of axis alignment at CIFAR-100-C vs. LSUN-C under impulse noise corruption

4.2.2 RESULTS ON CLEAN DATASET Table 2: OOD detection performance

without covariate shift. All results are
reported as the mean over all five OOD
datasets for each ID set. (Best: bolded,
Second-best: underlined)

Table [2] reports the OOD detection performance on the
clean CIFAR-100 and ImageNet benchmark. Although
DART mainly targets covariate-shifted environments, it
consistently outperforms all baselines on the clean bench-

marks, achieving the lowest average FPR@95TPR and | =~ |  ImageNet | CIFAR-100

the highest average AUROC. DART reduces FPR@95 by | FPR95 | AUROC 1 | FPR95 | AUROC 1

19.06 pp on ImageNet benchmark and 12.72 pp on CIFAR- ~ Msp 4464 86.94 8037 7529

. Energy 3825 8552 | 7995 7679

100 benchmark compared to the second-best, while im- g jogit 3705 8643 7991 77.06

proving AUROC by 5.10 pp and 3.42 pp, respectively. ~ GradNorm | 8050 57.26 | 9492 43.62

ViM 5658  87.60 | 7194 7561

These results suggest that ID and OOD samples are well-  knn 8479 7587 | 7148 8116

: MDS,ingie 79.19 8057 80.01  69.98

separated in the f'eature space across most ID and OOD VDS | 5330 8636 1504 8636

dataset combinations and that the ID and OOD proto-  obpIN 60.84  81.86 8LI1  69.50

types, while not drastically shifted, are finely adjusted by =~ i< Sod0 7067 | T4 7099

ypes, w 1cally shilted, are Tinely adju Y scale 3501 8702 | 7660 77.53

DART toward more optimal axis for discrimination. ASH 3777 8567 8044 7676

RTL 4230 8424 | 6411 8076

: Lo NNGuide 7060 70.05 8755  66.29

Importantlly, .basehne.s that leverage training samples 0 Ccorp 1903 90.17 €531 8105

extract prior information before test time—Mahalanobis, = MDs++ 41.87 9048 8596 7552

. . RMDS 4628  91.03 6790 8251

KNN', and VlM—tend to Qutperform those not relying on  pupsis s601 3973 7301 8157

such information. DART is a notable exception, perform- parr | 1595 96.13 312 8978

ing the best without any prior information.

4.2.3 RESULTS WITH TRANSFORMER ARCHITECTURES

We also conduct experiments on transformer-based architectures (Vaswani et al., [2017), specifi-
cally ViT-Tiny (Dosovitskiy et al., 2021; |[Winkawaks| [2023) and Swin-Tiny (Liu et al., 2021}, to
demonstrate the robustness of our method across different model architectures. As shown in the
Table 3] DART consistently outperforms all baseline methods on both the covariate-shifted datasets
and original datasets. Specifically, DARTachieves 17.45pp and 37.11pp reductions in FPR@95 on
covariate-shifted benchmarks for ViT-Tiny and Swin-Tiny, respectively. On clean benchmarks, it
demonstrates 8.6pp and 3.42pp FPR @95 improvements for ViT-Tiny and Swin-Tiny, respectively.
This result proves the superiority of our method and the emergence of discriminative axis in the
feature space regardless of the underlying model architecture.

4.3 ABLATION STUDIES

Progression of Axis-alignment. Figure [6]demonstrates the online convergence capability of DART in
discovering the oracle discriminative axis. The stars represent the global centroids of ID and OOD,
with their connecting line forming the oracle discriminative axis. The triangles indicate the ID
and OOD prototypes estimated by DART at each batch, whose connecting line represents the
online discriminative axis. The cosine similarity between these two axes increases dramatically
across batches, demonstrating DART’s ability to navigate the high-dimensional feature space and
progressively align with the true discriminative direction.

Impact of Multi-layer Fusion. Figure|/a|compares full DART against its single-layer variants on
CIFAR-100 vs. LSUN, demonstrating the impact of multi-layer fusion. While DART achieves the
highest average performance, the key advantage lies in stability. Single-layer variants occasionally
outperform DART in specific settings (e.g., Block3 on original data, Blockl under Gaussian noise)
but exhibit catastrophic failures under other corruptions due to varying covariate-shift impacts across
layers. Therefore, DART’s multi-layer ensemble provides robustness under diverse covariate shifts.

Impact of Flip Correction. Figure [7b]demonstrates the critical role of DART"s flip correction. We
compare DART with DART-NoFlip (without flip correction) on CIFAR-100 vs iSUN for original and
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Table 3: OOD detection performance comparison with ViT-Tiny and Swin-T architectures. We
evaluate with CIFAR-100 ID, CIFAR-100-C csID and the corresponding OODs. All results are
reported as the mean over all five OOD datasets. For covariate shifted datasets, results are the average
of all 15 corruptions with severity level 5. (Best: bolded, Second-best: underlined)

| Training dist | Covariate shifted | Clean
Method | Winformed | ViT-Tiny | SwinT | ViT-Tiny | SwinT
| | FPR95 | AUROCT | FPR95 | AUROCT | FPR95 | AUROCT | FPR95 | AUROC

MSP NO 89.56 57.03 85.24 63.39 70.36 79.79 60.16 84.31
Energy NO 87.01 61.20 80.30 68.35 58.77 84.83 41.06 89.80
Max Logit NO 87.58 60.65 81.90 67.73 60.27 84.54 42.11 89.52
GradNorm NO 89.54 58.42 78.77 71.44 78.33 75.24 71.63 74.53
ViM YES 89.49 58.75 96.94 45.76 58.27 85.06 93.00 66.26
KNN YES 90.15 56.81 84.25 64.91 67.35 79.58 45.93 88.51
MDSgingle YES 97.22 32.40 98.76 33.09 96.38 35.57 98.67 41.11
MDSensemble YES 61.73 65.95 98.60 33.75 29.18 88.40 98.42 45.53
ODIN NO 87.53 60.52 84.88 63.63 80.25 71.22 91.20 63.65
ReAct YES 85.94 62.01 76.76 71.14 56.86 81.79 41.78 89.51
SCALE NO 88.84 58.99 76.68 71.57 61.75 83.66 44.84 88.50
ASH NO 92.00 56.00 76.95 71.39 81.17 74.00 50.03 86.97
RTL NO 84.42 58.69 83.71 63.62 40.20 87.75 50.90 84.23
NNGuide YES 86.49 61.17 76.53 73.38 60.30 83.43 38.04 91.06
CoRP YES 88.31 59.85 86.17 63.65 67.28 82.43 50.37 88.53
MDS++ YES 79.15 66.25 76.01 69.80 46.70 87.12 35.28 91.54
RMDS YES 82.63 63.56 91.33 58.14 47.98 86.93 54.00 87.65
RMDS++ YES 81.30 64.05 88.13 61.81 48.11 86.71 47.01 88.90
DART ‘ NO ‘ 44.28 68.60 ‘ 38.90 81.28 ‘ 20.58 94.31 31.86 88.03
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(b) Impact of Flip Correction across different corruption types.

Figure 7: Impact of DART"s individual components

corrupted datasets. While both perform identically on original data and under Gaussian noise, Shot
noise reveals a drastic difference. Standard DART recovers via prototype flip and performs robustly,
while DART-NoFlip suffers catastrophic degradation of detection capability due to reversed prototypes
under Shot noise. The flip correction detects and rectifies these inversions by ensuring consistent
prototype proximity. Similar effects with JPEG compression further validate the effectiveness.

5 CONCLUSION

In this work, we addressed the realistic challenge of OOD detection under test-time covariate shift, a
scenario where existing methods often collapse. Our analysis revealed the consistent existence of a
discriminative axis along which covariate-shifted ID and OOD samples remain separable. Building
on this insight, we proposed DART, which dynamically tracks prototypes to recover the evolving
discriminative axis with multi-layer fusion. Extensive experiments across diverse datasets and
architectures confirmed its superiority over strong baselines, underscoring the promise of prototype-
based axis tracking as a practical solution for reliable OOD detection in real-world environments.

Limitations and Future Works. While DART demonstrates strong performance, several avenues
remain for improvement. The reliance on MSP-based initialization may impact performance when
initial pseudo-labeling quality is poor, suggesting a need for more robust initialization strategies.
Additionally, extending DART beyond vision tasks to other modalities presents an opportunity to
validate the universality of discriminative axis tracking across different data representations.
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APPENDIX

A EXPERIMENTAL DETAILS

A.1 DATASETS DETAILS

CIFAR-100 CIFAR-100 (Krizhevsky et al.|[2009) consists of 60,000 color images of size 32 x 32
across 100 object classes, with 600 images per class. The dataset is divided into 50,000 training and
10,000 test samples. It includes diverse categories such as animals, vehicles, and everyday objects,
and is commonly used for evaluating fine-grained image classification and representation learning. In
our experiments, we use CIFAR-100 as the in-distribution dataset.

