
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFORMERS LEARN TO IMPLEMENT MULTI-STEP
GRADIENT DESCENT WITH CHAIN OF THOUGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain of Thought (CoT) prompting has been shown to significantly improve the
performance of large language models (LLMs), particularly in arithmetic and rea-
soning tasks, by instructing the model to produce intermediate reasoning steps.
Despite the remarkable empirical success of CoT and its theoretical advantages in
enhancing expressivity, the mechanisms underlying CoT training remain largely
unexplored. In this paper, we study the training dynamics of transformers over a
CoT objective on an in-context weight prediction task for linear regression. We
prove that while a one-layer linear transformer without CoT can only implement
a single step of gradient descent (GD) and fails to recover the ground-truth weight
vector, a transformer with CoT prompting can learn to perform multi-step GD
autoregressively, achieving near-exact recovery. Furthermore, we show that the
trained transformer effectively generalizes on the unseen data. Empirically, we
demonstrate that CoT prompting yields substantial performance improvements.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) have demonstrated significant success across
various language modeling tasks, achieving state-of-the-art performance in numerous domains
(OpenAI, 2023). Remarkably, these models have also unlocked complex reasoning abilities, par-
ticularly in mathematical problem-solving and coding tasks (Chowdhery et al., 2023; Anil et al.,
2022; Achiam et al., 2023). A key method driving this advancement is the Chain of Thought (CoT),
which enables LLMs to generate intermediate reasoning steps autoregressively rather than providing
a direct answer. This process effectively improves the model’s capacity to solve complex problems.
In practice, CoT reasoning can be elicited either by providing few-shot CoT examples or by append-
ing prompts like “let’s think step by step” to bootstrap the model’s response (Kojima et al., 2022;
Wei et al., 2022; Suzgun et al., 2022; Nye et al., 2021).

Theoretically, CoT enables LLMs to perform multi-step sequential computations by generating in-
termediate results, thereby significantly improving the expressive power of transformers (Li et al.,
2024b; Feng et al., 2024; Merrill & Sabharwal, 2023a) compared to standard decoder transformers
that generate direct outputs without intermediate reasoning (Liu et al., 2022; Merrill & Sabharwal,
2023b). Despite these theoretical insights, it remains unclear how transformers are trained on CoT
data to effectively execute multi-step reasoning. Furthermore, it is unknown whether a transformer
trained specifically with an auto-regressive objective with multi-step CoT can substantially outper-
form one trained to directly output answers without CoT.

This paper takes an initial step beyond expressiveness to study the training dynamics of transformers
when trained on CoT data. Specifically, following the modified in-context learning (ICL) setting on
linear regression proposed by Ahn et al. (2023); Zhang et al. (2023), we use it as a testbed to analyze
the training process with the CoT framework implemented. We name the task in-context weight
prediction where the goal is to predict the linear weight vector from the sequence of input prompts.
Instead of performing direct ICL and outputting a prediction, the transformer with CoT prompting is
allowed to generate multiple intermediate steps before arriving at the final answer. We theoretically
investigate the transformer’s training trajectory on the CoT objective and show the expressiveness
gap between transformers trained with CoT and those without. Our main results show this separation
is learnable: gradient-based algorithm can learn the constructed transformer with CoT.

We summarize our contributions as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Expressiveness Gap. We characterize the global optimum of the population loss for the in-
context weight prediction task on linear regression using a one-layer transformer without CoT
prompting. Our results show that, without CoT, the transformer at the global minimizer effec-
tively performs a single step of gradient descent (GD)(Theorem 3.1), leading to significant errors
in predicting the d-dimensional weight vector w∗ ∈ Rd when the number of examples for ICL
is n = Θ̃(d) (Corollary 3.1). In contrast, we demonstrate that a one-layer transformer with CoT
prompting can achieve near-exact recovery by executing multi-step GD (Theorem 3.2).

• Global convergence. We prove the convergence results of running gradient flow on the popu-
lation CoT loss under mild assumptions (Theorem 4.1). Our analysis uses a novel stage-wise
approach combining dynamics analysis and landscape properties: the parameters initially ap-
proach the global minimizer, followed by local convergence toward the final solution. Our proof
technique involves a novel characterization of the complicated population gradient. Furthermore,
we prove that the trained transformer can exhibit both in-distribution and out-of-distribution gen-
eralization (Theorem 4.2) at inference time. We are the first to establish the learnable separation
between transformers with and without CoT under the in-context linear regression setting. We
empirically validate that the trained transformer converges to the minimizer predicted by our the-
ory, with a distinct performance gap between models trained with and without CoT prompting.

Outline. In Section 2, we formalize the problem setting including the data model, the one-layer
transformer architecture, and the CoT prompting format. In Section 3, we theoretically show the
performance gap between the transformer with and without CoT. Section 4 consists of our main
results, including our dynamics analysis and out-of-distribution (OOD) generalization result. Sec-
tion 5 empirically validates the advantage of CoT.

1.1 RELATED WORKS

Training dynamics of transformers. Several works have studied the training process of spe-
cific transformer architectures. Jelassi et al. (2022); Li et al. (2023) examined the training process
and sample complexity of Vision Transformer (Dosovitskiy et al., 2020). Tarzanagh et al. (2023);
Ataee Tarzanagh et al. (2023); Li et al. (2024a) explored the connection between the optimiza-
tion landscape of self-attention mechanisms and the Support Vector Machine problem. Tian et al.
(2023a;c) provided insights into the training dynamics of the self-attention and MLP layers during
the training process respectively.

A related line of research focuses on Markov-like data models. Bietti et al. (2024) studied the in-
duction head mechanism from the perspective of associative memory. Nichani et al. (2024) demon-
strated that a simplified two-layer transformer provably learns a generalized induction head on latent
causal graphs. Chen et al. (2024b) further proved that a modified two-layer multi-head transformer
can learn in-context generalized n-gram. Edelman et al. (2024) investigated the multi-stage phase
transitions during training on bigram and n-gram (n ≥ 3). Additionally, Makkuva et al. (2024)
studied the loss landscape of transformers trained on sequences from a Markov Chain.

Another growing body of literature aims to understand the training dynamics of in-context learning
(ICL). Garg et al. (2022) first empirically studied the ICL capabilities of transformers over a variety
of function classes. Akyürek et al. (2022); Von Oswald et al. (2023) investigated the behavior of
transformers on random ICL instances of linear regression. Several works have also established the
existence of deep transformers capable of implementing multi-step gradient descent (GD) across dif-
ferent domains (Fu et al., 2023; Bai et al., 2023; Giannou et al., 2023). Mahankali et al. (2023); Ahn
et al. (2024) analyzed the loss landscape of the linear regression ICL task and Zhang et al. (2023)
proved global convergence on a one-layer linear self-attention layer using gradient flow. Gatmiry
et al. (2024) demonstrated that a linear looped transformer with specific update procedures can learn
to implement multi-step GD for linear regression. Further analyses of training dynamics under more
realistic assumptions about data models and architectures have been conducted by Huang et al.
(2023); Kim & Suzuki (2024); Chen et al. (2024a). For a detailed discussion see Appendix A.1.

Compared to prior works, our study and Huang et al. (2023); Ahn et al. (2024); Zhang et al. (2023);
Tarzanagh et al. (2023); Nichani et al. (2024); Kim & Suzuki (2024); Wang et al. (2024); Chen et al.
(2024b) all use similar reparameterizations that combine key and query matrices to simplify the
training dynamics. Moreover, many previous studies (Tian et al., 2023a; Zhang et al., 2023; Huang
et al., 2023; Nichani et al., 2024; Kim & Suzuki, 2024; Chen et al., 2024a; Gatmiry et al., 2024)
adopted the population loss to facilitate the analysis of these dynamics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

A closely related work is Gatmiry et al. (2024), which shows that a looped transformer can imple-
ment multi-step GD on the ICL linear regression task to directly predict the query answer in context.
In comparison, the goal of our setting is to predict the weight vector from the input examples using a
realistic CoT autoregressive generation process. Theoretically, we also establish a performance gap
between transformers with CoT and those without. See Appendix A.2 for a more detailed discussion.

Chain of Thought and Scratchpad The CoT prompting method was first introduced by Wei et al.
(2022) to enhance the multi-step reasoning capability of LLMs. Before the formalization of CoT,
Nye et al. (2021) demonstrated that allowing language models to generate intermediate results
on “scratchpads” dramatically boosts the multi-step computation ability of LLMs. Wang et al.
(2022b); Yao et al. (2024); Creswell et al. (2022); Zhou et al. (2022) further proposed variants of the
CoT/scratchpad method to improve the efficiency and reliability of generation.

Recently, several works have attempted to understand CoT from both experimental and theoreti-
cal perspectives. Wang et al. (2022a); Saparov & He (2022); Shi et al. (2022); Paul et al. (2023)
empirically studied the capability of CoT, providing valuable insights on its reasoning processes.
Meanwhile, Wu et al. (2023); Tutunov et al. (2023); Hou et al. (2023); Cabannes et al. (2024) inves-
tigated CoT through the lens of mechanistic interpretability. On the theoretical side, Liu et al. (2022);
Merrill & Sabharwal (2023a); Li et al. (2024b); Feng et al. (2024) explored the expressive power of
transformers with CoT, showing that CoT can significantly extend the expressivity of transformers
in the context of circuit complexity. Hu et al. (2024) investigated the statistical foundations of CoT.
However, the training dynamics of CoT remain largely unexplored. To the best of our knowledge,
this work is among the first theoretical analyses of training dynamics on CoT/scratchpad objectives.

2 PRELIMINARIES

In this section, we describe the modified in-context learning linear regression task, i.e. in-context
weight prediction, the one-layer linear self-attention architecture, and the Chain of Thought (CoT)
prompting formulation.

Notation We use [T] to denote the set {1, 2, ..., T}. Scalars are in lower-case unbolded letters
(y, α, etc.). Matrices and vectors are denoted in upper-case bold letters (W ,V , etc.) and lower-case
bold letters (x,w, etc.), respectively. W[i,j],W[i,:],W[:,j] respectively denotes the (i, j)-th entry,
i-th row, and j-th column of the matrix W . W[:,−1] means the last column of the matrix W . The
notation Wij denotes block matrices/vectors on the i-th row and j-th column according to context.
For norm, ∥·∥ denotes ℓ2 norm and ∥ · ∥F denotes the Frobenius norm. We use 1{·} to denote the
indicator function. We use Õ(·) to hide logarithmic factors in the asymptotic notations.

2.1 IN-CONTEXT WEIGHT PREDICTION

Previous works (Zhang et al., 2023; Ahn et al., 2023; 2024; Akyürek et al., 2022; Mahankali et al.,
2023) focus on the in-context learning (ICL) task on linear regression. We suppose the data sequence
is sampled from a linear regression task where the ground-truth

w∗ ∼ N (0, Id) xi ∼ N (0, Id) yi = w∗⊤xi for all i ∈ [n]. (1)

The goal of in-context learning is to predict the correct label w∗⊤xquery given a query xquery and
the previous example pairs (xi, yi). Most previous works (Zhang et al., 2023; Ahn et al., 2024;
Mahankali et al., 2023) show the transformer predicts the query label yquery by implicitly doing a
one-step gradient descent without predicting the linear classifier w∗.

In this work, we go one step further: instead of directly outputting the query label, we require the
transformers to implement gradient descent to learn the ground-truth weight vector w∗. We call this
task in-context weight prediction for linear regression. Specifically, the data sequence is in the
following format:

Z0 =

x1 · · · xn 0
y1 · · · yn 0
0 · · · 0 w0

0 · · · 0 1

 :=

 X 0
y 0

0d×n w0

01×n 1

 ∈ Rde×(n+1), (2)

where X := [x1, · · · ,xn] is the data matrix and w0 is the initialization of the linear parameter ŵ.
We assume w0 = 0d for simplicity, and define de = 2d + 2. Our setting is similar to the setting in
Bai et al. (2023) where multi-layer transformers are constructed to do explicit multi-step GD on the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

weight vector ŵ. We separate the input example space and the weight vector space as in Bai et al.
(2023) (the {pi}i∈[N+1]) in order to facilitate training. Moreover, we add a dummy token (an extra
1) at the end of each token similar to what Bai et al. (2023) did in their input sequence format.

2.2 LINEAR SELF-ATTENTION LAYER

We consider a one-layer linear self-attention (LSA) module with residual connection, following the
setting in Zhang et al. (2023); Ahn et al. (2023); Gatmiry et al. (2024): we remove the softmax(·)
non-linearity, consolidate the projection and value matrix into a single matrix V ∈ Rde×de , and
merge the key and query matrices into W ∈ Rde×de . We denote

fLSA(Z;V ,W) = Z + V Z · Z
⊤WZ

n
(3)

The prediction of the transformer will be the last token of the output sequence, namely

fLSA(Z;V ,W)[:,−1] = Z[:,−1] + V Z ·
Z⊤WZ[:,−1]

n
(4)

Since the first (d+1) entries of the full weight tokens (0, 0,w, 1) are zero, only part of the W and
V affect the prediction. We can rewrite the parameter V ,W into block matrices

V =

V11 V12 V13 V14

V21 v22 V23 v24
V31 V32 V33 V34

V41 v42 V43 v44

 ,W =

W11 W12 W13 W14

W21 w22 W23 w24

W31 W32 W33 W34

W41 w42 W43 w44

 ∈ R(2d+2)×(2d+2)

where the block matrices are in the following shape (i, j ∈ {1, 2}):

V2i−1,2j−1,W2i−1,2j−1 ∈ Rd×d;V2i−1,2j ,W2i−1,2j ,V
⊤
2i,2j−1,W

⊤
2i,2j−1 ∈ Rd×1; v2i,2j , w2i,2j ∈ R.

In the following sections, we will show only V31, W13, and w24 affects the prediction. We will
further prove that all other entries are always zero along the training trajectory if initialized at zero.

2.3 CHAIN-OF-THOUGHT PROMPTING

In language modeling tasks, transformers have been proven to be versatile in various downstream
tasks. However, transformers struggle to solve mathematical or scientific problems with one single
generation, where several reasoning steps are required. CoT was then proposed to make transformers
learn to generate intermediate results auto-regressively before reaching the answer.

With CoT, we allow the transformer to generate k steps before it outputs the final prediction ŵk

for the ground-truth w∗. Specifically, given the generated input sequence Ẑi at the i-th step of
generation, we have fLSA(Ẑi)[:,−1] as the prediction of the next token ((i+1)-th token), and append

it to the end of the current sequence s.t. Ẑi+1 =
[
Ẑi, fLSA(Ẑi)[:,−1]

]
. After k generation steps, the

CoT process induces k intermediate sequences {Ẑi}ki=1 in the following form:

Ẑi =

x1 · · · xn 0 ⋆ · · · ⋆
y1 · · · yn 0 ⋆ · · · ⋆
0 · · · 0 w0 ŵ1 · · · ŵi

0 · · · 0 1 1 · · · 1

 ∈ Rde×(n+i+1), i ∈ [k] (Inference)

Here, we define ŵi := fLSA(Ẑi−1)[d+2:2d+1,−1] as the i-th step prediction for the weight vector.
The other entries in the same column are irrelevant and we denote them as ⋆. Finally, the transformer
inputs the last generated sequence Ẑk back to the transformer once again to generate the final output
ŵk+1 := fLSA(Ẑk)[d+2:2d+1,−1] as the prediction of the weight vector w∗.

Different from the inference time generation, the training process is similar to pre-training on the
ground-truth sequence to predict the next token. Specifically, we input the transformer with CoT
ground-truth sequences Zi:

Zi =

x1 · · · xn 0 0 · · · 0
y1 · · · yn 0 0 · · · 0
0 · · · 0 w0 w1 · · · wi

0 · · · 0 1 1 · · · 1

 ∈ Rde×(n+i+1), i ∈ [k] (Training)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where wi = wi−1 − η · X(X⊤wi−1−y⊤)
n is the ground-truth intermediate weight vector after i

gradient steps on the linear regression objective. Each gradient step adopts a fixed learning rate η
for all possible training instances {X,w} when generating the ground-truth sequence Zi. Note that
Zi is the corresponding ground-truth sequence of Ẑi.

In the training objective for the i-th step, the transformer is required to predict the next token
Zi+1[:,−1] := (0d, 0,wi+1, 1) given the i-th ground-truth intermediate sequence Zi. Finally, we
predict the final ground-truth weight vector w∗ with the final intermediate sequence Zk. The CoT
training objective given a sample prompt X,y then becomes:

ℓCoT(X,w∗;V ,W) =
1

2

k∑
i=0

∥∥fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)
∥∥2 (5)

Here we denote wk+1 := w∗ for clarity. Following Zhang et al. (2023); Nichani et al. (2024); Kim
& Suzuki (2024); Tian et al. (2023b); Chen et al. (2024a); Gatmiry et al. (2024), we consider the
gradient flow dynamics over the population loss of the CoT objective:

LCoT(V ,W) = Exi∼N (0,Id),w∗∼N (0,Id)

[
ℓCoT(X,w∗;V ,W)

]
(6)

For clarity, we write the expectation as EX,w∗ [·]. The following differential equation gives the
gradient flow dynamics of the parameters:

dθ

dt
= −∇LCoT(θ), θ := (V ,W).

When measuring the performance after training, we apply the CoT inference procedure to generate
k intermediate sequences {Ẑi}ki=1 and consider the final output token f(Ẑk)[:,−1] by inputting the
last generated sequence Ẑk. The performance evaluation is measured on the error between the final
output f(Ẑk)[:,−1] and the ground-truth w∗:

LEval(V ,W) =
1

2
EX,w∗

[∥∥∥fLSA(Ẑk)[:,−1] − (0d, 0,w
∗, 1)

∥∥∥2] (7)

When CoT prompting is not used (k = 0), the evaluation loss LEval is equivalent to LCoT.

3 EXPRESSIVENESS IMPROVEMENT WITH CHAIN OF THOUGHT

In this section, we theoretically explore the performance gap on our data model between transform-
ers with CoT and those without. We first prove that a one-layer transformer without CoT can only
implement a one-step GD and cannot recover the ground-truth, while it can near-exactly predict the
ground-truth parameter with CoT by implementing multi-step GD.

3.1 ONE-LAYER TRANSFORMER CANNOT RECOVER GROUND-TRUTH

For the ICL linear regression task, the optimal prediction given by a one-layer linear transformer is
equivalent to a single step of GD on the MSE objective of linear regression (Mahankali et al., 2023).
What about our task on predicting the ground-truth weight vector w∗ in context? The following
theorem proves that the optimal solution is still a one-step GD solution.
Theorem 3.1 (Lower bound without CoT). If the global minimizer of LEval(V ,W) is (V ∗,W ∗),
the corresponding one-layer transformer fLSA(Z0)[:,−1] implements one step GD on a linear model
with some learning rate η∗ = n

n+d+1 and the transformer outputs (0d, 0,
η∗

n Xy⊤, 1).

We briefly present the high-level intuitions in the proof and the detailed proof is deferred to Ap-
pendix B.1. We use a similar technique in Mahankali et al. (2023) when proving the optimality
of one-step GD in the ICL task. The key strategy of the proof is to replace (0d, 0,w

∗, 1) in the
evaluation loss LEval(V ,W) (Equation (7)) with (0d, 0,

η∗

n Xy⊤, 1) in the following form.

LEval(V ,W) =
1

2
E

[∥∥∥∥fLSA(Z0)[:,−1] −
(
0d, 0,

η∗

n
Xy⊤, 1

)∥∥∥∥2
]
+ C

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In order to prove this equation above, we show the gradient of the original loss Equation (7) and
this formula are identical. We first obtain the closed-form formula of the expected gradient for both
sides with regard to X,w∗. Then we use the symmetric property of the distribution of X,w∗ to
simplify the gradient expressions, and eventually prove them equal.

The equivalent form of loss indicates that the evaluation loss only depends on the ℓ2 distance
between the output of the linear self-attention module and

(
0d, 0,

η∗

n Xy⊤, 1
)

. Therefore, any
(V ,W) is a global minimizer of this loss function if and only if the output of fLSA(Zk)[:,−1] is
(0d, 0,

η∗

n Xy⊤, 1). Meanwhile, one can assign

V ∗ =

 0 0 0 0
0 0 0 0

−η∗I 0 0 0
0 0 0 0

 ,W ∗ =

0 0 I 0
0 0 0 −1
0 0 0 0
0 0 0 0

 (8)

and the one-layer transformer achieves the optimal solution, which concludes the proof.

Is a one-step gradient solution good enough? Most of the previous ICL work Zhang et al. (2023);
Ahn et al. (2023); Gatmiry et al. (2024) consider the number of examples n → +∞ when d is
fixed. In this case, the one-step GD solution can perfectly find the ground-truth weight vector w∗.
However, a simple corollary of this theorem indicates that the one-step solution has a non-negligible
error when there are limited samples, e.g. n = Θ̃(d). This number of examples n is required to
guarantee the reconstruction of w∗ ∈ Rd.

Corollary 3.1. For any parameters (V ,W) in the one-layer transformer, LEval(V ,W) ≥ Θ
(

d2

n

)
.

Moreover, if n = Θ̃(d),LEval(V ,W) = Θ̃(d)
d→+∞−−−−−→ +∞.

Proof. By Theorem 3.1, we directly calculate the evaluation loss on the global optimum:

LEval(V ,W) ≥ 1

2
EX,w∗

∥∥∥∥η∗n XX⊤w∗ −w∗
∥∥∥∥2 =

1

2
EX tr

(
I − η∗

n
XX⊤

)2

since Ew∗

[
w∗w∗⊤

]
= I . Apply E

[
XX⊤] = nI and E

[
(XX⊤)2

]
= n(n+ d+ 1)I ,

1

2
EX tr

(
I − η∗

n
XX⊤

)2

=
1

2

(
d− 2η∗d+

η∗2

n
(n+ d+ 1)d

)
= Θ

(
d2

n

)
and we finish the proof by substituting n with Θ̃(d).

