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ABSTRACT

Chain of Thought (CoT) prompting has been shown to significantly improve the
performance of large language models (LLMs), particularly in arithmetic and rea-
soning tasks, by instructing the model to produce intermediate reasoning steps.
Despite the remarkable empirical success of CoT and its theoretical advantages in
enhancing expressivity, the mechanisms underlying CoT training remain largely
unexplored. In this paper, we study the training dynamics of transformers over a
CoT objective on an in-context weight prediction task for linear regression. We
prove that while a one-layer linear transformer without CoT can only implement
a single step of gradient descent (GD) and fails to recover the ground-truth weight
vector, a transformer with CoT prompting can learn to perform multi-step GD
autoregressively, achieving near-exact recovery. Furthermore, we show that the
trained transformer effectively generalizes on the unseen data. Empirically, we
demonstrate that CoT prompting yields substantial performance improvements.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) have demonstrated significant success across
various language modeling tasks, achieving state-of-the-art performance in numerous domains
(OpenAI, 2023). Remarkably, these models have also unlocked complex reasoning abilities, par-
ticularly in mathematical problem-solving and coding tasks (Chowdhery et al., 2023; Anil et al.,
2022; Achiam et al., 2023). A key method driving this advancement is the Chain of Thought (CoT),
which enables LLMs to generate intermediate reasoning steps autoregressively rather than providing
a direct answer. This process effectively improves the model’s capacity to solve complex problems.
In practice, CoT reasoning can be elicited either by providing few-shot CoT examples or by append-
ing prompts like “let’s think step by step” to bootstrap the model’s response (Kojima et al., 2022;
Wei et al., 2022; Suzgun et al., 2022; Nye et al., 2021).

Theoretically, CoT enables LLMs to perform multi-step sequential computations by generating in-
termediate results, thereby significantly improving the expressive power of transformers (Li et al.,
2024b; Feng et al., 2024; Merrill & Sabharwal, 2023a) compared to standard decoder transformers
that generate direct outputs without intermediate reasoning (Liu et al., 2022; Merrill & Sabharwal,
2023b). Despite these theoretical insights, it remains unclear how transformers are trained on CoT
data to effectively execute multi-step reasoning. Furthermore, it is unknown whether a transformer
trained specifically with an auto-regressive objective with multi-step CoT can substantially outper-
form one trained to directly output answers without CoT.

This paper takes an initial step beyond expressiveness to study the training dynamics of transformers
when trained on CoT data. Specifically, following the modified in-context learning (ICL) setting on
linear regression proposed by Ahn et al. (2023); Zhang et al. (2023), we use it as a testbed to analyze
the training process with the CoT framework implemented. We name the task in-context weight
prediction where the goal is to predict the linear weight vector from the sequence of input prompts.
Instead of performing direct ICL and outputting a prediction, the transformer with CoT prompting is
allowed to generate multiple intermediate steps before arriving at the final answer. We theoretically
investigate the transformer’s training trajectory on the CoT objective and show the expressiveness
gap between transformers trained with CoT and those without. Our main results show this separation
is learnable: gradient-based algorithm can learn the constructed transformer with CoT.

We summarize our contributions as follows:
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• Expressiveness Gap. We characterize the global optimum of the population loss for the in-
context weight prediction task on linear regression using a one-layer transformer without CoT
prompting. Our results show that, without CoT, the transformer at the global minimizer effec-
tively performs a single step of gradient descent (GD)(Theorem 3.1), leading to significant errors
in predicting the d-dimensional weight vector w∗ ∈ Rd when the number of examples for ICL
is n = Θ̃(d) (Corollary 3.1). In contrast, we demonstrate that a one-layer transformer with CoT
prompting can achieve near-exact recovery by executing multi-step GD (Theorem 3.2).

• Global convergence. We prove the convergence results of running gradient flow on the popu-
lation CoT loss under mild assumptions (Theorem 4.1). Our analysis uses a novel stage-wise
approach combining dynamics analysis and landscape properties: the parameters initially ap-
proach the global minimizer, followed by local convergence toward the final solution. Our proof
technique involves a novel characterization of the complicated population gradient. Furthermore,
we prove that the trained transformer can exhibit both in-distribution and out-of-distribution gen-
eralization (Theorem 4.2) at inference time. We are the first to establish the learnable separation
between transformers with and without CoT under the in-context linear regression setting. We
empirically validate that the trained transformer converges to the minimizer predicted by our the-
ory, with a distinct performance gap between models trained with and without CoT prompting.

Outline. In Section 2, we formalize the problem setting including the data model, the one-layer
transformer architecture, and the CoT prompting format. In Section 3, we theoretically show the
performance gap between the transformer with and without CoT. Section 4 consists of our main
results, including our dynamics analysis and out-of-distribution (OOD) generalization result. Sec-
tion 5 empirically validates the advantage of CoT.

1.1 RELATED WORKS

Training dynamics of transformers. Several works have studied the training process of spe-
cific transformer architectures. Jelassi et al. (2022); Li et al. (2023) examined the training process
and sample complexity of Vision Transformer (Dosovitskiy et al., 2020). Tarzanagh et al. (2023);
Ataee Tarzanagh et al. (2023); Li et al. (2024a) explored the connection between the optimiza-
tion landscape of self-attention mechanisms and the Support Vector Machine problem. Tian et al.
(2023a;c) provided insights into the training dynamics of the self-attention and MLP layers during
the training process respectively.

A related line of research focuses on Markov-like data models. Bietti et al. (2024) studied the in-
duction head mechanism from the perspective of associative memory. Nichani et al. (2024) demon-
strated that a simplified two-layer transformer provably learns a generalized induction head on latent
causal graphs. Chen et al. (2024b) further proved that a modified two-layer multi-head transformer
can learn in-context generalized n-gram. Edelman et al. (2024) investigated the multi-stage phase
transitions during training on bigram and n-gram (n ≥ 3). Additionally, Makkuva et al. (2024)
studied the loss landscape of transformers trained on sequences from a Markov Chain.

Another growing body of literature aims to understand the training dynamics of in-context learning
(ICL). Garg et al. (2022) first empirically studied the ICL capabilities of transformers over a variety
of function classes. Akyürek et al. (2022); Von Oswald et al. (2023) investigated the behavior of
transformers on random ICL instances of linear regression. Several works have also established the
existence of deep transformers capable of implementing multi-step gradient descent (GD) across dif-
ferent domains (Fu et al., 2023; Bai et al., 2023; Giannou et al., 2023). Mahankali et al. (2023); Ahn
et al. (2024) analyzed the loss landscape of the linear regression ICL task and Zhang et al. (2023)
proved global convergence on a one-layer linear self-attention layer using gradient flow. Gatmiry
et al. (2024) demonstrated that a linear looped transformer with specific update procedures can learn
to implement multi-step GD for linear regression. Further analyses of training dynamics under more
realistic assumptions about data models and architectures have been conducted by Huang et al.
(2023); Kim & Suzuki (2024); Chen et al. (2024a). For a detailed discussion see Appendix A.1.

Compared to prior works, our study and Huang et al. (2023); Ahn et al. (2024); Zhang et al. (2023);
Tarzanagh et al. (2023); Nichani et al. (2024); Kim & Suzuki (2024); Wang et al. (2024); Chen et al.
(2024b) all use similar reparameterizations that combine key and query matrices to simplify the
training dynamics. Moreover, many previous studies (Tian et al., 2023a; Zhang et al., 2023; Huang
et al., 2023; Nichani et al., 2024; Kim & Suzuki, 2024; Chen et al., 2024a; Gatmiry et al., 2024)
adopted the population loss to facilitate the analysis of these dynamics.
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A closely related work is Gatmiry et al. (2024), which shows that a looped transformer can imple-
ment multi-step GD on the ICL linear regression task to directly predict the query answer in context.
In comparison, the goal of our setting is to predict the weight vector from the input examples using a
realistic CoT autoregressive generation process. Theoretically, we also establish a performance gap
between transformers with CoT and those without. See Appendix A.2 for a more detailed discussion.

Chain of Thought and Scratchpad The CoT prompting method was first introduced by Wei et al.
(2022) to enhance the multi-step reasoning capability of LLMs. Before the formalization of CoT,
Nye et al. (2021) demonstrated that allowing language models to generate intermediate results
on “scratchpads” dramatically boosts the multi-step computation ability of LLMs. Wang et al.
(2022b); Yao et al. (2024); Creswell et al. (2022); Zhou et al. (2022) further proposed variants of the
CoT/scratchpad method to improve the efficiency and reliability of generation.

Recently, several works have attempted to understand CoT from both experimental and theoreti-
cal perspectives. Wang et al. (2022a); Saparov & He (2022); Shi et al. (2022); Paul et al. (2023)
empirically studied the capability of CoT, providing valuable insights on its reasoning processes.
Meanwhile, Wu et al. (2023); Tutunov et al. (2023); Hou et al. (2023); Cabannes et al. (2024) inves-
tigated CoT through the lens of mechanistic interpretability. On the theoretical side, Liu et al. (2022);
Merrill & Sabharwal (2023a); Li et al. (2024b); Feng et al. (2024) explored the expressive power of
transformers with CoT, showing that CoT can significantly extend the expressivity of transformers
in the context of circuit complexity. Hu et al. (2024) investigated the statistical foundations of CoT.
However, the training dynamics of CoT remain largely unexplored. To the best of our knowledge,
this work is among the first theoretical analyses of training dynamics on CoT/scratchpad objectives.

2 PRELIMINARIES

In this section, we describe the modified in-context learning linear regression task, i.e. in-context
weight prediction, the one-layer linear self-attention architecture, and the Chain of Thought (CoT)
prompting formulation.

Notation We use [T ] to denote the set {1, 2, ..., T}. Scalars are in lower-case unbolded letters
(y, α, etc.). Matrices and vectors are denoted in upper-case bold letters (W ,V , etc.) and lower-case
bold letters (x,w, etc.), respectively. W[i,j],W[i,:],W[:,j] respectively denotes the (i, j)-th entry,
i-th row, and j-th column of the matrix W . W[:,−1] means the last column of the matrix W . The
notation Wij denotes block matrices/vectors on the i-th row and j-th column according to context.
For norm, ∥·∥ denotes ℓ2 norm and ∥ · ∥F denotes the Frobenius norm. We use 1{·} to denote the
indicator function. We use Õ(·) to hide logarithmic factors in the asymptotic notations.

2.1 IN-CONTEXT WEIGHT PREDICTION

Previous works (Zhang et al., 2023; Ahn et al., 2023; 2024; Akyürek et al., 2022; Mahankali et al.,
2023) focus on the in-context learning (ICL) task on linear regression. We suppose the data sequence
is sampled from a linear regression task where the ground-truth

w∗ ∼ N (0, Id) xi ∼ N (0, Id) yi = w∗⊤xi for all i ∈ [n]. (1)

The goal of in-context learning is to predict the correct label w∗⊤xquery given a query xquery and
the previous example pairs (xi, yi). Most previous works (Zhang et al., 2023; Ahn et al., 2024;
Mahankali et al., 2023) show the transformer predicts the query label yquery by implicitly doing a
one-step gradient descent without predicting the linear classifier w∗.

In this work, we go one step further: instead of directly outputting the query label, we require the
transformers to implement gradient descent to learn the ground-truth weight vector w∗. We call this
task in-context weight prediction for linear regression. Specifically, the data sequence is in the
following format:

Z0 =

x1 · · · xn 0
y1 · · · yn 0
0 · · · 0 w0

0 · · · 0 1

 :=

 X 0
y 0

0d×n w0

01×n 1

 ∈ Rde×(n+1), (2)

where X := [x1, · · · ,xn] is the data matrix and w0 is the initialization of the linear parameter ŵ.
We assume w0 = 0d for simplicity, and define de = 2d + 2. Our setting is similar to the setting in
Bai et al. (2023) where multi-layer transformers are constructed to do explicit multi-step GD on the
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weight vector ŵ. We separate the input example space and the weight vector space as in Bai et al.
(2023) (the {pi}i∈[N+1]) in order to facilitate training. Moreover, we add a dummy token (an extra
1) at the end of each token similar to what Bai et al. (2023) did in their input sequence format.

2.2 LINEAR SELF-ATTENTION LAYER

We consider a one-layer linear self-attention (LSA) module with residual connection, following the
setting in Zhang et al. (2023); Ahn et al. (2023); Gatmiry et al. (2024): we remove the softmax(·)
non-linearity, consolidate the projection and value matrix into a single matrix V ∈ Rde×de , and
merge the key and query matrices into W ∈ Rde×de . We denote

fLSA(Z;V ,W ) = Z + V Z · Z
⊤WZ

n
(3)

The prediction of the transformer will be the last token of the output sequence, namely

fLSA(Z;V ,W )[:,−1] = Z[:,−1] + V Z ·
Z⊤WZ[:,−1]

n
(4)

Since the first (d+1) entries of the full weight tokens (0, 0,w, 1) are zero, only part of the W and
V affect the prediction. We can rewrite the parameter V ,W into block matrices

V =

V11 V12 V13 V14

V21 v22 V23 v24
V31 V32 V33 V34

V41 v42 V43 v44

 ,W =

W11 W12 W13 W14

W21 w22 W23 w24

W31 W32 W33 W34

W41 w42 W43 w44

 ∈ R(2d+2)×(2d+2)

where the block matrices are in the following shape (i, j ∈ {1, 2}):

V2i−1,2j−1,W2i−1,2j−1 ∈ Rd×d;V2i−1,2j ,W2i−1,2j ,V
⊤
2i,2j−1,W

⊤
2i,2j−1 ∈ Rd×1; v2i,2j , w2i,2j ∈ R.

In the following sections, we will show only V31, W13, and w24 affects the prediction. We will
further prove that all other entries are always zero along the training trajectory if initialized at zero.

2.3 CHAIN-OF-THOUGHT PROMPTING

In language modeling tasks, transformers have been proven to be versatile in various downstream
tasks. However, transformers struggle to solve mathematical or scientific problems with one single
generation, where several reasoning steps are required. CoT was then proposed to make transformers
learn to generate intermediate results auto-regressively before reaching the answer.

With CoT, we allow the transformer to generate k steps before it outputs the final prediction ŵk

for the ground-truth w∗. Specifically, given the generated input sequence Ẑi at the i-th step of
generation, we have fLSA(Ẑi)[:,−1] as the prediction of the next token ((i+1)-th token), and append

it to the end of the current sequence s.t. Ẑi+1 =
[
Ẑi, fLSA(Ẑi)[:,−1]

]
. After k generation steps, the

CoT process induces k intermediate sequences {Ẑi}ki=1 in the following form:

Ẑi =

x1 · · · xn 0 ⋆ · · · ⋆
y1 · · · yn 0 ⋆ · · · ⋆
0 · · · 0 w0 ŵ1 · · · ŵi

0 · · · 0 1 1 · · · 1

 ∈ Rde×(n+i+1), i ∈ [k] (Inference)

Here, we define ŵi := fLSA(Ẑi−1)[d+2:2d+1,−1] as the i-th step prediction for the weight vector.
The other entries in the same column are irrelevant and we denote them as ⋆. Finally, the transformer
inputs the last generated sequence Ẑk back to the transformer once again to generate the final output
ŵk+1 := fLSA(Ẑk)[d+2:2d+1,−1] as the prediction of the weight vector w∗.

Different from the inference time generation, the training process is similar to pre-training on the
ground-truth sequence to predict the next token. Specifically, we input the transformer with CoT
ground-truth sequences Zi:

Zi =

x1 · · · xn 0 0 · · · 0
y1 · · · yn 0 0 · · · 0
0 · · · 0 w0 w1 · · · wi

0 · · · 0 1 1 · · · 1

 ∈ Rde×(n+i+1), i ∈ [k] (Training)

4
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where wi = wi−1 − η · X(X⊤wi−1−y⊤)
n is the ground-truth intermediate weight vector after i

gradient steps on the linear regression objective. Each gradient step adopts a fixed learning rate η
for all possible training instances {X,w} when generating the ground-truth sequence Zi. Note that
Zi is the corresponding ground-truth sequence of Ẑi.

In the training objective for the i-th step, the transformer is required to predict the next token
Zi+1[:,−1] := (0d, 0,wi+1, 1) given the i-th ground-truth intermediate sequence Zi. Finally, we
predict the final ground-truth weight vector w∗ with the final intermediate sequence Zk. The CoT
training objective given a sample prompt X,y then becomes:

ℓCoT(X,w∗;V ,W ) =
1

2

k∑
i=0

∥∥fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)
∥∥2 (5)

Here we denote wk+1 := w∗ for clarity. Following Zhang et al. (2023); Nichani et al. (2024); Kim
& Suzuki (2024); Tian et al. (2023b); Chen et al. (2024a); Gatmiry et al. (2024), we consider the
gradient flow dynamics over the population loss of the CoT objective:

LCoT(V ,W ) = Exi∼N (0,Id),w∗∼N (0,Id)

[
ℓCoT(X,w∗;V ,W )

]
(6)

For clarity, we write the expectation as EX,w∗ [·]. The following differential equation gives the
gradient flow dynamics of the parameters:

dθ

dt
= −∇LCoT(θ), θ := (V ,W ).

When measuring the performance after training, we apply the CoT inference procedure to generate
k intermediate sequences {Ẑi}ki=1 and consider the final output token f(Ẑk)[:,−1] by inputting the
last generated sequence Ẑk. The performance evaluation is measured on the error between the final
output f(Ẑk)[:,−1] and the ground-truth w∗:

LEval(V ,W ) =
1

2
EX,w∗

[∥∥∥fLSA(Ẑk)[:,−1] − (0d, 0,w
∗, 1)

∥∥∥2] (7)

When CoT prompting is not used (k = 0), the evaluation loss LEval is equivalent to LCoT.

3 EXPRESSIVENESS IMPROVEMENT WITH CHAIN OF THOUGHT

In this section, we theoretically explore the performance gap on our data model between transform-
ers with CoT and those without. We first prove that a one-layer transformer without CoT can only
implement a one-step GD and cannot recover the ground-truth, while it can near-exactly predict the
ground-truth parameter with CoT by implementing multi-step GD.

3.1 ONE-LAYER TRANSFORMER CANNOT RECOVER GROUND-TRUTH

For the ICL linear regression task, the optimal prediction given by a one-layer linear transformer is
equivalent to a single step of GD on the MSE objective of linear regression (Mahankali et al., 2023).
What about our task on predicting the ground-truth weight vector w∗ in context? The following
theorem proves that the optimal solution is still a one-step GD solution.
Theorem 3.1 (Lower bound without CoT). If the global minimizer of LEval(V ,W ) is (V ∗,W ∗),
the corresponding one-layer transformer fLSA(Z0)[:,−1] implements one step GD on a linear model
with some learning rate η∗ = n

n+d+1 and the transformer outputs (0d, 0,
η∗

n Xy⊤, 1).

We briefly present the high-level intuitions in the proof and the detailed proof is deferred to Ap-
pendix B.1. We use a similar technique in Mahankali et al. (2023) when proving the optimality
of one-step GD in the ICL task. The key strategy of the proof is to replace (0d, 0,w

∗, 1) in the
evaluation loss LEval(V ,W ) (Equation (7)) with (0d, 0,

η∗

n Xy⊤, 1) in the following form.

LEval(V ,W ) =
1

2
E

[∥∥∥∥fLSA(Z0)[:,−1] −
(
0d, 0,

η∗

n
Xy⊤, 1

)∥∥∥∥2
]
+ C

5
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In order to prove this equation above, we show the gradient of the original loss Equation (7) and
this formula are identical. We first obtain the closed-form formula of the expected gradient for both
sides with regard to X,w∗. Then we use the symmetric property of the distribution of X,w∗ to
simplify the gradient expressions, and eventually prove them equal.

The equivalent form of loss indicates that the evaluation loss only depends on the ℓ2 distance
between the output of the linear self-attention module and

(
0d, 0,

η∗

n Xy⊤, 1
)

. Therefore, any
(V ,W ) is a global minimizer of this loss function if and only if the output of fLSA(Zk)[:,−1] is
(0d, 0,

η∗

n Xy⊤, 1). Meanwhile, one can assign

V ∗ =

 0 0 0 0
0 0 0 0

−η∗I 0 0 0
0 0 0 0

 ,W ∗ =

0 0 I 0
0 0 0 −1
0 0 0 0
0 0 0 0

 (8)

and the one-layer transformer achieves the optimal solution, which concludes the proof.

Is a one-step gradient solution good enough? Most of the previous ICL work Zhang et al. (2023);
Ahn et al. (2023); Gatmiry et al. (2024) consider the number of examples n → +∞ when d is
fixed. In this case, the one-step GD solution can perfectly find the ground-truth weight vector w∗.
However, a simple corollary of this theorem indicates that the one-step solution has a non-negligible
error when there are limited samples, e.g. n = Θ̃(d). This number of examples n is required to
guarantee the reconstruction of w∗ ∈ Rd.