SVHN The Street View House Numbers (SVHN) dataset (Netzer et al., 2011)) contains real-world
digit images collected from Google Street View. It consists of over 600,000 images, each containing
a single digit cropped from house number signs, with a resolution of 32 x 32. The dataset includes 10
classes (digits 0-9) and is known for its relatively low intra-class variability and high image quality.
We use SVHN as an out-of-distribution dataset in our evaluation.

LSUN The Large-scale Scene UNderstanding (LSUN) dataset (Yu et al.; 2015) contains millions of
high-resolution images across various indoor and outdoor scene categories such as classroom, church,
and bridge. In OOD detection benchmarks, a subset of LSUN is often used by resizing images to
32 x 32 resolution to match CIFAR-style inputs. In our experiments, we use the resized LSUN
images as out-of-distribution samples.

iSUN The iSUN dataset (Xu et al., 2015) consists of natural scene images collected for saliency
prediction, containing various indoor and outdoor environments. It includes around 6,000 images,
which are typically resized to 32 x 32 for compatibility with CIFAR-based architectures. Due to its
scene-centric content, iISUN is commonly used as an out-of-distribution dataset in image classification
tasks. We follow prior works and use the resized version of iSUN for OOD evaluation.

Textures The Textures dataset (Cimpoi et al., |2014), also known as the Describable Textures
Dataset (DTD), contains 5,640 texture images spanning 47 categories such as striped, dotted, and
cracked. The images are collected ”in the wild” and exhibit a wide range of fine-grained, low-level
patterns. Its low semantic content and high texture diversity make it a challenging out-of-distribution
benchmark.

ImageNet ImageNet-1K dataset (Deng et al., 2009) contains 1.28M training images and 50K
validation images across 1,000 object categories.

ImageNet-O ImageNet-O (Hendrycks et al,[2021) is a curated out-of-distribution dataset contain-
ing 2,000 natural images that are semantically distinct from the 1,000 classes in ImageNet-1k. The
images were collected to naturally lie outside the ImageNet taxonomy while maintaining comparable
visual complexity. This dataset serves as a challenging benchmark for evaluating semantic OOD
detection.

SUN The SUN dataset (Xiao et al.}|2010) is a large-scale scene understanding benchmark containing
over 130,000 images across a wide variety of indoor and outdoor environments. It covers hundreds of
semantic scene categories such as kitchen, mountain, and library. The diversity and scene-centric
nature of SUN make it a strong candidate for out-of-distribution evaluation.

iNaturalist The iNaturalist dataset (Van Horn et al., 2018) contains high-resolution images of
fine-grained natural categories such as plants, insects, birds, and mammals, collected from citizen
science platforms. Due to its distinct domain and taxonomic diversity, iNaturalist is widely used as
an out-of-distribution benchmark in vision tasks. Its semantic gap from object-centric datasets makes
it a challenging OOD evaluation setting.

14



Under review as a conference paper at ICLR 2026

Common corruptions To evaluate robustness under covariate shift, we use a set of common image
corruptions introduced by Hendrycks and Dietterich (Hendrycks & Dietterichl 2019). This benchmark
includes 15 corruption types, grouped into noise (e.g., Gaussian noise, shot noise), blur (e.g., defocus,
motion blur), weather (e.g., snow, fog), and digital distortions (e.g., JPEG compression, pixelation).
We apply these corruptions to both in-distribution and out-of-distribution test samples to simulate
realistic distribution shifts. Each corruption is applied at severity level 5, following the standard
protocol used in prior robustness benchmarks.

A.2 BASELINES DETAILS

We introduce the baselines compared with DART and specify the hyperparameter used for implemen-
tation. The hyperparameter settings mainly follow the settings from the original paper.

MSP Maximum Softmax Probability (Hendrycks & Gimpel, [2016)) uses the highest softmax output
value as the confidence score, assuming in-distribution samples yield higher confidence. We extract
this directly from the classifier’s final layer.

Energy Energy-based detection (Liu et al.,|2020) computes E(z) = —log ), exp(fi(x)) from
network logits, with lower values indicating in-distribution samples. 7" = 1.0 is used for temperature
scaling.

Max logit This method (Hendrycks et al,[2019al) uses the maximum pre-softmax logit value as
the score, avoiding the normalization effect of softmax that may mask useful signals in relative logit
magnitudes.

GradNorm GradNorm (Huang et al., 2021) measures the gradient magnitude of the loss with
respect to the penultimate layer features. OOD samples tend to produce larger gradient norms. We
use a temperature of 1.0 for all experiments.

ViM Virtual logit Matching (Wang et al., 2022)) projects features into a null space and creates a
virtual logit to enhance separation between ID and OOD samples. We set the dimension of the null
space to 1000 for feature dimensions > 1500, to 512 for feature dimensions > 768, and to half the
size of the feature dimensions otherwise.

KNN K-nearest neighbors (Sun et al.,|2022)) measures the distance to k-nearest neighbors in feature
space, with OOD samples typically farther from ID samples. We use L2 normalization for features
and set k=50 for CIFAR-based experiments and k=200 for ImageNet-based experiments.

Mahalanobis distance We implement both single-layer and ensemble versions of this method (Lee
et al.,[2018)). The single-layer version models class-conditional feature distributions using Gaussian
distributions and measures the distance to the nearest class distribution, using the penultimate layer
features. The ensemble version combines layer-wise scores from multiple network layers using
pre-computed weights. These weights are learned by utilizing FGSM-perturbed inputs (magnitude
0.001) as synthetic OOD data and applying logistic regression (regularization strength C=1.0, max
iterations=1000) to determine the contribution of each layer’s feature. We extract features for each
layer or block depending on the model architecture.

ODIN ODIN (Liang et al.,2018)) enhances OOD detection by applying input perturbations with
temperature scaling to create a larger gap between ID and OOD confidence scores. FGSM epsilon
values are set as 0.002 for both CIFAR-100 and ImageNet.

ReAct ReAct (Sun et al.|[2021) truncates abnormally high hidden activations at test time, reduc-
ing model overconfidence on OOD data while preserving ID performance, thereby improving the

separability between ID and OOD sample.

SCALE SCALE (Xu et al., |2023) is a post-hoc OOD detection method that applies activation
scaling to penultimate features, thereby enlarging the separation between ID and OOD energy scores.
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ASH ASH (Djurisic et al., 2022) prunes a large portion of late-layer activations (e.g., by top-K
percentile) and either leaves the remaining values(ASH-P), binarizes them(ASH-B), or rescales
them(ASH-S), then propagates the simplified representation through the network for scoring. We use
ASH-P for performance comparison.

RTL RTL (Fan et al.|[2024) fits a linear regression between OOD scores and network features
at test time, calibrating base detector outputs to improve detection performance through test-time
adaptation.

NNGuide NNGuide (Park et al.,|2023) leverages k-nearest neighbor distances in the feature space,
scaled by the model’s confidence scores, to guide OOD detection by measuring how similar a test
sample is to training samples while accounting for prediction confidence.

CoRP CoRP (Fang et al.,|2024) applies cosine normalization followed by Random Fourier Features
approximation of a Gaussian kernel, then computes PCA reconstruction errors for OOD detection.

MDS++ MDS++ (Mueller & Hein, [2025) enhances the standard Mahalanobis Distance Score by
applying L2 normalization to feature representations before computing class-conditional statistics,
thereby improving the geometric separation between ID and OOD samples in the normalized feature
space.

RMDS RMDS (Relative Mahalanobis Distance Score) (Ren et al.l 2021)) computes relative Maha-
lanobis distances by comparing class-conditional scores against global background scores, effectively
measuring how much a sample deviates from both class-specific and overall data distributions.

RMDS++ RMDS++ (Mueller & Heinl 2025) extends RMDS by incorporating L2 feature nor-
malization before computing relative Mahalanobis distances, combining the benefits of normalized
feature spaces with relative distance measurements to achieve more robust OOD detection.

A.3 EVALUATION MODEL DETAILS

For CIFAR-100-based benchmark, we use the pre-trained WideResNet (Zagoruyko & Komodakis|
2016) with 40 layers and widen factor of 2 pretrained with AugMix (Hendrycks et al.,2019b) on
clean CIFAR-100. The pretrained weights for this model is available from RobustBench (Croce et al.,
2020).

For ImageNet-based benchmark, we use the pre-trained RegNetY-16GF (He et al.,|2016) with the
PyTorch checkpoint (Paszke et al.l 2019), which is trained on ImageNet and widely used for OOD
detection task.