3.2 ONE-LAYER TRANSFORMER WITH COT CAN IMPLEMENT MULTI-STEP GD

The previous subsection shows that the one-step solution by the one-layer transformer without CoT
is not the endgame. Nevertheless, CoT can become the savior for this simple transformer because it
enables the transformer to generate several intermediate computation steps to improve the final per-
formance. The following theorem shows that with the reinforcement of CoT, there exists a one-layer
transformer that can perform multi-step GD using intermediate generations. We show that Θ(log d)
steps of CoT can remarkably improve the performance, reducing the error from Θ(d

poly log d) to
O(1/poly d). With constant learning rate, Θ(log d) steps of GD is also necessary to reconstruct w∗

accurately. The proof is deferred to Appendix B.2.
Theorem 3.2 (Informal). There exists V ∗ and W ∗ s.t. fLSA(Zk)[:,−1] outputs (0d, 0,wk, 1) where
wk :=

(
I − (I − η

nXX⊤)k
)
w∗ is the k-step GD solution with learning rate η on a linear regres-

sion model. Moreover, if n = Ω̃(d), k = Ω(log d), η ∈ (0.1, 1), then the evaluation loss

LEval(V ∗,W ∗) =
1

2
EX,w∗

[∥∥∥∥(I − η

n
XX⊤

)k+1

w∗
∥∥∥∥2
]
≤ O

(
1

poly(d)

)
(9)

With the one-step GD solution in Theorem 3.1, the proof is straightforward: we assign the param-
eters (V ,W) in the same form of Equation (8), with the η∗ replaced by η. However, now the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

transformer is allowed to generate k steps before reaching the final output. We can inductively
calculate the i-th step of generation, showing that the output is exactly the i-th gradient step:

fLSA(Zi−1)[:,−1] = (0d, 0,wi, 1), i = 1, 2, ..., k + 1

After k+1 steps, we have the final output
(
I − (I − η

nXX⊤)k+1
)
w∗ by induction and the evalu-

ation loss becomes Equation (9). By Lemma D.4, the final loss is upper bounded by O
(

1
poly(d)

)
.

This is strictly better than a one-step GD solution by comparing with Corollary 3.1.

Now we theoretically display the expressivity improvement of transformers brought by CoT. In the
following sections, we will further prove that this separation is learnable simply by gradient flow.

4 GRADIENT DYNAMICS OVER CHAIN OF THOUGHT

In this section, we go beyond the construction and prove our convergence result on the CoT objec-
tive. We show that the final solution found by gradient flow is approximately our construction in
Theorem 3.2, which is significantly better than the one-step gradient descent solution without CoT.

4.1 MAIN RESULTS

According to our construction in Theorem 3.2, we use the following specific initialization to zero
out the irrelevant blocks while keeping the essential blocks W13,V31, and w24.
Assumption 4.1 (Initialization). Let σ > 0 be a parameter. We assume the initialization of the
parameters satisfies that

V =

 0 0 0 0
0 0 0 0

V31(0) 0 0 0
0 0 0 0

 ,W =

0 0 W13(0) 0
0 0 0 w24

0 0 0 0
0 0 0 0


Here W13(0) =

∑d
i=1 λ

W
i uiu

⊤
i and V31(0) =

∑d
i=1 λ

V
i uiu

⊤
i are symmetric and simultaneously

diagonalizable, λV
i ≤ −σ, λW

i ∈ [σ, 1
2]. Further, we fix w24 = −1 for all t > 0.

This initialization follows Chen et al. (2024a) by assuming V31 and W13 share the same set of
eigenvectors. It is close to the particular symmetric random initialization schemes discussed in
Zhang et al. (2023) with a scaling factor σ. We use this specific initialization to zero out the irrelevant
blocks along the training trajectory and facilitate the analysis in the early stages. To simplify the
analysis of the complex dynamical system, we fix w24 = −1 to break the homogeneity of the model
and avoid the occurrence of multiple global minimizers.

Now we prove that under appropriate initialization, gradient flow will nearly converge to the global
minimizer. We provide a proof sketch in the next subsection. See Appendix C.3 for details.

Theorem 4.1 (Informal, Global Convergence). Suppose n = Ω̃(d), η ∈ (0.1, 0.9), k = Θ(log d).
Under Assumption 4.1 with σ = Θ(1), if we run gradient flow on the population loss in Equation (5),
then after time t = O

(
log d+ log 1

ϵ

)
, we have LCoT(t) ≤ ϵ for any ϵ ∈

(
1

poly(d) , 1
)

.

4.2 PROOF IDEAS

In this subsection, we briefly outline the proof of Theorem 4.1.

Before analyzing the training dynamics, we will first prove that under Assumption 4.1, the gradient
dynamics will only depend on the parameter blocks W13(t),V31(t), w24, while other blocks stay
zero (Lemma C.2). This is because our Gaussian data assumption makes sure the gradients on all the
blocks are zero once they are initialized at zero, except for W13(t),V31(t), w24. By this lemma, we
can simplify the linear self-attention formula and consider the following equivalent yet simplified
loss (we denote W̃ := W13, Ṽ := V31, and w24 is fixed as −1.):

LCoT(θ) =
1

2
EX,w∗

k−1∑
i=0

∥∥∥∥ 1n (Ṽ XX⊤W̃ + ηXX⊤)wi −
1

n
(Ṽ + ηI)XX⊤w∗

∥∥∥∥2
2

+
1

2
EX,w∗

∥∥∥∥(I +
1

n
Ṽ XX⊤W̃

)
wk −

(
1

n
Ṽ XX⊤ + I

)
w∗
∥∥∥∥2
2

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

For ease of presentation, we denote S := 1
nXX⊤. To analyze the gradient dynamics, we first

need to compute the exact closed-form gradient instead of keeping the expectation. However, there
exists difficulty calculating the closed form of the gradient: the formula involves the i-th step weight
vector wi =

(
I − (I − ηS)

i
)
w∗, involving the higher order moments of the Wishart matrix S1

whose closed form is hard to obtain. Here, we provide a tighter estimate compared to previous work
(Gatmiry et al., 2024) using the concentration of the Wishart matrix S (Vershynin, 2018) when
n = Θ(dpoly log d) to estimate the expectation. In particular, we use the exponential decaying tail
probability bound for the operator norm of the error δS := S−I . For example, when estimating the
expectation E[(I − ηS)

i
], we can decompose the expectation into two cases: when ∥δS∥op is small,

(I − ηS)
i ≈ (1−η)iI; when ∥δS∥ is larger than a threshold, the rest part of the expectation can be

controlled by integrating the exponential decaying tail probability.2 The concentration lemmas are
provided in Appendix D.

The motivation behind a better concentration estimation is to ensure nearly independent dynamics
along different eigenspaces {ui}di=1 of W̃ and Ṽ . As an extreme case, we consider n → ∞ and S
converges to I almost surely. Now the gradient component on the uiu

⊤
i subspace is only dependent

on λṼ
i and λW̃

i without any other λṼ
j , λW̃

j , j ̸= i involved. That means there is no interaction be-
tween two different subspaces, i.e. the dynamics are independent. However, some interactions are
introduced since the concentration error δS ̸= 0 when n is finite. Therefore, the improved charac-
terization of the expected gradient is essential to upper bound the interaction between the dynamics
of different eigenspaces {ui}di=1, leading to a nearly independent evolution at initialization.

This independence property motivates us to conduct a stage-wise analysis. We first analyze the
dynamics in Stage 1 when the distance between the parameters Ṽ , W̃ and the ground-truth is larger
than O(1/poly log d). In this stage, the bounded error can be dominated by the signal terms in the
gradient, maintaining the nearly independent dynamics along each direction ui. After this stage, we
enter Stage 2 as a local convergence phase. We describe the dynamics below in detail.

Stage 1: W̃ , Ṽ converges to near-optimal. In this stage, the dynamics along each direction ui

stay nearly independent. Specifically, we can expand the gradient flow dynamics for Ṽ , W̃ and
project them into the eigenspaces uiu

⊤
i to get the dynamics of the eigenvalues λṼ

i := u⊤
i Ṽ ui,

λW̃
i := u⊤

i W̃ui. The dynamics of eigenvalues are characterized by the following Lemma 4.1 where
we can prove that the interaction terms between different subspaces are bounded by O(1/ log2 d).

Lemma 4.1 (Informal version of Lemma C.6). The dynamics of λṼ
i and λW̃

i are given by the

following equations with
∣∣∣δṼj ∣∣∣ ≤ O

(
1

log2 d

)
,
∣∣∣δW̃j ∣∣∣ ≤ O

(
1

log2 d

)
:

dλṼ
j

dt
=−

(k + 1)
(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

λW̃
j

2

η(2− η)

λṼ
j +

1− η

2− η
λW̃
j − 1 + δṼj

dλW̃
j

dt
=

[
k + 1− 1

η

]
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j .

This nearly independent evolution along each eigenvector ui enables us to analyze the individual
dynamics of λṼ

i and λW̃
i at the beginning of training. Under Assumption 4.1, λṼ

j , λW̃
j are initialized

Θ(1). By Lemma 4.1, we prove by induction that the eigenvalues will go through two phases: (1) λṼ
j

increases yet stay smaller than −O

(
1

k(1−λW̃
j)

)
, while λW̃

j increases to 1−o(1). (2) λW̃
j stays o(1)-

close to 1, and λṼ
j also converges to o(1)-close to −η. Here all o(1) terms are some O(1/ logc d)

1To deal with the similar problem, Gatmiry et al. (2024) proposed a simple combinatorial method to estimate
the expectation. We use the same technique to get a certain form of the expectation (see Appendix D), but the
bound is not tight enough to get the desired results. See discussion in Appendix A.2.

2This method can keep the (1−η)i factor to prevent introducing unwanted estimation errors when i is large.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

terms for some constant c > 0. That indicates that the distance between the eigenvalues and the
target

∣∣∣λṼ
j + η

∣∣∣, ∣∣∣λW̃
j − 1

∣∣∣ converge to O(1/ logc d) for all j ∈ [d] at the end of Stage 1.

Stage 2: Local convergence. One may expect that after Stage 1, the transformer can approximate
gradient steps quite accurately since the parameter Ṽ , W̃ are both o(1)-close to ground-truth along
each direction ui. Unfortunately, the sum of error in d directions can still be Θ̃(d) since we can only
reduce the error to O(1/poly log d) in each direction. Therefore, the solution still cannot recover
the weight vector w∗ at this stage. To address this issue, we further look into the exact form of the
interaction terms δW̃j , δṼj and analyze the local convergence. By fine-grained expansion of the error

terms, we notice that δW̃j and δṼj are always coupled with some individual residual like (1− λW̃
j),

(η + λṼ
j), or some weighted average or those individual residuals. Meanwhile, the coefficient of

the residual in the interaction terms is still upper bounded by O(1/poly log d). That enables us to
derive some gradient lower bound similar to PL-conditions (Lemma C.12) when Ṽ , W̃ are close to
the ground-truth, leading to local convergence to near-optimal at a linear rate.

The final training error is some O(1
poly d), which depends on the inference step k and ground-truth

η. Note that the optimal loss value is also at least polynomially small in d given Θ(log d) CoT steps.
Therefore, now we can conclude that the transformer can learn to implement multi-step GD when
given intermediate ground-truth states after optimizing the CoT loss with gradient flow.

4.3 OUT-OF-DISTRIBUTION GENERALIZATION AT INFERENCE

In this section, we prove that after training, the transformer not only correctly predicts the weight
vector in context with CoT generation, but also can generalize out-of-distribution (OOD). The fol-
lowing theorem shows that the trained transformer obtained from Theorem 4.1 with CoT generalizes
over other problem instances when the input example sequence has an OOD covariance, as long as
the covariance is not too ill-conditioned. Here LEval

Σ is defined as the OOD evaluation loss in eq. (7)
with the in-context examples xi ∼ N (0,Σ) and weight vector w∗ ∼ N (0, I):

LEval
Σ (V ,W) =

1

2
Exi∼N (0,Σ),w∗

[∥∥∥fLSA(Ẑk)[:,−1] − (0d, 0,w
∗, 1)

∥∥∥2]
Theorem 4.2 (Informal, Theorem C.2). Suppose n = Ω̃(d), η ∈ (0.1, 0.9), k′ = Θ(log d). Assume
the out-of-distribution covariance is well-conditioned: δ

η ≤ λmin(Σ) ≤ λmax(Σ) ≤ 2−δ
η for some

constant δ > 0. Then after training in Theorem 4.1, we have LEval
Σ (t) ≤ ϵ for any ϵ ∈

(
1

poly(d) , 1
)

.

Note that this theorem covers both in-distribution (when η = δ) and OOD tasks at evaluation,
indicating that the transformer is trained to implement a general iterative optimization algorithm.
Moreover, the inference step number k′ in this theorem can go beyond the training CoT steps k,
achieving better estimation for w∗.

One may think once the next-token-prediction training loss LCoT converges to the global minimizer
based on ground-truth CoT data, the transformer naturally learns to do multi-step reasoning at infer-
ence, i.e. LEval is small. However, at the i-th generation step, the transformer is predicting the next
weight token ŵi+1 based on the previous generation ŵi instead of the ground-truth intermediate step
wi. It is possible that prediction error for each step accumulates or even increases exponentially.

Fortunately, the trained transformer guarantees a converging series of errors throughout the inference
process, and we can expand and upper bound the sum of all the prediction errors at each step. That
also ensures we can achieve any O(1

poly(d))-small evaluation loss when we have k′ = Θ(log d)

reasoning steps. The detailed proof is provided in Appendix C.4.

5 EXPERIMENTS

In this section, we introduce our experimental setup on our in-context weight vector prediction
task to numerically validate our theoretical results. Specifically, we show that parameters of the
transformer match the prediction of our theory when optimized over the CoT loss. Furthermore, we
present the gap of evaluation loss LEval in Equation (7) between transformers with and without CoT.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Experimental Setup We train the transformer architecture in Equation (3) on the synthetic data.
The data distribution follows our in-context weight prediction task in Equation (1). In particular, we
choose the token dimensions d = 10, number of in-context examples n = 20, and GD learning rate
η = 0.4 for generating the ground-truth intermediate states. We use a batch size B = 1000 and run
Adam with learning rate α = 0.001 for τ = 750 iterations. More details refer to Appendix E.

Global convergence Our experiments show that the structure that weights of the full model exhibit
is consistent with Theorem 3.2. At final convergence, all of the entries of W converge to zero
except the elements on the diagonal in the top-right corner block (the red box in the heatmap of W ,
Figure 1), while all the entries of V are near zero except elements on the diagonal in the bottom-left
corner (the red box in the heatmap of V , Figure 1). Also, the pattern shows W13 = αI, w24 = −α,
and V31 = − η

αI with some scaling factor α,3 which is equivalent to the construction stated in
Theorem 3.2 and Theorem 4.1. That means the transformer implements one step of gradient descent(
0d, 0,− η

nXX⊤(wi −w∗), 0
)

before the residual connection, and the autoregressive CoT process
enables model to perform multi-step GD.

Performance improvement We empirically verify the evaluation loss gap between transformers
with and without CoT shown by Theorem 3.1 and Theorem 3.2. Our experiments in Figure 2 demon-
strate that the evaluation loss of transformers with CoT converges to near zero even when k = 10.
In comparison, the optimal expected loss that the one-layer linear transformer can achieve (the pink
dashed line, from Corollary 3.1) is much larger than any of the model that applies multiple steps
of computation. We also observe that evaluation loss at convergence keeps decreasing when the
number of reasoning steps k increases from 10 to 40, which is consistent with Theorem C.1 where
larger k allows for smaller error ϵ.

Heatmap of V Heatmap of W

Figure 1: Model weights: We present the
heatmap of the weights of the trained transformer.
We initialize V ,W randomly at t = 0, where
n = 20, d = 10 and k = 20. After training,
all entries of V and W converge to zero except
the two blocks highlighted in the red box. More-
over, the pattern matches the theoretical results.

0 100 200 300 400 500 600 700
iteration

0

1

2

3

4

5

Ev
al

 L
os

s

k=10
k=20
k=30
k=40
without CoT

Figure 2: k-step v.s. 1-step: We plot the
evaluation loss LEval when n = 20, d =
10. We randomly initialize the transformer.
For transformers with CoT, loss converges
to near zero while transformers without CoT
cannot. Moreover, the loss at convergence
decreases when k increases.

6 CONCLUSION

This paper investigates the training dynamics of transformers when the Chain of Thought (CoT)
prompting is introduced. By focusing on the in-context weight prediction task, our theoretical results
demonstrate that transformers can learn to implement iterative algorithms like multi-step GD with
the enhancement of CoT, highlighting the essential role of CoT in multi-step reasoning tasks. Our
empirical findings corroborate these theoretical insights, indicating that CoT prompting provides
significant performance benefits.

There are still many open problems. Can we move beyond population loss on the in-context weight
prediction task and show a sample complexity guarantee? Can CoT empower the transformer to
acquire compositional reasoning capability instead of doing the same iterative steps?

3In Figure 1, α > 0 while all α ̸= 0 works for the construction. Empirically, the sign of α depends on the
random initialization, and both positive and negative solutions exist.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Lin-
ear attention is (maybe) all you need (to understand transformer optimization). arXiv preprint
arXiv:2310.01082, 2023.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36, 2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token se-
lection in attention mechanism. Advances in Neural Information Processing Systems, 36:48314–
48362, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-
able in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36,
2024.

Vivien Cabannes, Charles Arnal, Wassim Bouaziz, Alice Yang, Francois Charton, and Julia Kempe.
Iteration head: A mechanistic study of chain-of-thought. arXiv preprint arXiv:2406.02128, 2024.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and optimality. arXiv preprint
arXiv:2402.19442, 2024a.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Provable
training dynamics and feature learning in transformers. arXiv preprint arXiv:2409.10559, 2024b.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Nan Ding, Tomer Levinboim, Jialin Wu, Sebastian Goodman, and Radu Soricut. Causallm is not
optimal for in-context learning. arXiv preprint arXiv:2308.06912, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
evolution of statistical induction heads: In-context learning markov chains. arXiv preprint
arXiv:2402.11004, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order op-
timization methods for in-context learning: A study with linear models. arXiv preprint
arXiv:2310.17086, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar.
Can looped transformers learn to implement multi-step gradient descent for in-context learn-
ing? In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=o8AaRKbP9K.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dim-
itris Papailiopoulos. Looped transformers as programmable computers. arXiv preprint
arXiv:2301.13196, 2023.

Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo, Wangchunshu Zhou, Guangtao Zeng, Antoine
Bosselut, and Mrinmaya Sachan. Towards a mechanistic interpretation of multi-step reasoning
capabilities of language models. arXiv preprint arXiv:2310.14491, 2023.

Xinyang Hu, Fengzhuo Zhang, Siyu Chen, and Zhuoran Yang. Unveiling the statistical foundations
of chain-of-thought prompting methods. arXiv preprint arXiv:2408.14511, 2024.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

Juno Kim and Taiji Suzuki. Transformers learn nonlinear features in context: Nonconvex mean-field
dynamics on the attention landscape. arXiv preprint arXiv:2402.01258, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shal-
low vision transformers: Learning, generalization, and sample complexity. arXiv preprint
arXiv:2302.06015, 2023.

Yingcong Li, Yixiao Huang, Muhammed E Ildiz, Ankit Singh Rawat, and Samet Oymak. Mechanics
of next token prediction with self-attention. In International Conference on Artificial Intelligence
and Statistics, pp. 685–693. PMLR, 2024a.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024b.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji Kim,
and Michael Gastpar. Attention with markov: A framework for principled analysis of transformers
via markov chains. arXiv preprint arXiv:2402.04161, 2024.

12

https://openreview.net/forum?id=o8AaRKbP9K
https://openreview.net/forum?id=o8AaRKbP9K

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of
thought. arXiv preprint arXiv:2310.07923, 2023a.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023b.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

OpenAI. Gpt-4 technical report, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. arXiv preprint
arXiv:2304.01904, 2023.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are multi-
lingual chain-of-thought reasoners. arXiv preprint arXiv:2210.03057, 2022.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers
as support vector machines. arXiv preprint arXiv:2308.16898, 2023.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du. Scan and snap: Understanding training
dynamics and token composition in 1-layer transformer. arXiv preprint arXiv:2305.16380, 2023a.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du. Scan and Snap: Understanding Training
Dynamics and Token Composition in 1-layer Transformer, July 2023b. URL http://arxiv.
org/abs/2305.16380. arXiv:2305.16380 [cs].

Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Du. Joma: Demystifying mul-
tilayer transformers via joint dynamics of mlp and attention. arXiv preprint arXiv:2310.00535,
2023c.

Rasul Tutunov, Antoine Grosnit, Juliusz Ziomek, Jun Wang, and Haitham Bou-Ammar. Why can
large language models generate correct chain-of-thoughts? arXiv preprint arXiv:2310.13571,
2023.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. arXiv
preprint arXiv:2212.10001, 2022a.

13

http://arxiv.org/abs/2305.16380
http://arxiv.org/abs/2305.16380

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022b.

Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D Lee. Transformers provably learn sparse token
selection while fully-connected nets cannot. In Forty-first International Conference on Machine
Learning, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Skyler Wu, Eric Meng Shen, Charumathi Badrinath, Jiaqi Ma, and Himabindu Lakkaraju. Analyz-
ing chain-of-thought prompting in large language models via gradient-based feature attributions.
arXiv preprint arXiv:2307.13339, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DISCUSSION AND LIMITATION

A.1 RELATED WORKS ON EXPRESSIVENESS

Our work is closely related to the previous works in multi-step GD using multi-layer attention layers,
including Bai et al. (2023); Fu et al. (2023); Ding et al. (2023); Ahn et al. (2024); Giannou et al.
(2023); Gatmiry et al. (2024). These works guarantee that transformers are expressive enough to do
in-context learning by implementing gradient descent, and they serve as the foundation of our work
which focuses on optimization. Most of them focus on the in-context learning setup as the testbed
so we naturally follow the setup to understand the advantage of CoT.

Most of the above works on expressiveness focus on those iterative algorithms, e.g. (pre-
conditioned) gradient descent on various objectives (Bai et al., 2023; Ahn et al., 2024; Ding et al.,
2023), Newton methods/matrix inverse (Giannou et al., 2023), etc. Those papers have similar con-
structive proof techniques using multi-layer transformers: they construct a basic block(s) to rep-
resent one step of some iterative algorithm and stack them up to do multi-steps of that algorithm.
Sometimes the blocks can be even the same, which means a “looped” transformer, i.e. implementing
the same transformer blocks several times as a loop, can express those algorithms. In our warm-up
construction for a better understanding of the setup, we use similar techniques to construct the linear
transformer that allows auto-regressive generation to iteratively implement the block. However, we
require the practical auto-regressive setting, which is novel in the literature.