Corollary 3.1. For any parameters (V ,W ) in the one-layer transformer, LEval(V ,W ) ≥ Θ
(

d2

n

)
.

Moreover, if n = Θ̃(d),LEval(V ,W ) = Θ̃(d)
d→+∞−−−−−→ +∞.

Proof. By Theorem 3.1, we directly calculate the evaluation loss on the global optimum:

LEval(V ,W ) ≥ 1

2
EX,w∗

∥∥∥∥η∗n XX⊤w∗ −w∗
∥∥∥∥2 =

1

2
EX tr

(
I − η∗

n
XX⊤

)2

since Ew∗

[
w∗w∗⊤

]
= I . Apply E

[
XX⊤] = nI and E

[
(XX⊤)2

]
= n(n+ d+ 1)I ,

1

2
EX tr

(
I − η∗

n
XX⊤

)2

=
1

2

(
d− 2η∗d+

η∗2

n
(n+ d+ 1)d

)
= Θ

(
d2

n

)
and we finish the proof by substituting n with Θ̃(d).

3.2 ONE-LAYER TRANSFORMER WITH COT CAN IMPLEMENT MULTI-STEP GD

The previous subsection shows that the one-step solution by the one-layer transformer without CoT
is not the endgame. Nevertheless, CoT can become the savior for this simple transformer because it
enables the transformer to generate several intermediate computation steps to improve the final per-
formance. The following theorem shows that with the reinforcement of CoT, there exists a one-layer
transformer that can perform multi-step GD using intermediate generations. We show that Θ(log d)
steps of CoT can remarkably improve the performance, reducing the error from Θ( d

poly log d ) to
O(1/poly d). With constant learning rate, Θ(log d) steps of GD is also necessary to reconstruct w∗

accurately. The proof is deferred to Appendix B.2.
Theorem 3.2 (Informal). There exists V ∗ and W ∗ s.t. fLSA(Zk)[:,−1] outputs (0d, 0,wk, 1) where
wk :=

(
I − (I − η

nXX⊤)k
)
w∗ is the k-step GD solution with learning rate η on a linear regres-

sion model. Moreover, if n = Ω̃(d), k = Ω(log d), η ∈ (0.1, 1), then the evaluation loss

LEval(V ∗,W ∗) =
1

2
EX,w∗

[∥∥∥∥(I − η

n
XX⊤

)k+1

w∗
∥∥∥∥2
]
≤ O

(
1

poly(d)

)
(9)

With the one-step GD solution in Theorem 3.1, the proof is straightforward: we assign the param-
eters (V ,W ) in the same form of Equation (8), with the η∗ replaced by η. However, now the
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transformer is allowed to generate k steps before reaching the final output. We can inductively
calculate the i-th step of generation, showing that the output is exactly the i-th gradient step:

fLSA(Zi−1)[:,−1] = (0d, 0,wi, 1), i = 1, 2, ..., k + 1

After k+1 steps, we have the final output
(
I − (I − η

nXX⊤)k+1
)
w∗ by induction and the evalu-

ation loss becomes Equation (9). By Lemma D.4, the final loss is upper bounded by O
(

1
poly(d)

)
.

This is strictly better than a one-step GD solution by comparing with Corollary 3.1.

Now we theoretically display the expressivity improvement of transformers brought by CoT. In the
following sections, we will further prove that this separation is learnable simply by gradient flow.

4 GRADIENT DYNAMICS OVER CHAIN OF THOUGHT

In this section, we go beyond the construction and prove our convergence result on the CoT objec-
tive. We show that the final solution found by gradient flow is approximately our construction in
Theorem 3.2, which is significantly better than the one-step gradient descent solution without CoT.

4.1 MAIN RESULTS

According to our construction in Theorem 3.2, we use the following specific initialization to zero
out the irrelevant blocks while keeping the essential blocks W13,V31, and w24.
Assumption 4.1 (Initialization). Let σ > 0 be a parameter. We assume the initialization of the
parameters satisfies that

V =

 0 0 0 0
0 0 0 0

V31(0) 0 0 0
0 0 0 0

 ,W =

0 0 W13(0) 0
0 0 0 w24

0 0 0 0
0 0 0 0


Here W13(0) =

∑d
i=1 λ

W
i uiu

⊤
i and V31(0) =

∑d
i=1 λ

V
i uiu

⊤
i are symmetric and simultaneously

diagonalizable, λV
i ≤ −σ, λW

i ∈ [σ, 1
2 ]. Further, we fix w24 = −1 for all t > 0.

This initialization follows Chen et al. (2024a) by assuming V31 and W13 share the same set of
eigenvectors. It is close to the particular symmetric random initialization schemes discussed in
Zhang et al. (2023) with a scaling factor σ. We use this specific initialization to zero out the irrelevant
blocks along the training trajectory and facilitate the analysis in the early stages. To simplify the
analysis of the complex dynamical system, we fix w24 = −1 to break the homogeneity of the model
and avoid the occurrence of multiple global minimizers.

Now we prove that under appropriate initialization, gradient flow will nearly converge to the global
minimizer. We provide a proof sketch in the next subsection. See Appendix C.3 for details.

Theorem 4.1 (Informal, Global Convergence). Suppose n = Ω̃(d), η ∈ (0.1, 0.9), k = Θ(log d).
Under Assumption 4.1 with σ = Θ(1), if we run gradient flow on the population loss in Equation (5),
then after time t = O

(
log d+ log 1

ϵ

)
, we have LCoT(t) ≤ ϵ for any ϵ ∈

(
1

poly(d) , 1
)

.

4.2 PROOF IDEAS

In this subsection, we briefly outline the proof of Theorem 4.1.

Before analyzing the training dynamics, we will first prove that under Assumption 4.1, the gradient
dynamics will only depend on the parameter blocks W13(t),V31(t), w24, while other blocks stay
zero (Lemma C.2). This is because our Gaussian data assumption makes sure the gradients on all the
blocks are zero once they are initialized at zero, except for W13(t),V31(t), w24. By this lemma, we
can simplify the linear self-attention formula and consider the following equivalent yet simplified
loss (we denote W̃ := W13, Ṽ := V31, and w24 is fixed as −1.):

LCoT(θ) =
1

2
EX,w∗

k−1∑
i=0

∥∥∥∥ 1n (Ṽ XX⊤W̃ + ηXX⊤)wi −
1

n
(Ṽ + ηI)XX⊤w∗

∥∥∥∥2
2

+
1

2
EX,w∗

∥∥∥∥(I +
1

n
Ṽ XX⊤W̃

)
wk −

(
1

n
Ṽ XX⊤ + I

)
w∗
∥∥∥∥2
2
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For ease of presentation, we denote S := 1
nXX⊤. To analyze the gradient dynamics, we first

need to compute the exact closed-form gradient instead of keeping the expectation. However, there
exists difficulty calculating the closed form of the gradient: the formula involves the i-th step weight
vector wi =

(
I − (I − ηS)

i
)
w∗, involving the higher order moments of the Wishart matrix S1

whose closed form is hard to obtain. Here, we provide a tighter estimate compared to previous work
(Gatmiry et al., 2024) using the concentration of the Wishart matrix S (Vershynin, 2018) when
n = Θ(dpoly log d) to estimate the expectation. In particular, we use the exponential decaying tail
probability bound for the operator norm of the error δS := S−I . For example, when estimating the
expectation E[(I − ηS)

i
], we can decompose the expectation into two cases: when ∥δS∥op is small,

(I − ηS)
i ≈ (1−η)iI; when ∥δS∥ is larger than a threshold, the rest part of the expectation can be

controlled by integrating the exponential decaying tail probability.2 The concentration lemmas are
provided in Appendix D.

The motivation behind a better concentration estimation is to ensure nearly independent dynamics
along different eigenspaces {ui}di=1 of W̃ and Ṽ . As an extreme case, we consider n → ∞ and S
converges to I almost surely. Now the gradient component on the uiu

⊤
i subspace is only dependent

on λṼ
i and λW̃

i without any other λṼ
j , λW̃

j , j ̸= i involved. That means there is no interaction be-
tween two different subspaces, i.e. the dynamics are independent. However, some interactions are
introduced since the concentration error δS ̸= 0 when n is finite. Therefore, the improved charac-
terization of the expected gradient is essential to upper bound the interaction between the dynamics
of different eigenspaces {ui}di=1, leading to a nearly independent evolution at initialization.

This independence property motivates us to conduct a stage-wise analysis. We first analyze the
dynamics in Stage 1 when the distance between the parameters Ṽ , W̃ and the ground-truth is larger
than O(1/poly log d). In this stage, the bounded error can be dominated by the signal terms in the
gradient, maintaining the nearly independent dynamics along each direction ui. After this stage, we
enter Stage 2 as a local convergence phase. We describe the dynamics below in detail.

Stage 1: W̃ , Ṽ converges to near-optimal. In this stage, the dynamics along each direction ui

stay nearly independent. Specifically, we can expand the gradient flow dynamics for Ṽ , W̃ and
project them into the eigenspaces uiu

⊤
i to get the dynamics of the eigenvalues λṼ

i := u⊤
i Ṽ ui,

λW̃
i := u⊤

i W̃ui. The dynamics of eigenvalues are characterized by the following Lemma 4.1 where
we can prove that the interaction terms between different subspaces are bounded by O(1/ log2 d).

Lemma 4.1 (Informal version of Lemma C.6). The dynamics of λṼ
i and λW̃

i are given by the

following equations with
∣∣∣δṼj ∣∣∣ ≤ O

(
1

log2 d

)
,
∣∣∣δW̃j ∣∣∣ ≤ O

(
1

log2 d

)
:

dλṼ
j

dt
=−

(k + 1)
(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

λW̃
j

2

η(2− η)

λṼ
j +

1− η

2− η
λW̃
j − 1 + δṼj

dλW̃
j

dt
=

[
k + 1− 1

η

]
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j .

This nearly independent evolution along each eigenvector ui enables us to analyze the individual
dynamics of λṼ

i and λW̃
i at the beginning of training. Under Assumption 4.1, λṼ

j , λW̃
j are initialized

Θ(1). By Lemma 4.1, we prove by induction that the eigenvalues will go through two phases: (1) λṼ
j

increases yet stay smaller than −O

(
1

k(1−λW̃
j )

)
, while λW̃

j increases to 1−o(1). (2) λW̃
j stays o(1)-

close to 1, and λṼ
j also converges to o(1)-close to −η. Here all o(1) terms are some O(1/ logc d)

1To deal with the similar problem, Gatmiry et al. (2024) proposed a simple combinatorial method to estimate
the expectation. We use the same technique to get a certain form of the expectation (see Appendix D), but the
bound is not tight enough to get the desired results. See discussion in Appendix A.2.

2This method can keep the (1−η)i factor to prevent introducing unwanted estimation errors when i is large.
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terms for some constant c > 0. That indicates that the distance between the eigenvalues and the
target

∣∣∣λṼ
j + η

∣∣∣, ∣∣∣λW̃
j − 1

∣∣∣ converge to O(1/ logc d) for all j ∈ [d] at the end of Stage 1.

Stage 2: Local convergence. One may expect that after Stage 1, the transformer can approximate
gradient steps quite accurately since the parameter Ṽ , W̃ are both o(1)-close to ground-truth along
each direction ui. Unfortunately, the sum of error in d directions can still be Θ̃(d) since we can only
reduce the error to O(1/poly log d) in each direction. Therefore, the solution still cannot recover
the weight vector w∗ at this stage. To address this issue, we further look into the exact form of the
interaction terms δW̃j , δṼj and analyze the local convergence. By fine-grained expansion of the error

terms, we notice that δW̃j and δṼj are always coupled with some individual residual like (1− λW̃
j ),

(η + λṼ
j ), or some weighted average or those individual residuals. Meanwhile, the coefficient of

the residual in the interaction terms is still upper bounded by O(1/poly log d). That enables us to
derive some gradient lower bound similar to PL-conditions (Lemma C.12) when Ṽ , W̃ are close to
the ground-truth, leading to local convergence to near-optimal at a linear rate.

The final training error is some O( 1
poly d ), which depends on the inference step k and ground-truth

η. Note that the optimal loss value is also at least polynomially small in d given Θ(log d) CoT steps.
Therefore, now we can conclude that the transformer can learn to implement multi-step GD when
given intermediate ground-truth states after optimizing the CoT loss with gradient flow.

4.3 OUT-OF-DISTRIBUTION GENERALIZATION AT INFERENCE

In this section, we prove that after training, the transformer not only correctly predicts the weight
vector in context with CoT generation, but also can generalize out-of-distribution (OOD). The fol-
lowing theorem shows that the trained transformer obtained from Theorem 4.1 with CoT generalizes
over other problem instances when the input example sequence has an OOD covariance, as long as
the covariance is not too ill-conditioned. Here LEval

Σ is defined as the OOD evaluation loss in eq. (7)
with the in-context examples xi ∼ N (0,Σ) and weight vector w∗ ∼ N (0, I):

LEval
Σ (V ,W ) =

1

2
Exi∼N (0,Σ),w∗

[∥∥∥fLSA(Ẑk)[:,−1] − (0d, 0,w
∗, 1)

∥∥∥2]
Theorem 4.2 (Informal, Theorem C.2). Suppose n = Ω̃(d), η ∈ (0.1, 0.9), k′ = Θ(log d). Assume
the out-of-distribution covariance is well-conditioned: δ

η ≤ λmin(Σ) ≤ λmax(Σ) ≤ 2−δ
η for some

constant δ > 0. Then after training in Theorem 4.1, we have LEval
Σ (t) ≤ ϵ for any ϵ ∈

(
1

poly(d) , 1
)

.

Note that this theorem covers both in-distribution (when η = δ) and OOD tasks at evaluation,
indicating that the transformer is trained to implement a general iterative optimization algorithm.
Moreover, the inference step number k′ in this theorem can go beyond the training CoT steps k,
achieving better estimation for w∗.

One may think once the next-token-prediction training loss LCoT converges to the global minimizer
based on ground-truth CoT data, the transformer naturally learns to do multi-step reasoning at infer-
ence, i.e. LEval is small. However, at the i-th generation step, the transformer is predicting the next
weight token ŵi+1 based on the previous generation ŵi instead of the ground-truth intermediate step
wi. It is possible that prediction error for each step accumulates or even increases exponentially.

Fortunately, the trained transformer guarantees a converging series of errors throughout the inference
process, and we can expand and upper bound the sum of all the prediction errors at each step. That
also ensures we can achieve any O( 1

poly(d) )-small evaluation loss when we have k′ = Θ(log d)

reasoning steps. The detailed proof is provided in Appendix C.4.

5 EXPERIMENTS

In this section, we introduce our experimental setup on our in-context weight vector prediction
task to numerically validate our theoretical results. Specifically, we show that parameters of the
transformer match the prediction of our theory when optimized over the CoT loss. Furthermore, we
present the gap of evaluation loss LEval in Equation (7) between transformers with and without CoT.

9
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Experimental Setup We train the transformer architecture in Equation (3) on the synthetic data.
The data distribution follows our in-context weight prediction task in Equation (1). In particular, we
choose the token dimensions d = 10, number of in-context examples n = 20, and GD learning rate
η = 0.4 for generating the ground-truth intermediate states. We use a batch size B = 1000 and run
Adam with learning rate α = 0.001 for τ = 750 iterations. More details refer to Appendix E.

Global convergence Our experiments show that the structure that weights of the full model exhibit
is consistent with Theorem 3.2. At final convergence, all of the entries of W converge to zero
except the elements on the diagonal in the top-right corner block (the red box in the heatmap of W ,
Figure 1), while all the entries of V are near zero except elements on the diagonal in the bottom-left
corner (the red box in the heatmap of V , Figure 1). Also, the pattern shows W13 = αI, w24 = −α,
and V31 = − η

αI with some scaling factor α,3 which is equivalent to the construction stated in
Theorem 3.2 and Theorem 4.1. That means the transformer implements one step of gradient descent(
0d, 0,− η

nXX⊤(wi −w∗), 0
)

before the residual connection, and the autoregressive CoT process
enables model to perform multi-step GD.

Performance improvement We empirically verify the evaluation loss gap between transformers
with and without CoT shown by Theorem 3.1 and Theorem 3.2. Our experiments in Figure 2 demon-
strate that the evaluation loss of transformers with CoT converges to near zero even when k = 10.
In comparison, the optimal expected loss that the one-layer linear transformer can achieve (the pink
dashed line, from Corollary 3.1) is much larger than any of the model that applies multiple steps
of computation. We also observe that evaluation loss at convergence keeps decreasing when the
number of reasoning steps k increases from 10 to 40, which is consistent with Theorem C.1 where
larger k allows for smaller error ϵ.

Heatmap of V Heatmap of W

Figure 1: Model weights: We present the
heatmap of the weights of the trained transformer.
We initialize V ,W randomly at t = 0, where
n = 20, d = 10 and k = 20. After training,
all entries of V and W converge to zero except
the two blocks highlighted in the red box. More-
over, the pattern matches the theoretical results.
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k=10
k=20
k=30
k=40
without CoT

Figure 2: k-step v.s. 1-step: We plot the
evaluation loss LEval when n = 20, d =
10. We randomly initialize the transformer.
For transformers with CoT, loss converges
to near zero while transformers without CoT
cannot. Moreover, the loss at convergence
decreases when k increases.

6 CONCLUSION

This paper investigates the training dynamics of transformers when the Chain of Thought (CoT)
prompting is introduced. By focusing on the in-context weight prediction task, our theoretical results
demonstrate that transformers can learn to implement iterative algorithms like multi-step GD with
the enhancement of CoT, highlighting the essential role of CoT in multi-step reasoning tasks. Our
empirical findings corroborate these theoretical insights, indicating that CoT prompting provides
significant performance benefits.

There are still many open problems. Can we move beyond population loss on the in-context weight
prediction task and show a sample complexity guarantee? Can CoT empower the transformer to
acquire compositional reasoning capability instead of doing the same iterative steps?

3In Figure 1, α > 0 while all α ̸= 0 works for the construction. Empirically, the sign of α depends on the
random initialization, and both positive and negative solutions exist.
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A DISCUSSION AND LIMITATION

A.1 RELATED WORKS ON EXPRESSIVENESS

Our work is closely related to the previous works in multi-step GD using multi-layer attention layers,
including Bai et al. (2023); Fu et al. (2023); Ding et al. (2023); Ahn et al. (2024); Giannou et al.
(2023); Gatmiry et al. (2024). These works guarantee that transformers are expressive enough to do
in-context learning by implementing gradient descent, and they serve as the foundation of our work
which focuses on optimization. Most of them focus on the in-context learning setup as the testbed
so we naturally follow the setup to understand the advantage of CoT.

Most of the above works on expressiveness focus on those iterative algorithms, e.g. (pre-
conditioned) gradient descent on various objectives (Bai et al., 2023; Ahn et al., 2024; Ding et al.,
2023), Newton methods/matrix inverse (Giannou et al., 2023), etc. Those papers have similar con-
structive proof techniques using multi-layer transformers: they construct a basic block(s) to rep-
resent one step of some iterative algorithm and stack them up to do multi-steps of that algorithm.
Sometimes the blocks can be even the same, which means a “looped” transformer, i.e. implementing
the same transformer blocks several times as a loop, can express those algorithms. In our warm-up
construction for a better understanding of the setup, we use similar techniques to construct the linear
transformer that allows auto-regressive generation to iteratively implement the block. However, we
require the practical auto-regressive setting, which is novel in the literature.

Most importantly, despite the close relation between our work and those previous expressiveness
papers, our work mainly focuses on the optimization perspective. It is a big step beyond expres-
siveness because there is no guarantee that one can algorithmically find the constructed solutions
in the previous work. Ahn et al. (2024); Gatmiry et al. (2024) are the only two papers related to
optimization of multi-layer transformers over in-context linear regression setup. Ahn et al. (2024)
analyzed the global optimizer/critical points for multi-layer transformers, but they didn’t prove that
any gradient-based algorithm can reach those solutions. Compared to all the works above, our proof
techniques for the main theorems are completely orthogonal and not straightforward extensions of
the previous papers like Bai et al. (2023).

Gatmiry et al. (2024) is the most related work to us. They also proved some results on learning to
implement multi-step GD by looped transformer. We will highlight the differences and our novel
contributions of our work in the next section.

A.2 DISCUSSION ON GATMIRY ET AL. (2024)

In this section, we compare our work with Gatmiry et al. (2024). We begin by outlining the simi-
larities and connections between the two works before highlighting our theoretical contributions in
contrast to Gatmiry et al. (2024).