For evaluation on transformer-based architectures, we train two models: ViT-Tiny and Swin-Tiny.
Both models are initialized with ImageNet-pretrained weights provided by HuggingFace model hub.
We then fine-tune the model weights and classifier on the CIFAR-100 dataset. Training continues
until each model reaches its target accuracy threshold (80% for ViT-Tiny and 85% for Swin-Tiny),
after which early stopping is applied.

A.4 EVALUATION DETAILS
For evaluation, we construct each test-time batch to contain 100 in-distribution (ID) samples and
100 out-of-distribution (OOD) samples, resulting in a fixed batch size of 200. We sample a total of

100 such test batches for each experimental setting. For each batch, we compute the AUROC and
FPR@95TPR metrics, and report the final performance by averaging the values across all batches.

A.5 COMPUTE RESOURCES

All experiments were conducted using NVIDIA RTX 3090 and RTX 4090 GPUs.
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B METHOD DETAILS

B.1 OTSU ALGORITHM

To automatically determine a threshold that separates two distributions (e.g., ID and OOD) based on
their scalar scores, we adopt Otsu algorithm (Otsu et al., [1975)). Originally proposed for image bina-
rization, Otsu algorithm selects the threshold that minimizes the intra-class variance (or equivalently
maximizes the inter-class variance) when partitioning a set of scalar values into two groups.

Given a histogram of score values, the algorithm exhaustively searches for the threshold 7 that
minimizes the weighted sum of within-class variances:

Fianin(T) = wo ()05 () + wi (7)o (7), Q)

where wo(7) and w(7) are the probabilities of the two classes separated by threshold 7, and
02(7), o3(7) are the corresponding class variances. This approach allows for an adaptive and data-
driven determination of the decision threshold, without requiring access to ground-truth labels or
distributional assumptions.

In our method, Otsu algorithm is applied to the distribution of OOD scores computed over each
test-time batch. This enables unsupervised, on-the-fly threshold selection for distinguishing ID and
OOD samples, and plays a critical role in decision-making process during inference.

B.2 TUKEY’S METHOD

To ensure robust prototype estimation, we apply outlier filtering prior to aggregating the feature
representations of test samples. Specifically, we adopt Tukey’s method, a non-parametric technique
for identifying outliers based on the interquartile range (IQR) (Tukey et al.,|{1977).

Given a set of distance values (e.g., Euclidean distances between features and their assigned prototype),
we first compute the lower quartile (()1) and upper quartile (Q)3). The interquartile range is then
defined as:

IQR = Q3 — Q1. (©)
A sample is identified as a potential outlier if its score x satisfies:
x> Qs+ 1.5-IQR. @)

We use Tukey’s method with an IQR factor of 1.5 throughout our experiments.

This filtering step is applied independently to the distance scores within each test-time batch, effec-
tively removing extreme values that may otherwise distort the prototype update.

B.3 LAYER SELECTION FOR DART

While it is possible to utilize the output of all intermediate layers for multi-layer aggregation, doing so
incurs additional computational overhead. To reduce this overhead while still capturing hierarchical
representations, we select a subset of representative layers at coarse block granularity, as specified in
Table

Table 4: Included layers list for DART

Model architecture ‘ Included layers list

WideResNet-40-2 | blockl, block2, block3, fc

stem, trunk output {blockl.blockl-0, blockl.blockl-1,
block2.block2-0 - block2.block2-3, block3.block3-0 - block3.block3-10,
block4.block4-0}, fc

RegNetY-16GF

ViT-Tiny | vit.encoder.layer{0 - 11}, classifier

Swin-T Swin.encoder.layers{o.blocks.O, O.blocks.1l, 1.blocks.0, l.blocks.l
2.blocks.0 - 2.blocks.5, 3.blocks.O, 3.blocks.1}, classifier

ResNet-50 | layerl, layer2, layer3, layer4, fc
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Algorithm 1 DART

Require: Pre-trained model f, layers L = {1, ..., L}, EMA coefficient «

1:

A W

8:

9:
10:
11:
12:

13:
14:
15:

16:

17:
18:

19:

20:

21:
22:
23:

Initialization using the first batch 5;:

2: Leto = (o1, ...,0¢) be the logit vector
3:
4: Apply Otsu threshold 7, on MSP scores for pseudo-labeling:

. o exp(oc)
Compute MSP: MSP; ; = max, ST, exp(o)
N ID ifMSPLi >T7

%= OOD otherwise

. Partition features into B1? and BY°P based on §;

for each layer [ € L do
Initialize prototypes:

_(1),ID _(1),00D

pi P = TBI0] Loy, enp fi(X1); p” = [FOOD] Yox, ens00p J1(X1,:)
end for
for each batch 5; do

for each layer [ € L do
if t mod n = 0 then

Apply flip correction if prototypes are misaligned. Refer to Section [3.3]in main paper for
details.

end if

Extract features: zglz)- = fi(X¢:), X¢i € By

Compute RDS:

(1) _=ID,(1) I
t—1

1) llz;'—p
RDSY =1 — i
: 28" —p; 2 D)+ 12" 5P O

Apply Otsu threshold 7, on RDS scores for pseudo-labeling:
ID  ifRDSY > 7,
OOD otherwise

Partition features into B/? and BY9P based on §;
Apply Tukey’s method for outlier filtering:
Let s; = ||z,§ll)

Filter out zilz) if s; > Qs+ k-IQR

9i =

— pProt||5, where pP*°t° is the corresponding prototype

Compute new centers:
. (1),ID . (1),00D
pg ) = |B%D\ th,iEB{D fl(xti)v p1(£ ) = \B\E}OD‘ th,iEBtOOD fl(Xt,i)
Update prototypes with EMA:
_ID(1 _ID,I . ID,(I) —00D,(l _00D,(1 00D, (1
p! ()Za'Pt ()+(1_a)'pt71()7pt ()ZOé'Pt ()+(1_a)'Pt71 O
end for
RDS i (2;) = £ Y/, RDS"
end for
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B.4 ALGORITHM OF DART

C FuULL RESULTS

Here we show the full results for all OOD datasets which was abbreviated as average in the main
manuscript due to space limits.

C.1 FuLL CIFAR-100 RESULTS WITH WIDERESNET ON CLEAN DATASET

Table 5: OOD detection performance comparison with CIFAR-100 ID and the corresponding OODs.
FPR@95TPR (%) is lower the better and AUROC (%) is higher the better. (Best: bolded, Second-best:
underlined)

Clean
Method | Training dist. | SVHN | Places365 | LSUN | iSUN | Textures I Average
| informed | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR9S5 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 || FPR9S | AUROC 1

MSP NO 7932 77.27 8037  74.99 7839 7691 8123 74.56 8255  72.70 80.37  75.29
Energy NO 8032  78.74 7847 75.69 7839 78.68 83.42 7453 7917 7631 7995 76.79
Max logit NO 79.85  79.11 7863 76.01 77.87  78.92 8249  75.00 79.69  76.25 7971 77.06
GradNorm NO 96.80  44.47 9481  51.36 9822 3212 98.48  30.97 8631 59.18 9492 43.62
ViM YES 5418 8544 86.74  64.33 66.48  81.52 66.82  80.95 8547  65.83 7194 75.61
KNN YES 63.34  86.06 80.00  73.38 66.57  84.85 72.86  80.60 7454 80.89 7148 8116
Mahalanobissingie YES 7775 75.58 90.94  59.26 69.56  80.02 70.64  78.54 91.15  56.50 80.01  69.98
Mahalanobisensempe YES 6292 8878 9341 6112 1312 9734 1644  96.55 4379 87.99 4594 8636
ODIN NO 6415 80.96 8430  69.48 90.32 6324 91.03 6121 7575 72.60 81.11  69.50
ReAct YES 8725  70.36 7997 7571 7391 80.58 7575 7848 8039 75.32 7945 76.09
SCALE NO 7438 81.36 7847 75.55 8091  75.14 83.88  72.60 6534 82,98 76.60  71.53
ASH NO 7920 79.65 7996 75.11 81.64  77.12 8545  73.20 7596 78.72 80.44 7676
RTL NO 50.15  87.42 7323 75.59 5846  85.01 68.38  80.67 7033 75.12 64.11  80.76
NNGuide YES 86.85  71.34 8771 6173 94.66  59.74 9550  57.33 7301 75.32 8755  66.29
CoRP YES 4343 9159 86.30 6831 8253 77.18 8056  77.13 3489  91.04 65.54  81.16
MDS++ YES 8359  81.25 8542 70.98 84.16  77.33 86.64  73.88 90.00 7415 8596  75.52
RMDS YES 6873 8523 7753 7111 52.64  88.28 5746 85.64 83.13  76.29 6790  82.51
RMDS++ YES 7420  84.57 7679 71.67 6524 8570 7102 8249 8229  77.44 7391 8251
DART NO 9.64  97.67 70.00  75.12 3024 91.49 1479 96.62 4091  88.02 3302 8978

