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System-level learningofsensory information is traditionally divided

into two domains: perceptual learning that focuses on acquiring

knowledge suitable for fine discrimination between similar sensory

inputs, and statistical learning that explores the mechanisms that

develop complex representations of unfamiliar sensory

experiences. The two domains have been typically treated in

complete separation both in terms of the underlying computational

mechanisms and the brain areas and processes implementing

those computations. However, a number of recent findings in both

domains call in question this strict separation. We interpret

classical and more recent results in the general framework of

probabilistic computation, provide a unifying view of how various

aspects of the two domains are interlinked, and suggest how the

probabilistic approach can also alleviate the problem of dealing

with widely different types of neural correlates of learning. Finally,

we outline several directions along which our proposed approach

fosters new types of experiments that can promote investigations

of natural learning in humans and other species.
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Introduction
System-level characterizations of human learning of sensory

information have been keeping a systematic distinction

between low-level “perceptual learning” and high-level

representational or “statistical learning”. According to this

distinction, these twokindsof learningdiffernotonly in their
3 A large body of statistical learning studies not discussed in the present p
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testing paradigms and stimuli, but also by their main char-

acteristics, the presumed underlying mechanisms of learn-

ing, and the locus where the changes due to learning occur in

the brain (Figure 1).

Perceptual learning (PL) is classically defined as improve-

ment in simple sensory tasks with extensive practice [1,2]

(Figure 1a–e). Early visual studies established that perceptual

learning led to enhanced performance, among other tasks, in

contrast [3,4] and motion detection [5], orientation [6] and

texture discrimination [7,8], hyperacuity [9] and stereoscopic

vision [10]. Extensive practice typically amounts to 5–14 days

of repetitiveexposureover1–2h[11].Sleepingacross thedays

is necessary for PL since it significantly alters the amount of

learning due to consolidation [12,13], and the changes remain

in effect for days, months, even years [14]. While in a few

studies, feedback on the correctness of the observer’s

response during trials was not provided [15], typically, there

is feedback, and it is crucial for improving [16] or even

permitting learning [17]. The amount of learning is usually

measured in improvements of a threshold indicating a change

in sensitivity [2]. There are several hallmarks of perceptual

learning that cast this type of learning as a low-level phenom-

enon. The first is the specificity of learning: the acquired

improvement in performance does not hold when conditions

arealtered(Figure1b–d).Examplesofsuchalterationsarethe

stimulus being presented at a different  location [18,19],

orientation [20], spatial frequency [6], paired with different

background [20] or seen through a different eye [18]. Espe-

cially eye-specificity has been used to argue for a low-level

origin of PL: since merging of monocular representations

happens in V1, eye-specific differences require learning also

to occur in the primary visual cortex [21]. PL has also been

associated with tasksusing higher-level stimuli in a number of

expertise-learning studies that depended on fine discrimina-

tions of sensory input [22,23] (Figure 1c).

Statistical learning (SL) refers to the type of representa-

tional learning that is purely observational without any

task or feedback, which automatically and implicitly re-

represents repeatedly appearing spatial and temporal

patterns in the sensory input [24,25] (Figure 1f–k). Origi-

nally introduced in the domain of language learning for

solving the problem of word segmentation [26], statistical

learning has been later predominantly investigated in the

domain of vision [27,28]3. Initial results established that

adults and infant alike demonstrate spatial and temporal
aper is focused on the domain of language development (see [25,29,30]).
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Figure 1
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Classical perceptual and statistical learning and their neural correlates. The paradigms (left), typical behavioral results (middle), and

computational frameworks (right) of perceptual learning (a–e, pink background) and statistical learning (f–j, blue background). Bracketed numbers

in panels e, j, l indicate references. (a, b) Classical orientation discrimination task with the corresponding performance improvement in the trained

condition (drop in blue curve) and specificity (i.e. a lack of transfer of performance to a different condition, initial jump in red curve). (c, d)
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statistical learning based on both joint and conditional

probabilities as well as higher-order embedded

structures of previously unknown inputs [31–34]

(Figure 1g,i). These results were extended to various

modalities (visual, auditory, tactile) [35–38], to different

stimulus complexities [39,40], and to other animals spe-

cies [41–45]. This ubiquitousness fueled the proposal that

statistical learning is a domain-general process that might

serve as the fundamental learning method for acquiring

internal representations of the environment [38,46] even

though some auxiliary domain-specific constraints might

exist [47]. SL is automatic and persists for a long time [48],

sleep does not improve it [49,50] and while attention can

influence SL [51], it is not required for successful learning

[52]. Statistical learning has also been linked to or con-

trasted with higher level abstract concept learning [53]

and rule learning [54,55]3

Accumulating recent evidence suggests a
vanishing distinction between PL and SL
While earlier studies have already found evidence indicating

an overlap between the neural substrates and computational

features of PL and SL [15,56,57�], more recent reports greatly

accelerated this convergence due to the increasing similarity

in stimulus complexity and task specificity between experi-

ments conducted in the two domains (Figure 2).