Both Gatmiry et al. (2024) and our study analyze the dynamics of a one-layer linear transformer
in the context of a linear regression task, demonstrating that transformers can implement multi-step
gradient descent. We adopt similar architectural frameworks to those in Zhang et al. (2023); Ahn
et al. (2024; 2023); Mahankali et al. (2023), as well as several other works. The key connection
between our work and Gatmiry et al. (2024) lies in the observation that both looped transformers
and transformers with CoT prompting through autoregressive generation are capable of naturally
implementing iterative algorithms like gradient descent.

However, our data model and training objective are intrinsically different from those in Gatmiry et al.
(2024), leading to distinct insights. While Gatmiry et al. (2024) focuses on an ICL setting for linear
regression tasks involving examples and a query, our task is centered on predicting the ground-truth
weight vector w∗ within context, i.e. in-context weight prediction. The final converging solutions
are totally different, even though they both are equivalent to some type of GD. From the perspective
of the training objective, Gatmiry et al. (2024) uses a standard squared loss over the ICL objective. In
contrast, we use a sum of squared losses across all intermediate steps, corresponding to the CoT loss
defined in Equation (6). Therefore, we highlight the effectiveness in improving the performance
of the CoT prompting on a shallow transformer, while Gatmiry et al. (2024) stress a multi-layer
transformer with shared weights (looped transformer) can do multi-step GD through the layers.
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From a technical perspective, Gatmiry et al. (2024) fix the outer layer and train only the matrix A,
which is analogous to our matrix W . In contrast, our work allows for training both layers of the
transformer, providing a stronger analysis of training dynamics. Our proof strategy is also novel,
given that our training dynamics are more complicated: obtaining our final solution requires solving
a challenging d-dimensional dynamical system, whereas prior work in ICL reduces the outer layer
to a scalar.

As a more profound theoretical contribution, we rigorously establish a clear performance
gap between the one-layer transformer without CoT and the ones with CoT. Specifically,
the one-layer transformer without CoT is restricted to a single step of GD, with the final error
Θ(d/poly log d), while a one-layer transformer with CoT can achieve a O(1/ poly d) loss with
only Θ(log d) steps. On the other hand, Gatmiry et al. (2024) do not show their transformer imple-
menting the multi-step GD can outperform the transformer with one-step GD. According to their
Theorem 4.2, their looped transformer can only provably get the final loss down to d5/2L·4L√

n
, where

L is the number of the loops. However, a one-layer transformer can achieve Θ(d2/n) loss by imple-
menting one-step of GD, which is asymptotically better than the multi-step solution in Gatmiry
et al. (2024).

We conjecture the gap between our analysis lies in our different methods of calculating the terms
in the gradient concerning Wishart matrices. For intuition, we introduce the novel expectation cal-
culation method in Section 4, which asymptotically improves the estimation of higher moments of
Wishart matrices in Gatmiry et al. (2024). We adopt the combinatorial technique in Gatmiry et al.
(2024) to compute the form of E

[
SΛSkΓSk′

]
, but when we calculate the expected gradient we use

the concentration tail bound technique to calculate the expectation. That enables us to better approx-
imate the expectation. We hypothesize that applying our techniques could potentially demonstrate
that their looped transformers outperform those without loops in the ICL setting.

A.3 LIMITATION AND FUTURE DIRECTIONS

Architecture and parameterization In this work, we use the single-layer linear transformer to
analyze the training dynamics. Moreover, we adopt the same reparameterization and similar initial-
ization in previous works (Zhang et al., 2023; Tian et al., 2023a; Chen et al., 2024a; Mahankali et al.,
2023; Ahn et al., 2024). It deviates from the practical softmax attention with Q,K,V parameteri-
zation and random initialization, which is a limitation of this work.

However, analyzing the linear counterpart of the model before targeting the more difficult practical
models is common in the development of learning theory. As for linear attention, the connection
between linear attention and softmax attention is also partially justified by the empirical observations
in Ahn et al. (2023). Analyzing the dynamics using more practical architectures will be a very
important and fundamental future direction.

Population loss and sample complexity Following most of the previous work, we use population
loss when analyzing the training trajectory instead of using finite sample loss. This modification is
to simplify the analysis and focus on the population dynamics without noise. A possible future step
is to generalize this analysis to a finite sample setting and train the model with online SGD.

CoT on iterative tasks In this work, we mainly focus on iterative tasks, one of the simplest forms
where multi-step CoT can help yield better performance. That serves as the initial step towards
understanding why CoT helps reasoning following the first principle. As a limitation, though CoT
can empower the transformer to acquire compositional reasoning capability instead of doing the
same iterative step, it is a much harder question beyond our paper’s scope. It is a very important
future direction and definitely worth further exploring.

B PROOFS OF THEOREMS IN SECTION 3

In this section, we prove the expressiveness results of the linear transformers with and without CoT.
In Appendix B.1, we prove that a one-layer linear transformer without CoT can only obtain the
one-step gradient descent solution. In Appendix B.2, we prove that there exists a one-layer linear
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transformer that implements multi-step gradient descent with the CoT prompting. As corollaries,
there exists a separation between the one-step and multi-step solutions.

B.1 PROOF OF THEOREM 3.1

We first restate the theorem:

Theorem B.1 (Lower bound without CoT). If the global minimizer of LEval(V ,W ) is (V ∗,W ∗),
the corresponding one-layer transformer fLSA(Z0)[:,−1] implements one step GD on a linear model
with some learning rate η = n

n+d+1 and the transformer outputs η
nXy⊤.

Proof. Recall the loss expression in Equation (5) when k = 0,

L(V ,W ) =
1

2
EX,w∗

∥∥fLSA(Z0)[:,−1] − (0d, 0,w
∗, 1)

∥∥2
=

1

2
EX,w∗

∥∥∥∥∥V Z0 ·
Z⊤

0 WZ0[:,−1]

n
− (0d, 0,w

∗, 0)⊤

∥∥∥∥∥
2

(since w0 = 0d.)

The key insight of the proof is to replace the w∗ with the one-step GD solution η
nXy⊤,

L(V ,W ) =
1

2
E

∥∥∥∥∥V Z0 ·
Z⊤

0 WZ0[:,−1]

n
−
(
0d, 0,

η

n
Xy⊤, 0

)⊤∥∥∥∥∥
2
+ C

After proving this property, we can conclude that the optimal solution without CoT is exactly the
one-step solution η

nXy⊤. We prove this result by showing the gradient of those two loss functions
are the same.

First, before calculating the gradient, we extract the identical parts of the loss. Notice that the
ground-truth entries are all zero in i = 1, 2, · · · , d, d + 1, 2d + 2 positions in both expressions.
Therefore, that part of error is the norm of the output fLSA(Z0)[:,−1] in those corresponding entries:

1

2
E

∥∥∥∥∥V Z0 ·
Z⊤

0 WZ0[1:d+1,−1]

n

∥∥∥∥∥
2
+

1

2
E

∥∥∥∥∥V Z0 ·
Z⊤

0 WZ0[2d+2,−1]

n

∥∥∥∥∥
2


which is the same for both expressions. Therefore, we just need to consider

fLSA(Z0)[d+2:2d+1,−1] = V[d+2:2d+1,:]Z0 ·
Z⊤

0 WZ0[:,−1]

n
,

which corresponds to the ground-truth signals. Here V[d+2:2d+1,:] = [V31,V32,V33,V34]. We only
need to prove that

E
∥∥fLSA(Z0)[d+2:2d+1,−1] −w∗∥∥2 = E

∥∥∥fLSA(Z0)[d+2:2d+1,−1] −
η

n
XX⊤w∗

∥∥∥2 + C

for some constant C.

We show the gradients of both sides are the same, and equivalently the differential of both sides
should be the same. The differential of L.H.S. is

d
(
E
∥∥fLSA(Z0)[d+2:2d+1,−1] −w∗∥∥2)

= 2E
[
(fLSA(Z0)[d+2:2d+1,−1] −w∗)⊤dfLSA(Z0)[d+2:2d+1,−1]

]
and the differential of R.H.S. is

d

(
E
∥∥∥fLSA(Z0)[d+2:2d+1,−1] −

η

n
XX⊤w∗

∥∥∥2)
= 2E

[
(fLSA(Z0)[d+2:2d+1,−1] −

η

n
XX⊤w∗)⊤dfLSA(Z0)[d+2:2d+1,−1]

]
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Therefore, we only need to prove that

E
[
w∗⊤dfLSA(Z0)[d+2:2d+1,−1]

]
= E

[( η
n
XX⊤w∗

)⊤
dfLSA(Z0)[d+2:2d+1,−1]

]
(10)

We expand this expression fLSA(Z0)[d+2:2d+1,−1] (Note that now we don’t have the assumption of
initialization):

V[d+2:2d+1,:]Z0 ·
Z⊤

0 WZ0[:,−1]

n

=
1

n
[V31 V32 V33 V34]

 X 0
y 0

0d×n w0

01×n 1

[X⊤ y⊤ 0n×d 0n

01×d 0 w⊤
0 1

]
W

 0
0
w0

1



=
1

n
[V31 V32 V33 V34]

XX⊤ Xy⊤ 0d×d 0d

yX⊤ yy⊤ 01×d 0
0d×d 0d 0d×d 0d

01×d 0 01×d 1


W14

w24

W34

w44

 (since w0 = 0d)

=
1

n
[V31 V32 V33 V34]

XX⊤W14 + w24Xy⊤

yX⊤W14 + w24yy
⊤

0d

w44


=

1

n

(
V31 + V32w

∗⊤
)
XX⊤(W14 + w24w

∗) +
V34w44

n
(y = X⊤w∗.)

and the differential of fLSA(Z0)[d+2:2d+1,−1] is

dfLSA(Z0)[d+2:2d+1,−1]

= d

(
1

n

(
V31 + V32w

∗⊤
)
XX⊤(W14 + w24w

∗)

)
+ d

V34w44

n

=
1

n

(
dV31 + dV32w

∗⊤
)
XX⊤(W14 + w24w

∗) +
1

n
(dV34 · w44 + V34dw44)

+
1

n

(
V31 + V32w

∗⊤
)
XX⊤(dW14 + dw24w

∗)

Now, to prove Equation (10), we compare the differential for each parameter on both sides. For all
parameter, we start from the left side and prove it equal to the right.

V31: The V31 term of differential in dfLSA(Z0)[d+2:2d+1,−1] is 1
ndV31XX⊤(W14 + w24w

∗),

E
[
w∗⊤ · 1

n
dV31XX⊤(W14 + w24w

∗)

]
= E

[
tr

(
w∗⊤ · 1

n
dV31XX⊤(W14 + w24w

∗)

)]
(It is a scalar in the trace.)

= E
[
tr

(
1

n
dV31XX⊤(W14 + w24w

∗)w∗⊤
)]

= E[tr (dV31w24)] (E[XX⊤] = nId,E[w∗] = 0,E[w∗w∗⊤] = Id.)

= E
[
tr
( η

n2
· dV31w24XX⊤XX⊤

)]
(E[
(
XX⊤)2] = n(n+ d+ 1)Id, η = n

n+d+1 .)

= E
[
tr
( η

n2
·XX⊤dV31XX⊤(W14 + w24w

∗)w∗⊤
)]

(E[w∗] = 0,E[w∗w∗⊤] = Id.)

= E
[
(
η

n
XX⊤w∗)⊤ · 1

n
dV31XX⊤(W14 + w24w

∗)

]
So those two dV31 terms are identical.

V32: The V32 term of differential in dfLSA(Z0)[d+2:2d+1,−1] is dV32

n w∗⊤XX⊤(W14 + w24w
∗),

E
[
w∗⊤ · dV32

n
w∗⊤XX⊤(W14 + w24w

∗)

]
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= E
[
tr

(
w∗⊤ · dV32

n
w∗⊤XX⊤(W14 + w24w

∗)

)]
(It is a scalar in the trace.)

= E
[
tr

(
dV32

n
w∗⊤XX⊤(W14 + w24w

∗)w∗⊤
)]

= E
[
tr

(
dV32

n
w∗⊤XX⊤W14w

∗⊤
)]

(E[w∗] = 0 and w∗⊤XX⊤w∗w∗⊤ is odd)

= E
[
tr

(
dV32

n
W⊤

14XX⊤w∗w∗⊤
)]

(W⊤
14XX⊤w∗ is a scalar.)

= E
[
tr
(
dV32W

⊤
14

)]
(E[XX⊤] = nId,E[w∗w∗⊤] = Id.)

= E
[
tr
( η

n2
· dV32W

⊤
14XX⊤XX⊤

)]
(E[
(
XX⊤)2] = n(n+ d+ 1)Id, η = n

n+d+1 .)

= E
[
tr
( η

n2
·XX⊤dV32w

∗⊤XX⊤(W14 + w24w
∗)w∗⊤

)]
(E[w∗] = 0,E[w∗w∗⊤] = Id.)

= E
[
(
η

n
XX⊤w∗)⊤ · 1

n
dV32w

∗⊤XX⊤(W14 + w24w
∗)

]
So those two dV32 terms are identical.

V34: The V34 term of differential in dfLSA(Z0)[d+2:2d+1,−1] is 1
ndV34w44,

E
[
w∗⊤ 1

n
dV34w44

]
= 0 = E

[
(
η

n
XX⊤w∗)⊤

1

n
dV34w44

]
since E[w∗] = 0d. Therefore those two are equal.

W14: The W14 term of differential in dfLSA(Z0)[d+2:2d+1,−1] is 1
n

(
V31 + V32w

∗⊤
)
XX⊤dW14,

E
[
w∗⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤dW14

]
= E

[
tr

(
w∗⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤dW14

)]
(It is a scalar in the trace.)

= E
[
tr

(
1

n

(
w∗⊤V32w

∗⊤
)
XX⊤dW14

)]
(E[w∗] = 0d.)

= E
[
tr

(
1

n

(
V ⊤
32w

∗w∗⊤
)
XX⊤dW14

)]
(V ⊤

32w
∗ is a scalar.)

= E
[
tr
(
V ⊤
32dW14

)]
(E[XX⊤] = nId,E[w∗w∗⊤] = Id.)

= E
[
tr
( η

n2
·XX⊤V ⊤

32XX⊤dW14

)]
(E[
(
XX⊤)2] = n(n+ d+ 1)Id, η = n

n+d+1 .)

= E
[
(
η

n
XX⊤w∗)⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤dW14

]
Thus the two dW14 terms are the same.

w24: The w24 term in dfLSA(Z0)[d+2:2d+1,−1] is 1
n

(
V31 + V32w

∗⊤
)
XX⊤dw24w

∗,

E
[
w∗⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤w∗dw24

]
= E

[
tr

(
w∗⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤w∗dw24

)]
(It is a scalar in the trace.)

= E
[
tr

(
1

n

(
w∗⊤V31

)
XX⊤w∗dw24

)]
(E[w∗] = 0d.)

= E[tr (V31dw24)] (E[XX⊤] = nId,E[w∗w∗⊤] = Id.)

= E
[
tr
( η

n2
·XX⊤V31XX⊤dw24

)]
(E[
(
XX⊤)2] = n(n+ d+ 1)Id, η = n

n+d+1 .)
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= E
[
(
η

n
XX⊤w∗)⊤ · 1

n

(
V31 + V32w

∗⊤
)
XX⊤w∗dw24

]
Therefore the differential for w24 are the same.

w44: The w44 term of differential in dfLSA(Z0)[d+2:2d+1,−1] is 1
nV34dw44,

E
[
w∗⊤ 1

n
V34dw44

]
= 0 = E

[
(
η

n
XX⊤w∗)⊤

1

n
V34dw44

]
since E[w∗] = 0d. Therefore those two are also equal.

In conclusion, Equation (10) holds since all the differential terms are equal. Therefore, ∃C

E
∥∥fLSA(Z0)[d+2:2d+1,−1] −w∗∥∥2 = E

∥∥∥fLSA(Z0)[d+2:2d+1,−1] −
η

n
XX⊤w∗

∥∥∥2 + C

which finishes our proof.

B.2 PROOF OF THEOREM 3.2

Here we restate the Theorem 3.2 and provide the detailed proof.

Theorem B.2. Suppose n = Θ(d log5 d), k ≥ C log d, η ∈ (0.1, 0.9). There exists V ∗ and W ∗ s.t.
fLSA(Zk)[:,−1] outputs (0d, 0,wk+1, 1) where wi :=

(
I − (I − η

nXX⊤)i
)
w∗ is the k-step GD

solution with learning rate η on a linear regression model. Moreover, the evaluation loss

LEval(V ∗,W ∗) =
1

2
EX,w∗

[∥∥∥∥(I − η

n
XX⊤

)k+1

w∗
∥∥∥∥2
]
≤ 1

dC log( 1
1−η )

(11)

Proof. We construct V ∗ and W ∗ in the following way,

V ∗ =

 0 0 0 0
0 0 0 0

−ηI 0 0 0
0 0 0 0

 ,W ∗ =

0 0 I 0
0 0 0 −1
0 0 0 0
0 0 0 0

 (12)

Now the transformer is allowed to generate k steps before reaching the final output. We can induc-
tively calculate the i-th step of generation, showing that the output is exactly the parameter after i-th
gradient step (i = 1, 2, ..., k + 1):

fLSA(Zi)[:,−1] = (0d, 0,wi, 1) + V Zi ·
Z⊤

i WZi[:,−1]

n

= (0d, 0,wi, 1) +
1

n

(
0d, 0,V31(t)XX⊤(W13(t)wi −w∗), 0

)
= (0d, 0,wi, 1) + (0d, 0,−

η

n
XX⊤(wi −w∗), 0)

= (0d, 0,wi+1, 1)

After k+1 steps, we have the final output
(
I − (I − η

nXX⊤)k+1
)
w∗ by induction and the evalua-

tion loss becomes Equation (9). By Lemma D.4, the final loss is

1

2
EX,w∗

[∥∥∥∥(I − η

n
XX⊤

)k+1

w∗
∥∥∥∥2
]

=
1

2
EX,w∗

[
tr
(
I − η

n
XX⊤

)2k+2
]

(E[w∗w∗⊤] = I.)

=
1

2
trEX,w∗

[(
I − η

n
XX⊤

)2k+2
]

=
1

2
tr((1− η)k(1 + δ)I) (By Lemma D.4)

≤ d(1− η)k ≤ d−C log( 1
1−η ).
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C PROOF OF THEOREM 4.1

C.1 GRADIENT COMPUTATION OF THE FULL MODEL OVER THE COT OBJECTIVE

In this appendix, we compute the gradient of the full model given the Assumption 4.1 and prove
the equivalence between the dynamics of the full model and a simplified model. Throughout the
appendix, we denote the S = 1

nXX⊤ for simplicity. And recall the i-th step of the linear classifier
is wi = (I − (I − ηS)i)w∗.

In Section 2.2, we have the full attention model

fLSA(Z;V ,W )[:,−1] = Z[:,−1] + V Z ·
Z⊤WZ[:,−1]

n

and the Chain of Thought (CoT) objective

LCoT(V ,W ) = EX,w∗

[
1

2

k∑
i=0

∥∥fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)
∥∥2]

We define the error for the i-th step

Li :=
1

2
EX,w∗

∥∥fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)
∥∥2

By linearity of expectation, we know the gradient of the CoT objective is the sum of gradients of all
CoT steps: ∇LCoT =

∑k
i=1 ∇Li. Now we can calculate the gradients of V ,W based on the loss

of each CoT step:

Lemma C.1 (Gradients of the full model). The gradient of V ,W are given by the following equa-
tions:

∇V L =
1

n
EX,w∗

k∑
i=0

(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]W

⊤ZiZ
⊤
i

∇WL =
1

n
EX,w∗

k∑
i=0

ZiZ
⊤
i V ⊤

(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]

Proof. The loss is given by eq. (6):

LCoT(V ,W ) = EX,w∗

[
1

2

k∑
i=0

∥∥fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)
∥∥2] =

k∑
i=1

Li

Take differential of the loss for the i-th step Li and we have

dLi = EX,w∗
(
fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)⊤
dfLSA(Zi)[:,−1]

= EX,w∗
(
fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)⊤
d

(
V Zi ·

Z⊤
i WZi[:,−1]

n

)

= EX,w∗
(
fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)⊤
d(V )Zi ·

Z⊤
i WZi[:,−1]

n

+ EX,w∗
(
fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)⊤
V Zi ·

Z⊤
i dWZi[:,−1]

n

Then the gradients of W ,V of the Li are:

∇V Li =
1

n
EX,w∗

(
fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)
Zi

⊤
[:,−1]W

⊤ZiZ
⊤
i
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=
1

n
EX,w∗

(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]W

⊤ZiZ
⊤
i

∇WLi =
1

n
EX,w∗ZiZ

⊤
i V ⊤(fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)

)
Zi

⊤
[:,−1]

=
1

n
EX,w∗ZiZ

⊤
i V ⊤

(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]

Take the sum of the two equations above from i = 0 to k, and we finish the proof.