C.2 FULL IMAGENET RESULTS WITH REGNET ON CLEAN DATASET

Table 6: OOD detection performance comparison with ImageNet ID and the corresponding OODs.
FPR@95TPR (%) is lower the better and AUROC (%) is higher the better. (Best: bolded, Second-best:
underlined)

Clean
Method | Training dist. | IN-O | Places | SUN | iNaturalist | Textures I Average
| informed | FPRY5 | AUROC 1 | FPR95 | AUROC 1 | FPR9S | AUROC 1 | FPR9S | AUROC 1 | FPR9S | AUROC 1 || FPR95 | AUROC 1

MSP NO 52.87  83.02 5476 84.30 5216  84.92 2033 95.25 43.08  87.23 44.64 8694
Energy NO 5759 76.17 4811 81.05 4117 85.04 8.68  97.49 3569  87.87 3825 85.52
Max logit NO 5230 7842 4722 8229 41.65  85.60 950  97.43 3457 88.39 37.05 8643
GradNorm NO 93.95  34.15 8771 52.32 7927 6251 7490  63.44 66.67  73.87 80.50  57.26
ViM YES 3021 93.82 7137 8293 7221 8342 5070 90.12 5842 87.70 56.58  87.60
KNN YES 69.58  85.71 97.60  69.55 96.05  71.65 99.40  66.69 6132 8577 84.79 7587
Mahalanobisyingle YES 4814 90.43 87.04  76.70 90.16  76.11 88.65  78.79 8198  80.81 79.19  80.57
Mahalanobisensemble YES 869  97.82 7862 81.37 77.80  82.59 88.75  77.80 2262 9471 5530 86.86
ODIN NO 6040  82.05 7128 76.69 6897  77.47 4764 8878 5590 8433 60.84  81.86
ReAct YES 9732 53.19 90.93 6547 85.13  72.83 7411 8574 8453 76.10 86.40  70.67
SCALE NO 5297 7770 4551 8283 3789 86.79 872 9746 2996 90.30 3501 87.02
ASH NO 57.04  76.29 4782 8117 4078 8521 843 9801 3480  88.15 3777 85.67
RTL NO 5260 79.13 4971 8358 4801 8253 2153 90.75 39.67 8522 4230 8424
NNGuide YES 87.68  49.90 8503 61.03 76.69  68.44 49.44  87.67 54.18  83.23 70.60  70.05
CoRP YES 4237 9323 68.17  83.92 62.14  86.35 33.19  94.68 3927 92,67 4903 90.17
MDS++ YES 3449 9426 73.19  81.07 6530  84.69 9.86  98.01 2649 94.37 41.87 9048
RMDS YES 4102 92.19 63.46  87.29 61.54  88.84 941  97.54 5596 89.27 4628 9103
RMDS++ YES 5733 90.42 73.07 8576 70.16  87.53 1770 96.44 61.79  88.50 56.01  89.73
DART NO 0.59  99.82 1441 9631 3614 90.86 2071 95.28 790  98.36 1595 96.13
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C.3 FuLL CIFAR-100 RESULTS WITH VIT-TINY

Table 7: OOD detection performance comparison with ViT-Tiny. We evaluate with CIFAR-100 ID,
CIFAR-100-C csID and the corresponding OODs. (Best: bolded, Second-best: underlined)

Covariate Shifted
Method | Training dist. | SVHN-C | Places365-C | LSUN-C | iSUN-C | Textures-C Il Average
| informed | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR9S | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 || FPR95 | AUROC 1
MSP NO 8832 54.65 89.98  57.41 89.13  60.20 90.96  57.75 89.39  55.15 89.56  57.03
Energy NO 8357  60.42 88.13  60.19 8747  63.71 8933 60.96 86.57  60.73 87.01  61.20
Max logit NO 84.66  59.74 88.59  59.76 87.74  63.31 89.76  60.53 87.17  59.93 87.58  60.65
GradNorm NO 89.95  62.39 89.89  56.74 9207 5439 9237 5347 8340  65.13 89.54 5842
ViM YES 8698  58.01 9124 57.30 88.56  62.26 90.90 5885 89.78  57.33 89.49 5875
KNN YES 90.16  56.65 90.34  54.45 90.01  60.53 9223 5579 87.99  56.64 90.15  56.81
Mahalanobisqingie YES 97.65  32.82 96.87  34.13 96.77 3342 9727 3131 97.54  30.30 9722 3240
Mahalanobisensembie YES 3791 90.30 94.09  45.50 61.56  61.16 6178  61.13 5329  71.68 6173 6595
ODIN NO 8529  61.87 88.93 5827 89.56  58.57 89.54  59.06 8433 64.82 8753 60.52
ReAct YES 8237  60.08 87.19 6131 8539  65.80 87.74  62.86 86.99  59.98 8594  62.01
SCALE NO 84.84  59.26 89.66 5825 90.05  60.75 91.51  57.95 88.16  58.76 88.84  58.99
ASH NO 9241 5890 91.56  55.26 93.51 5240 93.88  51.33 88.62  62.12 92.00  56.00
RTL NO 80.17  59.38 86.96  57.54 8375 6221 88.03  56.60 83.18  57.72 8442 58.69
NNGuide YES 8645  59.03 87.05  59.69 86.04  64.58 8836  61.35 8453 61.21 8649  61.17
CoRP YES 88.45  59.62 89.92  56.64 8728  63.92 89.22  59.97 86.69  59.10 8831  59.85
MDS++ YES 7722 6731 83.05 6179 78.16  68.41 80.03  65.75 7231 68.01 78.15  66.25
RMDS YES 7629 6591 8726  60.66 8490  65.54 8727  61.98 7744 63.73 82.63  63.56
RMDS++ YES 7535 65.59 86.15  61.22 83.89  66.16 86.10  62.95 7502 6435 8130  64.05
DART NO 3644 7192 6729  57.33 2508  80.93 3167 7550 6090  57.30 4428  68.60
Clean
Method | Training dist. | SVHN | Places365 | LSUN | iSUN | Textures I Average
| informed | FpRos | AUROCT | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 || FPRO5 | AUROC T

MSP NO 62.06  82.50 7847 74.69 7048  81.33 7485 7879 6592  81.63 7036 79.79
Energy NO 4179 89.13 7381 7771 61.09  86.02 66.13  83.60 51.04  87.68 5877  84.83
Max logit NO 4496  88.65 7440 77.59 61.78  85.80 67.05  83.33 53.15  87.33 6027  84.54
GradNorm NO 70.09  81.30 8325  69.27 8599 7271 87.16 7048 65.14  82.44 7833 7524
ViM YES 4734 88.18 71.80  78.03 5730  87.18 6352 84.49 5137 8741 5827 85.06
KNN YES 60.23  83.70 7973 69.78 6570  83.28 7282 77.93 5829 83.19 6735  79.58
Mahalanobisqingie YES 97.62  31.26 9424 47.56 96.96  31.19 97.67  27.57 9540  40.26 96.38  35.57
Mahalanobisensemble YES 13.93  97.14 9458  55.26 3.03  99.06 393 9893 3044 9163 29.18  88.40
ODIN NO 7565 7547 8748  64.34 8441 68.70 83.64  69.79 7007 7778 8025  71.22
ReAct YES 40.18  89.58 7280  78.53 5723 68.84 62.69  84.64 5140  87.38 56.86  81.79
SCALE NO 4417 8843 7371 77.68 67.15  83.85 7151 81.28 5219 87.07 6175  83.66
ASH NO 7725 79.20 8345  69.11 8672 71.52 88.41  69.02 7001 8114 81.17  74.00
RTL NO 2670 89.94 6755 7748 27.65  93.41 3920 89.62 39.88  88.30 4020 8775
NNGuide YES 4709  87.22 7640 74.95 60.59  85.51 66.31  82.58 5110 86.91 60.30  83.43
CoRP YES 61.85  85.00 80.76  73.19 6451  85.81 68.88  82.48 6042 85.68 6728 8243
MDS++ YES 39.14  88.84 66.54  78.57 4239 90.18 4878 87.41 36.66  90.59 4670 87.12
RMDS YES 3621 89.32 62.15  80.43 4761 88.92 5513 85.97 38.81  90.00 4798 8693
RMDS++ YES 3630 89.09 62.64  80.08 4816  88.67 5521 85.72 3826 89.98 4811 8671
DART NO 324 9923 6277 8173 0.85  99.80 1.04 9974 3500  91.04 20.58  94.31
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C.4 FuLL CIFAR-100 RESULTS WITH SWIN-TINY

