

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRACKING THE DISCRIMINATIVE AXIS: DUAL PROTOTYPES FOR TEST-TIME OOD DETECTION UNDER COVARIATE SHIFT

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 For reliable deployment of deep-learning systems, out-of-distribution (OOD) de-
014tection is indispensable. In the real world, where test-time inputs often arrive as
015 streaming mixtures of in-distribution (ID) and OOD samples under evolving covari-
016ate shifts, OOD samples are domain-constrained and bounded by the environment,
017 and both ID and OOD are jointly affected by the same covariate factors. Existing
018 methods typically assume a stationary ID distribution, but this assumption breaks
019 down in such settings, leading to severe performance degradation. We empirically
020 discover that, even under covariate shift, covariate-shifted ID (csID) and OOD
021 (csOOD) samples remain separable along a discriminative axis in feature space.
022 Building on this observation, we propose *DART*, a test-time, online OOD detection
023 method that dynamically tracks dual prototypes—one for ID and the other for
024 OOD—to recover the drifting discriminative axis, augmented with multi-layer
025 fusion and flip correction for robustness. Extensive experiments on a wide range of
026 challenging benchmarks, where all datasets are subjected to 15 common corruption
027 types at severity level 5, demonstrate that our method significantly improves per-
028 formance, yielding 15.32 pp AUROC gain and 49.15 pp FPR@95TPR reduction
029 on ImageNet-C vs. iNaturalist-C compared to established baselines. These results
030 highlight the potential of the test-time discriminative axis tracking for dependable
031 OOD detection in dynamically changing environments.

032 1 INTRODUCTION

033 Deep neural networks (DNNs) achieve remarkable performance across applications such as image
034 classification, object detection, medical imaging, autonomous driving, and speech recognition (Alam
035 et al., 2020). These successes stem from large-scale datasets, high-performance hardware, and
036 innovative model architectures (Deng et al., 2009; Krizhevsky et al., 2012; He et al., 2016; Vaswani
037 et al., 2017), motivating deployment in real-world systems.

038 In practice, however, deployed models inevitably encounter test inputs that deviate from their training
039 distributions. One form is **semantic shift**, where models face unknown semantics—commonly termed
040 out-of-distribution (OOD) samples. Substantial progress has been made on OOD detection: existing
041 methods typically assume either abstract characteristics (Hendrycks & Gimpel, 2016; Liu et al., 2020;
042 Xu et al., 2023) or data-specific characteristics (Lee et al., 2018; Sun et al., 2022) of in-distribution
043 (ID) data to distinguish ID from OOD. A second form is **covariate shift**, where data appears under
044 new conditions such as changes in weather, illumination, or sensor noise (Moreno-Torres et al., 2012;
045 Dockès et al., 2021). Most OOD methods implicitly assume stationary ID distributions as reference
046 to separate ID and OOD, however, as shown in Figure 2, in practice they struggle under covariate
047 shifts (Yang et al., 2024; 2021; 2023a) because shifting covariates alter the space geometry that their
048 decision rules rely on.

049 We study **test-time OOD detection under covariate shift** in a realistic *streaming mixture* setting: test-
050 time inputs arrive in mini-batches as mixtures of ID and OOD samples, and both are simultaneously
051 exposed to the *same evolving covariate shifts* (e.g., a change in illumination). We denote these
052 as **covariate-shifted ID (csID)** and **covariate-shifted OOD (csOOD)**. Within each mini-batch—
053 as illustrated in Figure 1—spatial and temporal coherence arises from the task environment, so

063
064
065
066
067
068
069
070
071
072

Figure 1: Comparison of traditional and real-world ID- OOD assumptions. (a) Traditional OOD detection assumes ID data (blue circle) exists within an unbounded OOD based benchmark. Existing methods suffer under covariate shift, with data is bounded by physical and environmental constraints (observation boundary, top-left inset), limiting the space where OOD samples can occur. Furthermore, covariate shifts such as weather conditions can simultaneously affect both ID and OOD distributions (dashed regions), causing them to shift jointly in feature space.

Figure 2: AUROC comparison on both OOD assumptions. Existing methods drop to around 0.5. In contrast, the oracle axis achieves consistently high performance regardless of shift, and our method effectively discovers this axis, attaining near-oracle results.

073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

OOD samples are *domain-constrained* rather than arbitrary. For instance, in autonomous driving, encountering an unseen vehicle type is plausible OOD, whereas suddenly observing medical or satellite images is essentially impossible. Moreover, temporally correlated csID and csOOD typically undergo the *same* covariate shift, so their distributions co-evolve during deployment. In our setting, the test stream is unlabeled, the backbone is frozen, no training data are accessed at test time, and the algorithm maintains a small, bounded state.

In this practical scenario, we empirically observe a key insight that enables our approach. Across diverse datasets and shifts, we consistently observe: (i) *local coherence*—within short windows, csOOD samples organize into coherent groupings in representation space; and (ii) a *recoverable linear axis*—csID and csOOD remain approximately linearly separable along a dominant discriminative direction that *drifts* as covariates evolve. As shown in Figure 2 with annotation “Oracle”, computing our method’s OOD score with the optimal discriminative axis yields very high AUROC, demonstrating that separability in this direction can lead to strong detection performance. These observations suggest focusing on *tracking* the separation direction online rather than relying on a fixed, training-time score.

We propose **Discriminative Axis Real-time Tracker (*DART*)**, a **test-time, online OOD detection** method that continuously tracks a *discriminative axis* using a class-agnostic ID prototype and an OOD prototype *per feature layer*. At each step, incoming test samples update the prototypes via lightweight, stable rules, yielding the vector connecting them as the discriminative axis. Each sample is then scored by its relative position to this axis, producing a simple forward-pass detector aligned with the evolving feature space. To address the fact that covariate shifts affect DNN layers differently (Hendrycks & Dietterich, 2019; Yin et al., 2019), *DART* employs **multi-layer score fusion** to stabilize detection across heterogeneous, unpredictable shifts. The method requires only forward passes, no model weight update, no labels, and no access to training data at test time, which suits privacy-sensitive or on-device deployments where retraining is infeasible. For robustness, prototypes are initialized conservatively and updated with safeguards to prevent collapse.

Across challenging benchmarks, *DART* consistently delivers substantial gains over prior approaches. For example, on the ImageNet benchmark, *DART* achieves at least **9.04 percentage points (pp)** higher AUROC under covariate shift and **5.10pp** AUROC improvement on the clean setting, as shown in Figure 2, while attaining at least **40.15pp** and **19.06pp** FPR@95TPR reduction on the covariate shifted and clean datasets, respectively. Remarkably, the performance of *DART* comes close to that of the Oracle, highlighting the effectiveness of our approach.

Our contributions can be summarized as below:

- We formalize *test-time OOD detection under covariate shift* in a streaming mixture setting, distinguishing csID from csOOD and articulating realistic constraints (data stream, frozen backbone, small memory).

- 108 • We introduce ***DART***, which *tracks dual prototypes online* to recover the drifting discriminative axis
109 and fuses *multi-layer* scores for robustness to layer-specific covariate effects.
- 110 • We provide measurements and visualizations showing coherent csOOD groupings and approxi-
111 mately linear csID–csOOD separation within short test windows.
- 112 • We demonstrate consistent gains over strong post-hoc baselines on joint-shift suites, with large
113 improvements in AUROC and FPR@95, using only forward passes and no retraining.

116 2 RELATED WORK

118 2.1 OUT-OF-DISTRIBUTION (OOD) DETECTION: TRAINING-DRIVEN VS. POST-HOC

120 Research on OOD detection can be broadly categorized into learning-based and post-hoc approaches.
121
Training-driven approaches. These methods modify training to enhance OOD separability, e.g.,
122 Outlier Exposure (OE) with auxiliary outliers (Hendrycks et al., 2018; Zhang et al., 2023a; Zhu et al.,
123 2023) and $N+1$ classifiers that add an “unknown” class (Bendale & Boult, 2016; Shu et al., 2017;
124 Chen et al., 2021). While effective, they require additional data or altered objectives and may misalign
125 with deployment OODs, with potential side effects on ID accuracy. Some methods (Katz-Samuels
126 et al., 2022; Yang et al., 2023b) update model parameters at test time via backpropagation, which
127 introduces latency and can compromise ID accuracy under non-stationary streams.

128 **Post-hoc (training-free) approaches.** These operate on a frozen classifier without retraining and
129 have gained widespread adoption due to their ease of use and compatibility with pretrained models.
130 Categories include: output-based scoring (Hendrycks & Gimpel, 2016; Hendrycks et al., 2019a;
131 Liu et al., 2020), distance-based methods (Lee et al., 2018; Ren et al., 2021; Mueller & Hein, 2025;
132 Sun et al., 2022; Park et al., 2023), feature-based approaches (Liang et al., 2017; Wang et al., 2022;
133 Sun et al., 2021; Djurisic et al., 2022; Xu et al., 2023; Zhang et al., 2022), and gradient-based
134 methods (Huang et al., 2021; Behpour et al., 2023). Furthermore, *training distribution-informed*
135 methods (e.g., Mahalanobis, ViM and KNN) *assume access to training statistics* (feature means,
136 covariances, principal subspaces)—assumptions that can become invalid under test-time covariate
137 drift and are often infeasible when training data are unavailable. In contrast, our method is post-hoc
138 and relies solely on the unlabeled test stream, without training statistics.

139 **Post-hoc, test-time adaptive approaches.** An emerging line of work adapts OOD detection using test-
140 time batchesstreams *without* weight updates. RTL (Fan et al., 2024) uncovers a linear trend between
141 OOD scores and features and fits a batch-level discriminator; OODD (Yang et al., 2025) maintains an
142 online dynamic OOD dictionary to accumulate representative OOD features. These approaches are
143 closer in spirit to our online setting but typically operate without explicitly addressing the time-varying
144 covariate shift. ***DART*** differs by *tracking* the discriminative axis with *dual prototypes* (ID/OOD)
145 *per layer* online across a stream; we maintain persistent, memory-light state that adapts smoothly to
146 drift. Our goal is OOD detection under covariate drift in streaming mixtures; conventional test-time
147 adaptation (TTA) methods that target closed-set robustness and/or adapt model weights (Wang et al.,
148 2020; Niu et al., 2023) are orthogonal to this objective and not our focus.

149 2.2 COVARIATE SHIFT AND JOIN-SHIFT EVALUATION

151 **Covariate corruptions and natural shift.** Covariate shift—changes in input distributions with fixed
152 labels—is commonly studied with corruption suites such as CIFAR-C and ImageNet-C (Hendrycks &
153 Dietterich, 2019), which introduce noise, blur, weather, and other factors. Recent datasets emphasize
154 natural sources of shift from environment and sensor variation (Baek et al., 2024; 2025).

155 **Joint semantic and covariate shift.** Full-spectrum OOD (FS-OOD) (Yang et al., 2023a)) evaluates
156 semantic OOD while allowing covariate variation; OpenOOD unifies large-scale OOD evaluation
157 and includes *joint-shift* settings (Yang et al., 2022; Zhang et al., 2023b). Dataset design such as
158 NINCO (Bitterwolf et al., 2023) reduces ID contamination for clearer semantic separation. Our
159 setting follows this trajectory but explicitly considers *streaming mixtures* where csID and csOOD
160 experience the *same evolving covariates* (e.g., a sudden illumination change). ***DART*** is designed to
161 adapt online in such scenarios via per-layer dual prototypes and multi-layer score fusion, without
requiring training data, training statistics, or weight updates.

Figure 3: Unit-wise activation analysis. The left panel shows the JS divergence between ID and OOD activations, with arrows marking units of large divergence. The right panel visualizes the activation distributions of these units, where ID (blue) and OOD (red) are clearly separable.

3 METHOD

In this section, we introduce our method *DART* for online test-time OOD detection under covariate shift. We begin by revisiting a key motivation behind our approach: the empirical emergence of discriminative axis in pre-trained feature spaces. We then describe how the prototypes that define this axis are iteratively refined with incoming test batches. Finally, we explain why multi-layer fusion is essential to maintain robustness across unpredictable types of covariate shift.

3.1 FORMULATION SETUP

We first explain the notations for our problem. We define \mathcal{D}_{ID} and \mathcal{D}_{OOD} as the dataset for ID and OOD, observed by the OOD detection system. Then, let $\mathcal{B}_t = \{\mathbf{x}_{t,1}, \mathbf{x}_{t,2}, \dots, \mathbf{x}_{t,N}\}$ denote an input batch received at test time, where each sample $\mathbf{x}_{t,i}$ may belong to one of two categories under covariate shift: covariate-shifted in-distribution (csID) or covariate-shifted out-of-distribution (csOOD). We denote the subset of csID samples as \mathcal{B}_t^{ID} and the csOOD samples as \mathcal{B}_t^{OOD} , such that $\mathcal{B}_t = \mathcal{B}_t^{ID} \cup \mathcal{B}_t^{OOD}$.

Model is composed of multiple layers, and we extract intermediate feature representations from several of them. Let $f_l(\cdot)$ denote the feature mapping at layer l , where $l \in \mathcal{L} = \{1, 2, \dots, L\}$. For a given input \mathbf{x} , we obtain a set of multi-layer features $\{\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(L)}\}$, where $\mathbf{z}^{(l)} = f_l(\mathbf{x})$ represents the feature at layer l . Thus, for a csID sample $\mathbf{x}_t^{ID} \in \mathcal{B}_t^{ID}$ and a csOOD sample $\mathbf{x}_t^{OOD} \in \mathcal{B}_t^{OOD}$, their multi-layer feature sets are $\mathbf{Z}_t^{ID} = \{\mathbf{z}_t^{(1),ID}, \dots, \mathbf{z}_t^{(L),ID}\}$ and $\mathbf{Z}_t^{OOD} = \{\mathbf{z}_t^{(1),OOD}, \dots, \mathbf{z}_t^{(L),OOD}\}$, respectively.

3.2 ID–OOD SEPARABILITY IN FEATURE SPACE: EXISTENCE OF THE DISCRIMINATIVE AXIS

Prior works (Sun et al., 2021; Xu et al., 2023) have reported that ID and OOD samples exhibit distinct activation patterns in the feature space. In a similar spirit, we systematically examine unit-level activations from a distributional perspective. Specifically, we collect unit-wise activation distributions across multiple ID and OOD samples and compare them. Our analysis reveals that there exists certain units where distributions of ID and OOD samples diverge substantially, as evidenced by a large Jensen–Shannon (JS) divergence in Figure 3. Visualization via violin plots further demonstrates that ID and OOD activations can be sharply distinguished within those units.

Building upon this insight, we leverage these distributional differences to construct a unified discriminative direction. We compute prototype representations by averaging activations across all ID samples and all OOD samples respectively, yielding two representative points in the feature space¹: \mathbf{p}_{ID} and \mathbf{p}_{OOD} :

$$\mathbf{p}_{ID} = \frac{1}{|\mathcal{D}_{ID}|} \sum_{\mathbf{x} \in \mathcal{D}_{ID}} f(\mathbf{x}), \quad \mathbf{p}_{OOD} = \frac{1}{|\mathcal{D}_{OOD}|} \sum_{\mathbf{x} \in \mathcal{D}_{OOD}} f(\mathbf{x}) \quad (1)$$

Then, we define the connecting vector between these prototypes as the **discriminative axis**:

$$\mathbf{axis}_{disc}^{oracle} = \mathbf{p}_{ID} - \mathbf{p}_{OOD} \quad (2)$$

The key insight of this averaging operation is that it naturally implements an automatic weighting mechanism: units with substantial ID–OOD divergence are emphasized in the discriminative axis,

¹While separability analysis may be conducted for each of the selected feature layers, but for clarity, we omit the layer index from the notation in this section.