Now we consider the gradient flow (GF) trajectory (note that w24 is fixed under Assumption 4.1):

dθ

dt
= −∇LCoT(θ), θ := (V ,W \{w24}).

Recall the block matrix form of V ,W :

V =

V11 V12 V13 V14

V21 v22 V23 v24
V31 V32 V33 V34

V41 v42 V43 v44

 ,W =

W11 W12 W13 W14

W21 w22 W23 w24

W31 W32 W33 W34

W41 w42 W43 w44


According to the construction in Theorem 3.2, the blocks W13,V31, w24 are the only relevant pa-
rameter blocks, while the others should be zeroed out. Next, we prove that if we initialize those
irrelevant blocks to 0, then they will stay at 0 along the gradient descent trajectory.

Lemma C.2. Under the Assumption 4.1, when the linear transformer is trained under GF, we have
for all t > 0, the parameters V (t),W (t) have the following form:

V (t) =

 0 0 0 0
0 0 0 0

V31(t) 0 0 0
0 0 0 0

 ,W (t) =

0 0 W13(t) 0
0 0 0 −1
0 0 0 0
0 0 0 0


Proof. To prove this lemma, we prove that when the irrelevant blocks are 0, the gradients
∇V Li,∇WLi for those blocks are always 0 and they never update the corresponding parameter
block. Also, note that w24 = −1 for all t > 0.

First, we calculate the output of the linear self-attention V Zi ·
Z⊤

i WZi[:,−1]

n :

V Zi ·
Z⊤

i WZi[:,−1]

n

=
1

n

 0 0 0 0
0 0 0 0

V31(t) 0 0 0
0 0 0 0


 X 0 0 · · · 0

y 0 0 · · · 0
0d×n w0 w1 · · · wi

01×n 1 1 · · · 1

Z⊤
i W

 0
0
wi

1



=
1

n

 0d×n 0d · · · 0d

01×n 0 · · · 0
V31(t)X 0d · · · 0d

01×n 0 · · · 0


 X 0 0 · · · 0

y 0 0 · · · 0
0d×n w0 w1 · · · wi

01×n 1 1 · · · 1


⊤ W13(t)wi

−1
0d

0



=
1

n

 0d×n 0d · · · 0d

01×n 0 · · · 0
V31(t)X 0d · · · 0d

01×n 0 · · · 0

[X⊤W13(t)wi − y⊤

0i+1

]
=

1

n

 0d

0
V31(t)XX⊤(W13(t)wi −w∗)

0


The last line is because y⊤ = X⊤w∗. Now, we consider the gradient for V :

∇V Li =
1

n
EX,w∗

[(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]W

⊤ZiZ
⊤
i

]
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=
1

n2

 0d

0
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

0

Zi
⊤
[:,−1]W

⊤ZiZ
⊤
i

=
1

n2
EX,w∗

 0d

0
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

0


w

⊤
i W

⊤
13(t)

−1
0d

0


⊤

ZiZ
⊤
i

=
1

n2
EX,w∗

 0d

0
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

0


w

⊤
i W

⊤
13(t)XX⊤ − yX⊤

w⊤
i W

⊤
13(t)Xy⊤ − yy⊤

0d

0


⊤

=

 0 0 0 0
0 0 0 0

∇V31
Li(t) ∇V32

Li(t) 0 0
0 0 0 0


Therefore, we know all blocks of the gradient are zero except the positions of V31 and V32.

Now look at ∇V32Li:

∇V32
Li =

1

n2
EX,w∗

[(
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

)
(
w⊤

i W
⊤
13(t)Xy⊤ − yy⊤)]

=
1

n2
EX,w∗

[(
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

)
(
w⊤

i W
⊤
13(t)XX⊤w∗ −w∗⊤XX⊤w∗

)]
Note that wi =

(
I − (I − ηS)i

)
w∗ for all i ∈ [k], and wk+1 = w∗. Therefore, for all i ∈

{0, 1, · · · , k+1} the formula inside the expectation is an odd function of w∗. Since w∗ ∼ N (0, Id),
the expectation should be 0d.

Similarly, we calculate the gradient of the W :

∇WLi =
1

n
EX,w∗

[
ZiZ

⊤
i V ⊤

(
V Zi ·

Z⊤
i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

)
Zi

⊤
[:,−1]

]

=
1

n2
EX,w∗

ZiZ
⊤
i V ⊤

 0d

0
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

0

Zi
⊤
[:,−1]



=
1

n2
EX,w∗

0d×d 0 XX⊤V31(t)
⊤ 0

0d×d 0 yX⊤V31(t)
⊤ 0

0d×d 0 0d×d 0
0d×d 0 0d×d 0


 0d

0
V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)

0

Zi
⊤
[:,−1]

=
1

n2
EX,w∗


XX⊤V31(t)

⊤V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)
yX⊤V31(t)

⊤V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)
0d

0


0d

0
wi

1


⊤

=

0 0 ∇W13
Li(t) ∇W14

Li(t)
0 0 ∇W23

Li(t) ∇w24
Li(t)

0 0 0 0
0 0 0 0


Since we fix w24, we only consider the remaining three blocks. First, we consider the gradient of
the vector block W14:

∇W14
Li(t) =

1

n2
EX,w∗

[
XX⊤V31(t)

⊤V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)
]
.
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Notice that the XX⊤V31(t)
⊤V31(t)XX⊤(W13(t)wi −w∗)−n(wi+1−wi) is odd in w∗. There-

fore the expectation is 0d. Similarly, we consider the other block W23:

∇W23
Li(t) =

1

n2
EX,w∗

[(
yX⊤V31(t)

⊤V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)
)
w⊤

i

]
=

1

n2
EX,w∗

[(
w∗⊤XX⊤V31(t)

⊤V31(t)XX⊤(W13(t)wi −w∗)− n(wi+1 −wi)
)
w⊤

i

]
= 01×d.

In conclusion, all the blocks have zero gradient except V31,W13 given that they are all zero matrices.
Under Assumption 4.1, all the irrelevant blocks remain zero matrices for all t ≥ 0.

By Lemma C.2, we prove that along the gradient flow trajectory under Assumption 4.1, the objective
of the linear self-attention model with residual connection can be equivalently transform to the
following simplified form.

Lemma C.3. Under Assumption 4.1, we have the training objective

LCoT(V ,W ) =
1

2
EX,w∗

[
k∑

i=0

∥V31(SW13wi − Sw∗)−∆wi∥2
]

where S = 1
nXX⊤ and ∆wi := wi+1 −wi, i = 0, 1..., k is the residual for each step i.

Proof. Given the following CoT objective,

LCoT(V ,W ) =
1

2
EX,w∗

[
k∑

i=0

∥∥fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1)
∥∥2]

By Lemma C.2, we plug in the V ,W expressions and get:

fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1) = V Zi ·
Z⊤

i WZi[:,−1]

n
− (0d, 0,wi+1 −wi, 0)

⊤

=

(
0d, 0,

1

n
V31

(
XX⊤W13wi −Xy⊤)−∆wi, 0

)
Since y⊤ = X⊤w∗, we have

fLSA(Zi)[:,−1] − (0d, 0,wi+1, 1) =
(
0d, 0,V31

(
S⊤W13wi − Sw∗)−∆wi, 0

)⊤
Put it back to the loss expression and we complete the proof.

Now the chain of thought loss can be rewritten into the form by Lemma C.3, we can directly calculate
the gradient update using the simplified loss for clarity. We denote the only relevant blocks W̃ :=

W13 and Ṽ := V31. Moreover, we can further expand the CoT loss with ∆wi = −η · XX⊤

n (wi −
w∗) for i ∈ {0, 1, · · · , k− 1}, and ∆wk = w∗ −wk. That leads to the following expression of the
CoT loss:

LCoT(θ) =
1

2
EX,w∗

k−1∑
i=0

∥∥∥wi + Ṽ S
(
W̃wi −w∗

)
−wi+1

∥∥∥2
2

+
1

2
EX,w∗

∥∥∥wk + Ṽ S
(
W̃wk −w∗

)
−w∗

∥∥∥2
2

(13)

Observe that the final loss only depends on the (d + 2) to (2d + 2) entries of the transformer’s
output, indicating we can simplify the model a bit and prune out the irrelevant part. We can define
a simplified one-layer transformer to get the loss form above, where the dynamics of the equivalent
model is exactly the same with the original dynamics of W13 and V31. Accordingly, the last token
input of the transformer for i-th step becomes wi and the label becomes wi+1 since the other entries
in the original input/label (0, 0,wi, 1) do not affect prediction.
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Definition C.1 (Reduced transformer). Let θ = (Ṽ , W̃ ). Define

fθ(X,Zi) = wi + Ṽ S
(
W̃wi −w∗

)
to be the reduced model of the one-layer transformer in Equation (3). For ease of presentation, we
denote fθ(wi) := fθ(X,Zi).

In the following sections, we will consider the equivalent form of transformer. Here we present the
gradient with regard to the reduced model. For clarification, throughout this section we will denote
wk+1 :=

(
I − (I − ηS)

k+1
)
w∗ as the (k + 1)-th update, and w∗ is the ground-truth.

Lemma C.4. The gradient of Ṽ and W̃ are given by the following expectations:

∂L
∂Ṽ

=

k∑
i=0

E
[
(fθ(wi)−wi+1)

(
w⊤

i W̃
⊤ −w∗T

)
S
]
+ E

[
(wk+1 −w∗)

(
w⊤

k W̃
⊤ −w∗T

)
S
]
,

∂L
∂W̃

=

k∑
i=0

E
[
SṼ ⊤(fθ(wi)−wi+1)w

⊤
i

]
+ E

[
SṼ ⊤(wk+1 −w∗)w⊤

k

]
.

Proof. Given the equivalent CoT loss in Equation (13), we take the gradient with regard to Ṽ of the
loss and we have

∂L
∂Ṽ

=

k−1∑
i=0

E
[
(fθ(wi)−wi+1)

(
w⊤

i W̃
⊤ −w∗T

)
S
]
+ E

[
(fθ(wk)−w∗)

(
w⊤

k W̃
⊤ −w∗T

)
S
]

=

k∑
i=0

E
[
(fθ(wi)−wi+1)

(
w⊤

i W̃
⊤ −w∗T

)
S
]
+ E

[
(wk+1 −w∗)

(
w⊤

k W̃
⊤ −w∗T

)
S
]

The second step is because we subtract E
[
(fθ(wk)−wk+1)

(
w⊤

k W̃
⊤ −w∗T

)
S
]

from the second

term and put it into the summation. Similarly, the partial derivative of W̃ should be:

∂L
∂W̃

=

k−1∑
i=0

E
[
SṼ ⊤(fθ(wi)−wi+1)w

⊤
i

]
+ E

[
SṼ ⊤(fθ(wk)−w∗)w⊤

k

]
=

k∑
i=0

E
[
SṼ ⊤(fθ(wi)−wi+1)w

⊤
i

]
+ E

[
SṼ ⊤(wk+1 −w∗)w⊤

k

]
Therefore we complete the proof.

C.2 GRADIENT CHARACTERIZATION OVER THE COT OBJECTIVE

In this section, we compute the exact gradient for the reduced model parameters to facilitate
analysis on the dynamics. For clarification, throughout this section we will denote wk+1 :=(
I − (I − ηS)

k+1
)
w∗ as the (k + 1)-th update, and w∗ is the ground-truth.

We first compute our gradients for the simplfied model defined in Definition C.1, which is equivalent
to the full model’s dynamics. Recall that under assumption 4.1, we have Ṽ , W̃ are simultaneously
diagonalizable, with the orthonormal basis {ui}di=1. We denote the orthogonal matrix formed by
the basis as U . We will observe that ui are always the eigenvector of Ṽ , W̃ , so we denote Ṽ =

UΛṼ U⊤, W̃ = UΛW̃U⊤. For clarity, we ignore the timestamp when calculating the gradients
and dynamics.

We present an accurate estimate of the gradient in the following Lemma C.5. We intensively use
the concentration lemma in Appendix D to separate the main terms dominating the gradient flow
dynamics, and some bounded error terms that may complicate the analysis. We also call the error
terms as ‘interaction terms’, since they contain the interactions between two subspaces uiu

⊤
i and

uju
⊤
j . The structure of the interaction terms ∆Ṽ ,∆W̃ are further characterized in this lemma,

which is essential for the final local convergence analysis.
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Lemma C.5. Suppose n = Θ(d log5 d), η ∈ (0.1, 0.9), k = ⌈c log d⌉. Under Assumption 4.1, if
we run gradient flow on the population loss in Equation (6), then the gradient of Ṽ and W̃ are
characterized by the following equations:

U⊤ ∂L
∂Ṽ

U =

[(
k + 1− 2

η
+

1

η(2− η)

)
ΛW̃

2
− 2

(
k + 1− 1

η

)
ΛW̃ + (k + 1)I

]
ΛṼ

− 1− η

2− η
ΛW̃ + I +∆Ṽ ,

U⊤ ∂L
∂W̃

U =

(
k + 1− 2

η
+

1

η(2− η)

)
ΛṼ

2
ΛW̃ −

(
k + 1− 1

η

)
ΛṼ

2
− 1− η

2− η
ΛṼ +∆W̃ .

where the error terms (interaction terms)
∥∥∥∆Ṽ

∥∥∥
op

≤ O
(

1
log2 d

)
,
∥∥∥∆W̃

∥∥∥
op

≤ O
(

1
log2 d

)
.

Moreover, there exist diagonal matrices AṼ ,BṼ ,AW̃ ,BW̃ with O
(

1
log2 d

)
-operator norm,

CṼ ,DṼ ,CW̃ ,DW̃ ,EW̃ with O
(

1
d log2 d

)
-operator norm and EṼ ,F W̃ with O

(
(1− η)

k
)

-

operator norm s.t. the error terms ∆Ṽ ,∆W̃ can be written as

∆Ṽ =
(
ΛṼ + ηI

)
AṼ +

(
I −ΛW̃

)
BṼ + tr

((
I −ΛW̃

)
ΛW̃

)
CṼ + tr

(
I −ΛW̃

)
DṼ +EṼ ,

∆W̃ =
(
ΛṼ + ηI

)
AW̃ +

(
I −ΛW̃

)
BW̃ + tr

(
I −ΛW̃

)
CW̃ + tr

(
(ΛṼ + ηI)ΛṼ

)
DW̃

+ tr

(
(I −ΛW̃ )ΛṼ

2
)
EW̃ + F W̃ .

Proof. Recall the gradients formula of Ṽ and W̃ by Lemma C.4:

∂L
∂Ṽ

=

k∑
i=0

E
[
(fθ(wi)−wi+1)

(
w⊤

i W̃
⊤ −w∗T

)
S
]
+ E

[
(wk+1 −w∗)

(
w⊤

k W̃
⊤ −w∗T

)
S
]

∂L
∂W̃

=

k∑
i=0

E
[
SṼ ⊤(fθ(wi)−wi+1)w

⊤
i

]
+ E

[
SṼ ⊤(wk+1 −w∗)w⊤

k

]
We expand the reduced model fθ(wi) in Definition C.1, and get the residual term

fθ(wi)−wi+1 = wi + Ṽ S
(
W̃wi −w∗

)
−wi+1

= Ṽ S
(
W̃wi −w∗

)
+ ηS(wi −w∗)

=
(
Ṽ SW̃ + ηS

)
wi −

(
Ṽ + ηI

)
Sw∗

Substitute fθ(wi)−wi+1 term in the dynamics by the equation above, we have

∂L
∂Ṽ

=

k∑
i=0

E
[(

Ṽ SW̃ + ηS
)(

I − (I − ηS)
i
)2

W̃⊤S

]
−

k∑
i=0

E
[(

Ṽ SW̃ + ηS
)(

I − (I − ηS)
i
)
S
]

−
k∑

i=0

E
[(

Ṽ + ηI
)
S
(
I − (I − ηS)

i
)
W̃⊤S

]
+

k∑
i=0

E
[(

Ṽ + ηI
)
S2
]

− E
[
(I − ηS)

k+1
((

I − (I − ηS)
k
)
W̃⊤ − I

)]
=

k∑
i=0

(
Ṽ + ηI

)
E
[
SW̃

(
I − (I − ηS)

i
)2

W̃⊤S

]
(Term 1)

+ η

k∑
i=0

E
[
S
(
I − W̃

)(
I − (I − ηS)

i
)2

W̃⊤S

]
(Term 2)
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−
k∑

i=0

(
Ṽ + ηI

)
E
[
SW̃

(
I − (I − ηS)

i
)
S
]

(Term 3)

− η

k∑
i=0

E
[
S
(
I − W̃

)(
I − (I − ηS)

i
)
S
]

(Term 4)

−
k∑

i=0

(
Ṽ + ηI

)
E
[
S
(
I − (I − ηS)

i
)
W̃⊤S

]
(Term 5)

+

k∑
i=0

(
Ṽ + ηI

)
E
[
S2
]

(Term 6)

− E
[
(I − ηS)

k+1
((

I − (I − ηS)
k
)
W̃⊤ − I

)]
. (Term 7)

To get an accurate estimate of the gradient, we apply Lemma C.14, Lemma C.15 respectively to
each of the terms (Term 1 to Term 7) and separate the interaction terms introduced by the moments
of Wishart matrix, which is bounded by O

(
1

log3 d

)
.

Consider Term 7 and the i-th term in the summation of Term 1 to Term 6. By Lemma C.14 and
Lemma C.15, there exist diagonal matrices ξj , j ∈ [6] satisfying ∥ξj∥op ≤ O

(
1

log3 d

)
such that

E
[
SW̃

(
I − (I − ηS)

i
)2

W̃⊤S

]
= U

[(
1− (1− η)

k
)2

ΛW̃
2
+ ξ1

]
U⊤

E
[
S
(
I − W̃

)(
I − (I − ηS)

i
)2

W̃⊤S

]
= U

[(
1− (1− η)

k
)2(

I −ΛW̃
)
ΛW̃ + ξ2

]
U⊤

E
[
SW̃

(
I − (I − ηS)

i
)
S
]
= U

[(
1− (1− η)

k
)
ΛW̃ + ξ3

]
U⊤

E
[
S
(
I − W̃

)(
I − (I − ηS)

i
)
S
]
= U

[(
1− (1− η)

k
)(

I −ΛW̃
)
+ ξ4

]
U⊤

E
[
S
(
I − (I − ηS)

i
)
W̃⊤S

]
= U

[(
1− (1− η)

k
)
ΛW̃ + ξ5

]
U⊤

E
[
S2
]
= U(I + ξ6)U

⊤

By Lemma D.4, there exists diagonal matrix ξ7 satisfying ∥ξ7∥op ≤ O
(
(1− η)

k
)

such that

E
[
(I − ηS)

k+1
((

I − (I − ηS)
k
)
W̃⊤ − I

)]
= Uξ7U

⊤.

Moreover, there exist α1, α2 ≤ O
(

1
log3 d

)
, α3, α4, α5 ≤ O

(
1

d log3 d

)
such that

ξ2 =
(
α1Λ

W̃ + α2I
)(

I −ΛW̃
)
+tr

(
I −ΛW̃

)(
α3Λ

W̃ + α4I
)
+α5 tr

((
I −ΛW̃

)
ΛW̃

)
I,

and exist β1 ≤ O
(

1
log3 d

)
, β2 ≤ O

(
1

d log3 d

)
such that

ξ4 = β1

(
I −ΛW̃

)
+ β2 tr

(
I −ΛW̃

)
I.

We define ∆Ṽ
i as the sum of all the interaction terms

(
ΛṼ + ηI

)
(ξ1 − ξ3 − ξ5 + ξ6)+η(ξ2 − ξ4)

for the i-th term in the summation of dynamics of Ṽ . From the analysis above, there exist diagonal
matrices AṼ

i , BṼ
i , CṼ

i , DṼ
i with their operator norm O

(
1

log3 d

)
, such that (note every matrix is

diagonal, so they commute)

∆Ṽ
i =

(
ΛṼ + ηI

)
AṼ

i +O

(
1

d

)
tr
((

I −ΛW̃
)
ΛW̃

)
BṼ

i

+
(
I −ΛW̃

)
CṼ

i +O

(
1

d

)
tr
(
I −ΛW̃

)
DṼ

i .
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We define ∆Ṽ
−1 as the interaction term brought by Term 7 since there is no summation in Term 7. It

is obvious that
∥∥∥∆Ṽ

−1

∥∥∥
op

≤ O
(
(1− η)

k
)

.