Table 8: OOD detection performance comparison with Swin-Tiny. We evaluate with CIFAR-100 ID,
CIFAR-100-C csID and the corresponding OODs. (Best: bolded, Second-best: underlined)

Covariate Shifted
Method | Training dist. | SVHN-C | Places365-C | LSUN-C | iSUN-C | Textures-C Il Average
| informed | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR9S | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 || FPR95 | AUROC 1
MSP NO 87.48  58.92 8720  63.29 8295  67.03 85.14 6475 8433 62.97 8542 63.39
Energy NO 81.88  67.29 8620  64.20 7830 71.63 81.65  68.08 7347 70.53 8030 6835
Max logit NO 8372 66.10 86.30  64.38 7940 7116 8244 6179 7763 69.22 8190  67.73
GradNorm NO 8238  68.38 89.90  62.00 80.76  72.92 79.68  73.52 61.12  80.40 7877 7144
ViM YES 95.84  51.26 9498 50.17 97.60  46.77 98.04  43.00 9822 37.61 96.94  45.76
KNN YES 82.69  68.02 87.62  60.94 8250  67.52 85.40  62.77 83.06 6531 8425 6491
Mahalanobisqingie YES 9823 3879 9774  41.80 9932 3279 9936 30.22 99.13  21.86 98.76  33.09
Mahalanobisensembie YES 97.17 4472 97.94  39.09 9935 31.32 99.38  29.27 99.14  24.34 98.60  33.75
ODIN NO 80.78  66.20 89.74  59.86 91.86  58.65 91.08  59.38 7096 74.06 84.88  63.63
ReAct YES 7842 69.44 85.84  65.20 7679 73.35 78.67 7144 64.09  76.25 7676 71.14
SCALE NO 7913 69.57 8621  65.09 7671 73.93 7822 72.28 63.15  76.96 76.68  71.57
ASH NO 78.65  70.33 87.57  63.95 7748 73.87 78.64  72.06 6242 76.76 7695  71.39
RTL NO 8672  57.38 8672  62.68 7941 69.61 83.11  65.84 82.61  62.58 8371  63.62
NNGuide YES 78.56 7274 84.64  67.62 7365 7611 7630 7344 69.52  76.99 76.53  73.38
CoRP YES 84.83  67.05 8932 59.20 85.16  65.79 8698  61.99 84.56  64.22 86.17  63.65
MDS++ YES 7236 75.29 88.15  60.55 7841 69.66 7970 66.70 6144 7679 76.01  69.80
RMDS YES 91.82  59.47 91.80  56.76 89.66  61.30 91.74  57.40 91.61 5575 9133 5814
RMDS++ YES 89.90  63.59 90.80  58.82 85.84  64.50 8839  60.72 8574  61.41 88.13  61.81
DART NO 4490 7099 57.62 7548 1428 9553 2497 8774 5274 76.66 3890  8§1.28
Clean
Method | Training dist. | SVHN | Places365 | LSUN | iSUN | Textures I Average
| informed | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 || FPR9S | AUROC 1

MSP NO 59.06  86.09 69.83  79.17 5809  85.76 62.11  83.42 5172 87.13 60.16  84.31
Energy NO 3588 91.83 58.64  83.16 3861 91.40 4435 8895 2780 93.67 41.06  89.80
Max logit NO 3754 91.54 5873 83.04 3941 9110 4502 88.66 29.86  93.28 4211 89.52
GradNorm NO 8531  61.74 8337  67.78 70.06  80.46 6841 8033 5102 8232 7163 7453
ViM YES 83.71  80.08 93.84  62.22 96.72  63.50 97.19  59.52 9354  65.96 93.00  66.26
KNN YES 3160 93.26 66.75  80.31 4695  89.67 53.14  86.22 3123 93.09 4593 8851
Mahalanobisqingie YES 97.07  59.75 98.46  43.08 99.67 3581 9972 33.62 98.43  33.27 98.67 4111
Mahalanobisensemble YES 96.51  64.83 98.40  43.33 99.57 3831 99.65  36.58 97.99  44.61 98.42 4553
ODIN NO 89.89  67.25 9552 59.39 97.62  57.25 97.04  57.87 7593 76.50 9120  63.65
ReAct YES 4284 90.56 5878 82.17 38.80  91.42 4260  89.57 2589 93.83 4178 89.51
SCALE NO 49.51  87.94 62.13  81.02 40.86  91.00 4403 89.32 2767 93.21 44.84 8850
ASH NO 5451 85.90 67.96  79.09 4642 89.69 4893 88.02 3231 9214 50.03  86.97
RTL NO 4325 8735 7099 7476 4441 8735 51.83  84.40 4403 87.30 5090  84.23
NNGuide YES 3751 91.82 56.58  84.28 3361 93.04 3834 9140 24.15 9475 38.04  91.06
CoRP YES 4114 9232 68.66  80.55 5094  89.81 5548 87.22 3563 9277 5037  88.53
MDS++ YES 3097 93.67 56.68  83.95 3331 92.98 39.00  90.82 1643 96.28 3528 9154
RMDS YES 52.84  89.57 6426 8237 5270  88.97 5942 86.09 4078 91.23 5400  87.65
RMDS++ YES 4714 90.76 58.64  83.56 44.55  90.16 5092 87.55 3378 92.48 4701 88.90
DART NO 727 97.88 7797 64.13 631 9852 6.68  98.49 61.06 8114 31.86  88.03

21



Under review as a conference paper at ICLR 2026

C.5 FULL IMAGENET RESULTS WITH RESNET-50

Table 9: OOD detection performance comparison with ResNet-50 on ImageNet-based benchmark.
Results on covariated shifted dataset are the average of all 15 corruptions with severity level 5. (Best:
bolded, Second-best: underlined)

Covariate Shifted

Training dist. ImageNet-O-C Places-C SUN-C iNaturalist-C Textures-C Average
Method
\ informed | FPR95 | AUROC | FPR95 | AUROC 1 | FPR95 | AUROC t | FPR95 | AUROC t | FPR95 | AUROC 1 || FPR95 | AUROC 1
MSP NO 86.14  55.60 86.79  63.17 84.84 6527 77.89  69.62 88.52  54.85 84.84  61.70
Energy NO 82.16 5892 89.03  61.29 8791  63.58 86.44 6452 88.05 5585 8672  60.83
Max logit NO 83.88  57.81 87.57  63.00 8579  65.42 8149  68.07 88.02  55.87 8535  62.03
GradNorm NO 76.86  64.58 70.84  77.06 6523 80.51 5136 85.62 67.11 7414 6628 7638
ViM YES 95.64  38.92 9950  17.64 99.65  14.90 99.94  8.60 96.94  25.14 9833 21.04
KNN YES 83.81  63.63 90.93 5523 9112 5645 9520 4536 6131 7333 8447  58.80
MDSqingle YES 95.14  38.80 99.52 1875 99.67  15.95 99.93  9.60 9620 27.69 98.09 2216
MDSensemble YES 7971 62.76 9244 42,67 9217 41.57 9426  33.49 64.44  62.83 84.60  48.66
ODIN NO 76.69  68.04 25.14  92.96 2270 93.69 27.84  92.22 38.11 8581 38.10  86.54
ReAct YES 8224 59.09 8447  67.56 8292 69.76 80.76  70.72 84.85  59.33 83.05  65.29
SCALE NO 79.10  63.07 79.87  70.76 76.10  74.05 63.83  79.72 75.88  68.39 7496 71.20
ASH NO 80.51  61.30 87.83 6320 8648  65.88 82.64 6822 8477 60.05 8445 6373
RTL NO 8227  57.85 7694 7171 7329 7447 64.06  78.47 81.14  59.14 7554 6833
NNGuide YES 7391 67.80 68.11 7774 6229  81.42 50.54  85.43 5713 78.16 6240  78.11
CoRP YES 7589  13.38 7507 73.16 7142 7637 6732 78.15 4454 86.27 66.85 7747
MDS++ YES 6376 7747 81.50 6632 7947 69.03 66.54  77.67 3603  88.92 6546  75.88
RMDS YES 90.38  50.24 9539 44.28 95.88 4231 96.52  45.83 85.80  50.46 9279 46.62
RMDS++ YES 7740 64.63 8631 5847 8577  58.86 78.16  68.26 61.45 7334 77.82 6471
DART \ NO | 7352 5878 | 246 9934 | 106 9959 | 118 9961 | 2375 7975 || 2039 8741
Clean
Method | Training dist. | ImageNet-O | Places | SUN | iNaturalist | Textures I Average
| informed | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 || FPR9S | AUROC 1