Figure 4: Distribution of ID (blue dots) and OOD (red dots) samples at features space projected with the oracle discriminative axis as the horizontal axis.

while units with trivial divergence are suppressed. This occurs because discriminative units exhibit large differences between their ID and OOD mean activations, whereas non-discriminative units show similar mean values across both distributions. Figure 4 shows that when features are projected along this axis, ID and OOD samples consistently form distinct clusters. This separation persists regardless of the presence or type of covariate shift, indicating the existence of discriminative axis.

However, such a discriminative axis is a theoretical construct that presupposes knowledge of OOD distributions. Since the nature of OOD is inherently unknown before test-time, it is not feasible to predefine and fix such a discriminative axis in advance. This motivates the need to adaptively identify the optimal discriminative axis during test-time. To this end, we propose a method that *progressively identifies two prototypes*—one associated with ID samples and the other with OOD samples—whose connecting direction defines a discriminative axis that adapts to the evolving data stream.

3.3 BATCH-WISE PROTOTYPE REFINEMENT: TRACKING THE DISCRIMINATIVE AXIS

To craft and update the discriminative axis in an online manner, we refine prototypes through iterative pseudo-labeling and prototype updating. Refer to Appendix Sec. B.4 for the detailed algorithm.

Our method initializes and dynamically updates layer-specific prototypes for csID and csOOD based on current test batch features. Since true ID/OOD labels are unavailable during test-time, we rely on pseudo-labeling to distinguish between csID and csOOD samples. We employ Otsu algorithm (Otsu et al., 1975) to automatically determine optimal thresholds by *maximizing the between-class variance*, providing a principled way to separate samples based on their score distributions.

Dual-Prototype Initialization. For the initial batch, we use naive baseline score, Maximum Softmax Probability (MSP) as our reference score. We assign pseudo-labels using MSP with the Otsu-determined threshold, then compute initial prototypes as the mean feature vectors of their respective pseudo-labeled groups, i.e. $\bar{\mathbf{p}}_1^{\text{ID}} = \frac{1}{|\mathcal{S}_1^{\text{ID}}|} \sum_{i \in \mathcal{S}_1^{\text{ID}}} f(\mathbf{x}_{1,i})$, $\bar{\mathbf{p}}_1^{\text{OOD}} = \frac{1}{|\mathcal{S}_1^{\text{OOD}}|} \sum_{i \in \mathcal{S}_1^{\text{OOD}}} f(\mathbf{x}_{1,i})$.

Dual-Prototype Tracking. For subsequent batches, we design a more refined scoring function which better utilizes the built prototypes. We compute Euclidean distances between each sample and the dual prototypes from the previous timestep, then calculate a Relative Distance Score (RDS) that reflects each sample’s position relative to both prototypes:

$$\text{RDS}(\mathbf{z}_{t,i}) = 1 - \frac{\|\mathbf{z}_{t,i} - \bar{\mathbf{p}}_{t-1}^{\text{ID}}\|_2}{\|\mathbf{z}_{t,i} - \bar{\mathbf{p}}_{t-1}^{\text{ID}}\|_2 + \|\mathbf{z}_{t,i} - \bar{\mathbf{p}}_{t-1}^{\text{OOD}}\|_2}, \quad (3)$$

where $\mathbf{z}_{t,i}$ denotes the feature of i -th sample in the batch t . The RDS formulation is inherently scale-invariant, making it robust to variations in feature magnitudes across different layers and architectures. Using the Otsu algorithm, we determine an optimal threshold to assign pseudo-labels based on this RDS score. We compute the new prototypes $\hat{\mathbf{p}}_t^{\text{ID}}, \hat{\mathbf{p}}_t^{\text{OOD}}$ as the mean feature vectors of their respective pseudo-labeled groups. To ensure prototype reliability, we incorporate Tukey’s *outlier filtering* method (Tukey et al., 1977) to exclude samples that are too far from their assigned prototypes so that only the remaining samples contribute to the mean computation. Finally, we refine prototypes using *exponential moving average (EMA)* to maintain stability:

$$\bar{\mathbf{p}}_t^{\text{ID}} = \alpha \bar{\mathbf{p}}_{t-1}^{\text{ID}} + (1 - \alpha) \hat{\mathbf{p}}_t^{\text{ID}}, \quad \bar{\mathbf{p}}_t^{\text{OOD}} = \alpha \bar{\mathbf{p}}_{t-1}^{\text{OOD}} + (1 - \alpha) \hat{\mathbf{p}}_t^{\text{OOD}}. \quad (4)$$

This iterative process enables prototypes to progressively converge toward the true underlying distributions of csID and csOOD samples.

Flip Correction. Due to *DART*’s pseudo-labeling approach, incorrectly initialized prototypes can lead to catastrophic misplacement, with prototypes potentially drifting toward opposite sides of

Figure 5: Layer-wise RDS distributions across three covariate shift types. Each plot shows the RDS distribution of esID (blue curve, CIFAR-100) and esOOD (red curve, LSUN) samples at different network depths (low, mid, high-level) through three sequential batches. The visualizations reveal how different corruption types affect feature separability at specific network layers; under Gaussian noise, separability degrades in high-level layers, whereas under defocus blur, it degrades in low-level layers.

their desirable locations. To address this, we implement a “flip” detection mechanism that identifies prototype misalignments and automatically swaps them when necessary. We detect flips by comparing current prototypes with an auxiliary MSP-based prototype. A flip occurs when the csID prototype is significantly farther from the MSP-based reference than the csOOD prototype, while simultaneously showing lower cosine similarity. Formally, we swap prototypes when:

$$\|\bar{\mathbf{p}}_t^{\text{ID}} - \hat{\mathbf{p}}_{t,\text{MSP}}^{\text{ID}}\|_2 > 2\|\bar{\mathbf{p}}_t^{\text{OOD}} - \hat{\mathbf{p}}_{t,\text{MSP}}^{\text{ID}}\|_2 \quad \text{and} \quad \cos(\bar{\mathbf{p}}_t^{\text{ID}}, \hat{\mathbf{p}}_{t,\text{MSP}}^{\text{ID}}) < \cos(\bar{\mathbf{p}}_t^{\text{OOD}}, \hat{\mathbf{p}}_{t,\text{MSP}}^{\text{ID}})$$

We use a weighted comparison (factor of 2) to impose a strict condition that prevents unintended flip detections, and a value we found works well across all datasets.

3.4 MULTI-LAYER SCORE FUSION

To enhance discriminative axis identification, we extend our approach to multi-layer features. Low-level features capture local patterns like textures and edges, while high-level features encode semantic concepts (Guo et al., 2016). However, covariate shifts can selectively disrupt different levels of visual information (Hendrycks & Dietterich, 2019; Yin et al., 2019)—blur corruptions primarily affect low-level features, while elastic transformations impair higher-level representations. As a result, different layers exhibit varying degrees of ID/OOD discriminability depending on the shift type, as illustrated in Figure 5. Since the nature of covariate shift is typically *unknown beforehand*, leveraging information from all feature levels through multi-layer fusion is essential for robust OOD detection.

As the prototypes are updated for each batch, we compute the RDS_l for each selected layer l . To obtain the final OOD score for each sample $\mathbf{x}_{t,i}$ in the batch, we fuse the RDS values from the selected layers \mathcal{L} by taking their average, formally given by $\text{RDS}_{\text{final}}(\mathbf{x}_{t,i}) = \frac{1}{|\mathcal{L}|} \sum_{l \in \mathcal{L}} \text{RDS}_l(\mathbf{x}_{t,i})$. Using the fused OOD score $\text{RDS}_{\text{final}}(\mathbf{x}_{t,i})$, we make the final OOD prediction.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Although *DART* is designed to adaptively handle challenging covariate shifts, we evaluate on both clean and covariate-shifted datasets as the shift may be weak or even absent in real-world scenarios. We use CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) as ID datasets. For CIFAR-100, we use SVHN (Netzer et al., 2011), Places365 (Zhou et al., 2017), LSUN (Yu et al., 2015), iSUN (Xu et al., 2015), and Textures (Cimpoi et al., 2014) as OOD datasets. For ImageNet, we use ImageNet-O (Hendrycks et al., 2021), Places (Zhou et al., 2017), SUN (Xiao et al., 2010), iNaturalist (Van Horn et al., 2018), and Textures as OOD datasets. To simulate covariate shift, we apply 15 common corruption types (Hendrycks & Dietterich, 2019) at severity level 5 to both ID and OOD datasets, resulting in pairs such as CIFAR-100-C vs. SVHN-C.

Models. For CIFAR-100-based benchmarks, we use WideResNet-40-2 (Zagoruyko & Komodakis, 2016) pre-trained with AugMix (Hendrycks et al., 2019b) on clean CIFAR-100, which is available from RobustBench(Croce et al., 2020). For ImageNet-based benchmarks, we use the pre-trained RegNetY-16GF (Radosavovic et al., 2020) available from PyTorch. In addition, we also evaluate with

324 Table 1: OOD detection performance comparison with CIFAR-100-C and ImageNet-C csID. Results
 325 are the average of all 15 corruptions with severity level 5. (Best: **bolded**, Second-best: underlined)

ImageNet-C														
Method	Training dist. informed	ImageNet-O-C		Places-C		SUN-C		iNaturalist-C		Textures-C			Average	
		FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑			
MSP	NO	85.01	62.18	74.41	73.10	73.64	73.65	53.91	82.27	70.88	72.85		71.57	72.81
Energy	NO	82.68	63.65	70.13	77.66	69.70	78.79	59.45	82.48	62.58	78.16		68.91	76.13
Max logit	NO	83.69	63.51	71.00	76.64	70.11	77.59	53.19	83.76	65.85	76.85		68.77	75.67
GradNorm	NO	85.09	58.28	68.15	78.13	64.77	81.23	49.29	85.45	<u>51.70</u>	<u>84.11</u>		63.80	77.44
ViM	YES	91.28	54.02	98.75	25.72	99.14	23.46	99.41	18.87	97.90	29.31		97.30	30.28
KNN	YES	92.60	53.73	98.17	30.68	98.23	29.94	98.69	24.10	90.21	50.39		95.58	37.77
MDS _{single}	YES	92.67	50.34	99.11	21.17	99.40	18.89	99.68	14.49	98.29	26.37		97.83	26.25
MDS _{ensemble}	YES	85.89	58.76	98.08	27.51	98.23	26.49	98.31	21.40	81.15	47.73		92.33	36.38
ODIN	NO	86.67	59.91	<u>57.03</u>	<u>83.67</u>	54.88	84.53	44.03	<u>88.03</u>	53.95	83.93		<u>59.31</u>	<u>80.01</u>
ReAct	YES	90.46	54.69	89.30	66.71	88.96	68.19	92.42	64.03	86.26	66.59		89.48	64.04
SCALE	NO	<u>82.06</u>	65.18	67.20	79.03	65.58	80.33	48.40	85.75	60.80	80.03		64.81	78.06
ASH	NO	82.45	63.90	69.82	77.91	69.26	79.08	58.88	82.76	62.00	78.55		68.48	76.44
RTL	NO	83.70	<u>65.26</u>	65.44	79.96	64.27	80.32	<u>41.39</u>	87.69	64.08	78.36		63.78	78.32
NNGuide	YES	88.94	56.31	81.97	69.88	81.05	73.03	<u>74.75</u>	76.53	58.93	79.60		77.13	71.07
CoRP	YES	93.02	52.30	95.18	46.32	95.22	46.33	95.99	43.54	93.05	51.72		94.49	48.04
MDS++	YES	82.39	64.35	90.03	52.53	90.68	52.72	64.23	71.61	66.93	68.57		78.85	61.96
RMDS	YES	92.91	58.76	96.74	48.73	97.50	47.40	95.35	53.60	96.64	44.86		95.83	50.69
RMDS++	YES	94.61	57.05	96.02	52.76	96.38	51.52	93.87	64.11	95.33	52.20		95.24	55.53
DART	NO	68.87	66.63	8.70	92.96	8.08	93.03	7.60	93.18	2.55	99.43		19.16	89.05
CIFAR-100-C														
Method	Training dist. informed	SVHN-C		Places365-C		LSUN-C		iSUN-C		Textures-C			Average	
		FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑			
MSP	NO	91.48	58.40	87.30	64.23	86.85	64.49	88.40	62.74	91.91	58.24		89.19	61.62
Energy	NO	93.13	60.53	84.74	66.56	84.04	68.57	87.14	64.79	90.20	61.10		87.85	64.31
Max logit	NO	92.73	60.58	85.04	66.43	84.43	68.24	87.15	64.74	90.74	60.78		88.02	64.15
GradNorm	NO	96.07	47.75	92.56	52.99	94.89	45.14	94.79	45.32	84.59	62.52		92.58	50.74
ViM	YES	77.24	72.64	90.23	59.74	86.41	64.41	87.65	62.40	93.15	55.11		86.94	62.86
KNN	YES	88.45	66.38	85.63	63.99	83.87	70.22	87.06	65.25	90.83	60.93		87.17	65.35
MDS _{single}	YES	89.04	61.64	91.30	57.42	84.94	65.60	86.68	62.82	95.16	48.58		89.42	59.21
MDS _{ensemble}	YES	<u>63.57</u>	79.33	92.49	48.49	<u>73.78</u>	60.77	<u>73.95</u>	58.87	75.16	57.51		<u>75.79</u>	60.99
ODIN	NO	79.07	70.05	88.23	63.54	89.96	59.13	90.48	59.18	77.69	70.79		85.09	64.54
ReAct	YES	95.08	55.32	88.78	62.51	86.39	67.46	88.07	64.76	91.90	60.40		90.04	62.09
SCALE	NO	88.88	66.46	85.55	<u>66.91</u>	86.30	65.89	88.06	64.21	81.14	70.69		85.99	66.83
ASH	NO	92.05	62.73	85.42	66.48	85.24	67.78	87.99	64.30	87.66	64.61		87.67	65.18
RTL	NO	89.27	58.60	<u>84.59</u>	64.62	83.65	66.99	86.90	63.60	89.30	57.65		86.74	62.29
NNGuide	YES	91.11	62.78	88.78	63.45	91.30	58.64	91.96	57.62	77.91	68.69		88.21	62.24
CoRP	YES	64.51	80.52	89.98	60.28	92.56	59.80	91.30	59.91	55.25	81.49		78.72	68.40
MDS++	YES	95.15	62.58	87.40	64.87	87.25	66.75	89.85	62.90	95.16	59.59		90.96	63.34
RMDS	YES	88.78	64.07	86.67	64.65	79.57	<u>71.82</u>	82.68	<u>67.91</u>	94.23	55.06		86.39	64.70
RMDS++	YES	91.52	65.51	85.70	65.59	82.73	70.26	86.08	66.38	93.78	58.41		87.96	65.23
DART	NO	48.60	79.82	68.66	68.00	44.14	80.29	50.76	79.75	51.48	80.60		52.73	77.69

353 Transformer-based models on CIFAR-100 benchmarks, all of which are fine-tuned with CIFAR-100.
 354 Results on ResNet-50 (He et al., 2016) for ImageNet benchmarks are also provided in the Appendix.