Now we denote

∆̂Ṽ =

k∑
i=0

∆Ṽ
i −∆Ṽ

−1

to be the sum of all interaction term of the dynamics of ΛṼ . From the definition of ∆Ṽ
i and ∆Ṽ

−1

above, there exist diagonal matrices AṼ , BṼ , CṼ , DṼ and EṼ
0 satisfying

∥∥∥AṼ
∥∥∥,∥∥∥CṼ

∥∥∥ ≤

O
(

1
log2 d

)
,
∥∥∥BṼ

∥∥∥,∥∥∥DṼ
∥∥∥ ≤ O

(
1

d log2 d

)
and

∥∥∥EṼ
0

∥∥∥ ≤ O
(
(1− η)

k
)

such that (because k =

Θ(log d))

∆̂Ṽ =
(
ΛṼ + ηI

)
AṼ +tr

((
I −ΛW̃

)
ΛW̃

)
BṼ +

(
I −ΛW̃

)
CṼ +tr

(
I −ΛW̃

)
DṼ +EṼ

0

Sum up all the seven terms together and we have

∂L
∂Ṽ

= U

k + 1−
2
(
1− (1− η)

k+1
)

η
+

1− (1− η)
2k+2

η(2− η)

ΛW̃
(
ΛṼ ΛW̃ + ηI

)U⊤

−U

[(
k + 1− 1− (1− η)

k+1

η

)(
ΛṼ ΛW̃ + ηI

)]
U⊤

−U

[(
k + 1− 1− (1− η)

k+1

η

)
ΛW̃

(
ΛṼ + ηI

)]
U⊤

+U
[
(k + 1)

(
ΛṼ + ηI

)]
U⊤ +U∆̂Ṽ U⊤

Denote EṼ
1 to be the sum of all O

(
(1− η)

k
)

terms in the dynamics of Ṽ :

EṼ
1 =

(
2(1− η)

k+1

η
− (1− η)

2k+2

η(2− η)

)
ΛW̃

(
ΛṼ ΛW̃ + ηI

)
− (1− η)

k+1

η

(
2ΛṼ ΛW̃ + ηΛW̃ + ηI

)
Denote EṼ = EṼ

0 +EṼ
1 and denote ∆Ṽ = ∆̂Ṽ +EṼ

1 , we have

U⊤ ∂L
∂Ṽ

U =

[(
k + 1− 2

η
+

1

η(2− η)

)
ΛW̃

2
− 2

(
k + 1− 1

η

)
ΛW̃ + (k + 1)I

]
ΛṼ

− 1− η

2− η
ΛW̃ + I +∆Ṽ

Moreover, ∆Ṽ has the form

∆Ṽ =
(
ΛṼ + ηI

)
AṼ + tr

((
I −ΛW̃

)
ΛW̃

)
BṼ +

(
I −ΛW̃

)
CṼ + tr

(
I −ΛW̃

)
DṼ +EṼ

Similar to the calculation of the dynamics of Ṽ , we can also have

∂L
∂W̃

=

k∑
i=0

E
[
SṼ ⊤(fθ(wi)−wi+1)w

⊤
i

]
+ E

[
SṼ ⊤(wk+1 −w∗)w⊤

k

]
=

k∑
i=0

E
[
SṼ ⊤(Ṽ SW̃ + ηS)

(
I − (I − ηS)

i
)2]

−
k∑

i=0

E
[
SṼ ⊤

(
Ṽ + ηI

)
S
(
I − (I − ηS)

i
)]

− E
[
SṼ ⊤(I − ηS)

k+1
(
I − (I − ηS)

k
)]

=

k∑
i=0

E
[
SṼ ⊤

(
Ṽ S

(
W̃ − I

)
+ (V + ηI)S

)(
I − (I − ηS)

i
)2]
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−
k∑

i=0

E
[
SṼ ⊤

(
Ṽ + ηI

)
S
(
I − (I − ηS)

i
)]

− E
[
SṼ ⊤(I − ηS)

k+1
(
I − (I − ηS)

k
)]

=

k∑
i=0

E
[
SṼ ⊤Ṽ S

(
W̃ − I

)(
I − (I − ηS)

i
)2]

+

k∑
i=0

E
[
SṼ ⊤

(
Ṽ + ηI

)
S
(
I − (I − ηS)

i
)2]

−
k∑

i=0

E
[
SṼ ⊤

(
Ṽ + ηI

)
S
(
I − (I − ηS)

i
)]

− E
[
SṼ ⊤(I − ηS)

k+1
(
I − (I − ηS)

k
)]

We apply Lemma C.16 and Lemma C.17 to each term, similarly define ∆W̃
i for i ∈ [k] ∪ {0} as

the sum of all interaction terms for the i-th term in the smmation of dynamics of W̃ . There exists
diagonal matrics AW̃

i ,BW̃
i ,CW̃

i ,DW̃
i ,EW̃

i with their operator norm O
(

1
log3 d

)
, such that

∆W̃
i =

(
ΛṼ + ηI

)
AW̃

i +
(
I −ΛW̃

)
BW̃

i +O

(
1

d

)
tr
(
I −ΛW̃

)
CW̃

i

+O

(
1

d

)
tr
(
(ΛṼ + ηI)ΛṼ

)
DW̃

i +O

(
1

d

)
tr

(
(I −ΛW̃ )ΛṼ

2
)
EW̃

i

We define ∆W̃
−1 as the interaction term brought by the last term

E
[
SṼ ⊤(I − ηS)

k+1
(
I − (I − ηS)

k
)]

.

It is clear that
∥∥∥∆W̃

−1

∥∥∥
op

≤ O
(
(1− η)

k
)

. Similarly denote

∆̂W̃ =

k∑
i=0

∆W̃
i −∆W̃

−1,

then there exist diagonal matrices AW̃ , BW̃ , CW̃ , DW̃ , EW̃ , F W̃
0 satisfying

∥∥∥AW̃
∥∥∥,∥∥∥BW̃

∥∥∥ ≤

O
(

1
log2 d

)
,
∥∥∥CW̃

∥∥∥,∥∥∥DW̃
∥∥∥,∥∥∥EW̃

∥∥∥ ≤ O
(

1
d log2 d

)
,
∥∥∥F W̃

0

∥∥∥ ≤ O
(
(1− η)

k
)

such that

∆̂W̃ =
(
ΛṼ + ηI

)
AW̃ +

(
I −ΛW̃

)
BW̃ + tr

(
I −ΛW̃

)
CW̃

+ tr
(
(ΛṼ + ηI)ΛṼ

)
DW̃ + tr

(
(I −ΛW̃ )ΛṼ

2
)
EW̃ + F W̃

0 .

Denote F W̃
1 to be the sum of all O

(
(1− η)

k
)

terms in the dynamics of W̃ , F W̃ = F W̃
0 + F W̃

1

and ∆W̃ = ∆̂W̃ + F W̃
1 . Thus we have

∂L
∂W̃

=

k∑
i=0

U
(
1− (1− η)

i
)2

ΛṼ
(
ΛṼ ΛW̃ + ηI

)
U⊤ −

k∑
i=0

U
(
1− (1− η)

i
)
ΛṼ

(
ΛṼ + ηI

)
U⊤ +U∆W̃U⊤

= U

k + 1−
2
(
1− (1− η)

k+1
)

η
+

1− (1− η)
2k+2

η(2− η)

ΛṼ
(
ΛṼ ΛW̃ + ηI

)U⊤

−U

[(
k + 1− 1− (1− η)

k+1

η

)
ΛṼ

(
ΛṼ + ηI

)]
U⊤ +U∆̂W̃U⊤

= U

[(
k + 1− 2

η
+

1

η(2− η)

)
ΛṼ

2
ΛW̃ −

(
k + 1− 1

η

)
ΛṼ

2
− 1− η

2− η
ΛṼ +∆W̃

]
U⊤

Moreover, ∆W̃ has the form

∆̂W̃ =
(
ΛṼ + ηI

)
AW̃ +

(
I −ΛW̃

)
BW̃ + tr

(
I −ΛW̃

)
CW̃
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+ tr
(
(ΛṼ + ηI)ΛṼ

)
DW̃ + tr

(
(I −ΛW̃ )ΛṼ

2
)
EW̃ + F W̃ .

Since ∥A+B∥op ≤ ∥A∥op + ∥B∥op and ∥AB∥op ≤ ∥A∥op∥B∥op, it is obvious that∥∥∥∆Ṽ
∥∥∥
op

≤ O

(
1

log2 d

)
,
∥∥∥∆W̃

∥∥∥
op

≤ O

(
1

log2 d

)

After obtaining the estimation of the gradient by lemma C.5, we can decompose the gradient updates
into the dynamics along each eigenspace ui, which can be characterized by the following lemma.

Lemma C.6. Suppose Ṽ =
∑d

j=1 λ
Ṽ
j uju

⊤
j , W̃ =

∑d
j=1 λ

W̃
j uju

⊤
j . The dynamics of the eigen-

values of Ṽ and W̃ are given by the following equations:

dλṼ
j

dt
= −

[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
λṼ
j +

1− η

2− η
λW̃
j − 1 + δṼj

dλW̃
j

dt
=

(
k + 1− 1

η

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j

where
∣∣∣δṼj ∣∣∣ ≤ O

(
1

log2 d

)
,
∣∣∣δW̃j ∣∣∣ ≤ O

(
1

log2 d

)
.

Proof. This is directly obtained from Lemma C.5.

C.3 PROOF OF THE MAIN THEOREM 4.1

In this section, we prove Theorem 4.1, which characterizes the CoT loss of the trained transformer.
First, we restate the theorem.
Theorem C.1 (Global Convergence). Suppose n = Θ(d log5 d), η ∈ (0.1, 0.9), k = ⌈c log d⌉,

c log
(

1
1−η

)
> 2. Under Assumption 4.1 with some constant σ > 3(1−η)

(2−η)
1

k+1 , if we run gradi-

ent flow on the population loss in Equation (6), then after time t = O
(
log d+ log 1

ϵ

)
, we have

LCoT(t) ≤ ϵ for any ϵ ≥ Θ

(
log d

d
c log ( 1

1−η )−2

)
.

Proof. According to the previous sections, we can reduce the original optimization problem to Equa-
tion (13), and consider the equivalent reduced model (Definition C.1). By Lemma C.5, we fully
characterized the gradient expression, which decomposes the gradient of Ṽ and W̃ into main signal
terms with large norm at initialization (terms before ∆Ṽ ,∆W̃ ) and interaction terms (∆Ṽ ,∆W̃ )
with bounded norm O( 1

log2 d
) for all t > 0.

The decomposition motivates us to conduct a stage-wise analysis. We first analyze the dynamics
in Stage 1 when the distance between the parameters Ṽ , W̃ and the ground-truth is larger than
O( 1

log2 d
). In this stage, the bounded error can be dominated by the signal terms in the gradient,

leading to nearly independent dynamics along each direction ui. After this stage, we enter Stage 2
as a local convergence phase. We describe the dynamics below in detail.

Stage 1 In the first stage, the dynamics are dominated by the main terms, and the interaction terms
∆Ṽ ,∆W̃ can be somehow be ignored. Specifically, by Lemma C.6, given the dynamics of λṼ

j , λW̃
j :

dλṼ
j

dt
= −

[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
λṼ
j +

1− η

2− η
λW̃
j − 1 + δṼj

dλW̃
j

dt
=

(
k + 1− 1

η

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j
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we can conclude that the dynamics of the eigenvalue λṼ
j , λW̃

j mainly depend on themselves when

the main term (terms before δW̃j , δṼj ) are larger than O( 1
log2 d

), which is within the stage 1. That is,

the dynamics within the subspace uiu
⊤
i for Ṽ , W̃ are almost independent with other subspaces. In

this stage, we focus on the analysis of λṼ
j , λW̃

j depending on their own value.

The first stage can be further divided into two phases.

Stage 1, Phase 1. At the beginning of training, we have

λṼ
j (0) +

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (0)
) < −σ +

3(1− η)

(2− η)

1

k + 1
< 0

then by Lemma C.8, we can prove an upper bound of λṼ
j when λW̃

j ≤ 1− (k + 1)
− 7

12 ,

λṼ
j < −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
according to the dynamics for both sides. With this upper bound, we prove

dλW̃
j

dt ≥ O
(
1
k

)
. There-

fore, λW̃
j will converge to 1− (k + 1)

− 7
12 in t1 = O(log d) time (Lemma C.9).

Stage 1, Phase 2. After time t1, we have λW̃
j very close to the ground-truth value 1. Meanwhile,

the lower bound for λṼ
j still holds, and it will further decrease. Specifically,

λW̃
j (t1) = 1− (k + 1)

− 7
12 λṼ

j (t1) < −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (t1)
)

By Lemma C.10, we can prove that λW̃
j will stay close to 1− o(1):

1− 2(k + 1)
− 7

12 < λW̃
j (t) < 1 + (k + 1)

− 7
12

for any t ≥ t1. With this condition, a converging condition for (λṼ
j + η) can be deducted from

Lemma C.11:
d
(
λṼ
j + η

)2
dt

≤ − 1

2η(2− η)

(
λṼ
j + η

)2
Lemma C.11 shows that

∣∣∣λṼ
j + η

∣∣∣ converges to (k + 1)
− 1

12 in t2 = O(log log d) time.

Stage 2. Now the eigenvalues are already close to ground-truth:∣∣∣λṼ
j (t1 + t2) + η

∣∣∣ = O
(
(k + 1)

− 1
12

)
,
∣∣∣λW̃

j (t1 + t2)− 1
∣∣∣ ≤ 2(k + 1)

− 7
12 .

According to the expansion of the error terms in Lemma C.5, we notice that δW̃j and δṼj are always

coupled with some individual residual like (ΛṼ + ηI), (ΛW̃ − I), or some weighted average
1
d tr

(
(ΛṼ + ηI)ΛṼ

)
. Meanwhile, the coefficient of this kind of residual in the interaction terms

is still upper bounded by O(1/ log2 d). That helps us to derive the PL-condition like gradient lower
bound (Lemma C.12):

d tr

[(
ΛṼ + ηI

)2]
dt

+

d tr

[(
I −ΛW̃

)2]
dt

≤− 1

2η(2− η)
tr

[(
ΛṼ + ηI

)2]
− η2

2
(k + 1) tr

[(
I −ΛW̃

)2]
+ α
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where α = O
(
(1− η)

k
)
≥ 0.

By Lemma C.12, we know
∣∣∣λṼ

j + η
∣∣∣ and

∣∣∣1− λW̃
j

∣∣∣ converge to δ ∈
(
Θ
(
d

c
2 log (1−η)+ 1

2

)
, 1
)

in

t3 = O
(
log 1

δ

)
time. At this time, there exist diagonal matrices A and B satisfying ∥A∥op ≤ Θ(1)

and ∥B∥op ≤ Θ(1) such that

ΛṼ = −ηI + δ ·A ΛW̃ = I + δ ·B.

Now we consider the CoT loss given by Lemma C.3

LCoT(θ) =
1

2
EX,w∗

k−1∑
i=0

∥∥∥(Ṽ SW̃ + ηS)wi − (Ṽ + ηI)Sw∗
∥∥∥2
2

+
1

2
EX,w∗

∥∥∥(I + Ṽ SW̃ )wk − (Ṽ S + I)w∗
∥∥∥2
2
.

Apply Lemma C.13, we directly obtain that

LCoT(θ) = O
(
δ2d log d

)
.

Since δ ∈
(
Θ
(
d

c
2 log (1−η)+ 1

2

)
, 1
)

, the CoT loss is smaller than ϵ = Θ
(
dc log (1−η)+2 log d

)
. The

local convergence takes t3 = O
(
log 1

δ

)
= O

(
log 1

ϵ

)
. Considering all stages, at time t = t1 + t2 +

t3 = O(log d) +O
(
1
ϵ

)
, we have

LCoT(θ) ≤ ϵ.

C.3.1 TECHNICAL LEMMA IN APPENDIX C.3

Lemma C.7. Assume λW̃
j ≤ 1− (k + 1)

− 7
12 , if − 3(1−η)

2(2−η)
1

(k+1)
(
1−λW̃

j

) ≤ λṼ
j < 0, it holds that

d

(
λṼ
j + 3(1−η)

2(2−η)
1

(k+1)
(
1−λW̃

j

))
dt

< 0 (14)

Proof. Directly consider the derivative

d

(
λṼ
j + 3(1−η)

2(2−η)
1

(k+1)
(
1−λW̃

j

))
dt

=
dλṼ

j

dt
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2 dλW̃
j

dt

Substitute the derivatives with the equations in Lemma C.6, we have

dλṼ
j

dt
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2 dλW̃
j

dt

=−
[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
λṼ
j +

1− η

2− η
λW̃
j −

(
1 + δṼj

)
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2 [(k + 1− 1

η

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j

]

Since − 3(1−η)
2(2−η)

1

(k+1)
(
1−λW̃

j

) ≤ λṼ
j < 0, we have

dλṼ
j

dt
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2 dλW̃
j

dt
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≤
[
(k + 1)

(
1− λW̃

j

)2
+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
λW̃
j

2
]
3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
+

1− η

2− η
λW̃
j −

(
1 + δṼj

)
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2
[
(k + 1)

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
2(

1− λW̃
j

)

+
1− η

η(2− η)

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
2

λW̃
j − δW̃j

]

=
3(1− η)

2(2− η)

(
1− λW̃

j

)
+

1

k + 1

3(1− η)

η(2− η)
λW̃
j +

1

(k + 1)
(
1− λW̃

j

) 3(1− η)

2η(2− η)
2λ

W̃
j

2

+
1− η

2− η
λW̃
j −

(
1 + δṼj

)
+

[
3(1− η)

2(2− η)

]3
1

(k + 1)
2
(
1− λW̃

j

)3
+

[
3(1− η)

2(2− η)

]3
1− η

η(2− η)
λW̃
j

1

(k + 1)
3
(
1− λW̃

j

)4 − 3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)2 δW̃j
=

[
1− η

2(2− η)

(
1− λW̃

j

)
− 1

2− η

]
+

1

k + 1

3(1− η)

2− η
λW̃
j

+
1

(k + 1)
(
1− λW̃

j

) 3(1− η)

2η(2− η)
2λ

W̃
j

2
− δṼj +

[
3(1− η)

2(2− η)

]3
1

(k + 1)
2
(
1− λW̃

j

)3
+

[
3(1− η)

2(2− η)

]3
1− η

η(2− η)
λW̃
j

1

(k + 1)
3
(
1− λW̃

j

)4 − 3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)2 δW̃j
Put in the assumption on λW̃

j that λW̃
j ≤ 1− (k + 1)

− 7
12 , we have

dλṼ
j

dt
+

3(1− η)

2(k + 1)(2− η)

1(
1− λW̃

j

)2 dλW̃
j

dt

≤ − 1 + η

2(2− η)
+

1

k + 1

3(1− η)

η(2− η)
+

1

(k + 1)
5
12

3(1− η)

2η(2− η)
2 +

∣∣∣δṼj ∣∣∣+ [3(1− η)

2(2− η)

]3
1

(k + 1)
1
4

+

[
3(1− η)

2(2− η)

]3
1− η

η(2− η)

1

(k + 1)
2
3

+
3(1− η)

2(2− η)

∣∣∣δW̃j ∣∣∣
= − 1 + η

2(2− η)
+O

(
1

log
1
4 d

)

Lemma C.8 (Upper bound of λṼ
j ). Under Assumption 4.1, if λW̃

j ≤ 1− (k + 1)
− 7

12 , it holds that

λṼ
j < −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

) (15)
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Proof. We prove by induction. First, check the initialization λṼ
j (0) ≤ −σ, σ ≤ λW̃

j (0) ≤ 1
2 . If

σ ≥ 3(1−η)
2−η

1
k+1 , then we have

λṼ
j (0) +

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (0)
) < −σ +

3(1− η)

(2− η)

1

k + 1
≤ 0

If the inequality holds until some time t1, that is for any t < t1, we have

λṼ
j (t) < −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (t)
)

but

λṼ
j (t1) ≥ −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (t1)
)

By Lemma C.7, we have

d

(
λṼ
j + 3(1−η)

2(2−η)
1

(k+1)
(
1−λW̃

j

))
dt

∣∣∣∣∣∣∣∣∣
t=t1

< 0

Therefore, there exists some time t′ < t1 such that

λṼ
j (t′) ≥ −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (t′)
)

which is a contradiction. Hence, the proof is complete.

Lemma C.9 (λW̃
j converges to near optimal). Under Assumption 4.1, it takes O(log d) time for λW̃

j

to converge to 1− (k + 1)
− 7

12 .