In the domain of PL, it has been firmly established by

now that PL induces changes not only in V1 but in a large

set of brain regions and influencing post- sensory pro-

cesses as well [58,59]. PL is task- and context-specific

[60], it appears to share common neural mechanisms with

decision making processes in monkeys [61,62] and

humans [63], and both exogenous and endogenous spatial

attention affect it [64,65]. Even pure mental imagery

without any sensory input can induce PL [66]. Using a

“double-training” learning paradigm, various studies

reported enhanced or complete transfer of the learned

ability to a new condition [67,68] not only across different

locations but across different physical properties that

share “conceptual level” similarities [69��]. Transfer

was enhanced when trials from multiple versions of the

same task were delivered in a fixed order [70], transfer

depended on the precision of the transfer test, not only of
(Figure 1 Legend Continued) Perceptual expertise task of bird species dis

(blue curve) and generalization to previously unseen birds (transfer i.e. no in

computational models in PL assuming tuning changes in the representation

connections (blue). (f–g) Classical spatial visual SL task with the inventory, 

the training scenes (“chunks”) vs. random shape combinations used as test

scenes indicating generalization of learning. (h–i) Same as f–g but with clas

images as a training sequence and shape triplets presented consecutively a

computational models in SL based on non-probabilistic (green) and probab

computationally motivated connectionists learning (brown). (l) Reports on ne

dimensions: the complexity of the reported neural correlate modulated by le

within the cortical hierarchy (y axis) colored in red/blue according to which 

indicate typical combinations of neural correlates and involved areas of PL 

([113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,

128,129,130�,131,132,133,134,135,136�,137,138,139,140,141,142�,143,144,
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the original training task [71], and in general, the rela-

tionship between the type of the training and test tasks

determined the success of generalization [72–74]. In

addition, increasing stimulus complexity also facilitates

generalization [75]. Higher-level generalization in PL has

been investigated with training to play video games and

learning was manifested not by simply having better

attention, but by improved ability to generate templates

for task learning [76,77]. Such structure-learning revealed

by a faster learning rate could occur independently from

the traditional immediate transfer in performance during

PL [78�].

In the domain of SL, there has also been a steady progress

of expanding and concretizing the areas and the extent to

which SL influences or changes perceptual processes

(Figure 2). SL interferes with the process of extracting

summary statistics of scenes [79], attention is spontane-

ously biased to structures identified implicitly by SL

[79–81], and SL reduces perceived numerosity [79,80].

SL enhances memory for element of learned triplets and

reduces memory for inserted distractors [82], alters the

internal representation of pair elements based on their

predictability [83], and it can create novel object associa-

tions based on transitive relations [84�]. Importantly,

these kinds of associations do not only establish novel

links between the identity of elements, but also influence

perception of features across elements. For example, after

learning that two elements belong to the same pair, seeing

one of them at a different size will influence the obser-

ver’s perception of the size of the other element [85��].
These effects have been typically conceptualized as top-

down influences reaching down to even the most basic

attributes, such as motion perception [86] or rivalry [87],

and they can be manifested neurally at the lowest level of

cortical representations [88] similarly to findings in PL.

The above summary suggest that in contrast to their

original conceptualization, PL and SL share characteris-

tics in almost every domain. Both of them can influence

various neural metrics at multiple levels of the cortical

hierarchy from primary sensory to high-level areas, both

of them involve strong top-down effects, and show flexi-

ble generalization depending on context.
crimination showing both improving performance with trained birds

itial jump in green curve). (e) Structure and references of the dominant

al units (orange) or re-weighting of representation-to-decision

the composed set of training scenes, the segmented substructures of

 scenes, and the corresponding familiarity performance with the tests

sical temporal visual SL task using a long temporal chain of shape

s test stimuli. (j) Structure and references of the dominant

ilistic (turquoise) latent chunk learning, and on biologically and

ural correlates of PL (red) and SL (blue) ordered along two relevant

arning (x axis), and the rough position of the investigated brain area

learning was found to influence the area predominantly. Dashed areas

(red) and SL (blue)

145,146]).
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Figure 2
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Vanishing differences between perceptual (PL) and statistical learning (SL). The relationships between PL (pink area) and SL (blue area)

mapped onto the two dimensions of stimulus complexity (x axis) and task specificity (y axis). In recent studies [70,80,85��] using more complex

stimuli and a larger variability in the selected task that can create more natural conditions (green area), the classical separation between PL and

SL waned. However, a systematic exploration on the integration of PL and SL (striped area) with specific new paradigms (A,B,C & D) still awaits.