Most importantly, despite the close relation between our work and those previous expressiveness
papers, our work mainly focuses on the optimization perspective. It is a big step beyond expres-
siveness because there is no guarantee that one can algorithmically find the constructed solutions
in the previous work. Ahn et al. (2024); Gatmiry et al. (2024) are the only two papers related to
optimization of multi-layer transformers over in-context linear regression setup. Ahn et al. (2024)
analyzed the global optimizer/critical points for multi-layer transformers, but they didn’t prove that
any gradient-based algorithm can reach those solutions. Compared to all the works above, our proof
techniques for the main theorems are completely orthogonal and not straightforward extensions of
the previous papers like Bai et al. (2023).

Gatmiry et al. (2024) is the most related work to us. They also proved some results on learning to
implement multi-step GD by looped transformer. We will highlight the differences and our novel
contributions of our work in the next section.

A.2 DISCUSSION ON GATMIRY ET AL. (2024)

In this section, we compare our work with Gatmiry et al. (2024). We begin by outlining the simi-
larities and connections between the two works before highlighting our theoretical contributions in
contrast to Gatmiry et al. (2024).

Both Gatmiry et al. (2024) and our study analyze the dynamics of a one-layer linear transformer
in the context of a linear regression task, demonstrating that transformers can implement multi-step
gradient descent. We adopt similar architectural frameworks to those in Zhang et al. (2023); Ahn
et al. (2024; 2023); Mahankali et al. (2023), as well as several other works. The key connection
between our work and Gatmiry et al. (2024) lies in the observation that both looped transformers
and transformers with CoT prompting through autoregressive generation are capable of naturally
implementing iterative algorithms like gradient descent.

However, our data model and training objective are intrinsically different from those in Gatmiry et al.
(2024), leading to distinct insights. While Gatmiry et al. (2024) focuses on an ICL setting for linear
regression tasks involving examples and a query, our task is centered on predicting the ground-truth
weight vector w∗ within context, i.e. in-context weight prediction. The final converging solutions
are totally different, even though they both are equivalent to some type of GD. From the perspective
of the training objective, Gatmiry et al. (2024) uses a standard squared loss over the ICL objective. In
contrast, we use a sum of squared losses across all intermediate steps, corresponding to the CoT loss
defined in Equation (6). Therefore, we highlight the effectiveness in improving the performance
of the CoT prompting on a shallow transformer, while Gatmiry et al. (2024) stress a multi-layer
transformer with shared weights (looped transformer) can do multi-step GD through the layers.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

From a technical perspective, Gatmiry et al. (2024) fix the outer layer and train only the matrix A,
which is analogous to our matrix W . In contrast, our work allows for training both layers of the
transformer, providing a stronger analysis of training dynamics. Our proof strategy is also novel,
given that our training dynamics are more complicated: obtaining our final solution requires solving
a challenging d-dimensional dynamical system, whereas prior work in ICL reduces the outer layer
to a scalar.

As a more profound theoretical contribution, we rigorously establish a clear performance
gap between the one-layer transformer without CoT and the ones with CoT. Specifically,
the one-layer transformer without CoT is restricted to a single step of GD, with the final error
Θ(d/poly log d), while a one-layer transformer with CoT can achieve a O(1/ poly d) loss with
only Θ(log d) steps. On the other hand, Gatmiry et al. (2024) do not show their transformer imple-
menting the multi-step GD can outperform the transformer with one-step GD. According to their
Theorem 4.2, their looped transformer can only provably get the final loss down to d5/2L·4L√

n
, where

L is the number of the loops. However, a one-layer transformer can achieve Θ(d2/n) loss by imple-
menting one-step of GD, which is asymptotically better than the multi-step solution in Gatmiry
et al. (2024).

We conjecture the gap between our analysis lies in our different methods of calculating the terms
in the gradient concerning Wishart matrices. For intuition, we introduce the novel expectation cal-
culation method in Section 4, which asymptotically improves the estimation of higher moments of
Wishart matrices in Gatmiry et al. (2024). We adopt the combinatorial technique in Gatmiry et al.
(2024) to compute the form of E

[
SΛSkΓSk′

]
, but when we calculate the expected gradient we use

the concentration tail bound technique to calculate the expectation. That enables us to better approx-
imate the expectation. We hypothesize that applying our techniques could potentially demonstrate
that their looped transformers outperform those without loops in the ICL setting.

A.3 LIMITATION AND FUTURE DIRECTIONS

Architecture and parameterization In this work, we use the single-layer linear transformer to
analyze the training dynamics. Moreover, we adopt the same reparameterization and similar initial-
ization in previous works (Zhang et al., 2023; Tian et al., 2023a; Chen et al., 2024a; Mahankali et al.,
2023; Ahn et al., 2024). It deviates from the practical softmax attention with Q,K,V parameteri-
zation and random initialization, which is a limitation of this work.

However, analyzing the linear counterpart of the model before targeting the more difficult practical
models is common in the development of learning theory. As for linear attention, the connection
between linear attention and softmax attention is also partially justified by the empirical observations
in Ahn et al. (2023). Analyzing the dynamics using more practical architectures will be a very
important and fundamental future direction.

Population loss and sample complexity Following most of the previous work, we use population
loss when analyzing the training trajectory instead of using finite sample loss. This modification is
to simplify the analysis and focus on the population dynamics without noise. A possible future step
is to generalize this analysis to a finite sample setting and train the model with online SGD.

CoT on iterative tasks In this work, we mainly focus on iterative tasks, one of the simplest forms
where multi-step CoT can help yield better performance. That serves as the initial step towards
understanding why CoT helps reasoning following the first principle. As a limitation, though CoT
can empower the transformer to acquire compositional reasoning capability instead of doing the
same iterative step, it is a much harder question beyond our paper’s scope. It is a very important
future direction and definitely worth further exploring.

B PROOFS OF THEOREMS IN SECTION 3

In this section, we prove the expressiveness results of the linear transformers with and without CoT.
In Appendix B.1, we prove that a one-layer linear transformer without CoT can only obtain the
one-step gradient descent solution. In Appendix B.2, we prove that there exists a one-layer linear

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

transformer that implements multi-step gradient descent with the CoT prompting. As corollaries,
there exists a separation between the one-step and multi-step solutions.

B.1 PROOF OF THEOREM 3.1

We first restate the theorem:

Theorem B.1 (Lower bound without CoT). If the global minimizer of LEval(V ,W) is (V ∗,W ∗),
the corresponding one-layer transformer fLSA(Z0)[:,−1] implements one step GD on a linear model
with some learning rate η = n

n+d+1 and the transformer outputs η
nXy⊤.

Proof. Recall the loss expression in Equation (5) when k = 0,

L(V ,W) =
1

2
EX,w∗

∥∥fLSA(Z0)[:,−1] − (0d, 0,w
∗, 1)

∥∥2
=

1

2
EX,w∗

∥∥∥∥∥V Z0 ·
Z⊤

0 WZ0[:,−1]

n
− (0d, 0,w

∗, 0)⊤

∥∥∥∥∥
2

(since w0 = 0d.)

The key insight of the proof is to replace the w∗ with the one-step GD solution η
nXy⊤,

L(V ,W) =
1

2
E

∥∥∥∥∥V Z0 ·
Z⊤

0 WZ0[:,−1]

n
−
(
0d, 0,

η

n
Xy⊤, 0

)⊤∥∥∥∥∥
2
+ C

After proving this property, we can conclude that the optimal solution without CoT is exactly the
one-step solution η

nXy⊤. We prove this result by showing the gradient of those two loss functions
are the same.

First, before calculating the gradient, we extract the identical parts of the loss. Notice that the
ground-truth entries are all zero in i = 1, 2, · · · , d, d + 1, 2d + 2 positions in both expressions.
Therefore, that part of error is the norm of the output fLSA(Z0)[:,−1] in those corresponding entries:

1

2
E

∥∥∥∥∥V Z0 ·
Z⊤

0 WZ0[1:d+1,−1]

n

∥∥∥∥∥
2
+

1

2
E

∥∥∥∥∥V Z0 ·
Z⊤

0 WZ0[2d+2,−1]

n

∥∥∥∥∥
2


which is the same for both expressions. Therefore, we just need to consider

fLSA(Z0)[d+2:2d+1,−1] = V[d+2:2d+1,:]Z0 ·
Z⊤

0 WZ0[:,−1]

n
,

which corresponds to the ground-truth signals. Here V[d+2:2d+1,:] = [V31,V32,V33,V34]. We only
need to prove that

E
∥∥fLSA(Z0)[d+2:2d+1,−1] −w∗∥∥2 = E

∥∥∥fLSA(Z0)[d+2:2d+1,−1] −
η

n
XX⊤w∗

∥∥∥2 + C

for some constant C.

We show the gradients of both sides are the same, and equivalently the differential of both sides
should be the same. The differential of L.H.S. is

d
(
E
∥∥fLSA(Z0)[d+2:2d+1,−1] −w∗∥∥2)

= 2E
[
(fLSA(Z0)[d+2:2d+1,−1] −w∗)⊤dfLSA(Z0)[d+2:2d+1,−1]

]
and the differential of R.H.S. is

d

(
E
∥∥∥fLSA(Z0)[d+2:2d+1,−1] −

η

n
XX⊤w∗

∥∥∥2)
= 2E

[
(fLSA(Z0)[d+2:2d+1,−1] −

η

n
XX⊤w∗)⊤dfLSA(Z0)[d+2:2d+1,−1]

]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Therefore, we only need to prove that

E
[
w∗⊤dfLSA(Z0)[d+2:2d+1,−1]

]
= E

[(η
n
XX⊤w∗

)⊤
dfLSA(Z0)[d+2:2d+1,−1]

]
(10)

We expand this expression fLSA(Z0)[d+2:2d+1,−1] (Note that now we don’t have the assumption of
initialization):

V[d+2:2d+1,:]Z0 ·
Z⊤

0 WZ0[:,−1]

n

=
1

n
[V31 V32 V33 V34]

 X 0
y 0

0d×n w0

01×n 1

[X⊤ y⊤ 0n×d 0n

01×d 0 w⊤
0 1

]
W

 0
0
w0

1



=
1

n
[V31 V32 V33 V34]

XX⊤ Xy⊤ 0d×d 0d

yX⊤ yy⊤ 01×d 0
0d×d 0d 0d×d 0d

01×d 0 01×d 1


W14

w24

W34

w44

 (since w0 = 0d)

=
1

n
[V31 V32 V33 V34]

XX⊤W14 + w24Xy⊤

yX⊤W14 + w24yy
⊤

0d

w44


=

1

n

(
V31 + V32w

∗⊤
)
XX⊤(W14 + w24w

∗) +
V34w44

n
(y = X⊤w∗.)

and the differential of fLSA(Z0)[d+2:2d+1,−1] is

dfLSA(Z0)[d+2:2d+1,−1]

= d

(
1

n

(
V31 + V32w

∗⊤
)
XX⊤(W14 + w24w

∗)

)
+ d

V34w44

n

=
1

n

(
dV31 + dV32w

∗⊤
)
XX⊤(W14 + w24w

∗) +
1

n
(dV34 · w44 + V34dw44)

+
1

n

(
V31 + V32w

∗⊤
)
XX⊤(dW14 + dw24w

∗)

Now, to prove Equation (10), we compare the differential for each parameter on both sides. For all
parameter, we start from the left side and prove it equal to the right.

V31: The V31 term of differential in dfLSA(Z0)[d+2:2d+1,−1] is 1
ndV31XX⊤(W14 + w24w

∗),

E
[
w∗⊤ · 1

n
dV31XX⊤(W14 + w24w

∗)

]
= E

[
tr

(
w∗⊤ · 1

n
dV31XX⊤(W14 + w24w

∗)

)]
(It is a scalar in the trace.)

= E
[
tr

(
1

n
dV31XX⊤(W14 + w24w

∗)w∗⊤
)]

= E[tr (dV31w24)] (E[XX⊤] = nId,E[w∗] = 0,E[w∗w∗⊤] = Id.)

= E
[
tr
(η

n2
· dV31w24XX⊤XX⊤

)]
(E[
(
XX⊤)2] = n(n+ d+ 1)Id, η = n

n+d+1 .)

= E
[
tr
(η

n2
·XX⊤dV31XX⊤(W14 + w24w

∗)w∗⊤
)]

(E[w∗] = 0,E[w∗w∗⊤] = Id.)

= E
[
(
η

n
XX⊤w∗)⊤ · 1

n
dV31XX⊤(W14 + w24w

∗)

]
So those two dV31 terms are identical.

V32: The V32 term of differential in dfLSA(Z0)[d+2:2d+1,−1] is dV32

n w∗⊤XX⊤(W14 + w24w
∗),

E
[
w∗⊤ · dV32

n
w∗⊤XX⊤(W14 + w24w

∗)

]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

= E
[
tr

(
w∗⊤ · dV32

n
w∗⊤XX⊤(W14 + w24w

∗)

)]
(It is a scalar in the trace.)

= E
[
tr

(
dV32

n
w∗⊤XX⊤(W14 + w24w

∗)w∗⊤
)]

= E
[
tr

(
dV32

n
w∗⊤XX⊤W14w

∗⊤
)]

(E[w∗] = 0 and w∗⊤XX⊤w∗w∗⊤ is odd)

= E
[
tr

(
dV32

n
W⊤

14XX⊤w∗w∗⊤
)]

(W⊤
14XX⊤w∗ is a scalar.)

= E
[
tr
(
dV32W

⊤
14

)]
(E[XX⊤] = nId,E[w∗w∗⊤] = Id.)

= E
[
tr
(η

n2
· dV32W

⊤
14XX⊤XX⊤

)]
(E[
(
XX⊤)2] = n(n+ d+ 1)Id, η = n

n+d+1 .)

= E
[
tr
(η

n2
·XX⊤dV32w

∗⊤XX⊤(W14 + w24w
∗)w∗⊤

)]
(E[w∗] = 0,E[w∗w∗⊤] = Id.)

= E
[
(
η

n
XX⊤w∗)⊤ · 1

n
dV32w

∗⊤XX⊤(W14 + w24w
∗)

]
So those two dV32 terms are identical.

V34: The V34 term of differential in dfLSA(Z0)[d+2:2d+1,−1] is 1
ndV34w44,

E
[
w∗⊤ 1

n
dV34w44

]
= 0 = E

[
(
η

n
XX⊤w∗)⊤

1

n
dV34w44

]
since E[w∗] = 0d. Therefore those two are equal.

W14: The W14 term of differential in dfLSA(Z0)[d+2:2d+1,−1] is 1
n

(
V31 + V32w

∗⊤
)
XX⊤dW14,

E
[
w∗⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤dW14

]
= E

[
tr

(
w∗⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤dW14

)]
(It is a scalar in the trace.)

= E
[
tr

(
1

n

(
w∗⊤V32w

∗⊤
)
XX⊤dW14

)]
(E[w∗] = 0d.)

= E
[
tr

(
1

n

(
V ⊤
32w

∗w∗⊤
)
XX⊤dW14

)]
(V ⊤

32w
∗ is a scalar.)

= E
[
tr
(
V ⊤
32dW14

)]
(E[XX⊤] = nId,E[w∗w∗⊤] = Id.)

= E
[
tr
(η

n2
·XX⊤V ⊤

32XX⊤dW14

)]
(E[
(
XX⊤)2] = n(n+ d+ 1)Id, η = n

n+d+1 .)

= E
[
(
η

n
XX⊤w∗)⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤dW14

]
Thus the two dW14 terms are the same.

w24: The w24 term in dfLSA(Z0)[d+2:2d+1,−1] is 1
n

(
V31 + V32w

∗⊤
)
XX⊤dw24w

∗,

E
[
w∗⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤w∗dw24

]
= E

[
tr

(
w∗⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤w∗dw24

)]
(It is a scalar in the trace.)

= E
[
tr

(
1

n

(
w∗⊤V31

)
XX⊤w∗dw24

)]
(E[w∗] = 0d.)

= E[tr (V31dw24)] (E[XX⊤] = nId,E[w∗w∗⊤] = Id.)

= E
[
tr
(η

n2
·XX⊤V31XX⊤dw24

)]
(E[
(
XX⊤)2] = n(n+ d+ 1)Id, η = n

n+d+1 .)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

= E
[
(
η

n
XX⊤w∗)⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤w∗dw24

]
Therefore the differential for w24 are the same.

w44: The w44 term of differential in dfLSA(Z0)[d+2:2d+1,−1] is 1
nV34dw44,

E
[
w∗⊤ 1

n
V34dw44

]
= 0 = E

[
(
η

n
XX⊤w∗)⊤

1

n
V34dw44

]
since E[w∗] = 0d. Therefore those two are also equal.

In conclusion, Equation (10) holds since all the differential terms are equal. Therefore, ∃C

E
∥∥fLSA(Z0)[d+2:2d+1,−1] −w∗∥∥2 = E

∥∥∥fLSA(Z0)[d+2:2d+1,−1] −
η

n
XX⊤w∗

∥∥∥2 + C

which finishes our proof.

B.2 PROOF OF THEOREM 3.2

Here we restate the Theorem 3.2 and provide the detailed proof.

Theorem B.2. Suppose n = Θ(d log5 d), k ≥ C log d, η ∈ (0.1, 0.9). There exists V ∗ and W ∗ s.t.
fLSA(Zk)[:,−1] outputs (0d, 0,wk+1, 1) where wi :=

(
I − (I − η

nXX⊤)i
)
w∗ is the k-step GD

solution with learning rate η on a linear regression model. Moreover, the evaluation loss

LEval(V ∗,W ∗) =
1

2
EX,w∗

[∥∥∥∥(I − η

n
XX⊤

)k+1

w∗
∥∥∥∥2
]
≤ 1

dC log(1
1−η)

(11)

Proof. We construct V ∗ and W ∗ in the following way,

V ∗ =

 0 0 0 0
0 0 0 0

−ηI 0 0 0
0 0 0 0

 ,W ∗ =

0 0 I 0
0 0 0 −1
0 0 0 0
0 0 0 0

 (12)

Now the transformer is allowed to generate k steps before reaching the final output. We can induc-
tively calculate the i-th step of generation, showing that the output is exactly the parameter after i-th
gradient step (i = 1, 2, ..., k + 1):

fLSA(Zi)[:,−1] = (0d, 0,wi, 1) + V Zi ·
Z⊤

i WZi[:,−1]

n

= (0d, 0,wi, 1) +
1

n

(
0d, 0,V31(t)XX⊤(W13(t)wi −w∗), 0

)
= (0d, 0,wi, 1) + (0d, 0,−

η

n
XX⊤(wi −w∗), 0)

= (0d, 0,wi+1, 1)

After k+1 steps, we have the final output
(
I − (I − η

nXX⊤)k+1
)
w∗ by induction and the evalua-

tion loss becomes Equation (9). By Lemma D.4, the final loss is

1

2
EX,w∗

[∥∥∥∥(I − η

n
XX⊤

)k+1

w∗
∥∥∥∥2
]

=
1

2
EX,w∗

[
tr
(
I − η

n
XX⊤

)2k+2
]

(E[w∗w∗⊤] = I.)

=
1

2
trEX,w∗

[(
I − η

n
XX⊤

)2k+2
]

=
1

2
tr((1− η)k(1 + δ)I) (By Lemma D.4)

≤ d(1− η)k ≤ d−C log(1
1−η).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C PROOF OF THEOREM 4.1

C.1 GRADIENT COMPUTATION OF THE FULL MODEL OVER THE COT OBJECTIVE

In this appendix, we compute the gradient of the full model given the Assumption 4.1 and prove
the equivalence between the dynamics of the full model and a simplified model. Throughout the
appendix, we denote the S = 1

nXX⊤ for simplicity. And recall the i-th step of the linear classifier
is wi = (I − (I − ηS)i)w∗.

In Section 2.2, we have the full attention model

fLSA(Z;V ,W)[:,−1] = Z[:,−1] + V Z ·
Z⊤WZ[:,−1]

n

and the Chain of Thought (CoT) objective

LCoT(V ,W) = EX,w∗

[
1

2

k∑
i=0

∥∥fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)
∥∥2]

We define the error for the i-th step

Li :=
1

2
EX,w∗

∥∥fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)
∥∥2

By linearity of expectation, we know the gradient of the CoT objective is the sum of gradients of all
CoT steps: ∇LCoT =

∑k
i=1 ∇Li. Now we can calculate the gradients of V ,W based on the loss

of each CoT step:

Lemma C.1 (Gradients of the full model). The gradient of V ,W are given by the following equa-
tions:

∇V L =
1

n
EX,w∗

k∑
i=0

(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]W

⊤ZiZ
⊤
i

∇WL =
1

n
EX,w∗

k∑
i=0

ZiZ
⊤
i V ⊤

(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]

Proof. The loss is given by eq. (6):

LCoT(V ,W) = EX,w∗

[
1

2

k∑
i=0

∥∥fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)
∥∥2] =

k∑
i=1

Li

Take differential of the loss for the i-th step Li and we have

dLi = EX,w∗
(
fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)⊤
dfLSA(Zi)[:,−1]

= EX,w∗
(
fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)⊤
d

(
V Zi ·

Z⊤
i WZi[:,−1]

n

)

= EX,w∗
(
fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)⊤
d(V)Zi ·

Z⊤
i WZi[:,−1]

n

+ EX,w∗
(
fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)⊤
V Zi ·

Z⊤
i dWZi[:,−1]

n

Then the gradients of W ,V of the Li are:

∇V Li =
1

n
EX,w∗

(
fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)
Zi

⊤
[:,−1]W

⊤ZiZ
⊤
i

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

=
1

n
EX,w∗

(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]W

⊤ZiZ
⊤
i

∇WLi =
1

n
EX,w∗ZiZ

⊤
i V ⊤(fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)
Zi

⊤
[:,−1]

=
1

n
EX,w∗ZiZ

⊤
i V ⊤

(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]

Take the sum of the two equations above from i = 0 to k, and we finish the proof.