355 **Baseline Methods.** MSP (Hendrycks & Gimpel, 2016), Max Logit (Hendrycks et al., 2019a),
 356 Energy (Liu et al., 2020), ODIN (Liang et al., 2017), GradNorm (Huang et al., 2021), SCALE (Xu
 357 et al., 2023), ASH (Djurisic et al., 2022), RTL (Fan et al., 2024), like *DART*, do not require any
 358 precomputed statistics or storage from the training data. In contrast, KNN (Sun et al., 2022),
 359 ViM (Wang et al., 2022), ReAct (Sun et al., 2021), NNGuide (Park et al., 2023), CoRP (Fang et al.,
 360 2024), MDS (Lee et al., 2018) and its variants (Ren et al., 2021; Mueller & Hein, 2025) require
 361 pre-computation or storage of reference information from training samples. As MDS has been
 362 implemented in prior work using either single-layer or multi-layer, we compare against both variants.

363 4.2 OOD DETECTION RESULTS

364 4.2.1 RESULTS ON COVARIATE SHIFTED DATASET

367 As *DART* is designed to adapt to test-time covariate shift, it demonstrates its full potential in the
 368 covariate-shifted setting. As shown in Table 1, on ImageNet-C benchmark, *DART* achieves the
 369 best performance on every OOD dataset and both evaluation metrics, with an average FPR@95TPR
 370 reduction of **40.15 pp** and average AUROC gain of **9.04 pp** compared to the second-best (i.e., ODIN).
 371 On CIFAR-100-C, *DART* once again achieves the best average performance on both metrics: an
 372 average FPR@95TPR reduction of **23.06 pp** and an AUROC gain of **9.29 pp** compared to the
 373 second-best. These results highlight the robustness and adaptability of *DART* in the face of test-time
 374 covariate shift.

375 An important observation is that methods relying on prior information from training data tend to
 376 perform similarly to, or even worse than, baselines that do not use such priors. This suggests that
 377 the prior information which is typically beneficial for OOD detection on clean datasets may become
 378 misaligned with test-time distributions under covariate shift, leading to degraded performance.

Figure 6: Progression of axis alignment at CIFAR-100-C vs. LSUN-C under impulse noise corruption

4.2.2 RESULTS ON CLEAN DATASET

Table 2 reports the OOD detection performance on the clean CIFAR-100 and ImageNet benchmark. Although *DART* mainly targets covariate-shifted environments, it consistently outperforms all baselines on the clean benchmarks, achieving the lowest average FPR@95TPR and the highest average AUROC. *DART* reduces FPR@95 by **19.06 pp** on ImageNet benchmark and **12.72 pp** on CIFAR-100 benchmark compared to the second-best, while improving AUROC by **5.10 pp** and **3.42 pp**, respectively. These results suggest that ID and OOD samples are well-separated in the feature space across most ID and OOD dataset combinations and that the ID and OOD prototypes, while not drastically shifted, are finely adjusted by *DART* toward more optimal axis for discrimination.

Importantly, baselines that leverage training samples to extract prior information before test time—Mahalanobis, KNN, and ViM—tend to outperform those not relying on such information. *DART* is a notable exception, performing the best without any prior information.

4.2.3 RESULTS WITH TRANSFORMER ARCHITECTURES

We also conduct experiments on transformer-based architectures (Vaswani et al., 2017), specifically ViT-Tiny (Dosovitskiy et al., 2021; Winkawaks, 2023) and Swin-Tiny (Liu et al., 2021), to demonstrate the robustness of our method across different model architectures. As shown in the Table 3, *DART* consistently outperforms all baseline methods on both the covariate-shifted datasets and original datasets. Specifically, *DART* achieves **17.45pp** and **37.11pp** reductions in FPR@95 on covariate-shifted benchmarks for ViT-Tiny and Swin-Tiny, respectively. On clean benchmarks, it demonstrates **8.6pp** and **3.42pp** FPR@95 improvements for ViT-Tiny and Swin-Tiny, respectively. This result proves the superiority of our method and the emergence of discriminative axis in the feature space regardless of the underlying model architecture.

4.3 ABLATION STUDIES

Progression of Axis-alignment. Figure 6 demonstrates the online convergence capability of *DART* in discovering the oracle discriminative axis. The stars represent the global centroids of ID and OOD, with their connecting line forming the oracle discriminative axis. The triangles indicate the ID and OOD prototypes estimated by *DART* at each batch, whose connecting line represents the online discriminative axis. The cosine similarity between these two axes increases dramatically across batches, demonstrating *DART*’s ability to navigate the high-dimensional feature space and progressively align with the true discriminative direction.

Impact of Multi-layer Fusion. Figure 7a compares full *DART* against its single-layer variants on CIFAR-100 vs. LSUN, demonstrating the impact of multi-layer fusion. While *DART* achieves the highest average performance, the key advantage lies in *stability*. Single-layer variants occasionally outperform *DART* in specific settings (e.g., Block3 on original data, Block1 under Gaussian noise) but exhibit catastrophic failures under other corruptions due to varying covariate-shift impacts across layers. Therefore, *DART*’s multi-layer ensemble provides robustness under diverse covariate shifts.

Impact of Flip Correction. Figure 7b demonstrates the critical role of *DART*’s flip correction. We compare *DART* with *DART-NoFlip* (without flip correction) on CIFAR-100 vs iSUN for original and

Table 2: OOD detection performance without covariate shift. All results are reported as the mean over all five OOD datasets for each ID set. (Best: **bolded**, Second-best: underlined)

Method	ImageNet		CIFAR-100	
	FPR95 ↓ AUROC ↑			
MSP	44.64	86.94	80.37	75.29
Energy	38.25	85.52	79.95	76.79
Max logit	37.05	86.43	79.91	77.06
GradNorm	80.50	57.26	94.92	43.62
ViM	56.58	87.60	71.94	75.61
KNN	84.79	75.87	71.48	81.16
MDS _{single}	79.19	80.57	80.01	69.98
MDS _{ensemble}	55.30	86.86	<u>45.94</u>	<u>86.36</u>
ODIN	60.84	81.86	81.11	69.50
ReAct	86.40	70.67	79.45	76.09
SCALE	<u>35.01</u>	87.02	76.60	77.53
ASH	<u>37.77</u>	85.67	80.44	76.76
RTL	42.30	84.24	64.11	80.76
NNGuide	70.60	70.05	87.55	66.29
CoRP	49.03	90.17	65.54	81.05
MDS++	41.87	90.48	85.96	75.52
RMDS	46.28	<u>91.03</u>	67.90	82.51
RMDS++	56.01	89.73	73.91	81.57
DART	15.95	96.13	33.12	89.78

Table 3: OOD detection performance comparison with ViT-Tiny and Swin-T architectures. We evaluate with CIFAR-100 ID, CIFAR-100-C csID and the corresponding OODs. All results are reported as the mean over all five OOD datasets. For covariate shifted datasets, results are the average of all 15 corruptions with severity level 5. (Best: **bolded**, Second-best: underlined)

435	436	Method	Training dist. informed	Covariate shifted				Clean			
				ViT-Tiny		Swin-T		ViT-Tiny		Swin-T	
				FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑
438	MSP	NO	89.56	57.03	85.24	63.39	70.36	79.79	60.16	84.31	
439	Energy	NO	87.01	61.20	80.30	68.35	58.77	84.83	41.06	89.80	
440	Max Logit	NO	87.58	60.65	81.90	67.73	60.27	84.54	42.11	89.52	
441	GradNorm	NO	89.54	58.42	78.77	71.44	78.33	75.24	71.63	74.53	
442	ViM	YES	89.49	58.75	96.94	45.76	58.27	85.06	93.00	66.26	
443	KNN	YES	90.15	56.81	84.25	64.91	67.35	79.58	45.93	88.51	
444	MDS _{single}	YES	97.22	32.40	98.76	33.09	96.38	35.57	98.67	41.11	
445	MDS _{ensemble}	YES	61.73	65.95	98.60	33.75	29.18	88.40	98.42	45.53	
446	ODIN	NO	87.53	60.52	84.88	63.63	80.25	71.22	91.20	63.65	
447	ReAct	YES	85.94	62.01	76.76	71.14	56.86	81.79	41.78	89.51	
448	SCALE	NO	88.84	58.99	76.68	71.57	61.75	83.66	44.84	88.50	
449	ASH	NO	92.00	56.00	76.95	71.39	81.17	74.00	50.03	86.97	
450	RTL	NO	84.42	58.69	83.71	63.62	40.20	87.75	50.90	84.23	
451	NNGuide	YES	86.49	61.17	76.53	73.38	60.30	83.43	38.04	91.06	
452	CoRP	YES	88.31	59.85	86.17	63.65	67.28	82.43	50.37	88.53	
453	MDS++	YES	79.15	66.25	76.01	69.80	46.70	87.12	35.28	91.54	
454	RMDS	YES	82.63	63.56	91.33	58.14	47.98	86.93	54.00	87.65	
455	RMDS++	YES	81.30	64.05	88.13	61.81	48.11	86.71	47.01	88.90	
456	<i>DART</i>	NO	44.28	68.60	38.90	81.28	20.58	94.31	31.86	88.03	

Figure 7: Impact of *DART*'s individual components

corrupted datasets. While both perform identically on original data and under Gaussian noise, Shot noise reveals a drastic difference. Standard *DART* recovers via prototype flip and performs robustly, while *DART*-NoFlip suffers catastrophic degradation of detection capability due to reversed prototypes under Shot noise. The flip correction detects and rectifies these inversions by ensuring consistent prototype proximity. Similar effects with JPEG compression further validate the effectiveness.

5 CONCLUSION

In this work, we addressed the realistic challenge of OOD detection under test-time covariate shift, a scenario where existing methods often collapse. Our analysis revealed the consistent existence of a discriminative axis along which covariate-shifted ID and OOD samples remain separable. Building on this insight, we proposed *DART*, which dynamically tracks prototypes to recover the evolving discriminative axis with multi-layer fusion. Extensive experiments across diverse datasets and architectures confirmed its superiority over strong baselines, underscoring the promise of prototype-based axis tracking as a practical solution for reliable OOD detection in real-world environments.

Limitations and Future Works. While *DART* demonstrates strong performance, several avenues remain for improvement. The reliance on MSP-based initialization may impact performance when initial pseudo-labeling quality is poor, suggesting a need for more robust initialization strategies. Additionally, extending *DART* beyond vision tasks to other modalities presents an opportunity to validate the universality of discriminative axis tracking across different data representations.

486 REFERENCES
487

488 Mahbubul Alam, Manar D Samad, Lasitha Vidyaratne, Alexander Glandon, and Khan M Iftekharud-
489 din. Survey on deep neural networks in speech and vision systems. *Neurocomputing*, 417:302–321,
490 2020.

491 Eunsu Baek, Keondo Park, Jiyo Kim, and Hyung-Sin Kim. Unexplored faces of robustness and
492 out-of-distribution: Covariate shifts in environment and sensor domains. In *Proceedings of the*
493 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22294–22303, 2024.

494 Eunsu Baek, Sung-hwan Han, Taesik Gong, and Hyung-Sin Kim. Adaptive camera sensor for vision
495 models. In *The Thirteenth International Conference on Learning Representations*, 2025.

496 Sima Behpour, Thang Long Doan, Xin Li, Wenbin He, Liang Gou, and Liu Ren. Gradorth: A simple
497 yet efficient out-of-distribution detection with orthogonal projection of gradients. *Advances in*
498 *Neural Information Processing Systems*, 36:38206–38230, 2023.

499 Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In *Proceedings of the IEEE*
500 *conference on computer vision and pattern recognition*, pp. 1563–1572, 2016.

501 Julian Bitterwolf, Maximilian Müller, and Matthias Hein. In or out? fixing imagenet out-of-
502 distribution detection evaluation. In *International Conference on Machine Learning*, pp. 2471–
503 2506. PMLR, 2023.

504 Guangyao Chen, Peixi Peng, Xiangqian Wang, and Yonghong Tian. Adversarial reciprocal points
505 learning for open set recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
506 44(11):8065–8081, 2021.

507 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
508 ing textures in the wild. In *Proceedings of the IEEE conference on computer vision and pattern*
509 *recognition*, pp. 3606–3613, 2014.

510 Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
511 marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
512 robustness benchmark. *arXiv preprint arXiv:2010.09670*, 2020.

513 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
514 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
515 pp. 248–255. Ieee, 2009.

516 Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. Extremely simple activation
517 shaping for out-of-distribution detection. *arXiv preprint arXiv:2209.09858*, 2022.

518 Jérôme Dockès, Gaël Varoquaux, and Jean-Baptiste Poline. Preventing dataset shift from breaking
519 machine-learning biomarkers. *GigaScience*, 10(9):giab055, 2021.

520 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
521 Unterthiner, Mostafa Dehghani, Matthias Minderer, G. Heigold, S. Gelly, Jakob Uszkoreit, and
522 N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
523 *International Conference on Learning Representations*, 2021.

524 Ke Fan, Tong Liu, Xingyu Qiu, Yikai Wang, Lian Huai, Zeyu Shangguan, Shuang Gou, Fengjian Liu,
525 Yuqian Fu, Yanwei Fu, et al. Test-time linear out-of-distribution detection. In *Proceedings of the*
526 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23752–23761, 2024.

527 Kun Fang, Qinghua Tao, Kexin Lv, Mingzhen He, Xiaolin Huang, and Jie Yang. Kernel pca for out-
528 of-distribution detection. *Advances in Neural Information Processing Systems*, 37:134317–134344,
529 2024.

530 Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S Lew. Deep learning
531 for visual understanding: A review. *Neurocomputing*, 187:27–48, 2016.

532 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
533 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
534 pp. 770–778, 2016.

540 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
 541 corruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019.

542

543 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 544 examples in neural networks. *arXiv preprint arXiv:1610.02136*, 2016.

545 Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
 546 exposure. *arXiv preprint arXiv:1812.04606*, 2018.

547

548 Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joe Kwon, Mohammadreza Mostajabi,
 549 Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings.
 550 *arXiv preprint arXiv:1911.11132*, 2019a.

551 Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
 552 narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
 553 *arXiv preprint arXiv:1912.02781*, 2019b.

554 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 555 examples. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 556 pp. 15262–15271, 2021.

557

558 Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distributional
 559 shifts in the wild. *Advances in Neural Information Processing Systems*, 34:677–689, 2021.

560 Julian Katz-Samuels, Julia B Nakhleh, Robert Nowak, and Yixuan Li. Training ood detectors in their
 561 natural habitats. In *International Conference on Machine Learning*, pp. 10848–10865. PMLR,
 562 2022.

563

564 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

565

566 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
 567 neural networks. *Advances in neural information processing systems*, 25, 2012.

568

569 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 570 out-of-distribution samples and adversarial attacks. *Advances in neural information processing systems*, 31, 2018.

571

572 Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
 573 image detection in neural networks. *arXiv preprint arXiv:1706.02690*, 2017.

574

575 Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
 576 detection in neural networks. In *International Conference on Learning Representations*, 2018.
 577 URL <https://openreview.net/forum?id=H1VGkIxRZ>.

578

579 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
 580 *Advances in neural information processing systems*, 33:21464–21475, 2020.

581

582 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 583 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 584 IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

585

586 Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V Chawla, and Francisco
 587 Herrera. A unifying view on dataset shift in classification. *Pattern recognition*, 45(1):521–530,
 2012.

588

589 Maximilian Mueller and Matthias Hein. Mahalanobis++: Improving ood detection via feature
 590 normalization. *arXiv preprint arXiv:2505.18032*, 2025.

591

592 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 593 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep
 594 learning and unsupervised feature learning*, volume 2011, pp. 4. Granada, 2011.