Proof. Recall the gradient of λW̃
j in Lemma C.6

dλW̃
j

dt
=

(
k + 1− 1

η

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
j − δW̃j

Substitute λṼ
j with Lemma C.8, we have

dλW̃
j

dt
≥
(
k + 1− 1

η

)3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
2(

1− λW̃
j

)

+
1− η

η(2− η)

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
2

λW̃
j

− 1− η

2− η

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
− δW̃j

≥ 4

5
(k + 1)

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
2(

1− λW̃
j

)

− 1− η

2− η

3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j

)
−

∣∣∣δW̃j ∣∣∣
34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

=
3

10

(1− η)
2

(2− η)
2

1

(k + 1)
(
1− λW̃

j

) −
∣∣∣δW̃j ∣∣∣

≥ 1

5

(1− η)
2

(2− η)
2

1

(k + 1)
(
1− λW̃

j

)
≥ 1

5

(1− η)
2

(2− η)
2

1

k + 1

In O(log d) time, λW̃
j can converge to 1− (k + 1)

− 7
12 .

Lemma C.10. Assume λW̃
j (t1) = 1 − (k + 1)

− 7
12 and λṼ

j (t1) < − 3(1−η)
2(2−η)

1

(k+1)
(
1−λW̃

j (t1)
) , for

any t ≥ t1 it holds that

1− 2(k + 1)
− 7

12 < λW̃
j (t) < 1 + (k + 1)

− 7
12 .

Proof. First, it is clear that the inequality holds at time t1. If the inequality doesn’t hold, then there
exists t′ > t1 such that

1− 2(k + 1)
− 7

12 < λW̃
j (t) < 1 + (k + 1)

− 7
12 for any t1 ≤ t < t′

λW̃
j (t′) = 1− 2(k + 1)

− 7
12

or

1− 2(k + 1)
− 7

12 < λW̃
j (t) < 1 + (k + 1)

− 7
12 for any t1 ≤ t < t′

λW̃
j (t′) = 1 + (k + 1)

− 7
12

In the first case, it suffices to prove

λṼ
j (t′) ≤ −3(1− η)

2(2− η)
(k + 1)

− 5
12 < −3(1− η)

2(2− η)

1

(k + 1)
(
1− λW̃

j (t′)
)

to show
dλW̃

j

dt

∣∣∣∣∣
t=t′

> 0

which says there exists t1 ≤ t′′ < t′ such that

λW̃
j (t′′) ≤ 1− 2(k + 1)

− 7
12

and leads to a contradiction. Recall the gradient of λṼ
j in Lemma C.6

dλṼ
j
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= −

[
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(
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j

)2
+

2

η
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j

(
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j

)
+

1

η(2− η)
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j

2
]
λṼ
j +
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(
1 + δṼj

)
≤ −

[
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4
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[
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λṼ
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and thus we have
λṼ
j (t) ≤ Ce−

2
η(2−η)

(t−t1) − η

4
If C ≤ 0, then

λṼ
j (t′) ≤ −η

4
≤ −3(1− η)

2(2− η)
(k + 1)

− 5
12
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else

λṼ
j (t′) ≤ λṼ

j (t1) = −3(1− η)

2(2− η)
(k + 1)

− 5
12

In the second case,

λṼ
j (t) ≤ −3(1− η)

2(2− η)
(k + 1)

− 5
12

still holds for any t1 ≤ t ≤ t′. Recall the gradient of λW̃
j in Lemma C.6

dλW̃
j

dt

∣∣∣∣∣
t=t′

=

(
k + 1− 1

η

)
λṼ
j

2(
1− λW̃

j

)
+

1− η

η(2− η)
λṼ
j

2
λW̃
j +

1− η

2− η
λṼ
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= −
(
k + 1− 1

η

)
λṼ
j

2
(k + 1)

− 7
12 +

1− η

η(2− η)
λṼ
j

2[
1 + (k + 1)

− 7
12

]
+
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2− η
λṼ
j − δW̃j
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5
12

2
λṼ
j

2
+

1− η

2(2− η)
λṼ
j +

∣∣∣δW̃j ∣∣∣
≤ − 9(1− η)

2

8(2− η)
2 (k + 1)

− 5
12 − 3(1− η)

2

4(2− η)
2 (k + 1)

− 5
12 +

∣∣∣δW̃j ∣∣∣
≤ − (1− η)

2

(2− η)
2 (k + 1)

− 5
12

There exists t1 ≤ t′′ < t′ such that

λW̃
j (t′′) ≥ 1 + (k + 1)

− 7
12

which is a contradiction. Hence, the proof is complete.

Lemma C.11 (λṼ
j converges to near optimal). Assume

1− 2(k + 1)
− 7

12 < λW̃
j (t) < 1 + (k + 1)

− 7
12

then it takes O(log log d) time for
∣∣∣λṼ

j + η
∣∣∣ to converge to (k + 1)

− 1
12 .

Proof. From Lemma C.10, we know

dλṼ
j
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= −

[
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(
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)2
+

2

η
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(
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)
+

1

η(2− η)
λW̃
j

2
]
λṼ
j +

1− η

2− η
λW̃
j −

(
1 + δṼj

)
≤ −

[
4(k + 1)

− 1
6 +

4

η

[
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− 7
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− 7
6

]
+

1

η(2− η)

[
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− 7
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6
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λṼ
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+
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− 7
12 +
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1
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(
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)](
λṼ
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)
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(
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and
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j
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= −

[
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+
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η
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)
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1
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2
]
λṼ
j +
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(
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)
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[
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η

[
(k + 1)
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+

1
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[
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λṼ
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1

η(2− η)
+O

(
(k + 1)

− 1
6

)](
λṼ
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Therefore,

d
(
λṼ
j + η

)2
dt

= 2
(
λṼ
j + η

)dλṼ
j

dt

≤ −
[

1

η(2− η)
+O

(
(k + 1)

− 1
6

)](
λṼ
j + η

)2
+O

(
(k + 1)

− 1
6

)(
λṼ
j + η

)
If
∣∣∣λṼ

j + η
∣∣∣ converges to ϵ = (k + 1)

− 1
12 , then

d
(
λṼ
j + η

)2
dt

≤ − 1

2η(2− η)

(
λṼ
j + η

)2
Thus, there exists c ≤ Θ(1) such that

ϵ2 =
(
λṼ
j + η

)2
≤ c2 exp

(
− 1

2η(2− η)
t

)
In O

(
log
(
1
ϵ

))
= O(log log d) time,

∣∣∣λṼ
j + η

∣∣∣ can converge to ϵ.

Lemma C.12 (Local convergence). Suppose k = ⌈c log d⌉. Assume∣∣∣λW̃
j (t)− 1

∣∣∣ ≤ 2(k + 1)
− 7

12

∣∣∣λṼ
j (t) + η

∣∣∣ = O
(
(k + 1)

− 1
12

)
,

then there exists α = O
(
(1− η)

k
)
≥ 0 such that ΛṼ and ΛW̃ comply with

d tr

[(
ΛṼ + ηI

)2]
dt

+

d tr

[(
I −ΛW̃

)2]
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≤ − 1

2η(2− η)
tr

[(
ΛṼ + ηI

)2]
− η2

2
(k + 1) tr

[(
I −ΛW̃

)2]
+ α,

thus
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j + η
∣∣∣ and
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j

∣∣∣ can converge to ϵ ∈
(
d−

c
2 log ( 1

1−η )+
1
2 , 1
)

in O
(
log 1

ϵ

)
time.

Proof. Consider the error term in Lemma C.6 more carefully, we have

dλṼ
j

dt
= −

[
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+

2

η
λW̃
j

(
1− λW̃

j

)
+

1

η(2− η)
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+
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=
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+
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2
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O

(
1
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)
+O

(
(1− η)

k
)

Now we consider the decay rate of the distance between λṼ
j , λW̃

j and their ground truth.
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λṼ
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+
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j − 1

)2
dt
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+
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+
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+
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+
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)
λṼ
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λṼ
j + η

)
tr
(
I −ΛW̃

)
O

(
1

d log2 d

)
+
(
λṼ
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ΛṼ

2
)
O

(
1

d log2 d

)
+O

(
(1− η)

k
)

= −

[
1

η(2− η)
+O

(
1

log
1
6 d

)](
λṼ
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Utilizing Mean Inequality, we have∣∣∣(1− λW̃
j

)(
λṼ
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Insert the inequality into the equation and we have
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There exist α1, α2, α3, α4, α5 = O
(

1
d log2 d

)
≥ 0 and α6 = O

(
(1− η)

k
)
≥ 0 such that

d
(
λṼ
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+
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j + η

∣∣∣ · ∣∣∣tr((I −ΛW̃
)
ΛW̃

)∣∣∣
+ α3

∣∣∣1− λW̃
j

∣∣∣ tr(∣∣∣I −ΛW̃
∣∣∣)+ α4

∣∣∣1− λW̃
j

∣∣∣ · ∣∣∣tr((ΛṼ + ηI
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Notice that for diagonal matrices A and B, we have

tr (AB) ≤ |tr (AB)| =

∣∣∣∣∣∑
i

aiibii

∣∣∣∣∣ ≤∑
i

|aii||bii| ≤
∑
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Plug in the inequality and we have
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∥∥∥ · ∣∣∣1− λW̃

j

∣∣∣ · tr(∣∣∣ΛṼ + ηI
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Take the sum of both sides separately, we have
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Therefore, it holds for diagonal matrix Λ ∈ Rd×d that

tr2 (Λ) ≤ d tr
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Λ2
)

Plug in the inequality and we have
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1−η )+1. So in O
(
log 1

ϵ

)
time,

∣∣∣λṼ
j + η

∣∣∣
and

∣∣∣1− λṼ
j

∣∣∣ converge to ϵ ∈
(
Θ
(
d

c
2 log (1−η)+ 1

2

)
, 1
)

.

Lemma C.13. Suppose δ ∈
(
Θ
(
d

c
2 log (1−η)+ 1

2

)
, 1
)

and there exist diagonal matrices A and B

satisfying ∥A∥op ≤ Θ(1) and ∥B∥op ≤ Θ(1) such that

ΛṼ = −ηI + δ ·A ΛW̃ = I + δ ·B,

then it holds that
LCoT(θ) = O

(
δ2d log d

)
.

Proof. Now we consider the CoT loss given by Lemma C.3

LCoT(θ) =
1

2
EX,w∗

k−1∑
i=0

∥∥∥(Ṽ SW̃ + ηS)wi − (Ṽ + ηI)Sw∗
∥∥∥2
2

+
1

2
EX,w∗

∥∥∥(I + Ṽ SW̃ )wk − (Ṽ S + I)w∗
∥∥∥2
2
.

Plug in the expression of ΛṼ and ΛW̃ , we get

LCoT(θ) =
δ2

2
E

k−1∑
i=0

∥∥∥(AS − ηSB + δASB)
(
I − (I − ηS)

i
)
−AS

∥∥∥2
F

(16)

+
1

2
E
∥∥∥−(I − ηS)

k
+ΛṼ S

[
−(I − ηS)

k
+ δB

(
I − (I − ηS)

k
)]∥∥∥2

F
. (17)

We first consider the term in the summation:

E
∥∥∥(AS − ηSB + δASB)

(
I − (I − ηS)

i
)
−AS

∥∥∥2
F

= E
∥∥∥(−ηSB + δASB)

(
I − (I − ηS)

i
)
−AS(I − ηS)

i
∥∥∥2
F

= trE
[
(−ηSB + δASB)

(
I − (I − ηS)

i
)2

(−ηBS + δBSA)

]
− 2 trE

[
(−ηSB + δASB)

(
I − (I − ηS)

i
)
(I − ηS)

i
SA

]
+ trE

[
AS(I − ηS)

2i
SA

]
= tr

(
(−ηI + δA)E

[
SB

(
I − (I − ηS)

i
)2

BS

]
(−ηI + δA)

)
(Term 1)

− 2 tr
(
(−ηI + δA)E

[
SB

(
I − (I − ηS)

i
)
(I − ηS)

i
S
]
A
)

(Term 2)

+ tr
(
AE
[
S(I − ηS)

2i
S
]
A
)

(Term 3)

Apple Lemma C.15 to the expectation in Term 1, we have

E
[
SB

(
I − (I − ηS)

i
)2

BS

]
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=
(
1− (1− η)

i
)2

B2 +O

(
1

log3 d

)[
B2 +O

(
1

d

)
tr (B)B +O

(
1

d

)
tr
(
B2
)
I +O

(
1

d2

)
tr2 (B)I

]
.

It is obvious that ∥∥∥∥E[SB(I − (I − ηS)
i
)2

BS

]∥∥∥∥
op

≤ Θ(1).

Therefore, for Term 1 we have

tr

(
(−ηI + δA)E

[
SB

(
I − (I − ηS)

i
)2

BS

]
(−ηI + δA)

)
≤ d∥−ηI + δA∥2op ·

∥∥∥∥E[SB(I − (I − ηS)
i
)2

BS

]∥∥∥∥
op

≤ O(d).

(all matrices in the inequality are diagonal matrices.)

Similarly, for Term 2 and Term 3, we have∣∣∣tr((−ηI + δA)E
[
SB

(
I − (I − ηS)

i
)
(I − ηS)

i
S
]
A
)∣∣∣ ≤ O(d)

tr
(
AE
[
S(I − ηS)

2i
S
]
A
)

≤ O(d).

Add Term 1, 2, 3 together and we have

E
∥∥∥(AS − ηSB + δASB)

(
I − (I − ηS)

i
)
−AS

∥∥∥2
F
≤ O(d).

We then consider the second term in Equation (17):

E
∥∥∥−(I − ηS)

k
+ΛṼ S

[
−(I − ηS)

k
+ δB

(
I − (I − ηS)

k
)]∥∥∥2

F

= E
∥∥∥−(I +ΛṼ S

)
(I − ηS)

k
+ δΛṼ SB

(
I − (I − ηS)

k
)∥∥∥2

F

= tr
(
E
[(

I +ΛṼ S
)
(I − ηS)

2k
(
I + SΛṼ

)])
− 2δ tr

(
E
[(

I +ΛṼ S
)
(I − ηS)

k
(
I − (I − ηS)

k
)
BS

]
ΛṼ

)
+ δ2 tr

(
ΛṼ E

[
SB

(
I − (I − ηS)

k
)2

BS

]
ΛṼ

)
≤ O

(
δ2d
)
. ((1− η)

k ≤ δ)

Recall the CoT loss in Equation (16) and Equation (17). By the analysis above, we directly obtain
that

LCoT(θ) = O
(
δ2d log d

)
.

Hence, the proof is complete.

Lemma C.14. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛ
(
I − (I − ηS)

k
)
ΓS
]
=
(
1− (1− η)

k
)
ΛΓ+∆,

where ∥∆∥op = O(k
2d
n ) ≤ O

(
1

log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O( k

2

nd ).

Proof. We can directly get the lemma by applying Lemma D.2 to E[SΛΓS], E
[
SΛ(I − ηS)

k
ΓS
]
.
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Lemma C.15. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛ
(
I − (I − ηS)

k
)2

ΓS

]
=
(
1− (1− η)

k
)2

ΛΓ+∆,

where ∥∆∥op = O(k
2d
n ) ≤ O

(
1

log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O( k

2

nd ).

Proof. We can directly get the lemma by applying Lemma D.2 to E[SΛΓS], E
[
SΛ(I − ηS)

k
ΓS
]

and E
[
SΛ(I − ηS)

2k
ΓS
]
.

Lemma C.16. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛSΓ

(
I − (I − ηS)

k
)]

=
(
1− (1− η)

k
)
ΛΓ+∆,

where ∥∆∥op = O(k
2d
n ) ≤ O

(
1

log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O( k

2

nd ).

Proof. We can directly get the lemma by applying Lemma D.3 to E[SΛSΓ], E
[
SΛSΓ(I − ηS)

k
]
.

Lemma C.17. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛSΓ

(
I − (I − ηS)

k
)2]

=
(
1− (1− η)

k
)2

ΛΓ+∆,

where ∥∆∥op = O(k
2d
n ) ≤ O

(
1

log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O( k

2

nd ).

Proof. We can directly get the lemma by applying Lemma D.3 to E[SΛSΓ], E
[
SΛSΓ(I − ηS)

k
]

and E
[
SΛSΓ(I − ηS)

2k
]
.

C.4 OUT-OF-DISTRIBUTION GENERALIZATION

We restate the formal theorem here. We still denote S := 1
nXX⊤ for simplicity. Note that the

number of steps k can be different/larger compared to the step number in the previous training
theorem.
Theorem C.2. Suppose n = Θ(d log5 d), η ∈ (0.1, 0.9), k = C log d. Assume the out-of-
distribution input data xi ∼ N (0d,Σ), i ∈ [n] where δ

η ≤ λmin(Σ) ≤ λmax(Σ) ≤ 2−δ
η for

some constant δ > 0.1, and w∗ ∼ N (0d, I). Then the trained transformer in Theorem 4.1 satisfies

that LEval
Σ (t) ≤ ϵ for any ϵ ∈

(
d−C log(min{ 1

1−η , 1
1−δ })+1 log2 d, 1

)
.
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Proof. Recall the definition of the evaluation loss and our reduced transformer (Definition C.1)

LEval(V ,W ) =
1

2
EX,w∗

[∥∥∥fLSA(Ẑk)[:,−1] − (0d, 0,w
∗, 1)

∥∥∥2]
=

1

2
E
[
∥fθ(ŵk)−w∗∥2

]
where Ẑk is the generated sequence after k steps and ŵk := fθ(ŵk−1) is the k-th generated inter-
mediate weight vector. Note that each step the transformer is inputted with the last step prediction.
We define the prediction error at each step i is ∆wi := ŵi −wi = fθ(ŵi−1)−wi. We expand the
term fθ(ŵk)−w∗ and sum up the error accumulation as follows:
fθ(ŵk)−w∗ ≤ (wk+1 −w∗) + (fθ(ŵk)−wk+1)

= (wk+1 −w∗) + ŵk + Ṽ S(W̃ ŵk −w∗)−wk+1

≤ (wk+1 −w∗) +
(
wk + Ṽ S(W̃wk −w∗)−wk+1

)
+
(
I + Ṽ SW̃

)
∆wk.

After one step of decomposition, we notice that the error ∆wk+1 can be decomposed into two parts:
(1) The approximation error predicting wk+1 with ground-truth input wk. We define it

∆pred
k+1 := wk + Ṽ S(W̃wk −w∗)−wk+1

(2) The accumulated error from the last inference step:
(
I + Ṽ SW̃

)
∆wk. Therefore, we can

inductively calculate the sum of the error:

fθ(ŵk)−w∗ ≤ (wk+1 −w∗) +
(
wk + Ṽ S(W̃wk −w∗)−wk+1

)
+
(
I + Ṽ SW̃

)
∆wk.

= (wk+1 −w∗) + ∆pred
k+1 +

(
I + Ṽ SW̃

)
∆wk

= (wk+1 −w∗) + ∆pred
k+1 +

(
I + Ṽ SW̃

)
∆pred

k +
(
I + Ṽ SW̃

)2
∆wk−1

= (wk+1 −w∗) +

k∑
i=0

(
I + Ṽ SW̃

)i
∆pred

k−i+1 (∆w0 = 0 by definition.)

Then we have our evaluation loss upper bounded:

1

2
E
[
∥fθ(ŵk)−w∗∥2

]
=

1

2
E

∥∥∥∥∥(wk+1 −w∗) +

k∑
i=0

(
I + Ṽ SW̃

)i
∆pred

k−i+1

∥∥∥∥∥
2

≤ k + 2

2

(
E ∥(wk+1 −w∗)∥2 +

k∑
i=0

E
∥∥∥(I + Ṽ SW̃ )i∆pred

k−i+1

∥∥∥2) (*)

We first consider the first term: E ∥(wk+1 −w∗)∥2:

E ∥wk+1 −w∗∥2 = E
∥∥(I − (I − ηS)k+1

)
w∗ −w∗∥∥2 = tr

(
E(I − ηS)2k+2

)
≤ 2d(1− δ)2k+2 ≤ 2d−2c log( 1

1−δ )+1. (Lemma D.5)

Then we consider the second summation term. Since the parameters of the reduced model Ṽ =

−ηI + A, W̃ = I + B, where ∥A∥op, ∥B∥op ≤ d−
1
2C log( 1

1−η )+
1
2 for some constant c > 0, we

want to bound the prediction error given the ground-truth input. By Lemma D.6, we have

E
k∑

i=0

∥∥∥(I + Ṽ SW̃ )i∆pred
k−i+1

∥∥∥2
= E

k∑
i=0

∥∥∥(I + Ṽ SW̃ )i(wk−i + Ṽ S(W̃wk−i −w∗)−wk−i+1))
∥∥∥2

≤ O
(
d−C log( 1

1−η )+1 · k
)
.