Now we consider the gradient flow (GF) trajectory (note that w24 is fixed under Assumption 4.1):

dθ

dt
= −∇LCoT(θ), θ := (V ,W \{w24}).

Recall the block matrix form of V ,W :

V =

V11 V12 V13 V14

V21 v22 V23 v24
V31 V32 V33 V34

V41 v42 V43 v44

 ,W =

W11 W12 W13 W14

W21 w22 W23 w24

W31 W32 W33 W34

W41 w42 W43 w44


According to the construction in Theorem 3.2, the blocks W13,V31, w24 are the only relevant pa-
rameter blocks, while the others should be zeroed out. Next, we prove that if we initialize those
irrelevant blocks to 0, then they will stay at 0 along the gradient descent trajectory.

Lemma C.2. Under the Assumption 4.1, when the linear transformer is trained under GF, we have
for all t > 0, the parameters V (t),W (t) have the following form:

V (t) =

 0 0 0 0
0 0 0 0

V31(t) 0 0 0
0 0 0 0

 ,W (t) =

0 0 W13(t) 0
0 0 0 −1
0 0 0 0
0 0 0 0


Proof. To prove this lemma, we prove that when the irrelevant blocks are 0, the gradients
∇V Li,∇WLi for those blocks are always 0 and they never update the corresponding parameter
block. Also, note that w24 = −1 for all t > 0.

First, we calculate the output of the linear self-attention V Zi ·
Z⊤

i WZi[:,−1]

n :

V Zi ·
Z⊤

i WZi[:,−1]

n

=
1

n

 0 0 0 0
0 0 0 0

V31(t) 0 0 0
0 0 0 0


 X 0 0 · · · 0

y 0 0 · · · 0
0d×n w0 w1 · · · wi

01×n 1 1 · · · 1

Z⊤
i W

 0
0
wi

1



=
1

n

 0d×n 0d · · · 0d

01×n 0 · · · 0
V31(t)X 0d · · · 0d

01×n 0 · · · 0


 X 0 0 · · · 0

y 0 0 · · · 0
0d×n w0 w1 · · · wi

01×n 1 1 · · · 1


⊤ W13(t)wi

−1
0d

0



=
1

n

 0d×n 0d · · · 0d

01×n 0 · · · 0
V31(t)X 0d · · · 0d

01×n 0 · · · 0

[X⊤W13(t)wi − y⊤

0i+1

]
=

1

n

 0d

0
V31(t)XX⊤(W13(t)wi −w∗)

0


The last line is because y⊤ = X⊤w∗. Now, we consider the gradient for V :

∇V Li =
1

n
EX,w∗

[(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]W

⊤ZiZ
⊤
i

]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

=
1

n2

 0d

0
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

0

Zi
⊤
[:,−1]W

⊤ZiZ
⊤
i

=
1

n2
EX,w∗

 0d

0
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

0


w

⊤
i W

⊤
13(t)

−1
0d

0


⊤

ZiZ
⊤
i

=
1

n2
EX,w∗

 0d

0
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

0


w

⊤
i W

⊤
13(t)XX⊤ − yX⊤

w⊤
i W

⊤
13(t)Xy⊤ − yy⊤

0d

0


⊤

=

 0 0 0 0
0 0 0 0

∇V31
Li(t) ∇V32

Li(t) 0 0
0 0 0 0


Therefore, we know all blocks of the gradient are zero except the positions of V31 and V32.

Now look at ∇V32Li:

∇V32
Li =

1

n2
EX,w∗

[(
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

)
(
w⊤

i W
⊤
13(t)Xy⊤ − yy⊤)]

=
1

n2
EX,w∗

[(
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

)
(
w⊤

i W
⊤
13(t)XX⊤w∗ −w∗⊤XX⊤w∗

)]
Note that wi =

(
I − (I − ηS)i

)
w∗ for all i ∈ [k], and wk+1 = w∗. Therefore, for all i ∈

{0, 1, · · · , k+1} the formula inside the expectation is an odd function of w∗. Since w∗ ∼ N (0, Id),
the expectation should be 0d.

Similarly, we calculate the gradient of the W :

∇WLi =
1

n
EX,w∗

[
ZiZ

⊤
i V ⊤

(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]

]

=
1

n2
EX,w∗

ZiZ
⊤
i V ⊤

 0d

0
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

0

Zi
⊤
[:,−1]



=
1

n2
EX,w∗

0d×d 0 XX⊤V31(t)
⊤ 0

0d×d 0 yX⊤V31(t)
⊤ 0

0d×d 0 0d×d 0
0d×d 0 0d×d 0


 0d

0
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

0

Zi
⊤
[:,−1]

=
1

n2
EX,w∗


XX⊤V31(t)

⊤V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)
yX⊤V31(t)

⊤V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)
0d

0


0d

0
wi

1


⊤

=

0 0 ∇W13
Li(t) ∇W14

Li(t)
0 0 ∇W23

Li(t) ∇w24
Li(t)

0 0 0 0
0 0 0 0


Since we fix w24, we only consider the remaining three blocks. First, we consider the gradient of
the vector block W14:

∇W14
Li(t) =

1

n2
EX,w∗

[
XX⊤V31(t)

⊤V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)
]
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Notice that the XX⊤V31(t)
⊤V31(t)XX⊤(W13(t)wi −w∗)−n(wi+1−wi) is odd in w∗. There-

fore the expectation is 0d. Similarly, we consider the other block W23:

∇W23
Li(t) =

1

n2
EX,w∗

[(
yX⊤V31(t)

⊤V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)
)
w⊤

i

]
=

1

n2
EX,w∗

[(
w∗⊤XX⊤V31(t)

⊤V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)
)
w⊤

i

]
= 01×d.

In conclusion, all the blocks have zero gradient except V31,W13 given that they are all zero matrices.
Under Assumption 4.1, all the irrelevant blocks remain zero matrices for all t ≥ 0.

By Lemma C.2, we prove that along the gradient flow trajectory under Assumption 4.1, the objective
of the linear self-attention model with residual connection can be equivalently transform to the
following simplified form.

Lemma C.3. Under Assumption 4.1, we have the training objective

LCoT(V ,W) =
1

2
EX,w∗

[
k∑

i=0

∥V31(SW13wi − Sw∗)−∆wi∥2
]

where S = 1
nXX⊤ and ∆wi := wi+1 −wi, i = 0, 1..., k is the residual for each step i.

Proof. Given the following CoT objective,

LCoT(V ,W) =
1

2
EX,w∗

[
k∑

i=0

∥∥fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)
∥∥2]

By Lemma C.2, we plug in the V ,W expressions and get:

fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1) = V Zi ·
Z⊤

i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

=

(
0d, 0,

1

n
V31

(
XX⊤W13wi −Xy⊤)−∆wi, 0

)
Since y⊤ = X⊤w∗, we have

fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1) =
(
0d, 0,V31

(
S⊤W13wi − Sw∗)−∆wi, 0

)⊤
Put it back to the loss expression and we complete the proof.

Now the chain of thought loss can be rewritten into the form by Lemma C.3, we can directly calculate
the gradient update using the simplified loss for clarity. We denote the only relevant blocks W̃ :=

W13 and Ṽ := V31. Moreover, we can further expand the CoT loss with ∆wi = −η · XX⊤

n (wi −
w∗) for i ∈ {0, 1, · · · , k− 1}, and ∆wk = w∗ −wk. That leads to the following expression of the
CoT loss:

LCoT(θ) =
1

2
EX,w∗

k−1∑
i=0

∥∥∥wi + Ṽ S
(
W̃wi −w∗

)
−wi+1

∥∥∥2
2

+
1

2
EX,w∗

∥∥∥wk + Ṽ S
(
W̃wk −w∗

)
−w∗

∥∥∥2
2

(13)

Observe that the final loss only depends on the (d + 2) to (2d + 2) entries of the transformer’s
output, indicating we can simplify the model a bit and prune out the irrelevant part. We can define
a simplified one-layer transformer to get the loss form above, where the dynamics of the equivalent
model is exactly the same with the original dynamics of W13 and V31. Accordingly, the last token
input of the transformer for i-th step becomes wi and the label becomes wi+1 since the other entries
in the original input/label (0, 0,wi, 1) do not affect prediction.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Definition C.1 (Reduced transformer). Let θ = (Ṽ , W̃). Define

fθ(X,Zi) = wi + Ṽ S
(
W̃wi −w∗

)
to be the reduced model of the one-layer transformer in Equation (3). For ease of presentation, we
denote fθ(wi) := fθ(X,Zi).

In the following sections, we will consider the equivalent form of transformer. Here we present the
gradient with regard to the reduced model. For clarification, throughout this section we will denote
wk+1 :=

(
I − (I − ηS)

k+1
)
w∗ as the (k + 1)-th update, and w∗ is the ground-truth.

Lemma C.4. The gradient of Ṽ and W̃ are given by the following expectations:

∂L
∂Ṽ

=

k∑
i=0

E
[
(fθ(wi)−wi+1)

(
w⊤

i W̃
⊤ −w∗T

)
S
]
+ E

[
(wk+1 −w∗)

(
w⊤

k W̃
⊤ −w∗T

)
S
]
,

∂L
∂W̃

=

k∑
i=0

E
[
SṼ ⊤(fθ(wi)−wi+1)w

⊤
i

]
+ E

[
SṼ ⊤(wk+1 −w∗)w⊤

k

]
.

Proof. Given the equivalent CoT loss in Equation (13), we take the gradient with regard to Ṽ of the
loss and we have

∂L
∂Ṽ

=

k−1∑
i=0

E
[
(fθ(wi)−wi+1)

(
w⊤

i W̃
⊤ −w∗T

)
S
]
+ E

[
(fθ(wk)−w∗)

(
w⊤

k W̃
⊤ −w∗T

)
S
]

=

k∑
i=0

E
[
(fθ(wi)−wi+1)

(
w⊤

i W̃
⊤ −w∗T

)
S
]
+ E

[
(wk+1 −w∗)

(
w⊤

k W̃
⊤ −w∗T

)
S
]

The second step is because we subtract E
[
(fθ(wk)−wk+1)

(
w⊤

k W̃
⊤ −w∗T

)
S
]

from the second

term and put it into the summation. Similarly, the partial derivative of W̃ should be:

∂L
∂W̃

=

k−1∑
i=0

E
[
SṼ ⊤(fθ(wi)−wi+1)w

⊤
i

]
+ E

[
SṼ ⊤(fθ(wk)−w∗)w⊤

k

]
=

k∑
i=0

E
[
SṼ ⊤(fθ(wi)−wi+1)w

⊤
i

]
+ E

[
SṼ ⊤(wk+1 −w∗)w⊤

k

]
Therefore we complete the proof.

C.2 GRADIENT CHARACTERIZATION OVER THE COT OBJECTIVE

In this section, we compute the exact gradient for the reduced model parameters to facilitate
analysis on the dynamics. For clarification, throughout this section we will denote wk+1 :=(
I − (I − ηS)

k+1
)
w∗ as the (k + 1)-th update, and w∗ is the ground-truth.

We first compute our gradients for the simplfied model defined in Definition C.1, which is equivalent
to the full model’s dynamics. Recall that under assumption 4.1, we have Ṽ , W̃ are simultaneously
diagonalizable, with the orthonormal basis {ui}di=1. We denote the orthogonal matrix formed by
the basis as U . We will observe that ui are always the eigenvector of Ṽ , W̃ , so we denote Ṽ =

UΛṼ U⊤, W̃ = UΛW̃U⊤. For clarity, we ignore the timestamp when calculating the gradients
and dynamics.

We present an accurate estimate of the gradient in the following Lemma C.5. We intensively use
the concentration lemma in Appendix D to separate the main terms dominating the gradient flow
dynamics, and some bounded error terms that may complicate the analysis. We also call the error
terms as ‘interaction terms’, since they contain the interactions between two subspaces uiu

⊤
i and

uju
⊤
j . The structure of the interaction terms ∆Ṽ ,∆W̃ are further characterized in this lemma,

which is essential for the final local convergence analysis.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Lemma C.5. Suppose n = Θ(d log5 d), η ∈ (0.1, 0.9), k = ⌈c log d⌉. Under Assumption 4.1, if
we run gradient flow on the population loss in Equation (6), then the gradient of Ṽ and W̃ are
characterized by the following equations:

U⊤ ∂L
∂Ṽ

U =

[(
k + 1− 2

η
+

1

η(2− η)

)
ΛW̃

2
− 2

(
k + 1− 1

η

)
ΛW̃ + (k + 1)I

]
ΛṼ

− 1− η

2− η
ΛW̃ + I +∆Ṽ ,

U⊤ ∂L
∂W̃

U =

(
k + 1− 2

η
+

1

η(2− η)

)
ΛṼ

2
ΛW̃ −

(
k + 1− 1

η

)
ΛṼ

2
− 1− η

2− η
ΛṼ +∆W̃ .

where the error terms (interaction terms)
∥∥∥∆Ṽ

∥∥∥
op

≤ O
(

1
log2 d

)
,
∥∥∥∆W̃

∥∥∥
op

≤ O
(

1
log2 d

)
.

Moreover, there exist diagonal matrices AṼ ,BṼ ,AW̃ ,BW̃ with O
(

1
log2 d

)
-operator norm,

CṼ ,DṼ ,CW̃ ,DW̃ ,EW̃ with O
(

1
d log2 d

)
-operator norm and EṼ ,F W̃ with O

(
(1− η)

k
)

-

operator norm s.t. the error terms ∆Ṽ ,∆W̃ can be written as

∆Ṽ =
(
ΛṼ + ηI

)
AṼ +

(
I −ΛW̃

)
BṼ + tr

((
I −ΛW̃

)
ΛW̃

)
CṼ + tr

(
I −ΛW̃

)
DṼ +EṼ ,

∆W̃ =
(
ΛṼ + ηI

)
AW̃ +

(
I −ΛW̃

)
BW̃ + tr

(
I −ΛW̃

)
CW̃ + tr

(
(ΛṼ + ηI)ΛṼ

)
DW̃

+ tr

(
(I −ΛW̃)ΛṼ

2
)
EW̃ + F W̃ .

Proof. Recall the gradients formula of Ṽ and W̃ by Lemma C.4:

∂L
∂Ṽ

=

k∑
i=0

E
[
(fθ(wi)−wi+1)

(
w⊤

i W̃
⊤ −w∗T

)
S
]
+ E

[
(wk+1 −w∗)

(
w⊤

k W̃
⊤ −w∗T

)
S
]

∂L
∂W̃

=

k∑
i=0

E
[
SṼ ⊤(fθ(wi)−wi+1)w

⊤
i

]
+ E

[
SṼ ⊤(wk+1 −w∗)w⊤

k

]
We expand the reduced model fθ(wi) in Definition C.1, and get the residual term

fθ(wi)−wi+1 = wi + Ṽ S
(
W̃wi −w∗

)
−wi+1

= Ṽ S
(
W̃wi −w∗

)
+ ηS(wi −w∗)

=
(
Ṽ SW̃ + ηS

)
wi −

(
Ṽ + ηI

)
Sw∗

Substitute fθ(wi)−wi+1 term in the dynamics by the equation above, we have

∂L
∂Ṽ

=

k∑
i=0

E
[(

Ṽ SW̃ + ηS
)(

I − (I − ηS)
i
)2

W̃⊤S

]
−

k∑
i=0

E
[(

Ṽ SW̃ + ηS
)(

I − (I − ηS)
i
)
S
]

−
k∑

i=0

E
[(

Ṽ + ηI
)
S
(
I − (I − ηS)

i
)
W̃⊤S

]
+

k∑
i=0

E
[(

Ṽ + ηI
)
S2
]

− E
[
(I − ηS)

k+1
((

I − (I − ηS)
k
)
W̃⊤ − I

)]
=

k∑
i=0

(
Ṽ + ηI

)
E
[
SW̃

(
I − (I − ηS)

i
)2

W̃⊤S

]
(Term 1)

+ η

k∑
i=0

E
[
S
(
I − W̃

)(
I − (I − ηS)

i
)2

W̃⊤S

]
(Term 2)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

−
k∑

i=0

(
Ṽ + ηI

)
E
[
SW̃

(
I − (I − ηS)

i
)
S
]

(Term 3)

− η

k∑
i=0

E
[
S
(
I − W̃

)(
I − (I − ηS)

i
)
S
]

(Term 4)

−
k∑

i=0

(
Ṽ + ηI

)
E
[
S
(
I − (I − ηS)

i
)
W̃⊤S

]
(Term 5)

+

k∑
i=0

(
Ṽ + ηI

)
E
[
S2
]

(Term 6)

− E
[
(I − ηS)

k+1
((

I − (I − ηS)
k
)
W̃⊤ − I

)]
. (Term 7)

To get an accurate estimate of the gradient, we apply Lemma C.14, Lemma C.15 respectively to
each of the terms (Term 1 to Term 7) and separate the interaction terms introduced by the moments
of Wishart matrix, which is bounded by O

(
1

log3 d

)
.

Consider Term 7 and the i-th term in the summation of Term 1 to Term 6. By Lemma C.14 and
Lemma C.15, there exist diagonal matrices ξj , j ∈ [6] satisfying ∥ξj∥op ≤ O

(
1

log3 d

)
such that

E
[
SW̃

(
I − (I − ηS)

i
)2

W̃⊤S

]
= U

[(
1− (1− η)

k
)2

ΛW̃
2
+ ξ1

]
U⊤

E
[
S
(
I − W̃

)(
I − (I − ηS)

i
)2

W̃⊤S

]
= U

[(
1− (1− η)

k
)2(

I −ΛW̃
)
ΛW̃ + ξ2

]
U⊤

E
[
SW̃

(
I − (I − ηS)

i
)
S
]
= U

[(
1− (1− η)

k
)
ΛW̃ + ξ3

]
U⊤

E
[
S
(
I − W̃

)(
I − (I − ηS)

i
)
S
]
= U

[(
1− (1− η)

k
)(

I −ΛW̃
)
+ ξ4

]
U⊤

E
[
S
(
I − (I − ηS)

i
)
W̃⊤S

]
= U

[(
1− (1− η)

k
)
ΛW̃ + ξ5

]
U⊤

E
[
S2
]
= U(I + ξ6)U

⊤

By Lemma D.4, there exists diagonal matrix ξ7 satisfying ∥ξ7∥op ≤ O
(
(1− η)

k
)

such that

E
[
(I − ηS)

k+1
((

I − (I − ηS)
k
)
W̃⊤ − I

)]
= Uξ7U

⊤.

Moreover, there exist α1, α2 ≤ O
(

1
log3 d

)
, α3, α4, α5 ≤ O

(
1

d log3 d

)
such that

ξ2 =
(
α1Λ

W̃ + α2I
)(

I −ΛW̃
)
+tr

(
I −ΛW̃

)(
α3Λ

W̃ + α4I
)
+α5 tr

((
I −ΛW̃

)
ΛW̃

)
I,

and exist β1 ≤ O
(

1
log3 d

)
, β2 ≤ O

(
1

d log3 d

)
such that

ξ4 = β1

(
I −ΛW̃

)
+ β2 tr

(
I −ΛW̃

)
I.

We define ∆Ṽ
i as the sum of all the interaction terms

(
ΛṼ + ηI

)
(ξ1 − ξ3 − ξ5 + ξ6)+η(ξ2 − ξ4)

for the i-th term in the summation of dynamics of Ṽ . From the analysis above, there exist diagonal
matrices AṼ

i , BṼ
i , CṼ

i , DṼ
i with their operator norm O

(
1

log3 d

)
, such that (note every matrix is

diagonal, so they commute)

∆Ṽ
i =

(
ΛṼ + ηI

)
AṼ

i +O

(
1

d

)
tr
((

I −ΛW̃
)
ΛW̃

)
BṼ

i

+
(
I −ΛW̃

)
CṼ

i +O

(
1

d

)
tr
(
I −ΛW̃

)
DṼ

i .

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

We define ∆Ṽ
−1 as the interaction term brought by Term 7 since there is no summation in Term 7. It

is obvious that
∥∥∥∆Ṽ

−1

∥∥∥
op

≤ O
(
(1− η)

k
)

.