595

596 Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiqian Wen, Yaofo Chen, Peilin Zhao, and Mingkui
 597 Tan. Towards stable test-time adaptation in dynamic wild world. *arXiv preprint arXiv:2302.12400*,
 598 2023.

594 Nobuyuki Otsu et al. A threshold selection method from gray-level histograms. *Automatica*, 11
 595 (285–296):23–27, 1975.

596

597 Jaewoo Park, Yoon Gyo Jung, and Andrew Beng Jin Teoh. Nearest neighbor guidance for out-of-
 598 distribution detection. In *Proceedings of the IEEE/CVF international conference on computer*
 599 *vision*, pp. 1686–1695, 2023.

600 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 601 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 602 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 603 2019.

604 Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
 605 network design spaces. In *Proceedings of the IEEE/CVF conference on computer vision and*
 606 *pattern recognition*, pp. 10428–10436, 2020.

607

608 Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha Roy, Shreyas Padhy, and Balaji Lakshmi-
 609 narayanan. A simple fix to mahalanobis distance for improving near-ood detection. *arXiv preprint*
 610 *arXiv:2106.09022*, 2021.

611 Lei Shu, Hu Xu, and Bing Liu. Doc: Deep open classification of text documents. *arXiv preprint*
 612 *arXiv:1709.08716*, 2017.

613

614 Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activations.
 615 *Advances in neural information processing systems*, 34:144–157, 2021.

616 Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
 617 neighbors. In *International Conference on Machine Learning*, pp. 20827–20840. PMLR, 2022.

618

619 John Wilder Tukey et al. *Exploratory data analysis*, volume 2. Springer, 1977.

620

621 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
 622 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
 623 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 8769–8778,
 2018.

624

625 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 626 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 627 *systems*, 30, 2017.

628

629 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
 630 test-time adaptation by entropy minimization. *arXiv preprint arXiv:2006.10726*, 2020.

631

632 Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
 633 logit matching. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 634 *recognition*, pp. 4921–4930, 2022.

635

636 Winkawaks. vit-tiny-patch16-224. <https://huggingface.co/WinKawaks/vit-tiny-patch16-224>, 2023.

637

638 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 639 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*
 640 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

641

642 Kai Xu, Rongyu Chen, Gianni Franchi, and Angela Yao. Scaling for training time and post-hoc
 643 out-of-distribution detection enhancement. *arXiv preprint arXiv:2310.00227*, 2023.

644

645 Pingmei Xu, Krista A Ehinger, Yinda Zhang, Adam Finkelstein, Sanjeev R Kulkarni, and Jianxiong
 646 Xiao. TurkerGaze: Crowdsourcing saliency with webcam based eye tracking. *arXiv preprint*
 647 *arXiv:1504.06755*, 2015.

648

649 Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng, Wayne Zhang, and
 650 Ziwei Liu. Semantically coherent out-of-distribution detection. In *Proceedings of the IEEE/CVF*
 651 *International Conference on Computer Vision*, pp. 8301–8309, 2021.

648 Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi
 649 Wang, Guangyao Chen, Bo Li, Yiyou Sun, et al. Openood: Benchmarking generalized out-of-
 650 distribution detection. *Advances in Neural Information Processing Systems*, 35:32598–32611,
 651 2022.

652 Jingkang Yang, Kaiyang Zhou, and Ziwei Liu. Full-spectrum out-of-distribution detection. *International
 653 Journal of Computer Vision*, 131(10):2607–2622, 2023a.

654 Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
 655 A survey. *International Journal of Computer Vision*, 132(12):5635–5662, 2024.

656 Puning Yang, Jian Liang, Jie Cao, and Ran He. Auto: Adaptive outlier optimization for online
 657 test-time ood detection. *arXiv preprint arXiv:2303.12267*, 2023b.

658 Yifeng Yang, Lin Zhu, Zewen Sun, Hengyu Liu, Qinying Gu, and Nanyang Ye. Oodd: Test-time
 659 out-of-distribution detection with dynamic dictionary. In *Proceedings of the Computer Vision and
 660 Pattern Recognition Conference*, pp. 30630–30639, 2025.

661 Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
 662 perspective on model robustness in computer vision. *Advances in Neural Information Processing
 663 Systems*, 32, 2019.

664 Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
 665 Construction of a large-scale image dataset using deep learning with humans in the loop. *arXiv
 666 preprint arXiv:1506.03365*, 2015.

667 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint arXiv:1605.07146*,
 668 2016.

669 Jingyang Zhang, Nathan Inkawich, Randolph Linderman, Yiran Chen, and Hai Li. Mixture outlier
 670 exposure: Towards out-of-distribution detection in fine-grained environments. In *Proceedings of
 671 the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 5531–5540, 2023a.

672 Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou
 673 Sun, Xuefeng Du, Yixuan Li, Ziwei Liu, et al. Openood v1. 5: Enhanced benchmark for out-of-
 674 distribution detection. *arXiv preprint arXiv:2306.09301*, 2023b.

675 Jinsong Zhang, Qiang Fu, Xu Chen, Lun Du, Zelin Li, Gang Wang, Shi Han, Dongmei Zhang, et al.
 676 Out-of-distribution detection based on in-distribution data patterns memorization with modern
 677 hopfield energy. In *The Eleventh International Conference on Learning Representations*, 2022.

678 Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
 679 million image database for scene recognition. *IEEE transactions on pattern analysis and machine
 680 intelligence*, 40(6):1452–1464, 2017.

681 Jianing Zhu, Yu Geng, Jiangchao Yao, Tongliang Liu, Gang Niu, Masashi Sugiyama, and Bo Han. Di-
 682 versified outlier exposure for out-of-distribution detection via informative extrapolation. *Advances
 683 in Neural Information Processing Systems*, 36:22702–22734, 2023.

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A EXPERIMENTAL DETAILS

A.1 DATASETS DETAILS

CIFAR-100 CIFAR-100 (Krizhevsky et al., 2009) consists of 60,000 color images of size 32×32 across 100 object classes, with 600 images per class. The dataset is divided into 50,000 training and 10,000 test samples. It includes diverse categories such as animals, vehicles, and everyday objects, and is commonly used for evaluating fine-grained image classification and representation learning. In our experiments, we use CIFAR-100 as the in-distribution dataset.

SVHN The Street View House Numbers (SVHN) dataset (Netzer et al., 2011) contains real-world digit images collected from Google Street View. It consists of over 600,000 images, each containing a single digit cropped from house number signs, with a resolution of 32×32 . The dataset includes 10 classes (digits 0–9) and is known for its relatively low intra-class variability and high image quality. We use SVHN as an out-of-distribution dataset in our evaluation.

LSUN The Large-scale Scene UNderstanding (LSUN) dataset (Yu et al., 2015) contains millions of high-resolution images across various indoor and outdoor scene categories such as classroom, church, and bridge. In OOD detection benchmarks, a subset of LSUN is often used by resizing images to 32×32 resolution to match CIFAR-style inputs. In our experiments, we use the resized LSUN images as out-of-distribution samples.

iSUN The iSUN dataset (Xu et al., 2015) consists of natural scene images collected for saliency prediction, containing various indoor and outdoor environments. It includes around 6,000 images, which are typically resized to 32×32 for compatibility with CIFAR-based architectures. Due to its scene-centric content, iSUN is commonly used as an out-of-distribution dataset in image classification tasks. We follow prior works and use the resized version of iSUN for OOD evaluation.

Textures The Textures dataset (Cimpoi et al., 2014), also known as the Describable Textures Dataset (DTD), contains 5,640 texture images spanning 47 categories such as striped, dotted, and cracked. The images are collected "in the wild" and exhibit a wide range of fine-grained, low-level patterns. Its low semantic content and high texture diversity make it a challenging out-of-distribution benchmark.

ImageNet ImageNet-1K dataset (Deng et al., 2009) contains 1.28M training images and 50K validation images across 1,000 object categories.

ImageNet-O ImageNet-O (Hendrycks et al., 2021) is a curated out-of-distribution dataset containing 2,000 natural images that are semantically distinct from the 1,000 classes in ImageNet-1k. The images were collected to naturally lie outside the ImageNet taxonomy while maintaining comparable visual complexity. This dataset serves as a challenging benchmark for evaluating semantic OOD detection.

SUN The SUN dataset (Xiao et al., 2010) is a large-scale scene understanding benchmark containing over 130,000 images across a wide variety of indoor and outdoor environments. It covers hundreds of semantic scene categories such as kitchen, mountain, and library. The diversity and scene-centric nature of SUN make it a strong candidate for out-of-distribution evaluation.

iNaturalist The iNaturalist dataset (Van Horn et al., 2018) contains high-resolution images of fine-grained natural categories such as plants, insects, birds, and mammals, collected from citizen science platforms. Due to its distinct domain and taxonomic diversity, iNaturalist is widely used as an out-of-distribution benchmark in vision tasks. Its semantic gap from object-centric datasets makes it a challenging OOD evaluation setting.

756 **Common corruptions** To evaluate robustness under covariate shift, we use a set of common image
 757 corruptions introduced by Hendrycks and Dietterich (Hendrycks & Dietterich, 2019). This benchmark
 758 includes 15 corruption types, grouped into noise (e.g., Gaussian noise, shot noise), blur (e.g., defocus,
 759 motion blur), weather (e.g., snow, fog), and digital distortions (e.g., JPEG compression, pixelation).
 760 We apply these corruptions to both in-distribution and out-of-distribution test samples to simulate
 761 realistic distribution shifts. Each corruption is applied at severity level 5, following the standard
 762 protocol used in prior robustness benchmarks.

763 **A.2 BASELINES DETAILS**

764 We introduce the baselines compared with *DART* and specify the hyperparameter used for implemen-
 765 tation. The hyperparameter settings mainly follow the settings from the original paper.

766 **MSP** Maximum Softmax Probability (Hendrycks & Gimpel, 2016) uses the highest softmax output
 767 value as the confidence score, assuming in-distribution samples yield higher confidence. We extract
 768 this directly from the classifier’s final layer.

769 **Energy** Energy-based detection (Liu et al., 2020) computes $E(x) = -\log \sum_i \exp(f_i(x))$ from
 770 network logits, with lower values indicating in-distribution samples. $T = 1.0$ is used for temperature
 771 scaling.

772 **Max logit** This method (Hendrycks et al., 2019a) uses the maximum pre-softmax logit value as
 773 the score, avoiding the normalization effect of softmax that may mask useful signals in relative logit
 774 magnitudes.

775 **GradNorm** GradNorm (Huang et al., 2021) measures the gradient magnitude of the loss with
 776 respect to the penultimate layer features. OOD samples tend to produce larger gradient norms. We
 777 use a temperature of 1.0 for all experiments.

778 **ViM** Virtual logit Matching (Wang et al., 2022) projects features into a null space and creates a
 779 virtual logit to enhance separation between ID and OOD samples. We set the dimension of the null
 780 space to 1000 for feature dimensions ≥ 1500 , to 512 for feature dimensions ≥ 768 , and to half the
 781 size of the feature dimensions otherwise.

782 **KNN** K-nearest neighbors (Sun et al., 2022) measures the distance to k-nearest neighbors in feature
 783 space, with OOD samples typically farther from ID samples. We use L2 normalization for features
 784 and set k=50 for CIFAR-based experiments and k=200 for ImageNet-based experiments.

785 **Mahalanobis distance** We implement both single-layer and ensemble versions of this method (Lee
 786 et al., 2018). The single-layer version models class-conditional feature distributions using Gaussian
 787 distributions and measures the distance to the nearest class distribution, using the penultimate layer
 788 features. The ensemble version combines layer-wise scores from multiple network layers using
 789 pre-computed weights. These weights are learned by utilizing FGSM-perturbed inputs (magnitude
 790 0.001) as synthetic OOD data and applying logistic regression (regularization strength C=1.0, max
 791 iterations=1000) to determine the contribution of each layer’s feature. We extract features for each
 792 layer or block depending on the model architecture.

800 **ODIN** ODIN (Liang et al., 2018) enhances OOD detection by applying input perturbations with
 801 temperature scaling to create a larger gap between ID and OOD confidence scores. FGSM epsilon
 802 values are set as 0.002 for both CIFAR-100 and ImageNet.

803 **ReAct** ReAct (Sun et al., 2021) truncates abnormally high hidden activations at test time, reduc-
 804 ing model overconfidence on OOD data while preserving ID performance, thereby improving the
 805 separability between ID and OOD sample.

806 **SCALE** SCALE (Xu et al., 2023) is a post-hoc OOD detection method that applies activation
 807 scaling to penultimate features, thereby enlarging the separation between ID and OOD energy scores.

810 **ASH** ASH (Djurisic et al., 2022) prunes a large portion of late-layer activations (e.g., by top-K
 811 percentile) and either leaves the remaining values(ASH-P), binarizes them(ASH-B), or rescales
 812 them(ASH-S), then propagates the simplified representation through the network for scoring. We use
 813 ASH-P for performance comparison.

814
 815 **RTL** RTL (Fan et al., 2024) fits a linear regression between OOD scores and network features
 816 at test time, calibrating base detector outputs to improve detection performance through test-time
 817 adaptation.

818
 819 **NNGuide** NNGuide (Park et al., 2023) leverages k-nearest neighbor distances in the feature space,
 820 scaled by the model’s confidence scores, to guide OOD detection by measuring how similar a test
 821 sample is to training samples while accounting for prediction confidence.

822
 823 **CoRP** CoRP (Fang et al., 2024) applies cosine normalization followed by Random Fourier Features
 824 approximation of a Gaussian kernel, then computes PCA reconstruction errors for OOD detection.

825
 826 **MDS++** MDS++ (Mueller & Hein, 2025) enhances the standard Mahalanobis Distance Score by
 827 applying L2 normalization to feature representations before computing class-conditional statistics,
 828 thereby improving the geometric separation between ID and OOD samples in the normalized feature
 829 space.

830
 831 **RMDS** RMDS (Relative Mahalanobis Distance Score) (Ren et al., 2021) computes relative Mahala-
 832 nobis distances by comparing class-conditional scores against global background scores, effectively
 833 measuring how much a sample deviates from both class-specific and overall data distributions.

834
 835 **RMDS++** RMDS++ (Mueller & Hein, 2025) extends RMDS by incorporating L2 feature nor-
 836 malization before computing relative Mahalanobis distances, combining the benefits of normalized
 837 feature spaces with relative distance measurements to achieve more robust OOD detection.

838
 839 **A.3 EVALUATION MODEL DETAILS**

840
 841 For CIFAR-100-based benchmark, we use the pre-trained WideResNet (Zagoruyko & Komodakis,
 842 2016) with 40 layers and widen factor of 2 pretrained with AugMix (Hendrycks et al., 2019b) on
 843 clean CIFAR-100. The pretrained weights for this model is available from RobustBench (Croce et al.,
 844 2020).

845
 846 For ImageNet-based benchmark, we use the pre-trained RegNetY-16GF (He et al., 2016) with the
 847 PyTorch checkpoint (Paszke et al., 2019), which is trained on ImageNet and widely used for OOD
 848 detection task.

849
 850 For evaluation on transformer-based architectures, we train two models: ViT-Tiny and Swin-Tiny.
 851 Both models are initialized with ImageNet-pretrained weights provided by HuggingFace model hub.
 852 We then fine-tune the model weights and classifier on the CIFAR-100 dataset. Training continues
 853 until each model reaches its target accuracy threshold (80% for ViT-Tiny and 85% for Swin-Tiny),
 854 after which early stopping is applied.