MSP NO 64.81 7542 56.33  85.09 53.18  85.97 3695  91.68 5373 83.95 53.00  84.42
Energy NO 5518 82.01 4209  89.64 3438 91.54 2530 9438 3396 90.49 38.18  89.61
Max logit NO 5509 81.85 4279 78.62 3550 9139 2388 95.05 3507 90.28 3847 8744
GradNorm NO 5597 7838 47.85 8745 4219 88.60 2401 9434 417 8685 4244 87.12
ViM YES 5620  77.62 4262 8649 3160 90.55 21.81 9430 3331 89.08 3711 8761
KNN YES 11.09  97.01 7262 83.16 7249  84.40 8254 7921 1631  96.53 51.01  88.06
MDSqingle YES 11.10  95.67 5471 87.07 4546  90.53 78.67  76.90 19.89  94.97 4197 89.03
MDS engemble YES 3076 88.27 9587  62.81 9547 62.19 97.37  50.94 49.44  86.03 7378 70.05
ODIN NO 1870  94.49 9409  64.38 93.09  64.67 96.72 5110 2960  91.41 66.44 7321
ReAct YES 16.84  95.44 36.62  89.54 3489 89.80 3899  88.92 3550 88.30 32.57 9040
SCALE NO 50.55  84.83 3729 91.44 3029 93.06 1702 96.40 3167 9222 3336 91.59
ASH NO 4277 8782 3237 9247 2455  94.22 1087  97.60 19.80  94.77 2607 9338
RTL NO 56.98  75.34 4241 8656 3648  87.81 23.85  91.29 3871  85.14 39.69  85.23
NNGuide YES 3859 8832 2859 93.10 2002 95.18 1782 96.20 2111 9417 2523 9339
CoRP YES 3001 89.25 64.00  84.28 5598  87.82 83.16 7397 23.66  94.53 5136 8597
MDS++ YES 1492 97.16 6142  84.92 49.94 8897 33.84 9372 1.69 9949 3236 92.85
RMDS YES 61.88  88.56 87.73  79.15 88.16  80.24 6598  90.30 5195  88.58 7114 8497
RMDS++ YES 5642 86.76 75.65  82.07 73.61  83.96 36.83  93.50 29.65  91.97 5443 87.65
DART | NO | 060 9983 | 3390 8931 | 1590 9577 | 1429 9646 | 2368 9478 || 17.67 9523

D EFFECT OF EMA «

We employ an exponential moving average (EMA) to update the prototype, where the smoothing
coefficient « is treated as an only hyperparameter of DART. To examine the sensitivity of our
method to this hyperparameter, we conduct an ablation study on the CIFAR-100-C vs. SVHN-C and
ImageNet-C vs. iNaturalist-C benchmark, and report the results as AUROC(%) in Table ??. Results
in Table [L0l demonstrates that our method is robust to the choice of the EMA coefficient c.

Table 10: The effect of EMA « on the performance of DART

o | 05 0.6 0.7 0.8 0.9 std.

CIFAR-100-C vs. SVHN-C | 78.79 78.68 78.84 7858 78.11 =+0.29
ImageNet-C vs. iNaturalist-C | 93.18 93.18 93.18 93.18 93.19 +0.00
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E EXTENDED RDS DISTRIBUTION VISUALIZATIONS

In the main paper, we present representative visualizations of RDS distributions for a subset of
corruption types, to illustrate how ID and OOD samples are separated across different feature levels.
These visualizations support our observation that the most discriminative layer can vary depending
on the type of corruption. For completeness, we provide the full set of visualizations covering all 15
corruption types in this appendix.

E.1 RDS DISTRIBUTION VISUALIZATIONS

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

(a) RDS under gaussian noise (b) RDS under shot noise

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

(c) RDS under impulse noise (d) RDS under defocus blur
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
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Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
(k) RDS under brightness (1) RDS under contrast
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
(m) RDS under elastic transform (n) RDS under pixelate
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(0) RDS under jpeg compression
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Figure 8: Full corruptions visualizations for RDS distributions. Each plot shows at different network
depths (low, mid, high-level) through five sequential batches. The visualizations reveal how different
corruption types affect RDS separability at specific network layers.

F THEORETICAL ANALYSIS

In this section, we provide a mathematical derivation of the feature amplification phenomenon
observed in OOD data. We demonstrate how the mismatch between the frozen statistics of Batch
Normalization (BN) derived from ID data and the statistics of OOD data leads to an explosion in
feature magnitude for specific units.

F.1 SETUP AND DEFINITIONS

Consider a specific channel (or neuron) index & in a hidden layer. Let « denote the input to this layer
(or the output of the previous layer). We define the pre-activation feature Zj as a random variable:

Zy(x) = wy « + by, ®)

where wy, and by, are the weight vector and bias for unit k, respectively.

F.2 THE SILENT UNIT ASSUMPTION

We focus on a specific type of unit, which we term a Silent Unit. This unit typically corresponds to
a feature that is either irrelevant for classifying In-Distribution (ID) data or represents a direction
orthogonal to the ID manifold. Consequently, its activation on ID data is minimal and stable.

Mathematically, let D;p be the ID dataset and Prp be the underlying ID distribution. We assume the
variance of Zj over D;p is very small and of the same order as the BN stability constant e (vanishing
but non-zero variance). The running statistics, pyp and cr? p» Which are frozen after training, are
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given by:
pip = Benpp [Zi(7)], )
0tp = Varzmp,p [Zk(x)] = O(e). (10)

F.3 INFERENCE LOGIC OF BATCH NORMALIZATION

During Ehe inference phase, BN normalizes the input using the frozen ID statistics. The normalized

output Zy(z) is computed as:

Zk(x) — b
V4 0% pTE€E

where ;md B are learnable affine parameters, and € is a small constant for numerical stability

(e.g., 1077).

Crucially, due to the silent unit assumption (a% 1 = O(¢)), the scaling factor A\, satisfies:

Zi(x) = + Br, (11)

1 1
mE -~ ). 12
g Voi, +e <\/E> (12)

For typical choices such as e = 1072, this corresponds to a large constant amplification.

F.4 FEATURE AMPLIFICATION ON OOD DATA

Now, consider a bounded OOD input zoop ~ Poop. Since xpop does not share the specific
semantic structure of ID data that suppresses the activation of unit k, Z(xoop) follows a distribution
determined by random projection in the high-dimensional feature space.

Let A be the deviation of the OOD pre-activation from the ID mean:

A =|Zy(xoop) — pIp|- (13)
Unlike ID data, OOD data is not concentrated around iy p, implying that A is a non-negligible value
of order O(1) with respect to €.

We now compare the magnitude of the normalized feature |2 «| for ID and OOD inputs (assuming
Bk ~ 0 for simplicity):

Case 1: ID Data. For x ~ Pjp, the deviation of Zj () from u;p is controlled by the standard
deviation:

|Zi(z1p) — pip| = O(o1p) = O(Ve). (14)
Using 0%, = O(e), the denominator satisfies \/o7, + € = ©O(y/e), and thus the normalized
activation remains stable:
0(/9)

(i)l = bl - g 7gy = Ol = 0(). (15)

Case 2: OOD Data. For x ~ Ppop, the deviation A is constant with respect to . However,
the denominator remains of order /€ due to the silent unit statistics. This leads to an explosion in
magnitude:

- A 1
1 Zk(zoop)| = || ———= = Q<> - (16)
\VOip t€ Ve
Consequently, for sufficiently small €, we obtain
S 1
Z =0 — 17
| Z1(zo0D) (\ﬁ) (17)

which is much larger than the ID magnitude (e.g., two orders of magnitude larger when ¢ = 10~°).
This amplified signal passes through the ReLU activation function (if positive), resulting in abnormally
high activation values for OOD data compared to ID data.

Remark. This theoretical framework elucidates the phenomenon observed in Fig[3} where specific
units exhibit significantly higher activation values for OOD samples. As derived above, the variance
mismatch amplifies the OOD signals in silent units, thereby facilitating the clear separation between
ID and OOD distributions in the feature space.
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F.5 VALIDITY UNDER SHARED COVARIATE SHIFT

We next argue that the above amplification mechanism remains valid even when ID and OOD inputs
undergo covariate shift (e.g., changes in weather, illumination, or sensor characteristics).

Let e denote an environment configuration that induces a covariate shift via a transformation 7, on
the input space, and assume that this transformation is applied identically to ID and OOD samples:
Ie:Te(l‘), INP[D OI'JJNPOOD. (18)
The pre-activation of unit k in environment e can then be written as
Z,E,e)(x) = w] xo + b, = wy To(x) + by = Zp(x) + Oi(e, ), (19)

where 8 (e, z) £ w, (T.(z) — x) captures the effect of the covariate shift along the k-th direction.