Now we denote

∆̂Ṽ =

k∑
i=0

∆Ṽ
i −∆Ṽ

−1

to be the sum of all interaction term of the dynamics of ΛṼ . From the definition of ∆Ṽ
i and ∆Ṽ

−1

above, there exist diagonal matrices AṼ , BṼ , CṼ , DṼ and EṼ
0 satisfying

∥∥∥AṼ
∥∥∥,∥∥∥CṼ

∥∥∥ ≤

O
(

1
log2 d

)
,
∥∥∥BṼ

∥∥∥,∥∥∥DṼ
∥∥∥ ≤ O

(
1

d log2 d

)
and

∥∥∥EṼ
0

∥∥∥ ≤ O
(
(1− η)

k
)

such that (because k =

Θ(log d))

∆̂Ṽ =
(
ΛṼ + ηI

)
AṼ +tr

((
I −ΛW̃

)
ΛW̃

)
BṼ +

(
I −ΛW̃

)
CṼ +tr

(
I −ΛW̃

)
DṼ +EṼ

0

Sum up all the seven terms together and we have

∂L
∂Ṽ

= U

k + 1−
2
(
1− (1− η)

k+1
)

η
+

1− (1− η)
2k+2

η(2− η)

ΛW̃
(
ΛṼ ΛW̃ + ηI

)U⊤

−U

[(
k + 1− 1− (1− η)

k+1

η

)(
ΛṼ ΛW̃ + ηI

)]
U⊤

−U

[(
k + 1− 1− (1− η)

k+1

η

)
ΛW̃

(
ΛṼ + ηI

)]
U⊤

+U
[
(k + 1)

(
ΛṼ + ηI

)]
U⊤ +U∆̂Ṽ U⊤

Denote EṼ
1 to be the sum of all O

(
(1− η)

k
)

terms in the dynamics of Ṽ :

EṼ
1 =

(
2(1− η)

k+1

η
− (1− η)

2k+2

η(2− η)

)
ΛW̃

(
ΛṼ ΛW̃ + ηI

)
− (1− η)

k+1

η

(
2ΛṼ ΛW̃ + ηΛW̃ + ηI

)
Denote EṼ = EṼ

0 +EṼ
1 and denote ∆Ṽ = ∆̂Ṽ +EṼ

1 , we have

U⊤ ∂L
∂Ṽ

U =

[(
k + 1− 2

η
+

1

η(2− η)

)
ΛW̃

2
− 2

(
k + 1− 1

η

)
ΛW̃ + (k + 1)I

]
ΛṼ

− 1− η

2− η
ΛW̃ + I +∆Ṽ

Moreover, ∆Ṽ has the form

∆Ṽ =
(
ΛṼ + ηI

)
AṼ + tr

((
I −ΛW̃

)
ΛW̃

)
BṼ +

(
I −ΛW̃

)
CṼ + tr

(
I −ΛW̃

)
DṼ +EṼ

Similar to the calculation of the dynamics of Ṽ , we can also have

∂L
∂W̃

=

k∑
i=0

E
[
SṼ ⊤(fθ(wi)−wi+1)w

⊤
i

]
+ E

[
SṼ ⊤(wk+1 −w∗)w⊤

k

]
=

k∑
i=0

E
[
SṼ ⊤(Ṽ SW̃ + ηS)

(
I − (I − ηS)

i
)2]

−
k∑

i=0

E
[
SṼ ⊤

(
Ṽ + ηI

)
S
(
I − (I − ηS)

i
)]

− E
[
SṼ ⊤(I − ηS)

k+1
(
I − (I − ηS)

k
)]

=

k∑
i=0

E
[
SṼ ⊤

(
Ṽ S

(
W̃ − I

)
+ (V + ηI)S

)(
I − (I − ηS)

i
)2]

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

−
k∑

i=0

E
[
SṼ ⊤

(
Ṽ + ηI

)
S
(
I − (I − ηS)

i
)]

− E
[
SṼ ⊤(I − ηS)

k+1
(
I − (I − ηS)

k
)]

=

k∑
i=0

E
[
SṼ ⊤Ṽ S

(
W̃ − I

)(
I − (I − ηS)

i
)2]

+

k∑
i=0

E
[
SṼ ⊤

(
Ṽ + ηI

)
S
(
I − (I − ηS)

i
)2]

−
k∑

i=0

E
[
SṼ ⊤

(
Ṽ + ηI

)
S
(
I − (I − ηS)

i
)]

− E
[
SṼ ⊤(I − ηS)

k+1
(
I − (I − ηS)

k
)]

We apply Lemma C.16 and Lemma C.17 to each term, similarly define ∆W̃
i for i ∈ [k] ∪ {0} as

the sum of all interaction terms for the i-th term in the smmation of dynamics of W̃ . There exists
diagonal matrics AW̃

i ,BW̃
i ,CW̃

i ,DW̃
i ,EW̃

i with their operator norm O
(

1
log3 d

)
, such that

∆W̃
i =

(
ΛṼ + ηI

)
AW̃

i +
(
I −ΛW̃

)
BW̃

i +O

(
1

d

)
tr
(
I −ΛW̃

)
CW̃

i

+O

(
1

d

)
tr
(
(ΛṼ + ηI)ΛṼ

)
DW̃

i +O

(
1

d

)
tr

(
(I −ΛW̃)ΛṼ

2
)
EW̃

i

We define ∆W̃
−1 as the interaction term brought by the last term

E
[
SṼ ⊤(I − ηS)

k+1
(
I − (I − ηS)

k
)]

.

It is clear that
∥∥∥∆W̃

−1

∥∥∥
op

≤ O
(
(1− η)

k
)

. Similarly denote

∆̂W̃ =

k∑
i=0

∆W̃
i −∆W̃

−1,

then there exist diagonal matrices AW̃ , BW̃ , CW̃ , DW̃ , EW̃ , F W̃
0 satisfying

∥∥∥AW̃
∥∥∥,∥∥∥BW̃

∥∥∥ ≤

O
(

1
log2 d

)
,
∥∥∥CW̃

∥∥∥,∥∥∥DW̃
∥∥∥,∥∥∥EW̃

∥∥∥ ≤ O
(

1
d log2 d

)
,
∥∥∥F W̃

0

∥∥∥ ≤ O
(
(1− η)

k
)

such that

∆̂W̃ =
(
ΛṼ + ηI

)
AW̃ +

(
I −ΛW̃

)
BW̃ + tr

(
I −ΛW̃

)
CW̃

+ tr
(
(ΛṼ + ηI)ΛṼ

)
DW̃ + tr

(
(I −ΛW̃)ΛṼ

2
)
EW̃ + F W̃

0 .

Denote F W̃
1 to be the sum of all O

(
(1− η)

k
)

terms in the dynamics of W̃ , F W̃ = F W̃
0 + F W̃

1

and ∆W̃ = ∆̂W̃ + F W̃
1 . Thus we have

∂L
∂W̃

=

k∑
i=0

U
(
1− (1− η)

i
)2

ΛṼ
(
ΛṼ ΛW̃ + ηI

)
U⊤ −

k∑
i=0

U
(
1− (1− η)

i
)
ΛṼ

(
ΛṼ + ηI

)
U⊤ +U∆W̃U⊤

= U

k + 1−
2
(
1− (1− η)

k+1
)

η
+

1− (1− η)
2k+2

η(2− η)

ΛṼ
(
ΛṼ ΛW̃ + ηI

)U⊤

−U

[(
k + 1− 1− (1− η)

k+1

η

)
ΛṼ

(
ΛṼ + ηI

)]
U⊤ +U∆̂W̃U⊤

= U

[(
k + 1− 2

η
+

1

η(2− η)

)
ΛṼ

2
ΛW̃ −

(
k + 1− 1

η

)
ΛṼ

2
− 1− η

2− η
ΛṼ +∆W̃

]
U⊤

Moreover, ∆W̃ has the form

∆̂W̃ =
(
ΛṼ + ηI

)
AW̃ +

(
I −ΛW̃

)
BW̃ + tr

(
I −ΛW̃

)
CW̃

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

+ tr
(
(ΛṼ + ηI)ΛṼ

)
DW̃ + tr

(
(I −ΛW̃)ΛṼ

2
)
EW̃ + F W̃ .

Since ∥A+B∥op ≤ ∥A∥op + ∥B∥op and ∥AB∥op ≤ ∥A∥op∥B∥op, it is obvious that∥∥∥∆Ṽ
∥∥∥
op

≤ O

(
1

log2 d

)
,
∥∥∥∆W̃

∥∥∥
op

≤ O

(
1

log2 d

)

After obtaining the estimation of the gradient by lemma C.5, we can decompose the gradient updates
into the dynamics along each eigenspace ui, which can be characterized by the following lemma.

Lemma C.6. Suppose Ṽ =
∑d

j=1 λ
Ṽ
j uju

⊤
j , W̃ =

∑d
j=1 λ

W̃
j uju

⊤
j . The dynamics of the eigen-

values of Ṽ and W̃ are given by the following equations:

dλṼ
j

dt
= −

[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
λṼ
j +

1− η

2− η
λW̃
j − 1 + δṼj

dλW̃
j

dt
=

(
k + 1− 1

η

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j

where
∣∣∣δṼj ∣∣∣ ≤ O

(
1

log2 d

)
,
∣∣∣δW̃j ∣∣∣ ≤ O

(
1

log2 d

)
.

Proof. This is directly obtained from Lemma C.5.

C.3 PROOF OF THE MAIN THEOREM 4.1

In this section, we prove Theorem 4.1, which characterizes the CoT loss of the trained transformer.
First, we restate the theorem.
Theorem C.1 (Global Convergence). Suppose n = Θ(d log5 d), η ∈ (0.1, 0.9), k = ⌈c log d⌉,

c log
(

1
1−η

)
> 2. Under Assumption 4.1 with some constant σ > 3(1−η)

(2−η)
1

k+1 , if we run gradi-

ent flow on the population loss in Equation (6), then after time t = O
(
log d+ log 1

ϵ

)
, we have

LCoT(t) ≤ ϵ for any ϵ ≥ Θ

(
log d

d
c log (1

1−η)−2

)
.

Proof. According to the previous sections, we can reduce the original optimization problem to Equa-
tion (13), and consider the equivalent reduced model (Definition C.1). By Lemma C.5, we fully
characterized the gradient expression, which decomposes the gradient of Ṽ and W̃ into main signal
terms with large norm at initialization (terms before ∆Ṽ ,∆W̃) and interaction terms (∆Ṽ ,∆W̃)
with bounded norm O(1

log2 d
) for all t > 0.

The decomposition motivates us to conduct a stage-wise analysis. We first analyze the dynamics
in Stage 1 when the distance between the parameters Ṽ , W̃ and the ground-truth is larger than
O(1

log2 d
). In this stage, the bounded error can be dominated by the signal terms in the gradient,

leading to nearly independent dynamics along each direction ui. After this stage, we enter Stage 2
as a local convergence phase. We describe the dynamics below in detail.

Stage 1 In the first stage, the dynamics are dominated by the main terms, and the interaction terms
∆Ṽ ,∆W̃ can be somehow be ignored. Specifically, by Lemma C.6, given the dynamics of λṼ

j , λW̃
j :

dλṼ
j

dt
= −

[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
λṼ
j +

1− η

2− η
λW̃
j − 1 + δṼj

dλW̃
j

dt
=

(
k + 1− 1

η

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

we can conclude that the dynamics of the eigenvalue λṼ
j , λW̃

j mainly depend on themselves when

the main term (terms before δW̃j , δṼj) are larger than O(1
log2 d

), which is within the stage 1. That is,

the dynamics within the subspace uiu
⊤
i for Ṽ , W̃ are almost independent with other subspaces. In

this stage, we focus on the analysis of λṼ
j , λW̃

j depending on their own value.

The first stage can be further divided into two phases.

Stage 1, Phase 1. At the beginning of training, we have

λṼ
j (0) +

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (0)
) < −σ +

3(1− η)

(2− η)

1

k + 1
< 0

then by Lemma C.8, we can prove an upper bound of λṼ
j when λW̃

j ≤ 1− (k + 1)
− 7

12 ,

λṼ
j < −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
according to the dynamics for both sides. With this upper bound, we prove

dλW̃
j

dt ≥ O
(
1
k

)
. There-

fore, λW̃
j will converge to 1− (k + 1)

− 7
12 in t1 = O(log d) time (Lemma C.9).

Stage 1, Phase 2. After time t1, we have λW̃
j very close to the ground-truth value 1. Meanwhile,

the lower bound for λṼ
j still holds, and it will further decrease. Specifically,

λW̃
j (t1) = 1− (k + 1)

− 7
12 λṼ

j (t1) < −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (t1)
)

By Lemma C.10, we can prove that λW̃
j will stay close to 1− o(1):

1− 2(k + 1)
− 7

12 < λW̃
j (t) < 1 + (k + 1)

− 7
12

for any t ≥ t1. With this condition, a converging condition for (λṼ
j + η) can be deducted from

Lemma C.11:
d
(
λṼ
j + η

)2
dt

≤ − 1

2η(2− η)

(
λṼ
j + η

)2
Lemma C.11 shows that

∣∣∣λṼ
j + η

∣∣∣ converges to (k + 1)
− 1

12 in t2 = O(log log d) time.

Stage 2. Now the eigenvalues are already close to ground-truth:∣∣∣λṼ
j (t1 + t2) + η

∣∣∣ = O
(
(k + 1)

− 1
12

)
,
∣∣∣λW̃

j (t1 + t2)− 1
∣∣∣ ≤ 2(k + 1)

− 7
12 .

According to the expansion of the error terms in Lemma C.5, we notice that δW̃j and δṼj are always

coupled with some individual residual like (ΛṼ + ηI), (ΛW̃ − I), or some weighted average
1
d tr

(
(ΛṼ + ηI)ΛṼ

)
. Meanwhile, the coefficient of this kind of residual in the interaction terms

is still upper bounded by O(1/ log2 d). That helps us to derive the PL-condition like gradient lower
bound (Lemma C.12):

d tr

[(
ΛṼ + ηI

)2]
dt

+

d tr

[(
I −ΛW̃

)2]
dt

≤− 1

2η(2− η)
tr

[(
ΛṼ + ηI

)2]
− η2

2
(k + 1) tr

[(
I −ΛW̃

)2]
+ α

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

where α = O
(
(1− η)

k
)
≥ 0.

By Lemma C.12, we know
∣∣∣λṼ

j + η
∣∣∣ and

∣∣∣1− λW̃
j

∣∣∣ converge to δ ∈
(
Θ
(
d

c
2 log (1−η)+ 1

2

)
, 1
)

in

t3 = O
(
log 1

δ

)
time. At this time, there exist diagonal matrices A and B satisfying ∥A∥op ≤ Θ(1)

and ∥B∥op ≤ Θ(1) such that

ΛṼ = −ηI + δ ·A ΛW̃ = I + δ ·B.

Now we consider the CoT loss given by Lemma C.3

LCoT(θ) =
1

2
EX,w∗

k−1∑
i=0

∥∥∥(Ṽ SW̃ + ηS)wi − (Ṽ + ηI)Sw∗
∥∥∥2
2

+
1

2
EX,w∗

∥∥∥(I + Ṽ SW̃)wk − (Ṽ S + I)w∗
∥∥∥2
2
.

Apply Lemma C.13, we directly obtain that

LCoT(θ) = O
(
δ2d log d

)
.

Since δ ∈
(
Θ
(
d

c
2 log (1−η)+ 1

2

)
, 1
)

, the CoT loss is smaller than ϵ = Θ
(
dc log (1−η)+2 log d

)
. The

local convergence takes t3 = O
(
log 1

δ

)
= O

(
log 1

ϵ

)
. Considering all stages, at time t = t1 + t2 +

t3 = O(log d) +O
(
1
ϵ

)
, we have

LCoT(θ) ≤ ϵ.

C.3.1 TECHNICAL LEMMA IN APPENDIX C.3

Lemma C.7. Assume λW̃
j ≤ 1− (k + 1)

− 7
12 , if − 3(1−η)

2(2−η)
1

(k+1)
(
1−λW̃

j

) ≤ λṼ
j < 0, it holds that

d

(
λṼ
j + 3(1−η)

2(2−η)
1

(k+1)
(
1−λW̃

j

))
dt

< 0 (14)

Proof. Directly consider the derivative

d

(
λṼ
j + 3(1−η)

2(2−η)
1

(k+1)
(
1−λW̃

j

))
dt

=
dλṼ

j

dt
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2 dλW̃
j

dt

Substitute the derivatives with the equations in Lemma C.6, we have

dλṼ
j

dt
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2 dλW̃
j

dt

=−
[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
λṼ
j +

1− η

2− η
λW̃
j −

(
1 + δṼj

)
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2 [(k + 1− 1

η

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j

]

Since − 3(1−η)
2(2−η)

1

(k+1)
(
1−λW̃

j

) ≤ λṼ
j < 0, we have

dλṼ
j

dt
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2 dλW̃
j

dt

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

≤
[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
+

1− η

2− η
λW̃
j −

(
1 + δṼj

)
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2
[
(k + 1)

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
2(

1− λW̃
j

)

+
1− η

η(2− η)

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
2

λW̃
j − δW̃j

]

=
3(1− η)

2(2− η)

(
1− λW̃

j

)
+

1

k + 1

3(1− η)

η(2− η)
λW̃
j +

1

(k + 1)
(
1− λW̃

j

) 3(1− η)

2η(2− η)
2λ

W̃
j

2

+
1− η

2− η
λW̃
j −

(
1 + δṼj

)
+

[
3(1− η)

2(2− η)

]3
1

(k + 1)
2
(
1− λW̃

j

)3
+

[
3(1− η)

2(2− η)

]3
1− η

η(2− η)
λW̃
j

1

(k + 1)
3
(
1− λW̃

j

)4 − 3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)2 δW̃j
=

[
1− η

2(2− η)

(
1− λW̃

j

)
− 1

2− η

]
+

1

k + 1

3(1− η)

2− η
λW̃
j

+
1

(k + 1)
(
1− λW̃

j

) 3(1− η)

2η(2− η)
2λ

W̃
j

2
− δṼj +

[
3(1− η)

2(2− η)

]3
1

(k + 1)
2
(
1− λW̃

j

)3
+

[
3(1− η)

2(2− η)

]3
1− η

η(2− η)
λW̃
j

1

(k + 1)
3
(
1− λW̃

j

)4 − 3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)2 δW̃j
Put in the assumption on λW̃

j that λW̃
j ≤ 1− (k + 1)

− 7
12 , we have

dλṼ
j

dt
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2 dλW̃
j

dt

≤ − 1 + η

2(2− η)
+

1

k + 1

3(1− η)

η(2− η)
+

1

(k + 1)
5
12

3(1− η)

2η(2− η)
2 +

∣∣∣δṼj ∣∣∣+ [3(1− η)

2(2− η)

]3
1

(k + 1)
1
4

+

[
3(1− η)

2(2− η)

]3
1− η

η(2− η)

1

(k + 1)
2
3

+
3(1− η)

2(2− η)

∣∣∣δW̃j ∣∣∣
= − 1 + η

2(2− η)
+O

(
1

log
1
4 d

)

Lemma C.8 (Upper bound of λṼ
j). Under Assumption 4.1, if λW̃

j ≤ 1− (k + 1)
− 7

12 , it holds that

λṼ
j < −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

) (15)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Proof. We prove by induction. First, check the initialization λṼ
j (0) ≤ −σ, σ ≤ λW̃

j (0) ≤ 1
2 . If

σ ≥ 3(1−η)
2−η

1
k+1 , then we have

λṼ
j (0) +

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (0)
) < −σ +

3(1− η)

(2− η)

1

k + 1
≤ 0

If the inequality holds until some time t1, that is for any t < t1, we have

λṼ
j (t) < −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (t)
)

but

λṼ
j (t1) ≥ −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (t1)
)

By Lemma C.7, we have

d

(
λṼ
j + 3(1−η)

2(2−η)
1

(k+1)
(
1−λW̃

j

))
dt

∣∣∣∣∣∣∣∣∣
t=t1

< 0

Therefore, there exists some time t′ < t1 such that

λṼ
j (t′) ≥ −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (t′)
)

which is a contradiction. Hence, the proof is complete.

Lemma C.9 (λW̃
j converges to near optimal). Under Assumption 4.1, it takes O(log d) time for λW̃

j

to converge to 1− (k + 1)
− 7

12 .

Proof. Recall the gradient of λW̃
j in Lemma C.6

dλW̃
j

dt
=

(
k + 1− 1

η

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j

Substitute λṼ
j with Lemma C.8, we have

dλW̃
j

dt
≥
(
k + 1− 1

η

)3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
2(

1− λW̃
j

)

+
1− η

η(2− η)

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
2

λW̃
j

− 1− η

2− η

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
− δW̃j

≥ 4

5
(k + 1)

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
2(

1− λW̃
j

)

− 1− η

2− η

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
−

∣∣∣δW̃j ∣∣∣
34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

=
3

10

(1− η)
2

(2− η)
2

1

(k + 1)
(
1− λW̃

j

) −
∣∣∣δW̃j ∣∣∣

≥ 1

5

(1− η)
2

(2− η)
2

1

(k + 1)
(
1− λW̃

j

)
≥ 1

5

(1− η)
2

(2− η)
2

1

k + 1

In O(log d) time, λW̃
j can converge to 1− (k + 1)

− 7
12 .

Lemma C.10. Assume λW̃
j (t1) = 1 − (k + 1)

− 7
12 and λṼ

j (t1) < − 3(1−η)
2(2−η)

1

(k+1)
(
1−λW̃

j (t1)
) , for

any t ≥ t1 it holds that

1− 2(k + 1)
− 7

12 < λW̃
j (t) < 1 + (k + 1)

− 7
12 .

Proof. First, it is clear that the inequality holds at time t1. If the inequality doesn’t hold, then there
exists t′ > t1 such that

1− 2(k + 1)
− 7

12 < λW̃
j (t) < 1 + (k + 1)

− 7
12 for any t1 ≤ t < t′

λW̃
j (t′) = 1− 2(k + 1)

− 7
12

or

1− 2(k + 1)
− 7

12 < λW̃
j (t) < 1 + (k + 1)

− 7
12 for any t1 ≤ t < t′

λW̃
j (t′) = 1 + (k + 1)

− 7
12

In the first case, it suffices to prove

λṼ
j (t′) ≤ −3(1− η)

2(2− η)
(k + 1)

− 5
12 < −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (t′)
)

to show
dλW̃

j

dt

∣∣∣∣∣
t=t′

> 0

which says there exists t1 ≤ t′′ < t′ such that

λW̃
j (t′′) ≤ 1− 2(k + 1)

− 7
12

and leads to a contradiction. Recall the gradient of λṼ
j in Lemma C.6

dλṼ
j

dt
= −

[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
λṼ
j +

1− η

2− η
λW̃
j −

(
1 + δṼj

)
≤ −

[
4(k + 1)

− 1
6 +

4

η

[
(k + 1)

− 7
12 + (k + 1)

− 7
6

]
+

1

η(2− η)

[
1 + 2(k + 1)

− 7
12 + (k + 1)

− 7
6

]]
λṼ
j

− 1

2− η
+

1− η

2− η
(k + 1)

− 7
12 +

∣∣∣δṼj ∣∣∣
≤ − 2

η(2− η)
λṼ
j − 1

2(2− η)

and thus we have
λṼ
j (t) ≤ Ce−

2
η(2−η)

(t−t1) − η

4
If C ≤ 0, then

λṼ
j (t′) ≤ −η

4
≤ −3(1− η)

2(2− η)
(k + 1)

− 5
12

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

else

λṼ
j (t′) ≤ λṼ

j (t1) = −3(1− η)

2(2− η)
(k + 1)

− 5
12

In the second case,

λṼ
j (t) ≤ −3(1− η)

2(2− η)
(k + 1)

− 5
12

still holds for any t1 ≤ t ≤ t′. Recall the gradient of λW̃
j in Lemma C.6

dλW̃
j

dt

∣∣∣∣∣
t=t′

=

(
k + 1− 1

η

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j

= −
(
k + 1− 1

η

)
λṼ
j

2
(k + 1)

− 7
12 +

1− η

η(2− η)
λṼ
j

2[
1 + (k + 1)

− 7
12

]
+

1− η

2− η
λṼ
j − δW̃j

≤ − (k + 1)
5
12

2
λṼ
j

2
+

1− η

2(2− η)
λṼ
j +

∣∣∣δW̃j ∣∣∣
≤ − 9(1− η)

2

8(2− η)
2 (k + 1)

− 5
12 − 3(1− η)

2

4(2− η)
2 (k + 1)

− 5
12 +

∣∣∣δW̃j ∣∣∣
≤ − (1− η)

2

(2− η)
2 (k + 1)

− 5
12

There exists t1 ≤ t′′ < t′ such that

λW̃
j (t′′) ≥ 1 + (k + 1)

− 7
12

which is a contradiction. Hence, the proof is complete.