855 **A.4 EVALUATION DETAILS**

856
 857 For evaluation, we construct each test-time batch to contain 100 in-distribution (ID) samples and
 858 100 out-of-distribution (OOD) samples, resulting in a fixed batch size of 200. We sample a total of
 859 100 such test batches for each experimental setting. For each batch, we compute the AUROC and
 860 FPR@95TPR metrics, and report the final performance by averaging the values across all batches.

861
 862 **A.5 COMPUTE RESOURCES**

863 All experiments were conducted using NVIDIA RTX 3090 and RTX 4090 GPUs.

864 **B METHOD DETAILS**
865866 **B.1 OTSU ALGORITHM**
867868 To automatically determine a threshold that separates two distributions (e.g., ID and OOD) based on
869 their scalar scores, we adopt Otsu algorithm (Otsu et al., 1975). Originally proposed for image bina-
870 rization, Otsu algorithm selects the threshold that minimizes the intra-class variance (or equivalently
871 maximizes the inter-class variance) when partitioning a set of scalar values into two groups.872 Given a histogram of score values, the algorithm exhaustively searches for the threshold τ that
873 minimizes the weighted sum of within-class variances:

874
$$\sigma_{\text{within}}^2(\tau) = \omega_0(\tau)\sigma_0^2(\tau) + \omega_1(\tau)\sigma_1^2(\tau), \quad (5)$$

875

876 where $\omega_0(\tau)$ and $\omega_1(\tau)$ are the probabilities of the two classes separated by threshold τ , and
877 $\sigma_0^2(\tau), \sigma_1^2(\tau)$ are the corresponding class variances. This approach allows for an adaptive and data-
878 driven determination of the decision threshold, without requiring access to ground-truth labels or
879 distributional assumptions.880 In our method, Otsu algorithm is applied to the distribution of OOD scores computed over each
881 test-time batch. This enables unsupervised, on-the-fly threshold selection for distinguishing ID and
882 OOD samples, and plays a critical role in decision-making process during inference.
883884 **B.2 TUKEY'S METHOD**
885886 To ensure robust prototype estimation, we apply outlier filtering prior to aggregating the feature
887 representations of test samples. Specifically, we adopt Tukey's method, a non-parametric technique
888 for identifying outliers based on the interquartile range (IQR) (Tukey et al., 1977).889 Given a set of distance values (e.g., Euclidean distances between features and their assigned prototype),
890 we first compute the lower quartile (Q_1) and upper quartile (Q_3). The interquartile range is then
891 defined as:

892
$$\text{IQR} = Q_3 - Q_1. \quad (6)$$

893

894 A sample is identified as a potential outlier if its score x satisfies:

895
$$x > Q_3 + 1.5 \cdot \text{IQR}. \quad (7)$$

896

897 We use Tukey's method with an IQR factor of 1.5 throughout our experiments.

898 This filtering step is applied independently to the distance scores within each test-time batch, effec-
899 tively removing extreme values that may otherwise distort the prototype update.
900901 **B.3 LAYER SELECTION FOR DART**
902903 While it is possible to utilize the output of all intermediate layers for multi-layer aggregation, doing so
904 incurs additional computational overhead. To reduce this overhead while still capturing hierarchical
905 representations, we select a subset of representative layers at coarse block granularity, as specified in
906 Table 4.907 **Table 4: Included layers list for DART**
908909
910

Model architecture	Included layers list
WideResNet-40-2	block1, block2, block3, fc
RegNetY-16GF	stem, trunk output {block1.block1-0, block1.block1-1, block2.block2-0 - block2.block2-3, block3.block3-0 - block3.block3-10, block4.block4-0}, fc
ViT-Tiny	vit.encoder.layer{0 - 11}, classifier
Swin-T	swin.encoder.layers{0.blocks.0, 0.blocks.1, 1.blocks.0, 1.blocks.1 2.blocks.0 - 2.blocks.5, 3.blocks.0, 3.blocks.1}, classifier
ResNet-50	layer1, layer2, layer3, layer4, fc

911

918
919
920
921
922
923
924
925
926

Algorithm 1 *DART*

927 **Require:** Pre-trained model f , layers $L = \{1, \dots, L\}$, EMA coefficient α
928 1: **Initialization using the first batch** \mathcal{B}_1 :
929 2: Let $o = (o_1, \dots, o_C)$ be the logit vector
930 3: Compute MSP: $\text{MSP}_{1,i} = \max_c \frac{\exp(o_c)}{\sum_{j=1}^C \exp(o_j)}$
931 4: Apply Otsu threshold τ_1 on MSP scores for pseudo-labeling:
932
$$\hat{y}_i = \begin{cases} \text{ID} & \text{if } \text{MSP}_{1,i} \geq \tau_1 \\ \text{OOD} & \text{otherwise} \end{cases}$$

933 5: Partition features into \mathcal{B}_1^{ID} and \mathcal{B}_1^{OOD} based on \hat{y}_i
934 6: **for** each layer $l \in L$ **do**
935 7: Initialize prototypes:
936 8: $\bar{\mathbf{p}}_1^{(l),ID} = \frac{1}{|\mathcal{B}_1^{ID}|} \sum_{\mathbf{x}_{1,i} \in \mathcal{B}_1^{ID}} f_l(\mathbf{x}_{1,i}), \quad \bar{\mathbf{p}}_1^{(l),OOD} = \frac{1}{|\mathcal{B}_1^{OOD}|} \sum_{\mathbf{x}_{1,i} \in \mathcal{B}_1^{OOD}} f_l(\mathbf{x}_{1,i})$
937 9: **end for**
938 10: **for each batch** \mathcal{B}_t **do**
939 11: **for** each layer $l \in L$ **do**
940 12: **if** $t \bmod n = 0$ **then**
941 13: Apply flip correction if prototypes are misaligned. Refer to Section 3.3 in main paper for
942 14: details.
943 15: **end if**
944 16: Extract features: $\mathbf{z}_{t,i}^{(l)} = f_l(\mathbf{x}_{t,i}), \quad \mathbf{x}_{t,i} \in \mathcal{B}_t$
945 17: Compute RDS:
946 18:
$$\text{RDS}_i^{(l)} = 1 - \frac{\|\mathbf{z}_i^{(l)} - \bar{\mathbf{p}}_{t-1}^{ID,(l)}\|}{\|\mathbf{z}_i^{(l)} - \bar{\mathbf{p}}_{t-1}^{ID,(l)}\| + \|\mathbf{z}_i^{(l)} - \bar{\mathbf{p}}_{t-1}^{OOD,(l)}\|}$$

947 19: Apply Otsu threshold τ_t on RDS scores for pseudo-labeling:
948 20:
$$\hat{y}_i = \begin{cases} \text{ID} & \text{if } \text{RDS}_i^{(l)} \geq \tau_t \\ \text{OOD} & \text{otherwise} \end{cases}$$

949 21: Partition features into \mathcal{B}_t^{ID} and \mathcal{B}_t^{OOD} based on \hat{y}_i
950 22: Apply Tukey's method for outlier filtering:
951 23: Let $s_i = \|\mathbf{z}_{t,i}^{(l)} - p^{\text{proto}}\|_2$, where p^{proto} is the corresponding prototype
952 24: Filter out $\mathbf{z}_{t,i}^{(l)}$ if $s_i > Q_3 + k \cdot \text{IQR}$
953 25: Compute new centers:
954 26:
$$\hat{\mathbf{p}}_t^{(l),ID} = \frac{1}{|\mathcal{B}_t^{ID}|} \sum_{\mathbf{x}_{t,i} \in \mathcal{B}_t^{ID}} f_l(\mathbf{x}_{t,i}), \quad \hat{\mathbf{p}}_t^{(l),OOD} = \frac{1}{|\mathcal{B}_t^{OOD}|} \sum_{\mathbf{x}_{t,i} \in \mathcal{B}_t^{OOD}} f_l(\mathbf{x}_{t,i})$$

955 27: Update prototypes with EMA:
956 28:
$$\bar{\mathbf{p}}_t^{ID,(l)} = \alpha \cdot \bar{\mathbf{p}}_t^{ID,(l)} + (1 - \alpha) \cdot \hat{\mathbf{p}}_t^{ID,(l)}, \quad \bar{\mathbf{p}}_t^{OOD,(l)} = \alpha \cdot \bar{\mathbf{p}}_t^{OOD,(l)} + (1 - \alpha) \cdot \hat{\mathbf{p}}_t^{OOD,(l)}$$

957 29: **end for**
958 30: $\text{RDS}_{\text{multi}}(\mathbf{x}_i) = \frac{1}{L} \sum_{l=1}^L \text{RDS}_i^{(l)}$
959 31: **end for**
960 32:
961 33:
962 34:
963 35:
964 36:
965 37:
966 38:
967 39:
968 40:
969 41:
970 42:
971 43:

965
966
967
968
969
970
971

972 B.4 ALGORITHM OF *DART*
973974
975 C FULL RESULTS
976977 Here we show the full results for all OOD datasets which was abbreviated as average in the main
978 manuscript due to space limits.
979980 C.1 FULL CIFAR-100 RESULTS WITH WIDERESNET ON CLEAN DATASET
981982 Table 5: OOD detection performance comparison with CIFAR-100 ID and the corresponding OODs.
983 FPR@95TPR (%) is lower the better and AUROC (%) is higher the better. (Best: bolded, Second-best:
984 underlined)

985 986 987 Method	Training dist. informed	Clean										988 989 990 991 992 993 994 995 996 997	
		SVHN		Places365		LSUN		iSUN		Textures			
		FPR95 ↓ AUROC ↑											
MSP	NO	79.32	77.27	80.37	74.99	78.39	76.91	81.23	74.56	82.55	72.70	80.37	75.29
Energy	NO	80.32	78.74	78.47	75.69	78.39	78.68	83.42	74.53	79.17	76.31	79.95	76.79
Max logit	NO	79.85	79.11	78.63	76.01	77.87	78.92	82.49	75.00	79.69	76.25	79.71	77.06
GradNorm	NO	96.80	44.47	94.81	51.36	98.22	32.12	98.48	30.97	86.31	59.18	94.92	43.62
ViM	YES	54.18	85.44	86.74	64.33	66.48	81.52	66.82	80.95	85.47	65.83	71.94	75.61
KNN	YES	63.34	86.06	80.09	73.38	66.57	84.85	72.86	80.60	74.54	80.89	71.48	81.16
Mahalanobis _{single}	YES	77.75	75.58	90.94	59.26	69.56	80.02	70.64	78.54	91.15	56.50	80.01	69.98
Mahalanobis _{ensemble}	YES	62.92	88.78	93.41	61.12	13.12	97.34	16.44	96.55	43.79	87.99	45.94	86.36
ODIN	NO	64.15	80.96	84.30	69.48	90.32	63.24	91.03	61.21	75.75	72.60	81.11	69.50
ReAct	YES	87.25	70.36	79.97	75.71	73.91	80.58	75.75	78.48	80.39	75.32	79.45	76.09
SCALE	NO	74.38	81.36	78.47	75.55	80.91	75.14	83.88	72.60	65.34	82.98	76.60	77.53
ASH	NO	79.20	79.65	79.96	75.11	81.64	77.12	85.45	73.20	75.96	78.72	80.44	76.76
RTL	NO	50.15	87.42	73.23	75.59	58.46	85.01	68.38	80.67	70.33	75.12	64.11	80.76
NNGuide	YES	86.85	71.34	87.71	67.73	94.66	59.74	95.50	57.33	73.01	75.32	87.55	66.29
CoRP	YES	43.43	91.59	86.30	68.31	82.53	77.18	80.56	77.13	34.89	91.04	65.54	81.16
MDS++	YES	83.59	81.25	85.42	70.98	84.16	77.33	86.64	73.88	90.00	74.15	85.96	75.52
RMDS	YES	68.73	85.23	77.53	77.11	52.64	88.28	57.46	85.64	83.13	76.29	67.90	82.51
RMDS++	YES	74.20	84.57	76.79	77.67	65.24	85.70	71.02	82.49	82.29	77.44	73.91	82.51
<i>DART</i>	NO	9.64	97.67	70.00	75.12	30.24	91.49	14.79	96.62	40.91	88.02	33.12	89.78

998
999 C.2 FULL IMAGENET RESULTS WITH REGNET ON CLEAN DATASET
10001001 Table 6: OOD detection performance comparison with ImageNet ID and the corresponding OODs.
1002 FPR@95TPR (%) is lower the better and AUROC (%) is higher the better. (Best: bolded, Second-best:
1003 underlined)
1004

1005 1006 1007 Method	Training dist. informed	Clean										1008 1009 1010 1011 1012 1013 1014 1015 1016 1017	
		IN-O		Places		SUN		iNaturalist		Textures			
		FPR95 ↓ AUROC ↑											
MSP	NO	52.87	83.02	54.76	84.30	52.16	84.92	20.33	95.25	43.08	87.23	44.64	86.94
Energy	NO	57.59	76.17	48.11	81.05	41.17	85.04	8.68	97.49	35.69	87.87	38.25	85.52
Max logit	NO	52.30	78.42	47.22	82.29	41.65	85.60	9.50	97.43	34.57	88.39	37.05	86.43
GradNorm	NO	93.95	34.15	87.71	52.32	79.27	62.51	74.90	63.44	66.67	73.87	80.50	57.26
ViM	YES	30.21	93.82	71.37	82.93	72.21	83.42	50.70	90.12	58.42	87.70	56.58	87.60
KNN	YES	69.58	85.71	97.60	69.55	96.05	71.65	99.40	66.69	61.32	85.77	84.79	75.87
Mahalanobis _{single}	YES	48.14	90.43	87.04	76.70	90.16	76.11	88.65	78.79	81.98	80.81	79.19	80.57
Mahalanobis _{ensemble}	YES	8.69	97.82	78.62	81.37	77.80	82.59	88.75	77.80	22.62	94.71	55.30	86.86
ODIN	NO	60.40	82.05	71.28	76.69	68.97	77.47	47.64	88.78	55.90	84.33	60.84	81.86
ReAct	YES	97.32	53.19	90.93	65.47	85.13	72.83	74.11	85.74	84.53	76.10	86.40	70.67
SCALE	NO	52.97	77.70	45.51	82.83	37.89	86.79	8.72	97.46	29.96	90.30	35.01	87.02
ASH	NO	57.04	76.29	47.82	81.17	40.78	85.21	8.43	98.01	34.80	88.15	37.77	85.67
RTL	NO	52.60	79.13	49.71	83.58	48.01	82.53	21.53	90.75	39.67	85.22	42.30	84.24
NNGuide	YES	87.68	49.90	85.03	61.03	76.69	68.44	49.44	87.67	54.18	83.23	70.60	70.05
CoRP	YES	42.37	93.23	68.17	83.92	62.14	86.35	33.19	94.68	39.27	92.67	49.03	90.17
MDS++	YES	34.49	94.26	73.19	81.07	65.30	84.69	9.86	98.01	26.49	94.37	41.87	90.48
RMDS	YES	41.02	92.19	63.46	87.29	61.54	88.84	9.41	97.54	55.96	89.27	46.28	91.03
RMDS++	YES	57.33	90.42	73.07	85.76	70.16	87.53	17.70	96.44	61.79	88.50	56.01	89.73
<i>DART</i>	NO	0.59	99.82	14.41	96.31	36.14	90.86	20.71	95.28	7.90	98.36	15.95	96.13

C.3 FULL CIFAR-100 RESULTS WITH ViT-TINY

Table 7: OOD detection performance comparison with ViT-Tiny. We evaluate with CIFAR-100 ID, CIFAR-100-C csID and the corresponding OODs. (Best: **bolded**, Second-best: underlined)