We assume that the covariate shift transformation 7, is bounded in the input space, i.e., there exists a
constant B,y such that

ITe(z) — z||]2 < Beny for all 2 in the support of P;p and Poop. (20)
Then the induced perturbation along unit & satisfies
|6k (e, 2)| = [wy (Te(z) = 2)] < Jlwell2 [ Te(x) — 22 < |lwk|l2 Beny- 1)

Thus we can choose
Cenv = ||wk||2Benva (22)
which is a finite constant independent of the BN hyperparameter e.

Importantly, BN still uses the frozen statistics (17 p, 0%p,) computed from the original ID distribution
(before the shift). Thus, the normalization scale

\/ o3, +e=0(Ve) (23)

ID under covariate shift. For x ~ P;p, we have

|Z;ie)(37ID) —wip| =Zk(xrp) — wip + or(e,xip)| < |Zi(xip) — pupl + |0k(e,zrp)|. (24)
Under the silent-unit assumption, | Zx(zrp) — urp| = O(y/€), while the covariate shift contribution
is bounded by C,,. Hence

is unchanged.

|Z;(:) (z1p) — pip| < O(Ve) + Ceny. (25)
Dividing by \/0?,, + € = O(y/€) yields a bounded normalized activation:
IZIEQ) (z1p) — pipl

2 )
\VOoip Te€
which remains a finite constant determined by (v, Cony, €) and does not diverge with the OOD
amplification discussed below.

1259 (D) = |l - (26)

OOD under covariate shift. For x ~ Poop, recall that in the original environment we have

Ao = |Zi(zoop) — pip| = O(1), 27)
reflecting the fact that OOD samples are not concentrated around the ID mean. Under the shared
covariate shift, we obtain

|Z,§“’) (xoop) — mip| = |Zr(xoop) — ko + 0k(e,z00D)| = Ao — |0k(e,z00D)| = Ao — Ceny.
(28)
For bounded shifts with Cy,,, < Ag, the deviation remains of constant order, i.e.,
12\ (zoop) — pp| = (1). (29)
After BN normalization, this yields

12 (woop) — pipl _ o(L). G0y

5(e)
12y (zoop)| = |7kl - —
* \Voip +e Ve
which is still much larger than the ID magnitude. Therefore, even when ID and OOD undergo the
same covariate shift, the mismatch between frozen ID statistics and OOD activations, combined with

the silent-unit scaling, continues to produce systematically amplified responses for OOD data.
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Remark on Layer Normalization. The above derivation characterizes feature amplification under
Batch Normalization, which relies on frozen ID statistics at test time. However, many modern archi-
tectures in our experimental setup (e.g., ViT, Swin-Transformer) primarily use Layer Normalization
instead of Batch Normalization. It is therefore natural to ask whether a similar unit-wise OOD
amplification effect can also arise under Layer Normalization. To clarify why this may plausibly
occur, we briefly recall how LN affects the per-sample feature energy.

Let h(z) € R be a feature vector with components h;(z). LN computes the sample mean and
variance as

d d
1 1 2
ple) == hi(w), @) == (hi(w) — u(@)), 31)
i=1 i=1
and produces normalized activations

(32)

(optionally followed by an affine transform with ~y; and ;). Ignoring the small stability constant e for
clarity, we obtain

d

L I, (hi(@) - p(@)” 1
2 =5 ey T aw

i=1

d
OR w@)’ =1, 33

SHEE
SHE

so that .,
> hi(x)® =d. (34)
i=1

Thus, LN enforces a fixed per-sample variance (and hence a fixed “energy” >, h?) and effectively
redistributes this energy across feature dimensions for each input x. Here, by “energy” we simply
refer to the squared /5-norm (or variance) of the normalized feature vector, not to the energy-based
OOD score (e.g., negative log-sum-exp of logits) commonly used in energy-based OOD detection.

While our formal analysis focuses on Batch Normalization, it is plausible that an analogous mech-
anism can operate under Layer Normalization. In particular, under LN the per-sample variance is
fixed, and OOD inputs may induce large excursions along directions that remain nearly silent for
ID data. In such cases, the fixed energy budget would be concentrated on these silent directions,
potentially leading to much larger normalized activations on OOD samples in the corresponding
units than on ID samples. A rigorous theoretical and empirical study of this LayerNorm case—for
example, characterizing how per-sample variance redistribution interacts with silent directions in
high-dimensional feature spaces—is an interesting direction that we leave for future work.

G CROSS-DOMAIN EVALUATION

In the main body of the paper, we reported results under evaluation settings where each test stream
contains a single OOD dataset and a single type of covariate shift. In this appendix, we further
evaluate our method in a more challenging regime with multiple OOD datasets and multiple covariate
shifts.

G.1 MiIxXeEp OOD

We believe our bounded OOD setting reflects realistic deployment scenarios where OOD inputs
tend to concentrate within a limited semantic space due to observation boundaries of the data
stream. However, to further demonstrate robustness beyond this assumption, we conducted additional
experiments where two different OOD sources are mixed simultaneously during test time while the
ID stream remains fixed. Concretely, at each time step, OOD samples are randomly drawn from two
diverse sources rather than a single homogeneous distribution.

Results in Table [T] show that DART maintains the best detection performance even under this
mixed-OOD scenario, indicating that our OOD prototype successfully finds the discriminative axis
when OOD samples span multiple semantic categories. We observe performance degradation only in
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Table 11: Mixed OOD evaluation

Method ImageNet-O + Places Places + SUN SUN + Textures
FPR@95TPR AUROC FPR@95TPR AUROC FPR@95TPR AUROC

MSP 48.43 83.70 48.65 84.26 43.65 85.52
Energy 51.56 78.42 44.24 82.57 38.31 85.65
Max Logit 48.14 80.20 42.85 83.49 37.29 86.24
GradNorm 86.49 43.25 77.26 57.44 67.54 66.80
ODIN 62.28 79.44 66.10 76.78 60.37 80.13
SCALE 47.62 80.09 40.36 84.39 33.92 87.81
RTL 46.82 81.46 44.77 82.94 40.64 83.98
DART 19.23 94.45 25.96 91.15 18.65 94.80

an extreme case where all five OOD sets are mixed simultaneously—a scenario that fundamentally
violates our bounded OOD assumption. However, we believe such extreme mixing rarely occurs in
practice, and our assumption holds within realistic deployment boundaries.

G.2 CONTINUAL OOD

We additionally evaluate a more challenging scenario in which the type of OOD data itself changes
abruptly over time while the ID stream is fixed. Concretely, we partition the test stream into several
temporal segments. In every segment, ID samples are drawn from the same ID distribution, but OOD
samples are drawn from a different OOD set in each temporal segment, and we switch the OOD

source abruptly at segment boundaries without any prior knowledge of these switches.

Table 12: Continual OOD evaluation

Method ImageNet-O — Places Places —+ SUN SUN — Textures
FPR@95TPR AUROC FPR@95TPR AUROC FPR@95TPR AUROC
MSP 48.99 83.63 47.93 84.36 43.77 85.52
Energy 51.07 78.46 44.29 82.38 38.26 85.65
Max Logit 47.58 80.29 43.53 83.40 37.29 86.24
GradNorm 86.24 43.53 76.87 57.52 67.52 66.80
ODIN 62.14 79.40 66.44 76.84 60.41 80.11
SCALE 47.35 80.15 4091 84.31 33.98 87.81
RTL 48.19 79.64 45.50 80.94 39.65 83.97
DART 12.05 95.49 23.40 93.51 18.80 94.81
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Figure 9: AUROC vs. batch

Results in Table [I2] indicate that DART continues to exhibit stable OOD detection performance
across segments, with only modest fluctuations when the OOD set changes, whereas non-adaptive
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baselines suffer noticeable drops whenever a new OOD set appears. This suggests that our prototype-
based tracking does not rely on a single globally fixed linear discriminative axis, but can adaptively
re-estimate the relevant axis over time, even under abrupt semantic shifts in the OOD distribution.

G.3 MIXED COVARIATE SHIFT

We conduct additional experiments where a test batch contains samples from multiple different
covariate shifts. We designed two specific scenarios: a mixture of two shifts and a mixture of all 15
shifts.