Lemma C.11 (λṼ
j converges to near optimal). Assume

1− 2(k + 1)
− 7

12 < λW̃
j (t) < 1 + (k + 1)

− 7
12

then it takes O(log log d) time for
∣∣∣λṼ

j + η
∣∣∣ to converge to (k + 1)

− 1
12 .

Proof. From Lemma C.10, we know

dλṼ
j

dt
= −

[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
λṼ
j +

1− η

2− η
λW̃
j −

(
1 + δṼj

)
≤ −

[
4(k + 1)

− 1
6 +

4

η

[
(k + 1)

− 7
12 + (k + 1)

− 7
6

]
+

1

η(2− η)

[
1 + 2(k + 1)

− 7
12 + (k + 1)

− 7
6

]]
λṼ
j

− 1

2− η
+

1− η

2− η
(k + 1)

− 7
12 +

∣∣∣δṼj ∣∣∣
= −

[
1

η(2− η)
+O

(
(k + 1)

− 1
6

)](
λṼ
j + η

)
+O

(
(k + 1)

− 1
6

)
and

dλṼ
j

dt
= −

[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
λṼ
j +

1− η

2− η
λW̃
j −

(
1 + δṼj

)
≥ −

[
−2

η

[
(k + 1)

− 7
12 + (k + 1)

− 7
6

]
+

1

η(2− η)

[
1− 4(k + 1)

− 7
12 + 4(k + 1)

− 7
6

]]
λṼ
j

− 1

2− η
− 2(1− η)

2− η
(k + 1)

− 7
12 −

∣∣∣δṼj ∣∣∣
= −

[
1

η(2− η)
+O

(
(k + 1)

− 1
6

)](
λṼ
j + η

)
+O

(
(k + 1)

− 1
6

)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Therefore,

d
(
λṼ
j + η

)2
dt

= 2
(
λṼ
j + η

)dλṼ
j

dt

≤ −
[

1

η(2− η)
+O

(
(k + 1)

− 1
6

)](
λṼ
j + η

)2
+O

(
(k + 1)

− 1
6

)(
λṼ
j + η

)
If
∣∣∣λṼ

j + η
∣∣∣ converges to ϵ = (k + 1)

− 1
12 , then

d
(
λṼ
j + η

)2
dt

≤ − 1

2η(2− η)

(
λṼ
j + η

)2
Thus, there exists c ≤ Θ(1) such that

ϵ2 =
(
λṼ
j + η

)2
≤ c2 exp

(
− 1

2η(2− η)
t

)
In O

(
log
(
1
ϵ

))
= O(log log d) time,

∣∣∣λṼ
j + η

∣∣∣ can converge to ϵ.

Lemma C.12 (Local convergence). Suppose k = ⌈c log d⌉. Assume∣∣∣λW̃
j (t)− 1

∣∣∣ ≤ 2(k + 1)
− 7

12

∣∣∣λṼ
j (t) + η

∣∣∣ = O
(
(k + 1)

− 1
12

)
,

then there exists α = O
(
(1− η)

k
)
≥ 0 such that ΛṼ and ΛW̃ comply with

d tr

[(
ΛṼ + ηI

)2]
dt

+

d tr

[(
I −ΛW̃

)2]
dt

≤ − 1

2η(2− η)
tr

[(
ΛṼ + ηI

)2]
− η2

2
(k + 1) tr

[(
I −ΛW̃

)2]
+ α,

thus
∣∣∣λṼ

j + η
∣∣∣ and

∣∣∣1− λW̃
j

∣∣∣ can converge to ϵ ∈
(
d−

c
2 log (1

1−η)+
1
2 , 1
)

in O
(
log 1

ϵ

)
time.

Proof. Consider the error term in Lemma C.6 more carefully, we have

dλṼ
j

dt
= −

[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
](

λṼ
j + η

)
+ η(k + 1)

(
1− λW̃

j

)2
+

(
3− 2η

2− η
λW̃
j − 1

)(
1− λW̃

j

)
+
(
λṼ
j + η

)
O

(
1

log2 d

)
+
(
1− λW̃

j

)
O

(
1

log2 d

)
+ tr

(
I −ΛW̃

)
O

(
1

d log2 d

)
+ tr

((
I −ΛW̃

)
ΛW̃

)
O

(
1

d log2 d

)
+O

(
(1− η)

k
)

and

dλW̃
j

dt
=

(
k + 1− 2

η
+

1

η(2− η)

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

(
λṼ
j + η

)
+
(
λṼ
j + η

)
O

(
1

log2 d

)
+
(
1− λW̃

j

)
O

(
1

log2 d

)
+ tr

(
I −ΛW̃

)
O

(
1

d log2 d

)
+ tr

(
(ΛṼ + ηI)ΛṼ

)
O

(
1

d log2 d

)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

+ tr

(
(I −ΛW̃)ΛṼ

2
)
O

(
1

d log2 d

)
+O

(
(1− η)

k
)

Now we consider the decay rate of the distance between λṼ
j , λW̃

j and their ground truth.

d
(
λṼ
j + η

)2
dt

+
d
(
λW̃
j − 1

)2
dt

= −
[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
+O

(
1

log2 d

)](
λṼ
j + η

)2
+

(
3− 2η

2− η
λW̃
j − 1− η

η(2− η)
λṼ
j − 1 +O

(
1

log2 d

))(
1− λW̃

j

)(
λṼ
j + η

)
−
[(

k + 1− 2

η
+

1

η(2− η)

)
λṼ
j

2
− η(k + 1)

(
λṼ
j + η

)
+O

(
1

log2 d

)](
1− λW̃

j

)2
+
(
λṼ
j + η

)
tr
(
I −ΛW̃

)
O

(
1

d log2 d

)
+
(
λṼ
j + η

)
tr
((

I −ΛW̃
)
ΛW̃

)
O

(
1

d log2 d

)
+
(
1− λW̃

j

)
tr
(
I −ΛW̃

)
O

(
1

d log2 d

)
+
(
1− λW̃

j

)
tr
((

ΛṼ + ηI
)
ΛṼ

)
O

(
1

d log2 d

)
+
(
1− λW̃

j

)
tr

((
I −ΛW̃

)
ΛṼ

2
)
O

(
1

d log2 d

)
+O

(
(1− η)

k
)

= −

[
1

η(2− η)
+O

(
1

log
1
6 d

)](
λṼ
j + η

)2
+

(
2(1− η)

2− η
+O

(
1

log
1
12 d

))(
1− λW̃

j

)(
λṼ
j + η

)
−
[
η2(k + 1) +O

(
k

11
12

)](
1− λW̃

j

)2
+
(
λṼ
j + η

)
tr
(
I −ΛW̃

)
O

(
1

d log2 d

)
+
(
λṼ
j + η

)
tr
((

I −ΛW̃
)
ΛW̃

)
O

(
1

d log2 d

)
+
(
1− λW̃

j

)
tr
(
I −ΛW̃

)
O

(
1

d log2 d

)
+
(
1− λW̃

j

)
tr
((

ΛṼ + ηI
)
ΛṼ

)
O

(
1

d log2 d

)
+
(
1− λW̃

j

)
tr

((
I −ΛW̃

)
ΛṼ

2
)
O

(
1

d log2 d

)
+O

(
(1− η)

k
)

Utilizing Mean Inequality, we have∣∣∣(1− λW̃
j

)(
λṼ
j + η

)∣∣∣ ≤ 1

2
√
k

(
λṼ
j + η

)2
+

√
k

2

(
1− λW̃

j

)2
Insert the inequality into the equation and we have

d
(
λṼ
j + η

)2
dt

+
d
(
λW̃
j − 1

)2
dt

≤ −

[
1

η(2− η)
+O

(
1

log
1
6 d

)](
λṼ
j + η

)2
−
[
η2(k + 1) +O

(
k

11
12

)](
1− λW̃

j

)2
+
(
λṼ
j + η

)
tr
(
I −ΛW̃

)
O

(
1

d log2 d

)
+
(
λṼ
j + η

)
tr
((

I −ΛW̃
)
ΛW̃

)
O

(
1

d log2 d

)
+
(
1− λW̃

j

)
tr
(
I −ΛW̃

)
O

(
1

d log2 d

)
+
(
1− λW̃

j

)
tr
((

ΛṼ + ηI
)
ΛṼ

)
O

(
1

d log2 d

)
+
(
1− λW̃

j

)
tr

((
I −ΛW̃

)
ΛṼ

2
)
O

(
1

d log2 d

)
+O

(
(1− η)

k
)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

There exist α1, α2, α3, α4, α5 = O
(

1
d log2 d

)
≥ 0 and α6 = O

(
(1− η)

k
)
≥ 0 such that

d
(
λṼ
j + η

)2
dt

+
d
(
λW̃
j − 1

)2
dt

≤ −

[
1

η(2− η)
+O

(
1

log
1
6 d

)](
λṼ
j + η

)2
−
[
η2(k + 1) +O

(
k

11
12

)](
1− λW̃

j

)2
+ α1

∣∣∣λṼ
j + η

∣∣∣ tr(∣∣∣I −ΛW̃
∣∣∣)+ α2

∣∣∣λṼ
j + η

∣∣∣ · ∣∣∣tr((I −ΛW̃
)
ΛW̃

)∣∣∣
+ α3

∣∣∣1− λW̃
j

∣∣∣ tr(∣∣∣I −ΛW̃
∣∣∣)+ α4

∣∣∣1− λW̃
j

∣∣∣ · ∣∣∣tr((ΛṼ + ηI
)
ΛṼ

)∣∣∣
+ α5

∣∣∣1− λW̃
j

∣∣∣ · ∣∣∣∣tr((I −ΛW̃
)
ΛṼ

2
)∣∣∣∣+ α6.

Notice that for diagonal matrices A and B, we have

tr (AB) ≤ |tr (AB)| =

∣∣∣∣∣∑
i

aiibii

∣∣∣∣∣ ≤∑
i

|aii||bii| ≤
∑
i

|aii|∥B∥ = tr(|A|)∥B∥

Plug in the inequality and we have

d
(
λṼ
j + η

)2
dt

+
d
(
λW̃
j − 1

)2
dt

≤ −

[
1

η(2− η)
+O

(
1

log
1
6 d

)](
λṼ
j + η

)2
−
[
η2(k + 1) +O

(
k

11
12

)](
1− λW̃

j

)2
+ α1

∣∣∣λṼ
j + η

∣∣∣ tr(∣∣∣I −ΛW̃
∣∣∣)+ α2

∣∣∣λṼ
j + η

∣∣∣ tr(∣∣∣I −ΛW̃
∣∣∣) · ∥∥∥ΛW̃

∥∥∥
+ α3

∣∣∣1− λW̃
j

∣∣∣ tr(∣∣∣I −ΛW̃
∣∣∣)+ α4

∣∣∣1− λW̃
j

∣∣∣ tr(∣∣∣ΛṼ + ηI
∣∣∣) · ∥∥∥ΛṼ

∥∥∥
+ α5

∣∣∣1− λW̃
j

∣∣∣ tr(∣∣∣I −ΛW̃
∣∣∣) · ∥∥∥∥ΛṼ

2
∥∥∥∥+ α6

= −

[
1

η(2− η)
+O

(
1

log
1
6 d

)](
λṼ
j + η

)2
−
[
η2(k + 1) +O

(
k

11
12

)](
1− λW̃

j

)2
+
(
α1 + α2

∥∥∥ΛW̃
∥∥∥) · ∣∣∣λṼ

j + η
∣∣∣ · tr(∣∣∣I −ΛW̃

∣∣∣)+ α4

∥∥∥ΛṼ
∥∥∥ · ∣∣∣1− λW̃

j

∣∣∣ · tr(∣∣∣ΛṼ + ηI
∣∣∣)

+

(
α3 + α5

∥∥∥∥ΛṼ
2
∥∥∥∥) ·

∣∣∣1− λW̃
j

∣∣∣ · tr(∣∣∣I −ΛW̃
∣∣∣)+ α6

Take the sum of both sides separately, we have

d tr

[(
ΛṼ + ηI

)2]
dt

+

d tr

[(
I −ΛW̃

)2]
dt

≤ −

[
1

η(2− η)
+O

(
1

log
1
6 d

)]
tr

[(
ΛṼ + ηI

)2]
−
[
η2(k + 1) +O

(
k

11
12

)]
tr

[(
I −ΛW̃

)2]
+
(
α1 + α2

∥∥∥ΛW̃
∥∥∥+ α4

∥∥∥ΛṼ
∥∥∥) · tr(∣∣∣ΛṼ + ηI

∣∣∣) · tr(∣∣∣I −ΛW̃
∣∣∣)

+

(
α3 + α5

∥∥∥∥ΛṼ
2
∥∥∥∥) · tr2

(∣∣∣I −ΛW̃
∣∣∣)+ α6

From Jensen’s Inequality with f(x) = x2, we have(∑d
i=1 λi

d

)2

≤
∑d

i=1 λ
2
i

d
.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Therefore, it holds for diagonal matrix Λ ∈ Rd×d that

tr2 (Λ) ≤ d tr
(
Λ2
)

Plug in the inequality and we have

d tr

[(
ΛṼ + ηI

)2]
dt

+

d tr

[(
I −ΛW̃

)2]
dt

≤− 1

2η(2− η)
tr

[(
ΛṼ + ηI

)2]
− η2

2
(k + 1) tr

[(
I −ΛW̃

)2]
+ α6

Because k = ⌈c log d⌉, we have O
(
d(1− η)

k
)
= d−c log (1

1−η)+1. So in O
(
log 1

ϵ

)
time,

∣∣∣λṼ
j + η

∣∣∣
and

∣∣∣1− λṼ
j

∣∣∣ converge to ϵ ∈
(
Θ
(
d

c
2 log (1−η)+ 1

2

)
, 1
)

.

Lemma C.13. Suppose δ ∈
(
Θ
(
d

c
2 log (1−η)+ 1

2

)
, 1
)

and there exist diagonal matrices A and B

satisfying ∥A∥op ≤ Θ(1) and ∥B∥op ≤ Θ(1) such that

ΛṼ = −ηI + δ ·A ΛW̃ = I + δ ·B,

then it holds that
LCoT(θ) = O

(
δ2d log d

)
.

Proof. Now we consider the CoT loss given by Lemma C.3

LCoT(θ) =
1

2
EX,w∗

k−1∑
i=0

∥∥∥(Ṽ SW̃ + ηS)wi − (Ṽ + ηI)Sw∗
∥∥∥2
2

+
1

2
EX,w∗

∥∥∥(I + Ṽ SW̃)wk − (Ṽ S + I)w∗
∥∥∥2
2
.

Plug in the expression of ΛṼ and ΛW̃ , we get

LCoT(θ) =
δ2

2
E

k−1∑
i=0

∥∥∥(AS − ηSB + δASB)
(
I − (I − ηS)

i
)
−AS

∥∥∥2
F

(16)

+
1

2
E
∥∥∥−(I − ηS)

k
+ΛṼ S

[
−(I − ηS)

k
+ δB

(
I − (I − ηS)

k
)]∥∥∥2

F
. (17)

We first consider the term in the summation:

E
∥∥∥(AS − ηSB + δASB)

(
I − (I − ηS)

i
)
−AS

∥∥∥2
F

= E
∥∥∥(−ηSB + δASB)

(
I − (I − ηS)

i
)
−AS(I − ηS)

i
∥∥∥2
F

= trE
[
(−ηSB + δASB)

(
I − (I − ηS)

i
)2

(−ηBS + δBSA)

]
− 2 trE

[
(−ηSB + δASB)

(
I − (I − ηS)

i
)
(I − ηS)

i
SA

]
+ trE

[
AS(I − ηS)

2i
SA

]
= tr

(
(−ηI + δA)E

[
SB

(
I − (I − ηS)

i
)2

BS

]
(−ηI + δA)

)
(Term 1)

− 2 tr
(
(−ηI + δA)E

[
SB

(
I − (I − ηS)

i
)
(I − ηS)

i
S
]
A
)

(Term 2)

+ tr
(
AE
[
S(I − ηS)

2i
S
]
A
)

(Term 3)

Apple Lemma C.15 to the expectation in Term 1, we have

E
[
SB

(
I − (I − ηS)

i
)2

BS

]

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

=
(
1− (1− η)

i
)2

B2 +O

(
1

log3 d

)[
B2 +O

(
1

d

)
tr (B)B +O

(
1

d

)
tr
(
B2
)
I +O

(
1

d2

)
tr2 (B)I

]
.

It is obvious that ∥∥∥∥E[SB(I − (I − ηS)
i
)2

BS

]∥∥∥∥
op

≤ Θ(1).

Therefore, for Term 1 we have

tr

(
(−ηI + δA)E

[
SB

(
I − (I − ηS)

i
)2

BS

]
(−ηI + δA)

)
≤ d∥−ηI + δA∥2op ·

∥∥∥∥E[SB(I − (I − ηS)
i
)2

BS

]∥∥∥∥
op

≤ O(d).

(all matrices in the inequality are diagonal matrices.)

Similarly, for Term 2 and Term 3, we have∣∣∣tr((−ηI + δA)E
[
SB

(
I − (I − ηS)

i
)
(I − ηS)

i
S
]
A
)∣∣∣ ≤ O(d)

tr
(
AE
[
S(I − ηS)

2i
S
]
A
)

≤ O(d).

Add Term 1, 2, 3 together and we have

E
∥∥∥(AS − ηSB + δASB)

(
I − (I − ηS)

i
)
−AS

∥∥∥2
F
≤ O(d).

We then consider the second term in Equation (17):

E
∥∥∥−(I − ηS)

k
+ΛṼ S

[
−(I − ηS)

k
+ δB

(
I − (I − ηS)

k
)]∥∥∥2

F

= E
∥∥∥−(I +ΛṼ S

)
(I − ηS)

k
+ δΛṼ SB

(
I − (I − ηS)

k
)∥∥∥2

F

= tr
(
E
[(

I +ΛṼ S
)
(I − ηS)

2k
(
I + SΛṼ

)])
− 2δ tr

(
E
[(

I +ΛṼ S
)
(I − ηS)

k
(
I − (I − ηS)

k
)
BS

]
ΛṼ

)
+ δ2 tr

(
ΛṼ E

[
SB

(
I − (I − ηS)

k
)2

BS

]
ΛṼ

)
≤ O

(
δ2d
)
. ((1− η)

k ≤ δ)

Recall the CoT loss in Equation (16) and Equation (17). By the analysis above, we directly obtain
that

LCoT(θ) = O
(
δ2d log d

)
.

Hence, the proof is complete.

Lemma C.14. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛ
(
I − (I − ηS)

k
)
ΓS
]
=
(
1− (1− η)

k
)
ΛΓ+∆,

where ∥∆∥op = O(k
2d
n) ≤ O

(
1

log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O(k

2

nd).

Proof. We can directly get the lemma by applying Lemma D.2 to E[SΛΓS], E
[
SΛ(I − ηS)

k
ΓS
]
.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Lemma C.15. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛ
(
I − (I − ηS)

k
)2

ΓS

]
=
(
1− (1− η)

k
)2

ΛΓ+∆,

where ∥∆∥op = O(k
2d
n) ≤ O

(
1

log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O(k

2

nd).

Proof. We can directly get the lemma by applying Lemma D.2 to E[SΛΓS], E
[
SΛ(I − ηS)

k
ΓS
]

and E
[
SΛ(I − ηS)

2k
ΓS
]
.

Lemma C.16. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛSΓ

(
I − (I − ηS)

k
)]

=
(
1− (1− η)

k
)
ΛΓ+∆,

where ∥∆∥op = O(k
2d
n) ≤ O

(
1

log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O(k

2

nd).

Proof. We can directly get the lemma by applying Lemma D.3 to E[SΛSΓ], E
[
SΛSΓ(I − ηS)

k
]
.

Lemma C.17. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛSΓ

(
I − (I − ηS)

k
)2]

=
(
1− (1− η)

k
)2

ΛΓ+∆,

where ∥∆∥op = O(k
2d
n) ≤ O

(
1

log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O(k

2

nd).

Proof. We can directly get the lemma by applying Lemma D.3 to E[SΛSΓ], E
[
SΛSΓ(I − ηS)

k
]

and E
[
SΛSΓ(I − ηS)

2k
]
.

C.4 OUT-OF-DISTRIBUTION GENERALIZATION

We restate the formal theorem here. We still denote S := 1
nXX⊤ for simplicity. Note that the

number of steps k can be different/larger compared to the step number in the previous training
theorem.
Theorem C.2. Suppose n = Θ(d log5 d), η ∈ (0.1, 0.9), k = C log d. Assume the out-of-
distribution input data xi ∼ N (0d,Σ), i ∈ [n] where δ

η ≤ λmin(Σ) ≤ λmax(Σ) ≤ 2−δ
η for

some constant δ > 0.1, and w∗ ∼ N (0d, I). Then the trained transformer in Theorem 4.1 satisfies

that LEval
Σ (t) ≤ ϵ for any ϵ ∈

(
d−C log(min{ 1

1−η , 1
1−δ })+1 log2 d, 1

)
.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Proof. Recall the definition of the evaluation loss and our reduced transformer (Definition C.1)

LEval(V ,W) =
1

2
EX,w∗

[∥∥∥fLSA(Ẑk)[:,−1] − (0d, 0,w
∗, 1)

∥∥∥2]
=

1

2
E
[
∥fθ(ŵk)−w∗∥2

]
where Ẑk is the generated sequence after k steps and ŵk := fθ(ŵk−1) is the k-th generated inter-
mediate weight vector. Note that each step the transformer is inputted with the last step prediction.
We define the prediction error at each step i is ∆wi := ŵi −wi = fθ(ŵi−1)−wi. We expand the
term fθ(ŵk)−w∗ and sum up the error accumulation as follows:
fθ(ŵk)−w∗ ≤ (wk+1 −w∗) + (fθ(ŵk)−wk+1)

= (wk+1 −w∗) + ŵk + Ṽ S(W̃ ŵk −w∗)−wk+1

≤ (wk+1 −w∗) +
(
wk + Ṽ S(W̃wk −w∗)−wk+1

)
+
(
I + Ṽ SW̃

)
∆wk.