Covariate Shifted													
Method	Training dist. informed	SVHN-C		Places365-C		LSUN-C		iSUN-C		Textures-C		Average	
		FPR95 ↓ AUROC ↑											
MSP	NO	88.32	54.65	89.98	57.41	89.13	60.20	90.96	57.75	89.39	55.15	89.56	57.03
Energy	NO	83.57	60.42	88.13	60.19	87.47	63.71	89.33	60.96	86.57	60.73	87.01	61.20
Max logit	NO	84.66	59.74	88.59	59.76	87.74	63.31	89.76	60.53	87.17	59.93	87.58	60.65
GradNorm	NO	89.95	62.39	89.89	56.74	92.07	54.39	92.37	53.47	83.40	65.13	89.54	58.42
ViM	YES	86.98	58.01	91.24	57.30	88.56	62.26	90.90	58.85	89.78	57.33	89.49	58.75
KNN	YES	90.16	56.65	90.34	54.45	90.01	60.53	92.23	55.79	87.99	56.64	90.15	56.81
Mahalanobis _{single}	YES	97.65	32.82	96.87	34.13	96.77	33.42	97.27	31.31	97.54	30.30	97.22	32.40
Mahalanobis _{ensemble}	YES	37.91	90.30	94.09	45.50	61.56	61.16	61.78	61.13	53.29	71.68	<u>61.73</u>	65.95
ODIN	NO	85.29	61.87	88.93	58.27	89.56	58.57	89.54	59.06	84.33	64.82	87.53	60.52
ReAct	YES	82.37	60.08	87.19	<u>61.31</u>	85.39	65.80	87.74	62.86	86.99	59.98	85.94	62.01
SCALE	NO	84.84	59.26	89.66	58.25	90.05	60.75	91.51	57.95	88.16	58.76	88.84	58.99
ASH	NO	92.41	58.90	91.56	55.26	93.51	52.40	93.88	51.33	88.62	62.12	92.00	56.00
RTL	NO	80.17	59.38	86.96	57.54	83.75	62.21	88.03	56.60	83.18	57.72	84.42	58.69
NNGuide	YES	86.45	59.03	87.05	59.69	86.04	64.58	88.36	61.35	84.53	61.21	86.49	61.17
CoRP	YES	88.45	59.62	89.92	56.64	87.28	63.92	89.22	59.97	86.69	59.10	88.31	59.85
MDS++	YES	77.22	67.31	<u>83.05</u>	61.79	78.16	<u>68.41</u>	80.03	<u>65.75</u>	72.31	<u>68.01</u>	78.15	<u>66.25</u>
RMDS	YES	76.29	65.91	87.26	60.66	84.90	65.54	87.27	61.98	77.44	63.73	82.63	63.56
RMDS++	YES	75.35	65.59	86.15	61.22	83.89	66.16	86.10	62.95	75.02	64.35	81.30	64.05
DART	NO	36.44	<u>71.92</u>	67.29	57.33	25.08	80.93	31.67	75.50	60.90	57.30	44.28	68.60
Clean											Average		
Method	Training dist. informed	SVHN		Places365		LSUN		iSUN		Textures			
		FPR95 ↓ AUROC ↑											
MSP	NO	62.06	82.50	78.47	74.69	70.48	81.33	74.85	78.79	65.92	81.63	70.36	79.79
Energy	NO	41.79	89.13	73.81	77.71	61.09	86.02	66.13	83.60	51.04	87.68	58.77	84.83
Max logit	NO	44.96	88.65	74.40	77.59	61.78	85.80	67.05	83.33	53.15	87.33	60.27	84.54
GradNorm	NO	70.09	81.30	83.25	69.27	85.99	72.71	87.16	70.48	65.14	82.44	78.33	75.24
ViM	YES	47.34	88.18	71.80	78.03	57.30	87.18	63.52	84.49	51.37	87.41	58.27	85.06
KNN	YES	60.23	83.70	79.73	69.78	65.70	83.28	72.82	77.93	58.29	83.19	67.35	79.58
Mahalanobis _{single}	YES	97.62	31.26	94.24	47.56	96.96	31.19	97.67	27.57	95.40	40.26	96.38	35.57
Mahalanobis _{ensemble}	YES	<u>13.93</u>	97.14	94.58	55.26	<u>3.03</u>	<u>99.06</u>	<u>3.93</u>	<u>98.93</u>	30.44	91.63	<u>29.18</u>	<u>88.40</u>
ODIN	NO	75.65	75.47	87.48	64.34	84.41	68.70	83.64	69.79	70.07	77.78	80.25	71.22
ReAct	YES	40.18	89.58	72.80	78.53	57.23	68.84	62.69	84.64	51.40	87.38	56.86	81.79
SCALE	NO	44.17	88.43	73.71	77.68	67.15	83.85	71.51	81.28	52.19	87.07	61.75	83.66
ASH	NO	77.25	79.20	83.45	69.11	86.72	71.52	88.41	69.02	70.01	81.14	81.17	74.00
RTL	NO	26.70	89.94	67.55	77.48	27.65	93.41	39.20	89.62	39.88	88.30	40.20	87.75
NNGuide	YES	47.09	87.22	76.40	74.95	60.59	85.51	66.31	82.58	51.10	86.91	60.30	83.43
CoRP	YES	61.85	85.00	80.76	73.19	64.51	85.81	68.88	82.48	60.42	85.68	67.28	82.43
MDS++	YES	39.14	88.84	66.54	78.57	42.39	90.18	48.78	87.41	36.66	90.59	46.70	87.12
RMDS	YES	36.21	89.32	62.15	<u>80.43</u>	47.61	88.92	55.13	85.97	38.81	90.00	47.98	86.93
RMDS++	YES	36.30	89.09	62.64	80.08	48.16	88.67	55.21	85.72	38.26	89.98	48.11	86.71
DART	NO	<u>3.24</u>	99.23	<u>62.77</u>	81.73	<u>0.85</u>	99.80	<u>1.04</u>	99.74	<u>35.00</u>	<u>91.04</u>	20.58	94.31

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 C.4 FULL CIFAR-100 RESULTS WITH SWIN-TINY
10811082 Table 8: OOD detection performance comparison with Swin-Tiny. We evaluate with CIFAR-100 ID,
1083 CIFAR-100-C csID and the corresponding OODs. (Best: **bolded**, Second-best: underlined)
1084

1085	Method	Training dist. informed	Covariate Shifted						Average					
			SVHN-C	Places365-C	LSUN-C	iSUN-C	Textures-C	FPR95 ↓ AUROC ↑						
1087	MSP	NO	87.48	58.92	87.20	63.29	82.95	67.03	85.14	64.75	84.33	62.97	85.42	63.39
1088	Energy	NO	81.88	67.29	86.20	64.20	78.30	71.63	81.65	68.08	73.47	70.53	80.30	68.35
1089	Max logit	NO	83.72	66.10	86.30	64.38	79.40	71.16	82.44	67.79	77.63	69.22	81.90	67.73
1090	GradNorm	NO	82.38	68.38	89.90	62.00	80.76	72.92	79.68	73.52	<u>61.12</u>	80.40	78.77	71.44
1091	ViM	YES	95.84	51.26	94.98	50.17	97.60	46.77	98.04	43.00	98.22	37.61	96.94	45.76
1092	KNN	YES	82.69	68.02	87.62	60.94	82.50	67.52	85.40	62.77	83.06	65.31	84.25	64.91
1093	Mahalanobis _{single}	YES	98.23	38.79	97.74	41.80	99.32	32.79	99.36	30.22	99.13	21.86	98.76	33.09
1094	Mahalanobis _{ensemble}	YES	97.17	44.72	97.94	39.09	99.35	31.32	99.38	29.27	99.14	24.34	98.60	33.75
1095	ODIN	NO	80.78	66.20	89.74	59.86	91.86	58.65	91.08	59.38	70.96	74.06	84.88	63.63
1096	ReAct	YES	78.42	69.44	85.84	65.20	76.79	73.35	78.67	71.44	64.09	76.25	76.76	71.14
1097	SCALE	NO	79.13	69.57	86.21	65.09	76.71	73.93	78.22	72.28	63.15	76.96	76.68	71.57
1098	ASH	NO	78.65	70.33	87.57	63.95	77.48	73.87	78.64	72.06	62.42	76.76	76.95	71.39
1099	RTL	NO	86.72	57.38	86.72	62.68	79.41	69.61	83.11	65.84	82.61	62.58	83.71	63.62
1100	NNGuide	YES	78.56	72.74	<u>84.64</u>	67.62	<u>73.65</u>	76.11	<u>76.30</u>	73.44	69.52	76.99	76.53	73.38
1101	CoRP	YES	84.83	67.05	89.32	59.20	85.16	65.79	86.98	61.99	84.56	64.22	86.17	63.65
1102	MDS++	YES	72.36	75.29	88.15	60.55	78.41	69.66	79.70	66.70	61.44	76.79	76.01	69.80
1103	RMDS	YES	91.82	59.47	91.80	56.76	89.66	61.30	91.74	57.40	91.61	55.75	91.33	58.14
1104	RMDS++	YES	89.90	63.59	90.80	58.82	85.84	64.50	88.39	60.72	85.74	61.41	88.13	61.81
1105	DART	NO	44.90	70.99	57.62	75.48	14.28	95.53	24.97	87.74	52.74	76.66	38.90	81.28
1106	Clean										Average			
1107	Method	Training dist. informed	SVHN	Places365	LSUN	iSUN	Textures	FPR95 ↓ AUROC ↑						
1108	MSP	NO	59.06	86.09	69.83	79.17	58.09	85.76	62.11	83.42	51.72	87.13	60.16	84.31
1109	Energy	NO	35.88	91.83	58.64	83.16	38.61	91.40	44.35	88.95	27.80	93.67	41.06	89.80
1110	Max logit	NO	37.54	91.54	58.73	83.04	39.41	91.10	45.02	88.66	29.86	93.28	42.11	89.52
1111	GradNorm	NO	85.31	61.74	83.37	67.78	70.06	80.46	68.41	80.33	51.02	82.32	71.63	74.53
1112	ViM	YES	83.71	80.08	93.84	62.22	96.72	63.50	97.19	59.52	93.54	65.96	93.00	66.26
1113	Mahalanobis _{single}	YES	31.60	93.26	66.75	80.31	46.95	89.67	53.14	86.22	31.23	93.09	45.93	88.51
1114	Mahalanobis _{ensemble}	YES	97.07	59.75	98.46	43.08	99.67	35.81	99.72	33.62	98.43	33.27	98.67	41.11
1115	ODIN	NO	89.89	67.25	95.52	59.39	97.62	57.25	97.04	57.87	75.93	76.50	91.20	63.65
1116	ReAct	YES	42.84	90.56	58.78	82.17	38.80	91.42	42.60	89.57	25.89	93.83	41.78	89.51
1117	SCALE	NO	49.51	87.94	62.13	81.02	40.86	91.00	44.03	89.32	27.67	93.21	44.84	88.50
1118	ASH	NO	54.51	85.90	67.96	79.09	46.42	89.69	48.93	88.02	32.31	92.14	50.03	86.97
1119	RTL	NO	43.25	87.35	70.99	74.76	44.41	87.35	51.83	84.40	44.03	87.30	50.90	84.23
1120	NNGuide	YES	37.51	91.82	56.58	84.28	33.61	<u>93.04</u>	38.34	<u>91.40</u>	24.15	94.75	38.04	91.06
1121	CoRP	YES	41.14	92.32	68.66	80.55	50.94	89.81	55.48	87.22	35.63	92.77	50.37	88.53
1122	MDS++	YES	30.97	93.67	56.68	83.95	<u>33.31</u>	92.98	39.00	90.82	16.43	96.28	<u>35.28</u>	91.54
1123	RMDS	YES	52.84	89.57	64.26	82.37	52.70	88.97	59.42	86.09	40.78	91.23	54.00	87.65
1124	RMDS++	YES	47.14	90.76	58.64	83.56	44.55	90.16	50.92	87.55	33.78	92.48	47.01	88.90
1125	DART	NO	7.27	97.88	77.97	64.13	6.31	98.52	6.68	98.49	<u>61.06</u>	81.14	31.86	88.03

C.5 FULL IMAGENET RESULTS WITH RESNET-50

Table 9: OOD detection performance comparison with ResNet-50 on ImageNet-based benchmark. Results on covariated shifted dataset are the average of all 15 corruptions with severity level 5. (Best: **bolded**, Second-best: underlined)

Covariate Shifted														
Method	Training dist. informed	ImageNet-O-C		Places-C		SUN-C		iNaturalist-C		Textures-C		Average		
		FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑		FPR95 ↓	AUROC ↑
MSP	NO	86.14	55.60	86.79	63.17	84.84	65.27	77.89	69.62	88.52	54.85		84.84	61.70
Energy	NO	82.16	58.92	89.03	61.29	87.91	63.58	86.44	64.52	88.05	55.85		86.72	60.83
Max logit	NO	83.88	57.81	87.57	63.00	85.79	65.42	81.49	68.07	88.02	55.87		85.35	62.03
GradNorm	NO	76.86	64.58	70.84	77.06	65.23	80.51	51.36	85.62	67.11	74.14		66.28	76.38
ViM	YES	95.64	38.92	99.50	17.64	99.65	14.90	99.94	8.60	96.94	25.14		98.33	21.04
KNN	YES	83.81	63.63	90.93	55.23	91.12	56.45	95.20	45.36	61.31	73.33		84.47	58.80
MDS _{single}	YES	95.14	38.80	99.52	18.75	99.67	15.95	99.93	9.60	96.20	27.69		98.09	22.16
MDS _{ensemble}	YES	79.71	62.76	92.44	42.67	92.17	41.57	94.26	33.49	64.44	62.83		84.60	48.66
ODIN	NO	76.69	68.04	<u>25.14</u>	<u>92.96</u>	22.70	93.69	<u>27.84</u>	<u>92.22</u>	38.11	85.81		<u>38.10</u>	<u>86.54</u>
ReAct	YES	82.24	59.09	84.47	67.56	82.92	69.76	80.76	70.72	84.85	59.33		83.05	65.29
SCALE	NO	79.10	63.07	79.87	70.76	76.10	74.05	63.83	79.72	75.88	68.39		74.96	71.20
ASH	NO	80.51	61.30	87.83	63.20	86.48	65.88	82.64	68.22	84.77	60.05		84.45	63.73
RTL	NO	82.27	57.85	76.94	71.71	73.29	74.47	64.06	78.47	81.14	59.14		75.54	68.33
NNGuide	YES	73.91	67.80	68.11	77.74	62.29	81.42	50.54	85.43	57.13	78.16		62.40	78.11
CoRP	YES	75.89	73.38	75.07	73.16	71.42	76.37	67.32	78.15	44.54	86.27		66.85	77.47
MDS++	YES	63.76	77.47	81.50	66.32	79.47	69.03	66.54	77.67	<u>36.03</u>	88.92		65.46	75.88
RMDS	YES	90.38	50.24	95.39	44.28	95.88	42.31	96.52	45.83	85.80	50.46		92.79	46.62
RMDS++	YES	77.40	64.63	86.31	58.47	85.77	58.86	78.16	68.26	61.45	73.34		77.82	64.71
<i>DART</i>	NO	73.52	58.78	2.46	99.34	1.06	99.59	1.18	99.61	23.75	79.75		20.39	87.41
Clean														
Method	Training dist. informed	ImageNet-O	Places	SUN	iNaturalist	Textures		Average						
		FPR95 ↓ AUROC ↑		FPR95 ↓ AUROC ↑	FPR95 ↓ AUROC ↑		FPR95 ↓ AUROC ↑							
MSP	NO	64.81	75.42	56.33	85.09	53.18	85.97	36.95	91.68	53.73	83.95		53.00	84.42
Energy	NO	55.18	82.01	42.09	89.64	34.38	91.54	25.30	94.38	33.96	90.49		38.18	89.61
Max logit	NO	55.09	81.85	42.79	78.62	35.50	91.39	23.88	95.05	35.07	90.28		38.47	87.44
GradNorm	NO	55.97	78.38	47.85	87.45	42.19	88.60	24.01	94.34	42.17	86.85		42.44	87.12
ViM	YES	56.20	77.62	42.62	86.49	31.60	90.55	21.81	94.30	33.31	89.08		37.11	87.61
KNN	YES	<u>11.09</u>	97.01	72.62	83.16	72.49	84.40	82.54	79.21	<u>16.31</u>	96.53		51.01	88.06
MDS _{single}	YES	11.10	95.67	54.71	87.07	45.46	90.53	78.67	76.90	19.89	94.97		41.97	89.03
MDS _{ensemble}	YES	30.76	88.27	95.87	62.81	95.47	62.19	97.37	50.94	49.44	86.03		73.78	70.05
ODIN	NO	18.70	94.49	94.09	64.38	93.09	64.67	96.72	51.10	29.60	91.41		66.44	73.21
ReAct	YES	16.84	95.44	36.62	89.54	34.89	89.80	38.99	88.92	35.50	88.30		32.57	90.40
SCALE	NO	50.55	84.83	37.29	91.44	30.29	93.06	17.02	96.40	31.67	92.22		33.36	91.59
ASH	NO	42.77	87.82	<u>32.37</u>	<u>92.47</u>	24.55	94.22	10.87	97.60	19.80	94.77		26.07	93.38
RTL	NO	56.98	75.34	42.41	86.56	36.48	87.81	23.85	91.29	38.71	85.14		39.69	85.23
NNGuide	YES	38.59	88.32	28.59	93.10	20.02	95.18	17.82	96.20	21.11	94.17		25.23	93.39
CoRP	YES	30.01	89.25	64.00	84.28	55.98	87.82	83.16	73.97	23.66	94.53		51.36	85.97
MDS++	YES	14.92	97.16	61.42	84.92	49.94	88.97	33.84	93.72	1.69	99.49		32.36	92.85
RMDS	YES	61.88	88.56	87.73	79.15	88.16	80.24	65.98	90.30	51.95	88.58		71.14	84.97
RMDS++	YES	56.42	86.76	75.65	82.07	73.61	83.96	36.83	93.50	29.65	91.97		54.43	87.65
<i>DART</i>	NO	0.60	99.83	33.90	89.31	15.90	95.77	14.29	96.46	23.68	94.78		17.67	95.23