In the setting with the mixture of two shifts, we evaluated settings where two different covariate
shift types are mixed within a single batch. In this scenario, DART maintains robust performance,
significantly outperforming all baseline methods by a large margin, as shown in Table [I3]

Table 13: Performance comparison under mixed-shift scenarios

Original + Gaussian noise ~ Gaussian noise + Snow  Snow + JPEG compression
Method FPR@95TPR AUROC FPR@95TPR AUROC FPR@95TPR  AUROC

MSP 82.63 67.43 85.01 62.49 83.07 68.22
Energy 72.01 76.77 83.91 69.82 89.72 66.83
Max Logit 77.19 73.34 85.40 67.10 85.73 68.66
GradNorm 54.72 83.51 65.33 81.94 72.16 79.49
ODIN 66.85 77.72 45.20 83.46 12.08 97.39
SCALE 66.99 78.21 80.27 71.68 79.15 73.94
RTL 79.84 67.73 81.92 65.32 79.86 71.65
DART 22.04 93.93 0.85 99.62 0.79 99.72

While unrealistic in real-world data accumulation, to push the limits of our method, we also test a
more extreme scenario involving a mixture of all 15 covariate shifts and report in Table[T4] In this
challenging setting, the performance gap between DART and the baselines slightly narrows compared
to the independent or 2-mixture scenarios. We attribute this slight reduction in the margin to the
influence of a few specific shift types that are inherently difficult to separate linearly. However, even
under this extreme condition, DART consistently maintains the top-ranking performance (Rank 1)
among all compared methods.

Table 14: Performance comparison under the mixture of all 15 shifts (Extreme Case)

Method FPR@95TPR AUROC

MSP 86.64 62.71
Energy 86.27 63.02
Max Logit 86.46 63.67
GradNorm 69.55 77.45
ODIN 25.45 92.16
SCALE 78.20 71.19
RTL 81.27 65.63
DART 19.68 92.70

G.4 CONTINUAL COVARIATE SHIFT

We additionally evaluate on streams where the covariate shift explicitly evolves over time. Concretely,
we construct time-varying streams in which the corruption type changes (e.g., from “clean” to
“gaussian noise”, from “gaussian noise” to “snow”, and from “snow” to “jpeg compression”), while
samples within each segment remain temporally correlated. This reflects evolving acquisition
conditions rather than a single static corruption. In Table [T5} DART maintains strong OOD detection
performance after each environment change.
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Table 15: Continual covariate shift evaluation

Clean — Gaussian noise ~ Gaussian noise — Snow  Snow — JPEG compression
Method FPR@95TPR AUROC FPR@95TPR AUROC FPR@95TPR  AUROC

MSP 68.33 77.90 78.90 71.78 76.98 72.87
Energy 60.76 81.66 78.54 77.16 75.70 76.83
Max Logit 62.29 80.57 77.78 75.59 75.45 76.31
GradNorm 74.72 69.77 71.01 78.73 79.89 72.13
ODIN 68.45 79.06 67.32 80.97 59.59 84.23
SCALE 61.05 81.35 76.72 717.30 70.10 78.89
RTL 69.69 75.57 82.20 70.10 76.42 73.90
DART 15.70 96.15 0.81 99.75 0.98 99.69
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Figure 10: AUROC vs. batch

H SYSTEM OVERHEAD

We measure wall-clock inference time for all methods on the same device, after the backbone
forward pass, and only for the OOD-score computation (Figure[TT). Concretely, we report the total
time required to process 100 mini-batches of size 200 (20k test samples in total), using RegNetY-
16GF. Under this protocol, DART falls into the group of fast methods: it is markedly faster than
recent baselines such as RTL, NNGuide, and MDS-based variants, which require regression fitting,
KNN-style searches, or repeated Mahalanobis evaluations.

Inference Time by Method

MD Ensemble 442.5094 s

RMDS 105.3443 s
MDS+ 105.2096 s
MD Single 100.2153 s
RMDS++ 99.6316 s
RTL 33.4909 s
NNGuide F24.7207 5
ODIN [l 13.9184s
GradNorm [ 5.3143 s
DART |1.8922s
ReAct |1.8253s
KNN | 1.7440 s
ViM [1.1002 s
SCALE |0.2303 s
ASH [0.0843 s
Energy [0.0085s
MsSP |0.0032 s
Max Logit |0.0005 s

Method

0 100 200 300 400 500 600
Inference Time

Figure 11: Inference time
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I IMPACT OF FLIP CORRECTION

To quantitatively assess the impact of flip correction, we compare with a variant that does not perform
flip correction, DART-NoFlip, using CIFAR-100-C as the csID dataset. As shown in Table[16] flip
correction improves the performance of our method.

Table 16: Performance comparison between DART-NoFlip and DART

Method | SVHN-C | Places365-C | LSUN-C | iSUN-C | Textures-C I Average

| FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 | FPR95 | AUROC 1 || FPR95 | AUROC 1
DART-NoFlip | 51.14  71.84 70.14  66.08 44.17 8015 | 5230  78.58 5537 7501 || 5462 7433
DART 48.60  79.82 68.66  68.00 4414 80.29 50.76  79.75 5148  80.60 5273 77.69

To further illustrate the effect on performance over time, we additionally analyze CIFAR-100-C
vs Textures-C on a per-corruption basis. Figure[I2] visualizes the detection performance over time
(per-batch AUROC) before and after applying flip correction. For several corruptions—glass blur,
snow, fog, and contrast—we observe that once flip correction is triggered, the dual prototype axis
is realigned toward the oracle discriminative direction, leading to an abrupt jump and sustained
improvement in performance. For shot noise, flip correction occurs early in the stream at the 20-th
batch, after which the subsequent batches exhibit much more stable and higher performance compared
to DART-NoFlip.
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Figure 12: Impact of Flip Correction over time (CIFAR-100-C vs. Textures-C)

J IMPACT OF MULTI-LAYER FUSION

We extend Figure[7a]to report, for all 15 corruption types, the AUROC of each single-layer variant
(Blockl, Block2, Block3, FC) and compare them against full DART with multi-layer fusion, using
CIFAR-100-C as csID and Textures-C as csOOD. See Figure I3 for all results.

This extended analysis reveals that the best-performing layer is highly shift-dependent: under noise-
type corruptions such as Gaussian or impulse noise, deeper layers suffer larger degradation, whereas
under corruptions such as motion blur and brightness, earlier layers are more severely affected and
later layers remain relatively more informative. As a result, relying on any single fixed layer for OOD
detection is brittle when the covariate shift type is unknown a priori. In contrast, the fused DART score
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achieves both the highest mean performance and the most stable behavior: averaged over all corruption
types, DART not only outperforms every single-layer variant, but also exhibits substantially smaller
variation than the strongest single-layer baseline (Block3), with standard deviation 0.1661 versus
0.2582 for Block3. These results quantitatively support our claim that multi-layer fusion is crucial for
robust OOD detection under unpredictable covariate shift.
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Figure 13: Impact of Multi-layer Fusion (CIFAR-100-C vs. Textures-C)

K ANALYSIS ON COLLAPSING SCENARIO

Although very rarely, the discriminative axis tracking of DART can sometimes collapse at a particular
layer. We further investigated the collapsing cases where perfect alignment was not achieved and
identified two distinct failure modes: large angle drift and axis flip. See Figure[T4]for for the evolution
of the angle in each case.
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Figure 14: Visualization of Collapsing Scenario

Large angle drifts (Figure [T4b) were primarily observed in early layers (e.g., Defocus Blur and
Contrast at Layer 0), which we attribute to the limited linear separability of features at this stage;
notably, this issue resolves naturally in deeper layers as features become more discriminative.

On the other hand, axis flipping (Figure [I4c) was observed in deeper layers (e.g., “Glass Blur” at
Layer 5, “Contrast” at Layers 3 and 4). We attribute this primarily to the limitations of the baseline
score (MSP), which serves as the reference for prototype initialization and flip detection. Under
severe corruptions, the baseline performance degrades significantly, yielding a noisy reference signal
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that leads to incorrect initialization or a failure to detect directional flips. This observation implies that
the stability of the discriminative axis depends on the quality of the reference score, and employing a
more robust reference signal could potentially resolve these flipping issues. Crucially, despite these
isolated local instabilities, we emphasize that our Multi-layer Fusion strategy effectively mitigates
these risks. By aggregating decisions across multiple layers, DART compensates for occasional drifts
or flips occurring in individual layers, ensuring robust overall performance. Consequently, even in
scenarios where specific layers struggle to align, the ensemble model maintains an AUROC greater
than 0.9 across all covariate shifts, validating the practical effectiveness of our approach.

L VISUALIZATION OF ROC CURVES

We visualize the ROC curves of our method and the baselines across several evaluation settings. As
shown in Figure[T3] DART achieves lower FPR in this high-TPR region even when overall AUROC
is comparable to baselines. Since real-world deployment requires maintaining high ID acceptance
while minimizing false alarms, FPR@95TPR better captures the performance that matters in practice.
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Figure 15: ROC curves for CIFAR-100 vs. LSUN under different corruptions
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