Therefore, plug those back to Equation (*), the total evaluation loss should be upper bounded by

LEval(θ) ≤ O
(
d−C log(min{ 1

1−η , 1
1−δ })+1 · k2

)
= O(d−C log(min{ 1

1−η , 1
1−δ })+1 log2 d)
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D SUPPLEMENTARY LEMMAS

D.1 CONCENTRATION LEMMAS

In this appendix, we prove some concentration lemmas to estimate the expected gradient more ac-
curately. Throughout the proof, Λ,Γ are both symmetric matrices with orthonormal eigenbasis
{ui}di=1.

Lemma D.1. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1). Then the expectation

E
[
SΛ(I − ηS)kS

]
= (1− η)k(Λ+∆),

where ∥∆∥op ≤ O(k
2d
n ) = O

(
1

log3 d

)
. Moreover, the error is in the form ∆ = α1Λ + α2 tr(Λ)I ,

where α1 = O
(

k2d
n

)
, α2 = O

(
k2

n

)
.

Proof. Denote δS := S − I . Then we expand the term SΛ(I − ηS)kS:

SΛ(I − ηS)kS

= (I + δS)Λ((1− η)I − ηδS)k(I + δS)

= (1− η)k(I + δS)Λ

(
I − η

(1− η)
δS

)k

(I + δS)

= (1− η)k(I + δS)Λ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj


+(1− η)k(I + δS)Λ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

δS

Now take expectation to both sides. Note that E[δS] = 0, so all the terms only contain first order
δS vanish. We denote

(1− η)k∆̃ = SΛ(I − ηS)kS − (1− η)k
(
Λ+ δSΛ+ΛδS − kη

1− η
ΛδS

)
,

which denotes all the higher order terms (the degree of δS ≥ 2.)

Since we have the tail bound for δS in Theorem 4.6.1 Vershynin (2018) (In this lemma ∥ · ∥ is
operator norm if without specification):

Pr
(
∥δS∥ > max

(
δ, δ2

))
≤ 2 exp

{
−s2

}
, where δ = C

(√
d

n
+

s√
n

)
(18)

We can estimate the expectation using this property. First, given s =
√
d and ∥δS∥ ≤ max

(
δ, δ2

)
=

C
√

d
n (since n = Θ(d log5 d)), we can upper bound the operator norm of ∆̃:

∥∆̃∥op ≤

∥∥∥∥∥∥Λ
(k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥δSΛ
− kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥δSΛ
I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

δS

∥∥∥∥∥∥
op
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+

∥∥∥∥∥∥Λ
− kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

δS

∥∥∥∥∥∥
op

Now upper bound all matrices with their operator norm and combine all terms with the same degree
of δS. We have

∥∆̃∥op ≤
k+2∑
j=2

∥Λ∥

((
k

j

)(
η

1− η

)j

+ 2

(
k

j − 1

)(
η

1− η

)j−1

+

(
k

j − 2

)(
η

1− η

)j−2
)
∥δS∥j

≤
k+2∑
j=2

∥Λ∥
(
(9k)j + 2(9k)j−1 + (9k)j−2

)
∥δS∥j ( η

1−η ≤ 9,
(
k
j

)
≤ kj .)

≤ 4

k+2∑
j=2

∥Λ∥ · (9k)j
(
C

√
d

n

)j

(∥δS∥ ≤ C
√

d
n .)

≤ 4∥Λ∥ · 81C
2k2d

n
· 1

1− ( 9kd
1/2

n1/2 )
≤ C ′ k

2d

n
≤ O

(
1

log3 d

)
. (*1)

Given this upper bound, we can now upper bound the operator norm of the error term ∆ := E[∆̃].
Suppose u := argmaxu:∥u∥=1

∥∆u∥
∥u∥ , then the operator norm becomes:

∥∆∥ =
∣∣∣u⊤E[∆̃]u

∣∣∣
= E

[∣∣∣u⊤∆̃u
∣∣∣(1{∥∆̃∥ ≤ C ′ k

2d

n

}
+ 1

{
∥∆̃∥ > C ′ k

2d

n

})]
≤ C ′ k

2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

When ∥∆̃∥ ≥ s where s ≥ C′k2d
n , we can first upper bound the ∥∆̃∥ with ∥δS∥ using the second

row of eq. (*1): there exists some constant C1 > 0 s.t.

∥∆̃∥ ≤ 4

k+2∑
j=2

∥Λ∥ · (9k∥δS∥)j ≤ max
(
(C1k∥δS∥)2, (C1k∥δS∥)k+2

)
.

Therefore, when ∥∆̃∥ ≥ s, ∥δS∥ ≥ min{ s1/2

C1k
, s1/(k+2)

C1k
}. To apply the tail bound, we need to make

sure we pick some s′ such that max
(
δ, δ2

)
≤ min{ s1/2

C1k
, s1/(k+2)

C1k
} to upper bound the integral of

probability, where δ = C(
√

d
n + s′√

n
). Now since s > C′k2d

n , min{ s1/2

C1k
, s1/(k+2)

C1k
} ≥ Cα

√
d
n

for some constant Cα. Therefore, we just need max{ s′√
n
, s′2

n } ≤ min{ s1/2

C1k
, s1/(k+2)

C1k
}, i.e. s′ ≤

min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
.

Applying the tail bound (18) with s′ = min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
where C2, C3, C4, C5 are some constant, we have the error term for the tail expectation,∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds ≤

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min

{
s1/2

C1k
,
s1/(k+2)

C1k

}]
ds

≤ 2

∫ ∞

C′k2d
n

exp
{
−s′2

}
ds.

Now we estimate the upper bound of error with

s′2 = min

{
C2

2 · s
2/(k+2)

k2
n,C2

3 · s
1/(k+2)

k
n,C2

4 · sn
k2

, C2
5 ·

√
sn

k

}
.
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For the first term, let x =
C2

2n
k2 s2/(k+2):

2

∫ ∞

C′k2d
n

exp

{
−C2

2 · s
2/(k+2)

k2
n

}
ds

= (k + 2)

∫ ∞

C2
2n

k2

(
C′k2d

n

) 2
k+2

(
k2

C2
2n

)(k+2)/2

exp{−x}xk/2dx

≤ (k + 2) ·
(

k2

C2
2n

)(k+2)/2

·

(
C2

2n

k2

(
C ′k2d

n

) 2
k+2

)k/2

exp

{
−C2

2n

k2

(
C ′k2d

n

) 2
k+2

}
≤ k2d

n
.

The second term, let x = C2
3 · s1/(k+2)

k n:

2

∫ ∞

C′k2d
n

exp

{
−C2

3 · s
1/(k+2)

k
n

}
ds

= 2(k + 2)

∫ ∞

C3n
k

(
C′k2d

n

) 1
k+2

(
k

C2
3n

)k+2

exp{−x}xk+1dx

≤ 2(k + 2) ·
(

k

C2
3n

)k+2

·

(
C2

3n

k

(
C ′k2d

n

) 1
k+2

)k+1

exp

{
−C2

3n

k

(
C ′k2d

n

) 1
k+2

}
≤ k2d

n
.

For the third term, let x =
C2

4sn
k2 :

2

∫ ∞

C′k2d
n

exp

{
−C2

4sn

k2

}
ds =

∫ ∞

C′k2d
n ·C

2
4n

k2

k2

C2
4n

exp{−x}dx

≤ k2

C2
4n

exp

{
−C ′k2d

n
· C

2
4n

k2

}
≤ k2d

n
.

The fourth term, let x = C2
5 · s1/2

k n:

2

∫ ∞

C′k2d
n

exp

{
−C2

5 · s
1/2

k
n

}
ds

=
4k2

n2C4
5

∫ ∞

C2
5

n
k

(
C′k2d

n

)1/2
exp{−x}xdx

≤ 4k2

n2C4
5

· C2
5

n

k

(
C ′k2d

n

)1/2

exp

{
−C2

5

n

k

(
C ′k2d

n

)1/2
}

≤ k2d

n
.

Therefore, we plug this error back to the upper bound of ∥∆∥:

∥∆∥ ≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds = O

(
k2d

n

)
≤ O

(
1

log3 d

)
.

Finally, since by Lemma D.8, we know the error is in the form ∆ = α1Λ + α2 tr(Λ)I for all Λ.
Therefore α1 = O

(
k2d
n

)
, α2 = O

(
k2

n

)
.

Lemma D.2. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛ(I − ηS)kΓS

]
= (1− η)k(ΛΓ+∆),

where ∥∆∥op = O(k
2d
n ) ≤ O

(
1

log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O( k

2

nd ).
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Proof. Denote δS := S − I . Then we expand the term SΛ(I − ηS)kΓS:

SΛ(I − ηS)kΓS

= (I + δS)Λ((1− η)I − ηδS)kΓ(I + δS)

= (1− η)k(I + δS)Λ

(
I − η

(1− η)
δS

)k

Γ(I + δS)

= (1− η)k(I + δS)Λ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

Γ

+(1− η)k(I + δS)Λ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

ΓδS

Take expectation to both sides. Note that E[δS] = 0, so all the first order term vanish. We denote

(1− η)k∆̃ = SΛ(I − ηS)kΓS − (1− η)k
(
Λ+ δS ·ΛΓ+ΛΓ · δS − kη

1− η
Λ · δSΓ

)
,

which denotes all the higher order terms (the degree of δS ≥ 2.)

We can estimate the expectation using similar technique as in Lemma D.1. First, given s =
√
d and

∥δS∥ ≤ max
(
δ, δ2

)
= C

√
d
n (since n = Θ(d log5 d)), we upper bound the operator norm of ∆̃:

∥∆̃∥op ≤

∥∥∥∥∥∥Λ
(k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

Γ

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥δSΛ
− kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

Γ

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥δSΛ
I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

ΓδS

∥∥∥∥∥∥
op

+

∥∥∥∥∥∥Λ
− kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

ΓδS

∥∥∥∥∥∥
op

Now upper bound all matrices with their operator norm and combine all terms with the same degree
of δS. We have

∥∆̃∥op ≤
k+2∑
j=2

∥Γ∥∥Λ∥

((
k

j

)(
η

1− η

)j

+ 2

(
k

j − 1

)(
η

1− η

)j−1

+

(
k

j − 2

)(
η

1− η

)j−2
)
∥δS∥j

≤
k+2∑
j=2

∥Γ∥∥Λ∥
(
(9k)j + 2(9k)j−1 + (9k)j−2

)
∥δS∥j ( η

1−η ≤ 9,
(
k
j

)
≤ kj .)

≤ 4

k+2∑
j=2

∥Γ∥∥Λ∥ · (9k)j
(
C

√
d

n

)j

(∥δS∥ ≤ C
√

d
n .)

≤ 4∥Λ∥∥Γ∥ · 81C
2k2d

n
· 1

1− ( 9kd
1/2

n1/2 )
≤ C ′ k

2d

n
≤ O

(
1

log3 d

)

Now upper bound the operator norm of the error term ∆ := E[∆̃]. Suppose u :=

argmaxu:∥u∥=1
∥∆u∥
∥u∥ , then the operator norm becomes:

∥∆∥ =
∣∣∣u⊤E[∆̃]u

∣∣∣
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= E
[∣∣∣u⊤∆̃u

∣∣∣(1{∥∆̃∥ ≤ C ′ k
2d

n

}
+ 1

{
∥∆̃∥ > C ′ k

2d

n

})]
≤ C ′ k

2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

When ∥∆̃∥ ≥ s where s ≥ C′k2d
n , there exists some constant C1 > 0 s.t.

∥∆̃∥ ≤ max
(
(C1k∥δS∥)2, (C1k∥δS∥)k+2

)
.

Therefore, when ∥∆̃∥ ≥ s, ∥δS∥ ≥ min{ s1/2

C1k
, s1/(k+2)

C1k
}. Like Lemma D.1, applying the tail bound

(18) with s′ ≤ min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
where C2, C3, C4, C5 are

some constant, we have the error term for the tail expectation∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds ≤

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds

≤ 2

∫ ∞

C′k2d
n

exp
{
−s′2

}
ds.

Use the exact same argument, 2
∫∞

C′k2d
n

exp
{
−s′2

}
ds ≤ k2d

n . Thus, the upper bound of ∥∆∥ is:

∥∆∥ ≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds = O

(
k2d

n

)
≤ O

(
1

log3 d

)
.

Finally by Lemma D.8, we know the error is in the form ∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+

α4 tr(Λ) tr(Γ)I for all Λ,Γ. Therefore α1 = O
(

k2d
n

)
, α2, α3 = O

(
k2

n

)
, α4 = O( k

2

nd ).

Lemma D.3. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1), ∥Γ∥op ≤ Θ(1). Then the expectation

E
[
SΛSΓ(I − ηS)k

]
= (1− η)k(ΛΓ+∆),

where ∥∆∥op ≤ O
(

1
log3 d

)
. Moreover, the error is in the form

∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+ α4 tr(Λ) tr(Γ)I + α5 tr(ΛΓ)I

where α1 = O
(

k2d
n

)
, α2, α3, α5 = O

(
k2

n

)
, α4 = O( k

2

nd ).

Proof. Denote δS := S − I . Then we expand the term SΛSΓ(I − ηS)k:

SΛSΓ(I − ηS)k

= (1− η)k(I + δS)Λ(I + δS)Γ

(
I − η

(1− η)
δS

)k

= (1− η)k(I + δS)ΛΓ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj


+(1− η)k(I + δS)ΛδSΓ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj


Take expectation to both sides. Note that E[δS] = 0, so all the first order term vanish. We denote

(1− η)k∆̃ = SΛ(I − ηS)kΓS − (1− η)k
(
Λ+ δS ·ΛΓ+ΛδSΓ− kη

1− η
ΛΓ · δS

)
,

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

which denotes all the higher order terms (the degree of δS ≥ 2.)

We can estimate the expectation using similar technique as in Lemma D.1. Given s =
√
d and

∥δS∥ ≤ max
(
δ, δ2

)
= C

√
d
n (since n = Θ(d log5 d)), we upper bound the operator norm of ∆̃.

We directly expand the formula and upper bound all matrices with their operator norm and combine
all terms with the same degree of δS. We have

∥∆̃∥op ≤
k+2∑
j=2

∥Γ∥∥Λ∥

((
k

j

)(
η

1− η

)j

+ 2

(
k

j − 1

)(
η

1− η

)j−1

+

(
k

j − 2

)(
η

1− η

)j−2
)
∥δS∥j

≤
k+2∑
j=2

∥Γ∥∥Λ∥
(
(9k)j + 2(9k)j−1 + (9k)j−2

)
∥δS∥j ( η

1−η ≤ 9,
(
k
j

)
≤ kj .)

≤ 4

k+2∑
j=2

∥Γ∥∥Λ∥ · (9k)j
(
C

√
d

n

)j

≤ C ′ k
2d

n
≤ O

(
1

log3 d

)
(∥δS∥ ≤ C

√
d
n .)

Now upper bound the operator norm of ∆ := E[∆̃]. Suppose u := argmaxu:∥u∥=1
∥∆u∥
∥u∥ , then

∥∆∥ = E
[∣∣∣u⊤∆̃u

∣∣∣(1{∥∆̃∥ ≤ C ′ k
2d

n

}
+ 1

{
∥∆̃∥ > C ′ k

2d

n

})]
≤ C ′ k

2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

When ∥∆̃∥ ≥ s where s ≥ C′k2d
n , there exists some constant C1 > 0 s.t.

∥∆̃∥ ≤ max
(
(C1k∥δS∥)2, (C1k∥δS∥)k+2

)
.

Therefore, when ∥∆̃∥ ≥ s, ∥δS∥ ≥ min{ s1/2

C1k
, s1/(k+2)

C1k
}. Like Lemma D.1, applying the tail bound

(18) with s′ ≤ min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
where C2, C3, C4, C5 are

some constant, we have∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds ≤

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds ≤ 2

∫ ∞

C′k2d
n

exp
{
−s′2

}
ds.

Use the exact same argument, 2
∫∞

C′k2d
n

exp
{
−s′2

}
ds ≤ k2d

n . Thus, the upper bound of ∥∆∥ is:

∥∆∥ ≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds = O

(
k2d

n

)
≤ O

(
1

log3 d

)
.

Finally by Lemma D.8, we know the error is in the form ∆ = α1ΛΓ+ α2 tr(Λ)Γ+ α3 tr(Γ)Λ+

α4 tr(Λ) tr(Γ)I for all Λ,Γ. Therefore α1 = O
(

k2d
n

)
, α2, α3 = O

(
k2

n

)
, α4 = O( k

2

nd ).

Lemma D.4. Suppose S = 1
n

∑n
i=1 xix

⊤
i , n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈

(0.1, 0.9), ∥Λ∥op ≤ Θ(1). Then there exists δ = O
(

k2d
n

)
≤ O

(
1

log3 d

)
, the expectation is

E
[
Λ(I − ηS)k

]
= (1− η)k(1 + δ)Λ,

Proof. Denote δS := S − I . Then we expand the term Λ(I − ηS)k:

Λ(I − ηS)k = (1− η)kΛ

(
I − η

(1− η)
δS

)k

= (1− η)kΛ

I − kη

(1− η)
δS +

(
k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj


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Take expectation to both sides. Note that E[δS] = 0, so all the first order term vanish. We denote

(1− η)k∆̃ = Λ(I − ηS)k − (1− η)k
(
Λ− kη

1− η
Λ · δS

)
,

which denotes all the higher order terms (the degree of δS ≥ 2.)

We can estimate the expectation using similar technique as in Lemma D.1. First, given s =
√
d and

∥δS∥ ≤ max
(
δ, δ2

)
= C

√
d
n (since n = Θ(d log5 d)), we upper bound the operator norm of ∆̃:

∥∆̃∥op ≤

∥∥∥∥∥∥Λ
(k

2

)(
η

1− η

)2

δS2 +

k∑
j=3

(
k

j

)(
−η

1− η

)j

δSj

∥∥∥∥∥∥
op

Now upper bound all matrices by operator norm and combine all terms with the same degree of δS:

∥∆̃∥op ≤
k∑

j=2

∥Λ∥

((
k

j

)(
η

1− η

)j
)
∥δS∥j ≤

k+2∑
j=2

∥Λ∥(9k)j∥δS∥j ( η
1−η ≤ 9,

(
k
j

)
≤ kj .)

≤ ∥Λ∥ · 81C
2k2d

n
· 1

1− ( 9kd
1/2

n1/2 )
≤ C ′ k

2d

n
≤ O

(
1

log3 d

)
(∥δS∥ ≤ C

√
d
n .)

Now upper bound the operator norm of the error. Suppose u := argmaxu:∥u∥=1
∥∆u∥
∥u∥ , we have

∥∆∥ =
∣∣∣u⊤E[∆̃]u

∣∣∣ = E
[∣∣∣u⊤∆̃u

∣∣∣(1{∥∆̃∥ ≤ C ′ k
2d

n

}
+ 1

{
∥∆̃∥ > C ′ k

2d

n

})]
≤ C ′ k

2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

When ∥∆̃∥ ≥ s where s ≥ C′k2d
n , there exists some constant C1 > 0 s.t.

∥∆̃∥ ≤ max
(
(C1k∥δS∥)2, (C1k∥δS∥)k+2

)
.

Therefore, when ∥∆̃∥ ≥ s, ∥δS∥ ≥ min{ s1/2

C1k
, s1/(k+2)

C1k
}. Like Lemma D.1, applying the tail bound

(18) with s′ ≤ min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
where C2, C3, C4, C5 are

some constant, we have the error term for the tail expectation∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds ≤

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds ≤ 2

∫ ∞

C′k2d
n

exp
{
−s′2

}
ds.

Use the exact same argument, 2
∫∞

C′k2d
n

exp
{
−s′2

}
ds ≤ k2d

n . Thus, the upper bound of ∥∆∥ is:

∥∆∥ ≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds = O

(
k2d

n

)
≤ O

(
1

log3 d

)
.

Finally by Lemma D.8, we know the error is in the form ∆ = α1Λ for all Λ. So α1 = O
(

k2d
n

)
.