Bracketed numbers indicate references for previous studies [6,22,23,26,28,32,33,67,70,80,83,85,100,103,104,106,147–149], while letters indicate

proposed new experiments (see legend on the right).
A unified probabilistic framework for PL and
SL
Given the diminishing difference between PL and SL, a

parsimonious approach to sensory learning is to define a

framework that can seamlessly integrate studies and

results in the two domains. A particularly suitable scheme

is the probabilistic learning framework that has emerged

in the field of machine learning [89], cognitive psychology

[90], and neuroscience [91,92] over the last two decades.

This framework inherently combines sensory bottom-up

and experience-based top- down influences relying on

their relative uncertainty to describe information proces-

sing in the brain [92–94] . More recent hierarchical

extensions of the framework under the name of Hierar-

chical Bayesian Models (HBM) can potentially capture

the full complexity of human learning including high

cognitive functions such as abstract concept formation,

language acquisition and causal learning [95,96].

Our main proposal is that that PL and SL should be treated

jointly in the framework of HBM, since they are not two

separate types of learning, but two extreme testing para-

digms of the same complex learning mechanism, in which

either more complex structures and context (in case of PL)

or the treatment of low level fine sensory features (in case of

SL) have been deliberately eliminated (Figure 3).
www.sciencedirect.com 
Although there were earlier studies linking the probabilis-

tic framework to either PL [97,98] or to SL [99,100], no

studies have explored the benefit of treating PL and SL

jointly under the same HBM framework. This is surprising,

as the HBM framework inherently fits the overwhelming

majority of natural learning situations, where both details of

features and the more global structure and context of the

sensory information might be relevant for successfully

solving the task at hand.

By explicitly capturing different aspects of the input and

the learning task through structured priors, the HBM

approach is compatible and includes as special cases the

Reweighting Models [56], two-stage models [101], and the

Reverse Hierarchy Theory [102] of PL. By using a hierar-

chy of latent variables, the HBM approach is also compati-

ble and includes as a special case the two-layer probabilistic

chunk learning models of SL that are already known to

capture human behavior better than the alternative asso-

ciative learning and counting models [100,103]. Therefore,

HBM can accommodate the wide variety of recently estab-

lished results in the domains of both PL and SL, and

facilitates a clearer separation of their causes.

Importantly, the integrated viewpointofHBM also provides a

useful guiding principle to identify the kind of experiments
Current Opinion in Neurobiology 2019, 58:218–228
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Figure 3
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Unifying PL and SL in a probabilistic framework. HBM: The scheme of the general Hierarchical Bayesian Model that provides a unified

computational framework for classical perceptual (a) and statistical learning paradigms (b), as well as for the combination of the two (c). (a–c): Probabilistic

interpretation of the three paradigms, each with the instantiation of the generative HBM within the given paradigm (left) and one example experiment (right)

together with levels not controlled by the paradigm (red dashed rectangles). Bottom row: Features of each paradigm and questions that they can address.

(a) PL example of a two alternative forced choice contrast discrimination task. (b) SL example of visual patterns learning. (c) Joint Statistical Perceptual

Learning (SPL) of contrast discrimination with structured reference stimuli. The reference contrast is not selected randomly but it follows the order defined

by sequentially chosen reference contrast-pairs from the inventory. While PL with randomly varying reference contrast levels is excessively hard, we expect

that providing a statistical structure to the changes across reference levels (imitating natural conditions) enables and enhances PL. In the HBM of SPL, the

observer’s perception is formalized with a probability distribution over the stimulus (S) given her sensory evidence (Ŝ):

(1) P(S|Ŝ) / ÐÐ
P ŜjS; u
� �

P(S|I) P(u,I) du dI

where u, and I denote, the sensory parameters and the structure of the task (c.f. inventory), respectively, and P (S|Ŝ) captures the observer’s belief

of the true stimulus given her sensory representation. Since under natural conditions, the observer does not know the structure (I) or the sensory

parameters (u) given the structure, s/he has to learn them jointly:

(2) P(u,I|Ŝ1:t, F1:t) / R
P(Ŝt|St,u) P(St|Ft, I) dSt P(u, I|Ŝ1:t�1, F1:t�1)

where F denotes the feedback (not shown in the graphical models) and t is the trial number. The three terms on the right side of Eq. (2) can be

derived from the generative model (shown in c) and represent the low-level sensory model (P(Ŝt |St,u)), the high-level representation of the stimulus

based on the task structure (P (St|Ft, I)), and the prior distribution which is the posterior at the previous time step (P(u, I|Ŝ1:t�1 ,F1:t-1)). In this

framework, classic PL (a) is framed as parameter learning [98], and classic SL (b) as structure learning [100]. PL without SL emerges when there is

no uncertainty in the task structure or the feedback shows the true stimulus, thus the term P (St|Ft, I) becomes a Dirac-delta. SL without PL is

captured when there is no uncertainty in the sensory process thus the term P(Ŝt |St, u) becomes a Dirac-delta. When PL and SL occur jointly, the

interaction between the two types of learning can be investigated by using a PSL paradigm (c) and modelled by Eq. (2).
that could advance a fuller understanding of the nature of

human and animal learning. The first type of experiments

(Figure2,GroupsA,B)couldusemulti-elementstimuliandir/

relevant cover stories with a PL task to explore how the effect

of such sensory and cognitive context could be systematically

captured as a consequence of priors acquired earlier by SL
Current Opinion in Neurobiology 2019, 58:218–228 
(Figure 3c). These experiments could handle in a coherent

manner rowing [70], generalization results of double-training

[67,68,104], imagination-based learning [66], interaction

between orientation detection and categorization [105] and

perceptual biases due to SL [79,80,81,82,84�,85��,87]. The

second type of experiments (Figure 2, Groups C,D) could
www.sciencedirect.com
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Figure 4
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Linking the proposed HBM framework for PL and SL to different neural correlates through a probabilistic sampling-based neural

implementation. (a) In the HBM (left), the stimulus (S) is jointly described by observed and latent features of the environment, which are

represented by momentary posterior distributions, P (XLi), over possible values of latent variables, XLi, at different levels of abstraction.

(b) According to the neural sampling hypothesis, covarying neural activities within different cortical areas directly represent the probability

distributions over the latent variables of the HBM as samples from that distribution. For each probability distribution (depicted here for latent

variables at a middle level of abstraction shown in (a), the individual samples of the joint instantaneous firing rates of neurons at a given time

frame (dots) accumulate through time (y axis, also color code of dots), and they jointly approximate the probability distribution of the latent

variable (grey 2D distribution on top) with an increasing precision. (c) Various previously reported neural correlates of sensory learning that can be

potentially derived from the sampling-based probabilistic representation of latent variables. These include shifts and sharpening of tuning curves,

decorrelation of neural responses, and changes in gain, population codes [108�,112��], and, functional connectivity of neural clusters.
extend the first one by using natural scene inputs instead of

artificial stimuli and could be applied to explain the high

generalization of bird (and other) experts [22,23], task-

structure learning [78��] and increased PL performance after

video-game playing [77,106].

A sampling-based probabilistic
implementation for HBMs exploring PL and SL
One of the main obstacles hindering progress in PL and

SL research is due to correlating widely different aspects
www.sciencedirect.com 
of neural activity with learning (Figure 1l, x axis).

Although our proposal of introducing HBMs for the

computational treatment of learning seems to further

complicate this problem, in fact, the probabilistic view

offers a unification and clarification on earlier results. As

the probabilistic computational framework inherently

requires a new type of conversion and approximation

from abstract computational descriptions by probability

distribution to neural signals [91,107], the new represen-

tations can provide a principled way to establish a rigorous
Current Opinion in Neurobiology 2019, 58:218–228
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link between the different types of neural correlates of

learning. In particular, sampling-based approximations

have been argued to fit well the available neural evidence

for perception and learning in the brain [92,108�]
(Figure 4). Various other implementational frameworks

can also capture top-down influences of neural signals

such as effects of decision making and attention based on

recurrency. These include recursive neural network mod-

els [109], Predictive Coding [110] or Probabilistic

Population Codes for Bayesian inference making [111].

However, sampling-based methods offer a potentially

more precise link between computations and various

manifestations neural correlations including neural tun-

ing curves, response means and variability, correlations

and population sparseness [112��] that can likely be

recursively extended to higher levels of the hierarchy.

Conclusions
We proposed that PL and SL should be treated uniformly

and jointly under the HBM framework because this would

enable addressing more natural and complex learning pro-

blems than before, and because combined with the proba-

bilistic sampling approximation, such a treatment could link

more successfully abstract computations of learning with

various cortical and subcortical processes. Following this

approach, a number of new experimental paradigms can

be developed that combine the characteristics of PL and SL

paradigms for a more in-depth investigation of human and

animal learning and its neural correlates.
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