After one step of decomposition, we notice that the error ∆wk+1 can be decomposed into two parts:
(1) The approximation error predicting wk+1 with ground-truth input wk. We define it

∆pred
k+1 := wk + Ṽ S(W̃wk −w∗)−wk+1

(2) The accumulated error from the last inference step:
(
I + Ṽ SW̃

)
∆wk. Therefore, we can

inductively calculate the sum of the error:

fθ(ŵk)−w∗ ≤ (wk+1 −w∗) +
(
wk + Ṽ S(W̃wk −w∗)−wk+1

)
+
(
I + Ṽ SW̃

)
∆wk.

= (wk+1 −w∗) + ∆pred
k+1 +

(
I + Ṽ SW̃

)
∆wk

= (wk+1 −w∗) + ∆pred
k+1 +

(
I + Ṽ SW̃

)
∆pred

k +
(
I + Ṽ SW̃

)2
∆wk−1

= (wk+1 −w∗) +

k∑
i=0

(
I + Ṽ SW̃

)i
∆pred

k−i+1 (∆w0 = 0 by definition.)

Then we have our evaluation loss upper bounded:

1

2
E
[
∥fθ(ŵk)−w∗∥2

]
=

1

2
E

∥∥∥∥∥(wk+1 −w∗) +

k∑
i=0

(
I + Ṽ SW̃

)i
∆pred

k−i+1

∥∥∥∥∥
2

≤ k + 2

2

(
E ∥(wk+1 −w∗)∥2 +

k∑
i=0

E
∥∥∥(I + Ṽ SW̃)i∆pred

k−i+1

∥∥∥2) (*)

We first consider the first term: E ∥(wk+1 −w∗)∥2:

E ∥wk+1 −w∗∥2 = E
∥∥(I − (I − ηS)k+1

)
w∗ −w∗∥∥2 = tr

(
E(I − ηS)2k+2

)
≤ 2d(1− δ)2k+2 ≤ 2d−2c log(1

1−δ)+1. (Lemma D.5)

Then we consider the second summation term. Since the parameters of the reduced model Ṽ =

−ηI + A, W̃ = I + B, where ∥A∥op, ∥B∥op ≤ d−
1
2C log(1

1−η)+
1
2 for some constant c > 0, we

want to bound the prediction error given the ground-truth input. By Lemma D.6, we have

E
k∑

i=0

∥∥∥(I + Ṽ SW̃)i∆pred
k−i+1

∥∥∥2
= E

k∑
i=0

∥∥∥(I + Ṽ SW̃)i(wk−i + Ṽ S(W̃wk−i −w∗)−wk−i+1))
∥∥∥2

≤ O
(
d−C log(1

1−η)+1 · k
)
.

Therefore, plug those back to Equation (*), the total evaluation loss should be upper bounded by

LEval(θ) ≤ O
(
d−C log(min{ 1

1−η , 1
1−δ })+1 · k2

)
= O(d−C log(min{ 1

1−η , 1
1−δ })+1 log2 d)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

D SUPPLEMENTARY LEMMAS

D.1 CONCENTRATION LEMMAS

In this appendix, we prove some concentration lemmas to estimate the expected gradient more ac-
curately. Throughout the proof, Λ,Γ are both symmetric matrices with orthonormal eigenbasis
{ui}di=1.

Lemma D.1. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1). Then the expectation

E
[
SΛ(I − ηS)kS

]
= (1− η)k(Λ+∆),

where ∥∆∥op ≤ O(k
2d
n) = O

(
1

log3 d

)
. Moreover, the error is in the form ∆ = α1Λ + α2 tr(Λ)I ,

where α1 = O
(

k2d
n

)
, α2 = O

(
k2

n

)
.

Proof. Denote δS := S − I . Then we expand the term SΛ(I − ηS)kS:

SΛ(I − ηS)kS

= (I + δS)Λ((1− η)I − ηδS)k(I + δS)

= (1− η)k(I + δS)Λ

(
I − η

(1− η)
δS

)k

(I + δS)

= (1− η)k(I + δS)Λ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj


+(1− η)k(I + δS)Λ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

δS

Now take expectation to both sides. Note that E[δS] = 0, so all the terms only contain first order
δS vanish. We denote

(1− η)k∆̃ = SΛ(I − ηS)kS − (1− η)k
(
Λ+ δSΛ+ΛδS − kη

1− η
ΛδS

)
,

which denotes all the higher order terms (the degree of δS ≥ 2.)

Since we have the tail bound for δS in Theorem 4.6.1 Vershynin (2018) (In this lemma ∥ · ∥ is
operator norm if without specification):

Pr
(
∥δS∥ > max

(
δ, δ2

))
≤ 2 exp

{
−s2

}
, where δ = C

(√
d

n
+

s√
n

)
(18)

We can estimate the expectation using this property. First, given s =
√
d and ∥δS∥ ≤ max

(
δ, δ2

)
=

C
√

d
n (since n = Θ(d log5 d)), we can upper bound the operator norm of ∆̃:

∥∆̃∥op ≤

∥∥∥∥∥∥Λ
(k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥δSΛ
− kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥δSΛ
I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

δS

∥∥∥∥∥∥
op

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

+

∥∥∥∥∥∥Λ
− kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

δS

∥∥∥∥∥∥
op

Now upper bound all matrices with their operator norm and combine all terms with the same degree
of δS. We have

∥∆̃∥op ≤
k+2∑
j=2

∥Λ∥

((
k

j

)(
η

1− η

)j

+ 2

(
k

j − 1

)(
η

1− η

)j−1

+

(
k

j − 2

)(
η

1− η

)j−2
)
∥δS∥j

≤
k+2∑
j=2

∥Λ∥
(
(9k)j + 2(9k)j−1 + (9k)j−2

)
∥δS∥j (η

1−η ≤ 9,
(
k
j

)
≤ kj .)

≤ 4

k+2∑
j=2

∥Λ∥ · (9k)j
(
C

√
d

n

)j

(∥δS∥ ≤ C
√

d
n .)

≤ 4∥Λ∥ · 81C
2k2d

n
· 1

1− (9kd
1/2

n1/2)
≤ C ′ k

2d

n
≤ O

(
1

log3 d

)
. (*1)

Given this upper bound, we can now upper bound the operator norm of the error term ∆ := E[∆̃].
Suppose u := argmaxu:∥u∥=1

∥∆u∥
∥u∥ , then the operator norm becomes:

∥∆∥ =
∣∣∣u⊤E[∆̃]u

∣∣∣
= E

[∣∣∣u⊤∆̃u
∣∣∣(1{∥∆̃∥ ≤ C ′ k

2d

n

}
+ 1

{
∥∆̃∥ > C ′ k

2d

n

})]
≤ C ′ k

2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

When ∥∆̃∥ ≥ s where s ≥ C′k2d
n , we can first upper bound the ∥∆̃∥ with ∥δS∥ using the second

row of eq. (*1): there exists some constant C1 > 0 s.t.

∥∆̃∥ ≤ 4

k+2∑
j=2

∥Λ∥ · (9k∥δS∥)j ≤ max
(
(C1k∥δS∥)2, (C1k∥δS∥)k+2

)
.

Therefore, when ∥∆̃∥ ≥ s, ∥δS∥ ≥ min{ s1/2

C1k
, s1/(k+2)

C1k
}. To apply the tail bound, we need to make

sure we pick some s′ such that max
(
δ, δ2

)
≤ min{ s1/2

C1k
, s1/(k+2)

C1k
} to upper bound the integral of

probability, where δ = C(
√

d
n + s′√

n
). Now since s > C′k2d

n , min{ s1/2

C1k
, s1/(k+2)

C1k
} ≥ Cα

√
d
n

for some constant Cα. Therefore, we just need max{ s′√
n
, s′2

n } ≤ min{ s1/2

C1k
, s1/(k+2)

C1k
}, i.e. s′ ≤

min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
.

Applying the tail bound (18) with s′ = min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
where C2, C3, C4, C5 are some constant, we have the error term for the tail expectation,∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds ≤

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min

{
s1/2

C1k
,
s1/(k+2)

C1k

}]
ds

≤ 2

∫ ∞

C′k2d
n

exp
{
−s′2

}
ds.

Now we estimate the upper bound of error with

s′2 = min

{
C2

2 · s
2/(k+2)

k2
n,C2

3 · s
1/(k+2)

k
n,C2

4 · sn
k2

, C2
5 ·

√
sn

k

}
.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

For the first term, let x =
C2

2n
k2 s2/(k+2):

2

∫ ∞

C′k2d
n

exp

{
−C2

2 · s
2/(k+2)

k2
n

}
ds

= (k + 2)

∫ ∞

C2
2n

k2

(
C′k2d

n

) 2
k+2

(
k2

C2
2n

)(k+2)/2

exp{−x}xk/2dx

≤ (k + 2) ·
(

k2

C2
2n

)(k+2)/2

·

(
C2

2n

k2

(
C ′k2d

n

) 2
k+2

)k/2

exp

{
−C2

2n

k2

(
C ′k2d

n

) 2
k+2

}
≤ k2d

n
.

The second term, let x = C2
3 · s1/(k+2)

k n:

2

∫ ∞

C′k2d
n

exp

{
−C2

3 · s
1/(k+2)

k
n

}
ds

= 2(k + 2)

∫ ∞

C3n
k

(
C′k2d

n

) 1
k+2

(
k

C2
3n

)k+2

exp{−x}xk+1dx

≤ 2(k + 2) ·
(

k

C2
3n

)k+2

·

(
C2

3n

k

(
C ′k2d

n

) 1
k+2

)k+1

exp

{
−C2

3n

k

(
C ′k2d

n

) 1
k+2

}
≤ k2d

n
.

For the third term, let x =
C2

4sn
k2 :

2

∫ ∞

C′k2d
n

exp

{
−C2

4sn

k2

}
ds =

∫ ∞

C′k2d
n ·C

2
4n

k2

k2

C2
4n

exp{−x}dx

≤ k2

C2
4n

exp

{
−C ′k2d

n
· C

2
4n

k2

}
≤ k2d

n
.

The fourth term, let x = C2
5 · s1/2

k n:

2

∫ ∞

C′k2d
n

exp

{
−C2

5 · s
1/2

k
n

}
ds

=
4k2

n2C4
5

∫ ∞

C2
5

n
k

(
C′k2d

n

)1/2
exp{−x}xdx

≤ 4k2

n2C4
5

· C2
5

n

k

(
C ′k2d

n

)1/2

exp

{
−C2

5

n

k

(
C ′k2d

n

)1/2
}

≤ k2d

n
.

Therefore, we plug this error back to the upper bound of ∥∆∥:

∥∆∥ ≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds = O

(
k2d

n

)
≤ O

(
1

log3 d

)
.

Finally, since by Lemma D.8, we know the error is in the form ∆ = α1Λ + α2 tr(Λ)I for all Λ.
Therefore α1 = O

(
k2d
n

)
, α2 = O

(
k2

n

)
.

Lemma D.2. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛ(I − ηS)kΓS

]
= (1− η)k(ΛΓ+∆),

where ∥∆∥op = O(k
2d
n) ≤ O

(
1

log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O(k

2

nd).

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Proof. Denote δS := S − I . Then we expand the term SΛ(I − ηS)kΓS:

SΛ(I − ηS)kΓS

= (I + δS)Λ((1− η)I − ηδS)kΓ(I + δS)

= (1− η)k(I + δS)Λ

(
I − η

(1− η)
δS

)k

Γ(I + δS)

= (1− η)k(I + δS)Λ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

Γ

+(1− η)k(I + δS)Λ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

ΓδS

Take expectation to both sides. Note that E[δS] = 0, so all the first order term vanish. We denote

(1− η)k∆̃ = SΛ(I − ηS)kΓS − (1− η)k
(
Λ+ δS ·ΛΓ+ΛΓ · δS − kη

1− η
Λ · δSΓ

)
,

which denotes all the higher order terms (the degree of δS ≥ 2.)

We can estimate the expectation using similar technique as in Lemma D.1. First, given s =
√
d and

∥δS∥ ≤ max
(
δ, δ2

)
= C

√
d
n (since n = Θ(d log5 d)), we upper bound the operator norm of ∆̃:

∥∆̃∥op ≤

∥∥∥∥∥∥Λ
(k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

Γ

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥δSΛ
− kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

Γ

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥δSΛ
I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

ΓδS

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥Λ
− kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

ΓδS

∥∥∥∥∥∥
op

Now upper bound all matrices with their operator norm and combine all terms with the same degree
of δS. We have

∥∆̃∥op ≤
k+2∑
j=2

∥Γ∥∥Λ∥

((
k

j

)(
η

1− η

)j

+ 2

(
k

j − 1

)(
η

1− η

)j−1

+

(
k

j − 2

)(
η

1− η

)j−2
)
∥δS∥j

≤
k+2∑
j=2

∥Γ∥∥Λ∥
(
(9k)j + 2(9k)j−1 + (9k)j−2

)
∥δS∥j (η

1−η ≤ 9,
(
k
j

)
≤ kj .)

≤ 4

k+2∑
j=2

∥Γ∥∥Λ∥ · (9k)j
(
C

√
d

n

)j

(∥δS∥ ≤ C
√

d
n .)

≤ 4∥Λ∥∥Γ∥ · 81C
2k2d

n
· 1

1− (9kd
1/2

n1/2)
≤ C ′ k

2d

n
≤ O

(
1

log3 d

)

Now upper bound the operator norm of the error term ∆ := E[∆̃]. Suppose u :=

argmaxu:∥u∥=1
∥∆u∥
∥u∥ , then the operator norm becomes:

∥∆∥ =
∣∣∣u⊤E[∆̃]u

∣∣∣
47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

= E
[∣∣∣u⊤∆̃u

∣∣∣(1{∥∆̃∥ ≤ C ′ k
2d

n

}
+ 1

{
∥∆̃∥ > C ′ k

2d

n

})]
≤ C ′ k

2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

When ∥∆̃∥ ≥ s where s ≥ C′k2d
n , there exists some constant C1 > 0 s.t.

∥∆̃∥ ≤ max
(
(C1k∥δS∥)2, (C1k∥δS∥)k+2

)
.

Therefore, when ∥∆̃∥ ≥ s, ∥δS∥ ≥ min{ s1/2

C1k
, s1/(k+2)

C1k
}. Like Lemma D.1, applying the tail bound

(18) with s′ ≤ min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
where C2, C3, C4, C5 are

some constant, we have the error term for the tail expectation∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds ≤

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds

≤ 2

∫ ∞

C′k2d
n

exp
{
−s′2

}
ds.

Use the exact same argument, 2
∫∞

C′k2d
n

exp
{
−s′2

}
ds ≤ k2d

n . Thus, the upper bound of ∥∆∥ is:

∥∆∥ ≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds = O

(
k2d

n

)
≤ O

(
1

log3 d

)
.

Finally by Lemma D.8, we know the error is in the form ∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+

α4 tr(Λ) tr(Γ)I for all Λ,Γ. Therefore α1 = O
(

k2d
n

)
, α2, α3 = O

(
k2

n

)
, α4 = O(k

2

nd).

Lemma D.3. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛSΓ(I − ηS)k

]
= (1− η)k(ΛΓ+∆),

where ∥∆∥op ≤ O
(

1
log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O(k

2

nd).

Proof. Denote δS := S − I . Then we expand the term SΛSΓ(I − ηS)k:

SΛSΓ(I − ηS)k

= (1− η)k(I + δS)Λ(I + δS)Γ

(
I − η

(1− η)
δS

)k

= (1− η)k(I + δS)ΛΓ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj


+(1− η)k(I + δS)ΛδSΓ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj


Take expectation to both sides. Note that E[δS] = 0, so all the first order term vanish. We denote

(1− η)k∆̃ = SΛ(I − ηS)kΓS − (1− η)k
(
Λ+ δS ·ΛΓ+ΛδSΓ− kη

1− η
ΛΓ · δS

)
,

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

which denotes all the higher order terms (the degree of δS ≥ 2.)

We can estimate the expectation using similar technique as in Lemma D.1. Given s =
√
d and

∥δS∥ ≤ max
(
δ, δ2

)
= C

√
d
n (since n = Θ(d log5 d)), we upper bound the operator norm of ∆̃.

We directly expand the formula and upper bound all matrices with their operator norm and combine
all terms with the same degree of δS. We have

∥∆̃∥op ≤
k+2∑
j=2

∥Γ∥∥Λ∥

((
k

j

)(
η

1− η

)j

+ 2

(
k

j − 1

)(
η

1− η

)j−1

+

(
k

j − 2

)(
η

1− η

)j−2
)
∥δS∥j

≤
k+2∑
j=2

∥Γ∥∥Λ∥
(
(9k)j + 2(9k)j−1 + (9k)j−2

)
∥δS∥j (η

1−η ≤ 9,
(
k
j

)
≤ kj .)

≤ 4

k+2∑
j=2

∥Γ∥∥Λ∥ · (9k)j
(
C

√
d

n

)j

≤ C ′ k
2d

n
≤ O

(
1

log3 d

)
(∥δS∥ ≤ C

√
d
n .)

Now upper bound the operator norm of ∆ := E[∆̃]. Suppose u := argmaxu:∥u∥=1
∥∆u∥
∥u∥ , then

∥∆∥ = E
[∣∣∣u⊤∆̃u

∣∣∣(1{∥∆̃∥ ≤ C ′ k
2d

n

}
+ 1

{
∥∆̃∥ > C ′ k

2d

n

})]
≤ C ′ k

2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

When ∥∆̃∥ ≥ s where s ≥ C′k2d
n , there exists some constant C1 > 0 s.t.

∥∆̃∥ ≤ max
(
(C1k∥δS∥)2, (C1k∥δS∥)k+2

)
.

Therefore, when ∥∆̃∥ ≥ s, ∥δS∥ ≥ min{ s1/2

C1k
, s1/(k+2)

C1k
}. Like Lemma D.1, applying the tail bound

(18) with s′ ≤ min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
where C2, C3, C4, C5 are

some constant, we have∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds ≤

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds ≤ 2

∫ ∞

C′k2d
n

exp
{
−s′2

}
ds.

Use the exact same argument, 2
∫∞

C′k2d
n

exp
{
−s′2

}
ds ≤ k2d

n . Thus, the upper bound of ∥∆∥ is:

∥∆∥ ≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds = O

(
k2d

n

)
≤ O

(
1

log3 d

)
.

Finally by Lemma D.8, we know the error is in the form ∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+

α4 tr(Λ) tr(Γ)I for all Λ,Γ. Therefore α1 = O
(

k2d
n

)
, α2, α3 = O

(
k2

n

)
, α4 = O(k

2

nd).

Lemma D.4. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1). Then there exists δ = O
(

k2d
n

)
≤ O

(
1

log3 d

)
, the expectation is

E
[
Λ(I − ηS)k

]
= (1− η)k(1 + δ)Λ,

Proof. Denote δS := S − I . Then we expand the term Λ(I − ηS)k:

Λ(I − ηS)k = (1− η)kΛ

(
I − η

(1− η)
δS

)k

= (1− η)kΛ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj


49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Take expectation to both sides. Note that E[δS] = 0, so all the first order term vanish. We denote

(1− η)k∆̃ = Λ(I − ηS)k − (1− η)k
(
Λ− kη

1− η
Λ · δS

)
,

which denotes all the higher order terms (the degree of δS ≥ 2.)

We can estimate the expectation using similar technique as in Lemma D.1. First, given s =
√
d and

∥δS∥ ≤ max
(
δ, δ2

)
= C

√
d
n (since n = Θ(d log5 d)), we upper bound the operator norm of ∆̃:

∥∆̃∥op ≤

∥∥∥∥∥∥Λ
(k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

∥∥∥∥∥∥
op

Now upper bound all matrices by operator norm and combine all terms with the same degree of δS:

∥∆̃∥op ≤
k∑

j=2

∥Λ∥

((
k

j

)(
η

1− η

)j
)
∥δS∥j ≤

k+2∑
j=2

∥Λ∥(9k)j∥δS∥j (η
1−η ≤ 9,

(
k
j

)
≤ kj .)

≤ ∥Λ∥ · 81C
2k2d

n
· 1

1− (9kd
1/2

n1/2)
≤ C ′ k

2d

n
≤ O

(
1

log3 d

)
(∥δS∥ ≤ C

√
d
n .)

Now upper bound the operator norm of the error. Suppose u := argmaxu:∥u∥=1
∥∆u∥
∥u∥ , we have

∥∆∥ =
∣∣∣u⊤E[∆̃]u

∣∣∣ = E
[∣∣∣u⊤∆̃u

∣∣∣(1{∥∆̃∥ ≤ C ′ k
2d

n

}
+ 1

{
∥∆̃∥ > C ′ k

2d

n

})]
≤ C ′ k

2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

When ∥∆̃∥ ≥ s where s ≥ C′k2d
n , there exists some constant C1 > 0 s.t.

∥∆̃∥ ≤ max
(
(C1k∥δS∥)2, (C1k∥δS∥)k+2

)
.

Therefore, when ∥∆̃∥ ≥ s, ∥δS∥ ≥ min{ s1/2

C1k
, s1/(k+2)

C1k
}. Like Lemma D.1, applying the tail bound

(18) with s′ ≤ min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
where C2, C3, C4, C5 are

some constant, we have the error term for the tail expectation∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds ≤

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds ≤ 2

∫ ∞

C′k2d
n

exp
{
−s′2

}
ds.