D.2 CONCENTRATION LEMMAS FOR OUT-OF-DISTRIBUTION DATA

For non-isotropic covariance Gaussian data input, we also have the concentration around the covari-
ance Σ when n = Θ(d logc d) for c > 0. We still denote S = 1

nXX⊤. The following lemmas
are involved in the calculation for the evaluation process, for in-distribution and out-of-distribution
input examples X .
Lemma D.5. Suppose S = 1

n

∑n
i=1 xix

⊤
i where xi ∼ N (0d,Σ), δ

η ≤ λmin(Σ) ≤ λmax(Σ) ≤
2−δ
η for some constant δ > 0.1, n = Θ(d log5 d), k = O(log d), η = Θ(1) ∈ (0.1, 0.9). Then the

expectation

tr
(
E(I − ηS)k

)
≤ 2d(1− δ)k.
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Proof. Denote δS := S −Σ. Then we expand the term Λ(I − ηS)k:

(I − ηS)k = (1− δ)k
(
I − ηΣ

1− δ
− η

1− δ
δS

)k

= (1− δ)k

(I − ηΣ

1− δ

)k

− kη

(1− δ)

(
I − ηΣ

1− δ

)k−1

δS +

k∑
j=2

(
k

j

)(
I − ηΣ

1− δ

)k−j( −η

1− δ

)j

δSj


Take expectation to both sides. Note that E[δS] = 0, so all the first order term vanish. We denote

(1− δ)k∆̃ = (I − ηS)k − (1− δ)k

((
I − ηΣ

1− δ

)k

− kη

(1− δ)

(
I − ηΣ

1− δ

)k−1

δS

)
,

which denotes all the higher order terms (the degree of δS ≥ 2). Note
∥∥∥ I−ηΣ

1−δ

∥∥∥
op

≤ 1.

We can estimate the expectation using similar technique as in Lemma D.1. First, given s =
√
d and

∥δS∥ ≤ max
(
δ, δ2

)
= C

√
d
n (since n = Θ(d log5 d)), we upper bound the operator norm of ∆̃:

∥∆̃∥op ≤

∥∥∥∥∥∥
k∑

j=2

(
k

j

)(
I − ηΣ

1− δ

)k−j( −η

1− δ

)j

δSj

∥∥∥∥∥∥
op

Now upper bound all matrices by operator norm and combine all terms with the same degree of δS:

∥∆̃∥op ≤
k∑

j=2

((
k

j

)(
η

1− δ

)j
)
∥δS∥j ≤

k+2∑
j=2

(9k)j∥δS∥j ( η
1−η ≤ 9,

(
k
j

)
≤ kj .)

≤ 81C2k2d

n
· 1

1− ( 9kd
1/2

n1/2 )
≤ C ′ k

2d

n
≤ O

(
1

log3 d

)
(∥δS∥ ≤ C

√
d
n .)

Now upper bound the operator norm of the error. Suppose u := argmaxu:∥u∥=1
∥∆u∥
∥u∥ , we have

∥∆∥ =
∣∣∣u⊤E[∆̃]u

∣∣∣ = E
[∣∣∣u⊤∆̃u

∣∣∣(1{∥∆̃∥ ≤ C ′ k
2d

n

}
+ 1

{
∥∆̃∥ > C ′ k

2d

n

})]
≤ C ′ k

2d

n
+

∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds

When ∥∆̃∥ ≥ s where s ≥ C′k2d
n , there exists some constant C1 > 0 s.t.

∥∆̃∥ ≤ max
(
(C1k∥δS∥)2, (C1k∥δS∥)k+2

)
.

Therefore, when ∥∆̃∥ ≥ s, ∥δS∥ ≥ min{ s1/2

C1k
, s1/(k+2)

C1k
}. Like Lemma D.1, applying the tail bound

(18) with s′ ≤ min
{
C2

s1/(k+2)√n
k , C3

s1/(2k+4)√n√
k

, C4

√
sn
k , C5

s1/4
√
n√

k

}
where C2, C3, C4, C5 are

some constant, we have the error term for the tail expectation∫ ∞

C′k2d
n

Pr
[
∥∆̃∥ ≥ s

]
ds ≤

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds ≤ 2

∫ ∞

C′k2d
n

exp
{
−s′2

}
ds.

Use the exact same argument, 2
∫∞

C′k2d
n

exp
{
−s′2

}
ds ≤ k2d

n . Thus, the upper bound of ∥∆∥ is:

∥∆∥ ≤ C ′ k
2d

n
+

∫ ∞

C′k2d
n

Pr

[
∥δS∥ ≥ min{s

1/2

C1k
,
s1/(k+2)

C1k
}
]
ds = O

(
k2d

n

)
≤ O

(
1

log3 d

)
<

1

2
.

Finally, the absolute value of the trace should be upper bounded by

tr

(
(1− δ)k

((
I − ηΣ

1− δ

)k

+∆

))
≤ 2d(1− δ)k.
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The next lemma deals with the prediction error.
Lemma D.6. Suppose S = 1

n

∑n
i=1 xix

⊤
i where xi ∼ N (0d,Σ), and the covariance matrix

satisfies δ
η ≤ λmin(Σ) ≤ λmax(Σ) ≤ 2−δ

η for some constant δ > 0. Assume n = Θ(d log5 d), k =

O(log d), η = Θ(1) ∈ (0.1, 0.9). Denote that A := Ṽ + ηI,B := W̃ − I , ∥A∥op, ∥B∥op ≤
Θ(d−c). Then for any i < k,

E
∥∥∥(I + Ṽ SW̃ )i(wk−i + Ṽ S(W̃wk−i −w∗)−wk−i+1))

∥∥∥2 ≤ O

(
(1− δ)2i

d−2c+1

)
Proof. We will adopt a similar method as we did throughout Lemma D.1 to Lemma D.4.

First, we expand the left hand side loss:

E
∥∥∥(I + Ṽ SW̃ )i(wk−i + Ṽ S(W̃wk−i −w∗)−wk−i+1))

∥∥∥2
= E

∥∥∥(I + Ṽ SW̃ )i
(
(Ṽ SW̃ + ηS)(I − (I − ηS)k−i)w∗ − (Ṽ + ηI)Sw∗

)∥∥∥2
= E

∥∥∥(I + Ṽ SW̃ )i
(
(Ṽ SW̃ + ηS)(I − (I − ηS)k−i)− (Ṽ + ηI)S

)∥∥∥2
F

≤ d · E
∥∥∥(I + Ṽ SW̃ )i

(
(Ṽ SW̃ + ηS)(I − (I − ηS)k−i)− (Ṽ + ηI)S

)∥∥∥2
op

The second equation is due to wi = (I− (I− ηS)i), and we arranged to stress the error terms. The
third line is because E[w∗w∗⊤] = I. The last line is ∥ · ∥F ≤

√
d∥·∥op.

Now we expand each term of the expression within the operator norm into A,B, I, and S:

I + Ṽ SW̃ = I − ηS +ASB − ηSB +AS.

Ṽ SW̃ + ηS = ASB − ηSB +AS, Ṽ + ηI = A.

Therefore the formula becomes (consider each term separately)(
I + Ṽ SW̃

)i
= (I − ηS +ASB − ηSB +AS)

i(
(Ṽ SW̃ + ηS)(I − (I − ηS)k−i)− (Ṽ + ηI)S

)
= (−ηSB +ASB)(I − (I − ηS)k−i)−AS(I − ηS)k−i

We still denote δS = S −Σ. We first consider when the concentration holds, a.k.a ∥δS∥ ≤ C
√

d
n .

Since ∥A∥, ∥B∥ ≤ O(d−c), their error are dominated by C
√

d
n . We reduce this case to the previous

Lemma D.5. Therefore we can upper bound the expression by∥∥∥I + Ṽ SW̃
∥∥∥i = ∥I − ηS +ASB − ηSB +AS∥i ≤ 3

2
(1− δ)i∥∥(−ηSB +ASB)(I − (I − ηS)k−i)−AS(I − ηS)k−i
∥∥ ≤ O(d−c).

That means this part of the expectation is upper bounded by d · 94 (1− δ)2i ·O(d−2c) = O
(

(1−δ)2i

d−2c+1

)
Then we estimate the tail expectation. We first upper bound the above formula by ∥δS∥:∥∥∥I + Ṽ SW̃

∥∥∥i = ∥I − ηS +ASB − ηSB +AS∥i ≤ O(k(1− δ)i min{∥δS∥, 1}i)∥∥(−ηSB +ASB)(I − (I − ηS)k−i)−AS(I − ηS)k−i
∥∥ ≤ O(kd−c min{1, ∥δS∥k−i}).

Use the same argument as in Lemma D.1 to calculate the integral of tail bound, the tail expectation
can also be upper bounded by O

(
(1−δ)2i

d−2c+1

)
. Combine those two part and we finish the proof.
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D.3 THE FORM OF EXPECTATION

Lemma D.7. Suppose S = 1
n

∑n
i=1 xix

⊤
i , then the expectation is in the following form for any k:

E
[
Susu

⊤
s S

kutu
⊤
t S

k′
]
= α1usu

⊤
s + α2utu

⊤
t + α3I for any s ̸= t.

E
[
Susu

⊤
s S

kusu
⊤
s S

k′
]
= α4usu

⊤
s + α5I.

Proof. We notice that by changing the basis to {us}ds=1,

E
[
Susu

⊤
s S

kutu
⊤
t S

k′
]
= UE

[(
U⊤SU

)
ese

⊤
s

(
U⊤SU

)k
ete

⊤
t

(
U⊤SU

)k′]
U⊤. (19)

Define x̂i = U⊤xi. Since gaussian is isotropic, we have E[x̂i] = U⊤E[xi] = 0. After we change
the basis, the covariance matrix of x̂i should also be the same:

Cov(x̂i) = U⊤Cov(xi)U = I.

Therefore x̂i has the same distribution as xi and we have

UE
[(
U⊤SU

)
ese

⊤
s

(
U⊤SU

)k
ete

⊤
t

(
U⊤SU

)k′]
U⊤ = UE

[
Sese

⊤
s S

kete
⊤
t S

k′
]
U⊤.

Subsequently, we only need to consider the expectation of Sese⊤s S
kete

⊤
t S

k′
. Decompose xi into

the sum of basis vectors and we get xi =
∑d

j=1 xijej .

Plug in the decomposition into the expectation and we have

nk+2E
[
Sese

⊤
s S

kete
⊤
t S

k′
]

= E

[ n∑
i0=1

∑
j0,j1∈[d]

xi0j0xi0j1ej0e
⊤
j1

ese
⊤
s

k′∏
l=1

 n∑
il=1

∑
j2l,j2l+1∈[d]

xilj2lxilj2l+1
ej2le

⊤
j2l+1


ete

⊤
t

k∏
l=1

 n∑
il=1

∑
j2l,j2l+1∈[d]

xilj2lxilj2l+1
ej2le

⊤
j2l+1

]

= E

[ ∑
i0,··· ,ik+k′∈[n]

∑
j0,··· ,j2(k+k′)+1∈[d]

xi0j0xi0j1 · · ·xik+k′ j2(k+k′)
xik+k′ j2(k+k′)+1

ej0e
⊤
j1ese

⊤
s ej2e

⊤
j3 · · · ej2ke

⊤
j2k+1

ete
⊤
t ej2k+2

e⊤j2k+3
· · · ej2(k+k′)

e⊤j2(k+k′)+1

]
=

∑
i0,··· ,ik+k′∈[n]

∑
j0,··· ,j2(k+k′)+1∈[d]

E
[
xi0j0xi0j1 · · ·xik+k′ j2(k+k′)

xik+k′ j2(k+k′)+1

]
ej0e

⊤
j1ese

⊤
s ej2e

⊤
j3 · · · ej2ke

⊤
j2k+1

ete
⊤
t ej2k+2

e⊤j2k+3
· · · ej2(k+k′)

e⊤j2(k+k′)+1
.

Note that e⊤a eb ̸= 0 only when a = b, so e⊤a ese
⊤
s eb ̸= 0 only when a = b = s. Therefore, we

only need to consider the case where j2q−1 = j2q for any q ∈ [1, k + k′]. By symmetry, we know

E
[
Sese

⊤
s S

kete
⊤
t S

k′
]

is a diagonal matrix, so we have j0 = j2(k+k′)+1. We denote

Ej0 = ej0e
⊤
j1ese

⊤
s ej1e

⊤
j2 · · · ejke

⊤
jk+1

ete
⊤
t ejk+1

e⊤jk+2
· · · ejk+k′e

⊤
j0

to be one of the standard basis in Rd×d space. It is a non-zero matrix when j1 = s and jk+1 = t.
By the analysis above, we have

nk+2E
[
Sese

⊤
s S

kete
⊤
t S

k′
]
=

∑
i0,··· ,ik+k′∈[n]

∑
j0,··· ,jk+k′∈[d]

E
[
xi0j0xi0j1 · · ·xik+k′ jk+k′xik+k′ j0

]
Ej0 .
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Let P(2k + 2) be the set of all distinct ways of partitioning {i0j0, i0j1 · · · , ik+k′jk+k′ , ik+k′j0}
into k + 1 unordered pairs p = ((p1, p2), · · · , (p2k+1, p2k+2)). From Isserlis’ theorem, we have

E
[
xi0j0xi0j1 · · ·xik+k′ jk+k′xik+k′ j0

]
=

∑
p∈P(2k+2)

k+k′∏
i=0

E
[
xp2ixp2i+1

]
.

Plug it in the expectation and we have

nk+2E
[
Sese

⊤
s S

kete
⊤
t S

k′
]
=

∑
i0,··· ,ik+k′∈[n]

∑
j0,··· ,jk+k′∈[d]

∑
p∈P(2k+2)

k+k′∏
i=0

E
[
xp2i

xp2i+1

]
Ej0

=
∑

p∈P(2k+2)

∑
i0,··· ,ik∈[n]

∑
j0,··· ,jk∈[d]

k+k′∏
i=0

E
[
xp2i

xp2i+1

]
Ej0 .

To make sure the term in the summation is non-zero, p2q−1 = p2q should hold for any 1 ≤ q ≤ k+1.
Now consider the graph Gp and G′

p with vertices {0, 1, · · · , k + k′}. If iu1
jv1 is paired with iu2

jv2 ,
then we put an edge between u1 and u2 into Gp and put an edge between v1 and v2 into G′

p, which
means iu1

= iu2
and jv1 = jv2 . Therefore, for a cycle C = (u1, u2, · · · , ur) in Gp or G′

p, we have
iu1

= iu2
= · · · = iur

or ju1
= ju2

= · · · = jur
. Note that we have n or d choices for the value

of the circle. Here we use C(·) to denote the set of circles in the graph and use |C(·)| to denote the
number of circles in the graph. Let c∗ be the cycle in G′

p which includes the vertex j0.

Case 1: s ̸= t. For the partition p where j1 ∈ c∗ and jk+1 ∈ c ̸= c∗, there is only one choice

for c and c∗ to take. So the term in the summation should be n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s . Simi-

larly, for the partition p where jk+1 ∈ c∗ and j1 ∈ c ̸= c∗, the term in the summation should be

n|C(Gp)|d|C(G
′
p)|−2ete

⊤
t . For the partition p where j1 ∈ c′ ̸= c∗ and jk+1 ∈ c′′ ̸= c∗, there is only

one choice for c′ and c′′ to take. Therefore, the expectation should be

nk+2E
[
Sese

⊤
s S

kete
⊤
t S

k′
]

=
∑

P:j1∈c∗,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s +

∑
P:jk+1∈c∗,j1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ete

⊤
t

+
∑

P:j1,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ej0e

⊤
j0

=
∑

P:j1∈c∗,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s +

∑
P:jk+1∈c∗,j1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ete

⊤
t

+
∑

P:j1,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−3I.

Recall Equation (19), we prove that

E
[
Susu

⊤
s S

kutu
⊤
t S

k′
]
= α1usu

⊤
s + α2utu

⊤
t + α3I.

Case 2: s = t. For the partition p where j1, jk+1 ∈ c∗, there is only one choice for c∗ to take. So

the term in the summation should be n|C(Gp)|d|C(G
′
p)|−1ese

⊤
s . For the partition p where j1 ∈ c∗ and

jk+1 ∈ c ̸= c∗, there is only one choice for c and c∗ to take. So the term in the summation should be

n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s . Similarly, for the partition p where jk+1 ∈ c∗ and j1 ∈ c ̸= c∗, the term

in the summation should be n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s . For the partition p where j1 ∈ c′ ̸= c∗ and

jk+1 ∈ c′′ ̸= c∗, there is only one choice for c′ and c′′ to take. Therefore, the expectation should be

nk+2E
[
Sese

⊤
s S

kese
⊤
s S

k′
]

=
∑

P:j1,jk+1∈c∗

n|C(Gp)|d|C(G
′
p)|−1ese

⊤
s +

∑
P:j1∈c∗,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s
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+
∑

P:jk+1∈c∗,j1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ese

⊤
s +

∑
P:j1,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2ej0e

⊤
j0

=

[ ∑
P:j1,jk+1∈c∗

n|C(Gp)|d|C(G
′
p)|−1 +

∑
P:j1∈c∗,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2

+
∑

P:jk+1∈c∗,j1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−2

]
ese

⊤
s +

∑
P:j1,jk+1 /∈c∗

n|C(Gp)|d|C(G
′
p)|−3I.

Recall Equation (19), we prove that

E
[
Susu

⊤
s S

kusu
⊤
s S

k′
]
= α4usu

⊤
s + α5I.

Hence, the proof is complete.

Lemma D.8. Suppose S = 1
n

∑n
i=1 xix

⊤
i , then the expectation is in the following form for any k:

E
[
SΛSkΓSk′

]
= β1ΛΓ+ β2 tr(Λ)Γ+ β3 tr(Γ)Λ+ β4 tr(Λ) tr(Γ)I + β5 tr(ΛΓ)I.

where Λ =
∑d

j=1 λ
Λ
j uju

⊤
j ,Γ =

∑d
j=1 λ

Γ
j uju

⊤
j .

Proof. By lemma D.7, we have:

E
[
SΛSkΓSk′

]
=

d∑
j=1

d∑
i ̸=j

λΛ
i λ

Γ
j

(
α1uiu

⊤
i + α2uju

⊤
j + α3I

)
+

d∑
i=1

λΛ
i λ

Γ
i

(
α4uiu

⊤
i + α5I

)
The first term here can be expand into the following form:

d∑
j=1

d∑
i ̸=j

λΛ
i λ

Γ
j

(
α1uiu

⊤
i + α2uju

⊤
j + α3I

)
= α1 tr(Γ)Λ+ α2 tr(Λ)Γ+ α3 tr(Λ) tr(Γ)I − (α1 + α2)ΛΓ− α3 tr(ΛΓ)I

Meanwhile, the second term is directly α4ΛΓ + α5 tr(ΛΓ)I. We pick β2 = α1, β3 = α2, β4 =
α3, β1 = α4 − α1 − α2, β5 = α5 − α3, and we complete the proof.

E EXPERIMENTAL DETAILS

For all our experiments, we use pytorch Paszke et al. (2019) and models are trained on an NVIDIA
RTX A6000s. Each experiment takes about 1 hour.

Setup In all our experiments, we choose d = 10, n = 20 and η = 0.4. The architecture is

fLSA(Z;V ,W )[:,−1] = Z[:,−1] + V Z ·
Z⊤WZ[:,−1]

n

and data is drawn from the distribution in Equation (1). The batch size B is 1000 and the learning
rate α is 0.001. The total time is τ = 750 iterations. In the first experiment, k is chosen as 20 while
k = 10, 20, 30, 40 in the second experiment. The baseline (evaluation loss of transformers without
CoT) is given by Corollary 3.1 where η∗ = n

n+d+1 :

LEval(V ,W ) ≥ 1

2

(
d− 2η∗d+

η∗2

n
(n+ d+ 1)d

)
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In-distribution Generalization We empirically verify the evaluation loss gap between transform-
ers with and without CoT shown by Theorem 3.1 and Theorem 3.2. Our experiments in Figure 2
demonstrate that the evaluation loss of transformers with CoT converges to near zero even when
k = 10. See Section 5 for details.

Out-of-distribution Generalization In addition, we empirically verify the OOD generalization
result shown by Theorem 4.2. We sample 10 different covariance matrices from the distribution
which complies to

δ

η
≤ λmin(Σ) ≤ λmax(Σ) ≤ 2− δ

η

where η = 0.4 and η = 0.4. 10 experiments are taken to show the generality of our results for each
set of experiment. Our experiment in Figure 3 exhibits that the OOD loss of transformers with CoT
converges to near zero when k = 10, 20, 30, 40 as the training loss/in-distribution loss converges to
zero. The final loss also drops when the number of reasoning steps increases.

0 50 100 150 200 250 300 350
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Figure 3: OOD Generalization: We plot the OOD loss LEval
Σ when n = 20, d = 10. Each set of

experiments sampled 10 different Σ. The mean results are presented as line charts, with variance
represented by shaded areas. As shown, OOD loss will converge to near zero.

Given all experiments above, we conclude that transformers with CoT can converge to our construc-
tion (Theorem 4.1), surpass those without CoT (Corollary 3.1, Theorem 3.2) and generalize well to
unseen data (Theorem 4.2).
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