D EFFECT OF EMA α

We employ an exponential moving average (EMA) to update the prototype, where the smoothing coefficient α is treated as an only hyperparameter of *DART*. To examine the sensitivity of our method to this hyperparameter, we conduct an ablation study on the CIFAR-100-C vs. SVHN-C and ImageNet-C vs. iNaturalist-C benchmark, and report the results as AUROC(%) in Table ???. Results in Table 10 demonstrates that our method is robust to the choice of the EMA coefficient α .

Table 10: The effect of EMA α on the performance of *DART*

α	0.5	0.6	0.7	0.8	0.9	std.
CIFAR-100-C vs. SVHN-C	78.79	78.68	78.84	78.58	78.11	± 0.29
ImageNet-C vs. iNaturalist-C	93.18	93.18	93.18	93.18	93.19	± 0.00

1188 E EXTENDED RDS DISTRIBUTION VISUALIZATIONS
1189

1190 In the main paper, we present representative visualizations of RDS distributions for a subset of
1191 corruption types, to illustrate how ID and OOD samples are separated across different feature levels.
1192 These visualizations support our observation that the most discriminative layer can vary depending
1193 on the type of corruption. For completeness, we provide the full set of visualizations covering all 15
1194 corruption types in this appendix.

1195
1196 E.1 RDS DISTRIBUTION VISUALIZATIONS
1197

Figure 8: Full corruptions visualizations for RDS distributions. Each plot shows at different network depths (low, mid, high-level) through five sequential batches. The visualizations reveal how different corruption types affect RDS separability at specific network layers.

F THEORETICAL ANALYSIS

In this section, we provide a mathematical derivation of the feature amplification phenomenon observed in OOD data. We demonstrate how the mismatch between the frozen statistics of Batch Normalization (BN) derived from ID data and the statistics of OOD data leads to an explosion in feature magnitude for specific units.

F.1 SETUP AND DEFINITIONS

Consider a specific channel (or neuron) index k in a hidden layer. Let x denote the input to this layer (or the output of the previous layer). We define the pre-activation feature Z_k as a random variable:

$$Z_k(x) = w_k^\top x + b_k, \quad (8)$$

where w_k and b_k are the weight vector and bias for unit k , respectively.

F.2 THE SILENT UNIT ASSUMPTION

We focus on a specific type of unit, which we term a *Silent Unit*. This unit typically corresponds to a feature that is either irrelevant for classifying In-Distribution (ID) data or represents a direction orthogonal to the ID manifold. Consequently, its activation on ID data is minimal and stable.

Mathematically, let \mathcal{D}_{ID} be the ID dataset and P_{ID} be the underlying ID distribution. We assume the variance of Z_k over \mathcal{D}_{ID} is very small and of the same order as the BN stability constant ϵ (vanishing but non-zero variance). The running statistics, μ_{ID} and σ_{ID}^2 , which are frozen after training, are

1296 given by:

$$\mu_{ID} = \mathbb{E}_{x \sim P_{ID}}[Z_k(x)], \quad (9)$$

$$\sigma_{ID}^2 = \text{Var}_{x \sim P_{ID}}[Z_k(x)] = \mathcal{O}(\epsilon). \quad (10)$$

1301 F.3 INFERENCE LOGIC OF BATCH NORMALIZATION

1302 During the inference phase, BN normalizes the input using the frozen ID statistics. The normalized
 1303 output $\hat{Z}_k(x)$ is computed as:

$$\hat{Z}_k(x) = \gamma_k \cdot \frac{Z_k(x) - \mu_{ID}}{\sqrt{\sigma_{ID}^2 + \epsilon}} + \beta_k, \quad (11)$$

1307 where γ_k and β_k are learnable affine parameters, and ϵ is a small constant for numerical stability
 1308 (e.g., 10^{-5}).

1309 Crucially, due to the silent unit assumption ($\sigma_{ID}^2 = \mathcal{O}(\epsilon)$), the scaling factor λ_k satisfies:

$$\lambda_k \triangleq \frac{1}{\sqrt{\sigma_{ID}^2 + \epsilon}} = \Theta\left(\frac{1}{\sqrt{\epsilon}}\right). \quad (12)$$

1313 For typical choices such as $\epsilon = 10^{-5}$, this corresponds to a large constant amplification.

1315 F.4 FEATURE AMPLIFICATION ON OOD DATA

1317 Now, consider a bounded OOD input $x_{OOD} \sim P_{OOD}$. Since x_{OOD} does not share the specific
 1318 semantic structure of ID data that suppresses the activation of unit k , $Z_k(x_{OOD})$ follows a distribution
 1319 determined by random projection in the high-dimensional feature space.

1320 Let Δ be the deviation of the OOD pre-activation from the ID mean:

$$\Delta = |Z_k(x_{OOD}) - \mu_{ID}|. \quad (13)$$

1323 Unlike ID data, OOD data is not concentrated around μ_{ID} , implying that Δ is a non-negligible value
 1324 of order $\mathcal{O}(1)$ with respect to ϵ .

1325 We now compare the magnitude of the normalized feature $|\hat{Z}_k|$ for ID and OOD inputs (assuming
 1326 $\beta_k \approx 0$ for simplicity):

1328 **Case 1: ID Data.** For $x \sim P_{ID}$, the deviation of $Z_k(x)$ from μ_{ID} is controlled by the standard
 1329 deviation:

$$|Z_k(x_{ID}) - \mu_{ID}| = \mathcal{O}(\sigma_{ID}) = \mathcal{O}(\sqrt{\epsilon}). \quad (14)$$

1331 Using $\sigma_{ID}^2 = \mathcal{O}(\epsilon)$, the denominator satisfies $\sqrt{\sigma_{ID}^2 + \epsilon} = \Theta(\sqrt{\epsilon})$, and thus the normalized
 1332 activation remains stable:

$$|\hat{Z}_k(x_{ID})| = |\gamma_k| \cdot \frac{\mathcal{O}(\sqrt{\epsilon})}{\Theta(\sqrt{\epsilon})} = \Theta(|\gamma_k|) = \mathcal{O}(1). \quad (15)$$

1335 **Case 2: OOD Data.** For $x \sim P_{OOD}$, the deviation Δ is constant with respect to ϵ . However,
 1336 the denominator remains of order $\sqrt{\epsilon}$ due to the silent unit statistics. This leads to an explosion in
 1337 magnitude:

$$|\hat{Z}_k(x_{OOD})| \approx |\gamma_k| \cdot \frac{\Delta}{\sqrt{\sigma_{ID}^2 + \epsilon}} = \Omega\left(\frac{1}{\sqrt{\epsilon}}\right). \quad (16)$$

1341 Consequently, for sufficiently small ϵ , we obtain

$$|\hat{Z}_k(x_{OOD})| = \Omega\left(\frac{1}{\sqrt{\epsilon}}\right), \quad (17)$$

1344 which is much larger than the ID magnitude (e.g., two orders of magnitude larger when $\epsilon = 10^{-5}$).
 1345 This amplified signal passes through the ReLU activation function (if positive), resulting in abnormally
 1346 high activation values for OOD data compared to ID data.

1347 **Remark.** This theoretical framework elucidates the phenomenon observed in Fig 3, where specific
 1348 units exhibit significantly higher activation values for OOD samples. As derived above, the variance
 1349 mismatch amplifies the OOD signals in silent units, thereby facilitating the clear separation between
 ID and OOD distributions in the feature space.

1350 F.5 VALIDITY UNDER SHARED COVARIATE SHIFT
1351

1352 We next argue that the above amplification mechanism remains valid even when ID and OOD inputs
1353 undergo covariate shift (e.g., changes in weather, illumination, or sensor characteristics).

1354 Let e denote an environment configuration that induces a covariate shift via a transformation T_e on
1355 the input space, and assume that this transformation is applied identically to ID and OOD samples:

$$1356 \quad x_e = T_e(x), \quad x \sim P_{ID} \text{ or } x \sim P_{OOD}. \quad (18)$$

1357 The pre-activation of unit k in environment e can then be written as

$$1359 \quad Z_k^{(e)}(x) = w_k^\top x_e + b_k = w_k^\top T_e(x) + b_k = Z_k(x) + \delta_k(e, x), \quad (19)$$

1360 where $\delta_k(e, x) \triangleq w_k^\top (T_e(x) - x)$ captures the effect of the covariate shift along the k -th direction.

1361 We assume that the covariate shift transformation T_e is bounded in the input space, i.e., there exists a
1362 constant B_{env} such that

$$1364 \quad \|T_e(x) - x\|_2 \leq B_{\text{env}} \quad \text{for all } x \text{ in the support of } P_{ID} \text{ and } P_{OOD}. \quad (20)$$

1365 Then the induced perturbation along unit k satisfies

$$1366 \quad |\delta_k(e, x)| = |w_k^\top (T_e(x) - x)| \leq \|w_k\|_2 \|T_e(x) - x\|_2 \leq \|w_k\|_2 B_{\text{env}}. \quad (21)$$

1367 Thus we can choose

$$1368 \quad C_{\text{env}} \triangleq \|w_k\|_2 B_{\text{env}}, \quad (22)$$

1369 which is a finite constant independent of the BN hyperparameter ϵ .

1370 Importantly, BN still uses the frozen statistics $(\mu_{ID}, \sigma_{ID}^2)$ computed from the original ID distribution
1371 (before the shift). Thus, the normalization scale

$$1373 \quad \sqrt{\sigma_{ID}^2 + \epsilon} = \Theta(\sqrt{\epsilon}) \quad (23)$$

1374 is unchanged.

1375

1376 **ID under covariate shift.** For $x \sim P_{ID}$, we have

$$1377 \quad |Z_k^{(e)}(x_{ID}) - \mu_{ID}| = |Z_k(x_{ID}) - \mu_{ID} + \delta_k(e, x_{ID})| \leq |Z_k(x_{ID}) - \mu_{ID}| + |\delta_k(e, x_{ID})|. \quad (24)$$

1378 Under the silent-unit assumption, $|Z_k(x_{ID}) - \mu_{ID}| = \mathcal{O}(\sqrt{\epsilon})$, while the covariate shift contribution
1379 is bounded by C_{env} . Hence

$$1381 \quad |Z_k^{(e)}(x_{ID}) - \mu_{ID}| \leq \mathcal{O}(\sqrt{\epsilon}) + C_{\text{env}}. \quad (25)$$

1382 Dividing by $\sqrt{\sigma_{ID}^2 + \epsilon} = \Theta(\sqrt{\epsilon})$ yields a bounded normalized activation:

$$1384 \quad |\hat{Z}_k^{(e)}(x_{ID})| = |\gamma_k| \cdot \frac{|Z_k^{(e)}(x_{ID}) - \mu_{ID}|}{\sqrt{\sigma_{ID}^2 + \epsilon}}, \quad (26)$$

1385 which remains a finite constant determined by $(\gamma_k, C_{\text{env}}, \epsilon)$ and does not diverge with the OOD
1386 amplification discussed below.

1387

1388 **OOD under covariate shift.** For $x \sim P_{OOD}$, recall that in the original environment we have

$$1389 \quad \Delta_0 \triangleq |Z_k(x_{OOD}) - \mu_{ID}| = \mathcal{O}(1), \quad (27)$$

1390 reflecting the fact that OOD samples are not concentrated around the ID mean. Under the shared
1391 covariate shift, we obtain

$$1394 \quad |Z_k^{(e)}(x_{OOD}) - \mu_{ID}| = |Z_k(x_{OOD}) - \mu_{ID} + \delta_k(e, x_{OOD})| \geq \Delta_0 - |\delta_k(e, x_{OOD})| \geq \Delta_0 - C_{\text{env}}. \quad (28)$$

1395 For bounded shifts with $C_{\text{env}} < \Delta_0$, the deviation remains of constant order, i.e.,

$$1397 \quad |Z_k^{(e)}(x_{OOD}) - \mu_{ID}| = \Omega(1). \quad (29)$$

1398 After BN normalization, this yields

$$1400 \quad |\hat{Z}_k^{(e)}(x_{OOD})| = |\gamma_k| \cdot \frac{|Z_k^{(e)}(x_{OOD}) - \mu_{ID}|}{\sqrt{\sigma_{ID}^2 + \epsilon}} = \Omega\left(\frac{1}{\sqrt{\epsilon}}\right), \quad (30)$$

1401 which is still much larger than the ID magnitude. Therefore, even when ID and OOD undergo the
1402 same covariate shift, the mismatch between frozen ID statistics and OOD activations, combined with
1403 the silent-unit scaling, continues to produce systematically amplified responses for OOD data.