Use the exact same argument, 2
∫∞

C′k2d
n

exp
{
−s′2

}
ds ≤ k2d

n . Thus, the upper bound of ∥∆∥ is:

∥∆∥ ≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds = O

(
k2d

n

)
≤ O

(
1

log3 d

)
.

Finally by Lemma D.8, we know the error is in the form ∆ = α1Λ for all Λ. So α1 = O
(

k2d
n

)
.

D.2 CONCENTRATION LEMMAS FOR OUT-OF-DISTRIBUTION DATA

For non-isotropic covariance Gaussian data input, we also have the concentration around the covari-
ance Σ when n = Θ(d logc d) for c > 0. We still denote S = 1

nXX⊤. The following lemmas
are involved in the calculation for the evaluation process, for in-distribution and out-of-distribution
input examples X .
Lemma D.5. Suppose S = 1

n

∑n
i=1 xix

⊤
i where xi ∼ N (0d,Σ), δ

η ≤ λmin(Σ) ≤ λmax(Σ) ≤
2−δ
η for some constant δ > 0.1, n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈ (0.1, 0.9). Then the

expectation

tr
(
E(I − ηS)k

)
≤ 2d(1− δ)k.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Proof. Denote δS := S −Σ. Then we expand the term Λ(I − ηS)k:

(I − ηS)k = (1− δ)k
(
I − ηΣ

1− δ
− η

1− δ
δS

)k

= (1− δ)k

(I − ηΣ

1− δ

)k

− kη

(1− δ)

(
I − ηΣ

1− δ

)k−1

δS +

k∑
j=2

(
k

j

)(
I − ηΣ

1− δ

)k−j(−η

1− δ

)j

δSj


Take expectation to both sides. Note that E[δS] = 0, so all the first order term vanish. We denote

(1− δ)k∆̃ = (I − ηS)k − (1− δ)k

((
I − ηΣ

1− δ

)k

− kη

(1− δ)

(
I − ηΣ

1− δ

)k−1

δS

)
,

which denotes all the higher order terms (the degree of δS ≥ 2). Note
∥∥∥ I−ηΣ

1−δ

∥∥∥
op

≤ 1.

We can estimate the expectation using similar technique as in Lemma D.1. First, given s =
√
d and

∥δS∥ ≤ max
(
δ, δ2

)
= C

√
d
n (since n = Θ(d log5 d)), we upper bound the operator norm of ∆̃:

∥∆̃∥op ≤

∥∥∥∥∥∥
k∑

j=2

(
k

j

)(
I − ηΣ

1− δ

)k−j(−η

1− δ

)j

δSj

∥∥∥∥∥∥
op

Now upper bound all matrices by operator norm and combine all terms with the same degree of δS:

∥∆̃∥op ≤
k∑

j=2

((
k

j

)(
η

1− δ

)j
)
∥δS∥j ≤

k+2∑
j=2

(9k)j∥δS∥j (η
1−η ≤ 9,

(
k
j

)
≤ kj .)

≤ 81C2k2d

n
· 1

1− (9kd
1/2

n1/2)
≤ C ′ k

2d

n
≤ O

(
1

log3 d

)
(∥δS∥ ≤ C

√
d
n .)

Now upper bound the operator norm of the error. Suppose u := argmaxu:∥u∥=1
∥∆u∥
∥u∥ , we have

∥∆∥ =
∣∣∣u⊤E[∆̃]u

∣∣∣ = E
[∣∣∣u⊤∆̃u

∣∣∣(1{∥∆̃∥ ≤ C ′ k
2d

n

}
+ 1

{
∥∆̃∥ > C ′ k

2d

n

})]
≤ C ′ k

2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

When ∥∆̃∥ ≥ s where s ≥ C′k2d
n , there exists some constant C1 > 0 s.t.

∥∆̃∥ ≤ max
(
(C1k∥δS∥)2, (C1k∥δS∥)k+2

)
.

Therefore, when ∥∆̃∥ ≥ s, ∥δS∥ ≥ min{ s1/2

C1k
, s1/(k+2)

C1k
}. Like Lemma D.1, applying the tail bound

(18) with s′ ≤ min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
where C2, C3, C4, C5 are

some constant, we have the error term for the tail expectation∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds ≤

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds ≤ 2

∫ ∞

C′k2d
n

exp
{
−s′2

}
ds.

Use the exact same argument, 2
∫∞

C′k2d
n

exp
{
−s′2

}
ds ≤ k2d

n . Thus, the upper bound of ∥∆∥ is:

∥∆∥ ≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds = O

(
k2d

n

)
≤ O

(
1

log3 d

)
<

1

2
.

Finally, the absolute value of the trace should be upper bounded by

tr

(
(1− δ)k

((
I − ηΣ

1− δ

)k

+∆

))
≤ 2d(1− δ)k.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

The next lemma deals with the prediction error.
Lemma D.6. Suppose S = 1

n

∑n
i=1 xix

⊤
i where xi ∼ N (0d,Σ), and the covariance matrix

satisfies δ
η ≤ λmin(Σ) ≤ λmax(Σ) ≤ 2−δ

η for some constant δ > 0. Assume n = Θ(d log5 d), k =

O(log d), η = Θ(1) ∈ (0.1, 0.9). Denote that A := Ṽ + ηI,B := W̃ − I , ∥A∥op, ∥B∥op ≤
Θ(d−c). Then for any i < k,

E
∥∥∥(I + Ṽ SW̃)i(wk−i + Ṽ S(W̃wk−i −w∗)−wk−i+1))

∥∥∥2 ≤ O

(
(1− δ)2i

d−2c+1

)
Proof. We will adopt a similar method as we did throughout Lemma D.1 to Lemma D.4.

First, we expand the left hand side loss:

E
∥∥∥(I + Ṽ SW̃)i(wk−i + Ṽ S(W̃wk−i −w∗)−wk−i+1))

∥∥∥2
= E

∥∥∥(I + Ṽ SW̃)i
(
(Ṽ SW̃ + ηS)(I − (I − ηS)k−i)w∗ − (Ṽ + ηI)Sw∗

)∥∥∥2
= E

∥∥∥(I + Ṽ SW̃)i
(
(Ṽ SW̃ + ηS)(I − (I − ηS)k−i)− (Ṽ + ηI)S

)∥∥∥2
F

≤ d · E
∥∥∥(I + Ṽ SW̃)i

(
(Ṽ SW̃ + ηS)(I − (I − ηS)k−i)− (Ṽ + ηI)S

)∥∥∥2
op

The second equation is due to wi = (I− (I− ηS)i), and we arranged to stress the error terms. The
third line is because E[w∗w∗⊤] = I. The last line is ∥ · ∥F ≤

√
d∥·∥op.

Now we expand each term of the expression within the operator norm into A,B, I, and S:

I + Ṽ SW̃ = I − ηS +ASB − ηSB +AS.

Ṽ SW̃ + ηS = ASB − ηSB +AS, Ṽ + ηI = A.

Therefore the formula becomes (consider each term separately)(
I + Ṽ SW̃

)i
= (I − ηS +ASB − ηSB +AS)

i(
(Ṽ SW̃ + ηS)(I − (I − ηS)k−i)− (Ṽ + ηI)S

)
= (−ηSB +ASB)(I − (I − ηS)k−i)−AS(I − ηS)k−i

We still denote δS = S −Σ. We first consider when the concentration holds, a.k.a ∥δS∥ ≤ C
√

d
n .

Since ∥A∥, ∥B∥ ≤ O(d−c), their error are dominated by C
√

d
n . We reduce this case to the previous

Lemma D.5. Therefore we can upper bound the expression by∥∥∥I + Ṽ SW̃
∥∥∥i = ∥I − ηS +ASB − ηSB +AS∥i ≤ 3

2
(1− δ)i∥∥(−ηSB +ASB)(I − (I − ηS)k−i)−AS(I − ηS)k−i
∥∥ ≤ O(d−c).

That means this part of the expectation is upper bounded by d · 94 (1− δ)2i ·O(d−2c) = O
(

(1−δ)2i

d−2c+1

)
Then we estimate the tail expectation. We first upper bound the above formula by ∥δS∥:∥∥∥I + Ṽ SW̃

∥∥∥i = ∥I − ηS +ASB − ηSB +AS∥i ≤ O(k(1− δ)i min{∥δS∥, 1}i)∥∥(−ηSB +ASB)(I − (I − ηS)k−i)−AS(I − ηS)k−i
∥∥ ≤ O(kd−c min{1, ∥δS∥k−i}).

Use the same argument as in Lemma D.1 to calculate the integral of tail bound, the tail expectation
can also be upper bounded by O

(
(1−δ)2i

d−2c+1

)
. Combine those two part and we finish the proof.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

D.3 THE FORM OF EXPECTATION

Lemma D.7. Suppose S = 1
n

∑n
i=1 xix

⊤
i , then the expectation is in the following form for any k:

E
[
Susu

⊤
s S

kutu
⊤
t S

k′
]
= α1usu

⊤
s + α2utu

⊤
t + α3I for any s ̸= t.

E
[
Susu

⊤
s S

kusu
⊤
s S

k′
]
= α4usu

⊤
s + α5I.

Proof. We notice that by changing the basis to {us}ds=1,

E
[
Susu

⊤
s S

kutu
⊤
t S

k′
]
= UE

[(
U⊤SU

)
ese

⊤
s

(
U⊤SU

)k
ete

⊤
t

(
U⊤SU

)k′]
U⊤. (19)

Define x̂i = U⊤xi. Since gaussian is isotropic, we have E[x̂i] = U⊤E[xi] = 0. After we change
the basis, the covariance matrix of x̂i should also be the same:

Cov(x̂i) = U⊤Cov(xi)U = I.

Therefore x̂i has the same distribution as xi and we have

UE
[(
U⊤SU

)
ese

⊤
s

(
U⊤SU

)k
ete

⊤
t

(
U⊤SU

)k′]
U⊤ = UE

[
Sese

⊤
s S

kete
⊤
t S

k′
]
U⊤.

Subsequently, we only need to consider the expectation of Sese⊤s S
kete

⊤
t S

k′
. Decompose xi into

the sum of basis vectors and we get xi =
∑d

j=1 xijej .

Plug in the decomposition into the expectation and we have

nk+2E
[
Sese

⊤
s S

kete
⊤
t S

k′
]

= E

[ n∑
i0=1

∑
j0,j1∈[d]

xi0j0xi0j1ej0e
⊤
j1

ese
⊤
s

k′∏
l=1

 n∑
il=1

∑
j2l,j2l+1∈[d]

xilj2lxilj2l+1
ej2le

⊤
j2l+1


ete

⊤
t

k∏
l=1

 n∑
il=1

∑
j2l,j2l+1∈[d]

xilj2lxilj2l+1
ej2le

⊤
j2l+1

]

= E

[∑
i0,··· ,ik+k′∈[n]

∑
j0,··· ,j2(k+k′)+1∈[d]

xi0j0xi0j1 · · ·xik+k′ j2(k+k′)
xik+k′ j2(k+k′)+1

ej0e
⊤
j1ese

⊤
s ej2e

⊤
j3 · · · ej2ke

⊤
j2k+1

ete
⊤
t ej2k+2

e⊤j2k+3
· · · ej2(k+k′)

e⊤j2(k+k′)+1

]
=

∑
i0,··· ,ik+k′∈[n]

∑
j0,··· ,j2(k+k′)+1∈[d]

E
[
xi0j0xi0j1 · · ·xik+k′ j2(k+k′)

xik+k′ j2(k+k′)+1

]
ej0e

⊤
j1ese

⊤
s ej2e

⊤
j3 · · · ej2ke

⊤
j2k+1

ete
⊤
t ej2k+2

e⊤j2k+3
· · · ej2(k+k′)

e⊤j2(k+k′)+1
.

Note that e⊤a eb ̸= 0 only when a = b, so e⊤a ese
⊤
s eb ̸= 0 only when a = b = s. Therefore, we

only need to consider the case where j2q−1 = j2q for any q ∈ [1, k + k′]. By symmetry, we know

E
[
Sese

⊤
s S

kete
⊤
t S

k′
]

is a diagonal matrix, so we have j0 = j2(k+k′)+1. We denote

Ej0 = ej0e
⊤
j1ese

⊤
s ej1e

⊤
j2 · · · ejke

⊤
jk+1

ete
⊤
t ejk+1

e⊤jk+2
· · · ejk+k′e

⊤
j0

to be one of the standard basis in Rd×d space. It is a non-zero matrix when j1 = s and jk+1 = t.
By the analysis above, we have

nk+2E
[
Sese

⊤
s S

kete
⊤
t S

k′
]
=

∑
i0,··· ,ik+k′∈[n]

∑
j0,··· ,jk+k′∈[d]

E
[
xi0j0xi0j1 · · ·xik+k′ jk+k′xik+k′ j0

]
Ej0 .

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Let P(2k + 2) be the set of all distinct ways of partitioning {i0j0, i0j1 · · · , ik+k′jk+k′ , ik+k′j0}
into k + 1 unordered pairs p = ((p1, p2), · · · , (p2k+1, p2k+2)). From Isserlis’ theorem, we have

E
[
xi0j0xi0j1 · · ·xik+k′ jk+k′xik+k′ j0

]
=

∑
p∈P(2k+2)

k+k′∏
i=0

E
[
xp2ixp2i+1

]
.

Plug it in the expectation and we have

nk+2E
[
Sese

⊤
s S

kete
⊤
t S

k′
]
=

∑
i0,··· ,ik+k′∈[n]

∑
j0,··· ,jk+k′∈[d]

∑
p∈P(2k+2)

k+k′∏
i=0

E
[
xp2i

xp2i+1

]
Ej0

=
∑

p∈P(2k+2)

∑
i0,··· ,ik∈[n]

∑
j0,··· ,jk∈[d]

k+k′∏
i=0

E
[
xp2i

xp2i+1

]
Ej0 .

To make sure the term in the summation is non-zero, p2q−1 = p2q should hold for any 1 ≤ q ≤ k+1.
Now consider the graph Gp and G′

p with vertices {0, 1, · · · , k + k′}. If iu1
jv1 is paired with iu2

jv2 ,
then we put an edge between u1 and u2 into Gp and put an edge between v1 and v2 into G′

p, which
means iu1

= iu2
and jv1 = jv2 . Therefore, for a cycle C = (u1, u2, · · · , ur) in Gp or G′

p, we have
iu1

= iu2
= · · · = iur

or ju1
= ju2

= · · · = jur
. Note that we have n or d choices for the value

of the circle. Here we use C(·) to denote the set of circles in the graph and use |C(·)| to denote the
number of circles in the graph. Let c∗ be the cycle in G′

p which includes the vertex j0.

Case 1: s ̸= t. For the partition p where j1 ∈ c∗ and jk+1 ∈ c ̸= c∗, there is only one choice

for c and c∗ to take. So the term in the summation should be n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s . Simi-

larly, for the partition p where jk+1 ∈ c∗ and j1 ∈ c ̸= c∗, the term in the summation should be

n|C(Gp)|d|C(G
′
p)|−2ete

⊤
t . For the partition p where j1 ∈ c′ ̸= c∗ and jk+1 ∈ c′′ ̸= c∗, there is only

one choice for c′ and c′′ to take. Therefore, the expectation should be

nk+2E
[
Sese

⊤
s S

kete
⊤
t S

k′
]

=
∑

P:j1∈c∗,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s +

∑
P:jk+1∈c∗,j1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ete

⊤
t

+
∑

P:j1,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ej0e

⊤
j0

=
∑

P:j1∈c∗,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s +

∑
P:jk+1∈c∗,j1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ete

⊤
t

+
∑

P:j1,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−3I.

Recall Equation (19), we prove that

E
[
Susu

⊤
s S

kutu
⊤
t S

k′
]
= α1usu

⊤
s + α2utu

⊤
t + α3I.

Case 2: s = t. For the partition p where j1, jk+1 ∈ c∗, there is only one choice for c∗ to take. So

the term in the summation should be n|C(Gp)|d|C(G
′
p)|−1ese

⊤
s . For the partition p where j1 ∈ c∗ and

jk+1 ∈ c ̸= c∗, there is only one choice for c and c∗ to take. So the term in the summation should be

n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s . Similarly, for the partition p where jk+1 ∈ c∗ and j1 ∈ c ̸= c∗, the term

in the summation should be n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s . For the partition p where j1 ∈ c′ ̸= c∗ and

jk+1 ∈ c′′ ̸= c∗, there is only one choice for c′ and c′′ to take. Therefore, the expectation should be

nk+2E
[
Sese

⊤
s S

kese
⊤
s S

k′
]

=
∑

P:j1,jk+1∈c∗

n|C(Gp)|d|C(G
′
p)|−1ese

⊤
s +

∑
P:j1∈c∗,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

+
∑

P:jk+1∈c∗,j1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s +

∑
P:j1,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ej0e

⊤
j0

=

[∑
P:j1,jk+1∈c∗

n|C(Gp)|d|C(G
′
p)|−1 +

∑
P:j1∈c∗,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2

+
∑

P:jk+1∈c∗,j1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2

]
ese

⊤
s +

∑
P:j1,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−3I.

Recall Equation (19), we prove that

E
[
Susu

⊤
s S

kusu
⊤
s S

k′
]
= α4usu

⊤
s + α5I.

Hence, the proof is complete.

Lemma D.8. Suppose S = 1
n

∑n
i=1 xix

⊤
i , then the expectation is in the following form for any k:

E
[
SΛSkΓSk′

]
= β1ΛΓ+ β2 tr(Λ)Γ+ β3 tr(Γ)Λ+ β4 tr(Λ) tr(Γ)I + β5 tr(ΛΓ)I.

where Λ =
∑d

j=1 λ
Λ
j uju

⊤
j ,Γ =

∑d
j=1 λ

Γ
j uju

⊤
j .

Proof. By lemma D.7, we have:

E
[
SΛSkΓSk′

]
=

d∑
j=1

d∑
i ̸=j

λΛ
i λ

Γ
j

(
α1uiu

⊤
i + α2uju

⊤
j + α3I

)
+

d∑
i=1

λΛ
i λ

Γ
i

(
α4uiu

⊤
i + α5I

)
The first term here can be expand into the following form:

d∑
j=1

d∑
i ̸=j

λΛ
i λ

Γ
j

(
α1uiu

⊤
i + α2uju

⊤
j + α3I

)
= α1 tr(Γ)Λ+ α2 tr(Λ)Γ+ α3 tr(Λ) tr(Γ)I − (α1 + α2)ΛΓ− α3 tr(ΛΓ)I

Meanwhile, the second term is directly α4ΛΓ + α5 tr(ΛΓ)I. We pick β2 = α1, β3 = α2, β4 =
α3, β1 = α4 − α1 − α2, β5 = α5 − α3, and we complete the proof.

E EXPERIMENTAL DETAILS

For all our experiments, we use pytorch Paszke et al. (2019) and models are trained on an NVIDIA
RTX A6000s. Each experiment takes about 1 hour.

Setup In all our experiments, we choose d = 10, n = 20 and η = 0.4. The architecture is

fLSA(Z;V ,W)[:,−1] = Z[:,−1] + V Z ·
Z⊤WZ[:,−1]

n

and data is drawn from the distribution in Equation (1). The batch size B is 1000 and the learning
rate α is 0.001. The total time is τ = 750 iterations. In the first experiment, k is chosen as 20 while
k = 10, 20, 30, 40 in the second experiment. The baseline (evaluation loss of transformers without
CoT) is given by Corollary 3.1 where η∗ = n

n+d+1 :

LEval(V ,W) ≥ 1

2

(
d− 2η∗d+

η∗2

n
(n+ d+ 1)d

)

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

In-distribution Generalization We empirically verify the evaluation loss gap between transform-
ers with and without CoT shown by Theorem 3.1 and Theorem 3.2. Our experiments in Figure 2
demonstrate that the evaluation loss of transformers with CoT converges to near zero even when
k = 10. See Section 5 for details.

Out-of-distribution Generalization In addition, we empirically verify the OOD generalization
result shown by Theorem 4.2. We sample 10 different covariance matrices from the distribution
which complies to

δ

η
≤ λmin(Σ) ≤ λmax(Σ) ≤ 2− δ

η

where η = 0.4 and η = 0.4. 10 experiments are taken to show the generality of our results for each
set of experiment. Our experiment in Figure 3 exhibits that the OOD loss of transformers with CoT
converges to near zero when k = 10, 20, 30, 40 as the training loss/in-distribution loss converges to
zero. The final loss also drops when the number of reasoning steps increases.

0 50 100 150 200 250 300 350
iteration

0

1

2

3

4

5

O
O

D
 L

os
s

k=10
k=20
k=30
k=40

Figure 3: OOD Generalization: We plot the OOD loss LEval
Σ when n = 20, d = 10. Each set of

experiments sampled 10 different Σ. The mean results are presented as line charts, with variance
represented by shaded areas. As shown, OOD loss will converge to near zero.

Given all experiments above, we conclude that transformers with CoT can converge to our construc-
tion (Theorem 4.1), surpass those without CoT (Corollary 3.1, Theorem 3.2) and generalize well to
unseen data (Theorem 4.2).

56

	Introduction
	Related works

	Preliminaries
	In-Context Weight Prediction
	Linear Self-attention Layer
	Chain-of-Thought Prompting

	Expressiveness Improvement with Chain of Thought
	One-layer Transformer cannot recover ground-truth
	One-layer Transformer with CoT Can Implement Multi-step GD

	Gradient Dynamics over Chain of Thought
	Main Results
	Proof Ideas
	Out-of-distribution Generalization at Inference

	Experiments
	Conclusion
	Discussion and limitation
	Related works on Expressiveness
	Discussion on gatmiry2024can
	Limitation and future directions

	Proofs of theorems in sec: expressiveness improvement of cot
	Proof of main thm: lower bound for tf without cot
	Proof of main thm: construction for tf with cot

	Proof of informal main thm: global convergence
	Gradient computation of the full model over the CoT objective
	Gradient characterization over the CoT objective
	Proof of the main informal main thm: global convergence
	Technical Lemma in appendix: proof of main thm

	Out-of-distribution Generalization

	Supplementary Lemmas
	Concentration lemmas
	Concentration lemmas for out-of-distribution data
	The form of expectation

	Experimental details