1404
 1405 **Remark on Layer Normalization.** The above derivation characterizes feature amplification under
 1406 Batch Normalization, which relies on frozen ID statistics at test time. However, many modern archi-
 1407 tectures in our experimental setup (e.g., ViT, Swin-Transformer) primarily use Layer Normalization
 1408 instead of Batch Normalization. It is therefore natural to ask whether a similar unit-wise OOD
 1409 amplification effect can also arise under Layer Normalization. To clarify why this may plausibly
 1410 occur, we briefly recall how LN affects the per-sample feature energy.

1411 Let $h(x) \in \mathbb{R}^d$ be a feature vector with components $h_i(x)$. LN computes the sample mean and
 1412 variance as

$$1413 \quad \mu(x) = \frac{1}{d} \sum_{i=1}^d h_i(x), \quad \sigma^2(x) = \frac{1}{d} \sum_{i=1}^d (h_i(x) - \mu(x))^2, \quad (31)$$

1414 and produces normalized activations

$$1416 \quad \tilde{h}_i(x) = \frac{h_i(x) - \mu(x)}{\sqrt{\sigma^2(x) + \epsilon}}, \quad (32)$$

1417 (optionally followed by an affine transform with γ_i and β_i). Ignoring the small stability constant ϵ for
 1418 clarity, we obtain

$$1419 \quad \frac{1}{d} \sum_{i=1}^d \tilde{h}_i(x)^2 = \frac{1}{d} \sum_{i=1}^d \frac{(h_i(x) - \mu(x))^2}{\sigma^2(x)} = \frac{1}{\sigma^2(x)} \cdot \frac{1}{d} \sum_{i=1}^d (h_i(x) - \mu(x))^2 = 1, \quad (33)$$

1420 so that

$$1421 \quad \sum_{i=1}^d \tilde{h}_i(x)^2 = d. \quad (34)$$

1422 Thus, LN enforces a fixed per-sample variance (and hence a fixed “energy” $\sum_i \tilde{h}_i^2$) and effectively
 1423 redistributes this energy across feature dimensions for each input x . Here, by “energy” we simply
 1424 refer to the squared ℓ_2 -norm (or variance) of the normalized feature vector, not to the energy-based
 1425 OOD score (e.g., negative log-sum-exp of logits) commonly used in energy-based OOD detection.

1426 While our formal analysis focuses on Batch Normalization, it is plausible that an analogous mech-
 1427 anism can operate under Layer Normalization. In particular, under LN the per-sample variance is
 1428 fixed, and OOD inputs may induce large excursions along directions that remain nearly silent for
 1429 ID data. In such cases, the fixed energy budget would be concentrated on these silent directions,
 1430 potentially leading to much larger normalized activations on OOD samples in the corresponding
 1431 units than on ID samples. A rigorous theoretical and empirical study of this LayerNorm case—for
 1432 example, characterizing how per-sample variance redistribution interacts with silent directions in
 1433 high-dimensional feature spaces—is an interesting direction that we leave for future work.

1441 G CROSS-DOMAIN EVALUATION

1442 In the main body of the paper, we reported results under evaluation settings where each test stream
 1443 contains a single OOD dataset and a single type of covariate shift. In this appendix, we further
 1444 evaluate our method in a more challenging regime with multiple OOD datasets and multiple covariate
 1445 shifts.

1448 G.1 MIXED OOD

1449 We believe our bounded OOD setting reflects realistic deployment scenarios where OOD inputs
 1450 tend to concentrate within a limited semantic space due to observation boundaries of the data
 1451 stream. However, to further demonstrate robustness beyond this assumption, we conducted additional
 1452 experiments where two different OOD sources are mixed simultaneously during test time while the
 1453 ID stream remains fixed. Concretely, at each time step, OOD samples are randomly drawn from two
 1454 diverse sources rather than a single homogeneous distribution.

1455 Results in Table 11 show that *DART* maintains the best detection performance even under this
 1456 mixed-OOD scenario, indicating that our OOD prototype successfully finds the discriminative axis
 1457 when OOD samples span multiple semantic categories. We observe performance degradation only in

Table 11: Mixed OOD evaluation

Method	ImageNet-O + Places		Places + SUN		SUN + Textures	
	FPR@95TPR	AUROC	FPR@95TPR	AUROC	FPR@95TPR	AUROC
MSP	48.43	83.70	48.65	84.26	43.65	85.52
Energy	51.56	78.42	44.24	82.57	38.31	85.65
Max Logit	48.14	80.20	42.85	83.49	37.29	86.24
GradNorm	86.49	43.25	77.26	57.44	67.54	66.80
ODIN	62.28	79.44	66.10	76.78	60.37	80.13
SCALE	47.62	80.09	40.36	84.39	33.92	87.81
RTL	46.82	81.46	44.77	82.94	40.64	83.98
DART	19.23	94.45	25.96	91.15	18.65	94.80

an extreme case where all five OOD sets are mixed simultaneously—a scenario that fundamentally violates our bounded OOD assumption. However, we believe such extreme mixing rarely occurs in practice, and our assumption holds within realistic deployment boundaries.

G.2 CONTINUAL OOD

We additionally evaluate a more challenging scenario in which the type of OOD data itself changes abruptly over time while the ID stream is fixed. Concretely, we partition the test stream into several temporal segments. In every segment, ID samples are drawn from the same ID distribution, but OOD samples are drawn from a different OOD set in each temporal segment, and we switch the OOD source abruptly at segment boundaries without any prior knowledge of these switches.

Table 12: Continual OOD evaluation

Method	ImageNet-O → Places		Places → SUN		SUN → Textures	
	FPR@95TPR	AUROC	FPR@95TPR	AUROC	FPR@95TPR	AUROC
MSP	48.99	83.63	47.93	84.36	43.77	85.52
Energy	51.07	78.46	44.29	82.38	38.26	85.65
Max Logit	47.58	80.29	43.53	83.40	37.29	86.24
GradNorm	86.24	43.53	76.87	57.52	67.52	66.80
ODIN	62.14	79.40	66.44	76.84	60.41	80.11
SCALE	47.35	80.15	40.91	84.31	33.98	87.81
RTL	48.19	79.64	45.50	80.94	39.65	83.97
DART	12.05	95.49	23.40	93.51	18.80	94.81

Figure 9: AUROC vs. batch

Results in Table 12 indicate that *DART* continues to exhibit stable OOD detection performance across segments, with only modest fluctuations when the OOD set changes, whereas non-adaptive

1512 baselines suffer noticeable drops whenever a new OOD set appears. This suggests that our prototype-
 1513 based tracking does not rely on a single globally fixed linear discriminative axis, but can adaptively
 1514 re-estimate the relevant axis over time, even under abrupt semantic shifts in the OOD distribution.
 1515

1516 G.3 MIXED COVARIATE SHIFT

1518 We conduct additional experiments where a test batch contains samples from multiple different
 1519 covariate shifts. We designed two specific scenarios: a mixture of two shifts and a mixture of all 15
 1520 shifts.

1521 In the setting with the mixture of two shifts, we evaluated settings where two different covariate
 1522 shift types are mixed within a single batch. In this scenario, *DART* maintains robust performance,
 1523 significantly outperforming all baseline methods by a large margin, as shown in Table 13.
 1524

1525 Table 13: Performance comparison under mixed-shift scenarios

Method	Original + Gaussian noise		Gaussian noise + Snow		Snow + JPEG compression	
	<i>FPR@95TPR</i>	<i>AUROC</i>	<i>FPR@95TPR</i>	<i>AUROC</i>	<i>FPR@95TPR</i>	<i>AUROC</i>
MSP	82.63	67.43	85.01	62.49	83.07	68.22
Energy	72.01	76.77	83.91	69.82	89.72	66.83
Max Logit	77.19	73.34	85.40	67.10	85.73	68.66
GradNorm	54.72	83.51	65.33	81.94	72.16	79.49
ODIN	66.85	77.72	45.20	83.46	12.08	97.39
SCALE	66.99	78.21	80.27	71.68	79.15	73.94
RTL	79.84	67.73	81.92	65.32	79.86	71.65
DART	22.04	93.93	0.85	99.62	0.79	99.72

1538 While unrealistic in real-world data accumulation, to push the limits of our method, we also test a
 1539 more extreme scenario involving a mixture of all 15 covariate shifts and report in Table 14. In this
 1540 challenging setting, the performance gap between *DART* and the baselines slightly narrows compared
 1541 to the independent or 2-mixture scenarios. We attribute this slight reduction in the margin to the
 1542 influence of a few specific shift types that are inherently difficult to separate linearly. However, even
 1543 under this extreme condition, *DART* consistently maintains the top-ranking performance (Rank 1)
 1544 among all compared methods.

1546 Table 14: Performance comparison under the mixture of all 15 shifts (Extreme Case)

Method	<i>FPR@95TPR</i>	<i>AUROC</i>
MSP	86.64	62.71
Energy	86.27	63.02
Max Logit	86.46	63.67
GradNorm	69.55	77.45
ODIN	25.45	92.16
SCALE	78.20	71.19
RTL	81.27	65.63
DART	19.68	92.70

1559 G.4 CONTINUAL COVARIATE SHIFT

1561 We additionally evaluate on streams where the covariate shift explicitly evolves over time. Concretely,
 1562 we construct time-varying streams in which the corruption type changes (e.g., from “clean” to
 1563 “gaussian noise”, from “gaussian noise” to “snow”, and from “snow” to “jpeg compression”), while
 1564 samples within each segment remain temporally correlated. This reflects evolving acquisition
 1565 conditions rather than a single static corruption. In Table 15, *DART* maintains strong OOD detection
 performance after each environment change.

1566

Table 15: Continual covariate shift evaluation

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Method	Clean \rightarrow Gaussian noise		Gaussian noise \rightarrow Snow		Snow \rightarrow JPEG compression	
	FPR@95TPR	AUROC	FPR@95TPR	AUROC	FPR@95TPR	AUROC
MSP	68.33	77.90	78.90	71.78	76.98	72.87
Energy	60.76	81.66	78.54	77.16	75.70	76.83
Max Logit	62.29	80.57	77.78	75.59	75.45	76.31
GradNorm	74.72	69.77	71.01	78.73	79.89	72.13
ODIN	68.45	79.06	67.32	80.97	59.59	84.23
SCALE	61.05	81.35	76.72	77.30	70.10	78.89
RTL	69.69	75.57	82.20	70.10	76.42	73.90
DART	15.70	96.15	0.81	99.75	0.98	99.69

(a) Clean \rightarrow Gaussian noise(b) Gaussian noise \rightarrow Snow(c) Snow \rightarrow JPEG compression

Figure 10: AUROC vs. batch

H SYSTEM OVERHEAD

We measure wall-clock inference time for all methods on the same device, after the backbone forward pass, and only for the OOD-score computation (Figure 11). Concretely, we report the total time required to process 100 mini-batches of size 200 (20k test samples in total), using RegNetY-16GF. Under this protocol, DART falls into the group of fast methods: it is markedly faster than recent baselines such as RTL, NNGuide, and MDS-based variants, which require regression fitting, KNN-style searches, or repeated Mahalanobis evaluations.

Figure 11: Inference time

I IMPACT OF FLIP CORRECTION

To quantitatively assess the impact of flip correction, we compare with a variant that does not perform flip correction, DART-NoFlip, using CIFAR-100-C as the csID dataset. As shown in Table 16, flip correction improves the performance of our method.

Table 16: Performance comparison between *DART*-NoFlip and *DART*

Method	SVHN-C		Places365-C		LSUN-C		iSUN-C		Textures-C		Average	
	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑	FPR95 ↓	AUROC ↑		
<i>DART</i> -NoFlip	51.14	71.84	70.14	66.08	44.17	80.15	52.30	78.58	55.37	75.01	54.62	74.33
<i>DART</i>	48.60	79.82	68.66	68.00	44.14	80.29	50.76	79.75	51.48	80.60	52.73	77.69

To further illustrate the effect on performance over time, we additionally analyze CIFAR-100-C vs Textures-C on a per-corruption basis. Figure 12 visualizes the detection performance over time (per-batch AUROC) before and after applying flip correction. For several corruptions—glass blur, snow, fog, and contrast—we observe that once flip correction is triggered, the dual prototype axis is realigned toward the oracle discriminative direction, leading to an abrupt jump and sustained improvement in performance. For shot noise, flip correction occurs early in the stream at the 20-th batch, after which the subsequent batches exhibit much more stable and higher performance compared to *DART*-NoFlip.

Figure 12: Impact of Flip Correction over time (CIFAR-100-C vs. Textures-C)

J IMPACT OF MULTI-LAYER FUSION

We extend Figure 7a to report, for all 15 corruption types, the AUROC of each single-layer variant (Block1, Block2, Block3, FC) and compare them against full *DART* with multi-layer fusion, using CIFAR-100-C as csID and Textures-C as csOOD. See Figure 13 for all results.

This extended analysis reveals that the best-performing layer is highly shift-dependent: under noise-type corruptions such as Gaussian or impulse noise, deeper layers suffer larger degradation, whereas under corruptions such as motion blur and brightness, earlier layers are more severely affected and later layers remain relatively more informative. As a result, relying on any single fixed layer for OOD detection is brittle when the covariate shift type is unknown *a priori*. In contrast, the fused *DART* score

achieves both the highest mean performance and the most stable behavior: averaged over all corruption types, *DART* not only outperforms every single-layer variant, but also exhibits substantially smaller variation than the strongest single-layer baseline (Block3), with standard deviation 0.1661 versus 0.2582 for Block3. These results quantitatively support our claim that multi-layer fusion is crucial for robust OOD detection under unpredictable covariate shift.

Figure 13: Impact of Multi-layer Fusion (CIFAR-100-C vs. Textures-C)

K ANALYSIS ON COLLAPSING SCENARIO

Although very rarely, the discriminative axis tracking of *DART* can sometimes collapse at a particular layer. We further investigated the collapsing cases where perfect alignment was not achieved and identified two distinct failure modes: large angle drift and axis flip. See Figure 14 for the evolution of the angle in each case.

Figure 14: Visualization of Collapsing Scenario

Large angle drifts (Figure 14b) were primarily observed in early layers (e.g., Defocus Blur and Contrast at Layer 0), which we attribute to the limited linear separability of features at this stage; notably, this issue resolves naturally in deeper layers as features become more discriminative.

On the other hand, axis flipping (Figure 14c) was observed in deeper layers (e.g., ‘‘Glass Blur’’ at Layer 5, ‘‘Contrast’’ at Layers 3 and 4). We attribute this primarily to the limitations of the baseline score (MSP), which serves as the reference for prototype initialization and flip detection. Under severe corruptions, the baseline performance degrades significantly, yielding a noisy reference signal

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

that leads to incorrect initialization or a failure to detect directional flips. This observation implies that the stability of the discriminative axis depends on the quality of the reference score, and employing a more robust reference signal could potentially resolve these flipping issues. Crucially, despite these isolated local instabilities, we emphasize that our Multi-layer Fusion strategy effectively mitigates these risks. By aggregating decisions across multiple layers, *DART* compensates for occasional drifts or flips occurring in individual layers, ensuring robust overall performance. Consequently, even in scenarios where specific layers struggle to align, the ensemble model maintains an AUROC greater than 0.9 across all covariate shifts, validating the practical effectiveness of our approach.

L VISUALIZATION OF ROC CURVES

We visualize the ROC curves of our method and the baselines across several evaluation settings. As shown in Figure 15, *DART* achieves lower FPR in this high-TPR region even when overall AUROC is comparable to baselines. Since real-world deployment requires maintaining high ID acceptance while minimizing false alarms, FPR@95TPR better captures the performance that matters in practice.

Figure 15: ROC curves for CIFAR-100 vs. LSUN under different corruptions