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Abstract

Stochastic gradient descent with backpropagation is the workhorse of artificial
neural networks. It has long been recognized that backpropagation fails to be a
biologically plausible algorithm. Fundamentally, it is a non-local procedure—
updating one neuron’s synaptic weights requires knowledge of synaptic weights
or receptive fields of downstream neurons. This limits the use of artificial neu-
ral networks as a tool for understanding the biological principles of information
processing in the brain. Lillicrap et al. (2016) propose a more biologically plausi-
ble “feedback alignment” algorithm that uses random and fixed backpropagation
weights, and show promising simulations. In this paper we study the mathemati-
cal properties of the feedback alignment procedure by analyzing convergence and
alignment for two-layer networks under squared error loss. In the overparameter-
ized setting, we prove that the error converges to zero exponentially fast, and also
that regularization is necessary in order for the parameters to become aligned with
the random backpropagation weights. Simulations are given that are consistent
with this analysis and suggest further generalizations. These results contribute
to our understanding of how biologically plausible algorithms might carry out
weight learning in a manner different from Hebbian learning, with performance
that is comparable with the full non-local backpropagation algorithm.

1 Introduction

The roots of artificial neural networks draw inspiration from networks of biological neurons (Rumel-
hart et al., 1986a; Elman et al., 1996; Medler, 1998). Grounded in simple abstractions of membrane
potentials and firing, neural networks are increasingly being employed as a computational tool for
better understanding the biological principles of information processing in the brain; examples in-
clude Yildirim et al. (2019) and Yamins & DiCarlo (2016). Even when full biological fidelity is not
required, it can be useful to better align the computational abstraction with neuroscience principles.

Stochastic gradient descent has been a workhorse of artificial neural networks. Conveniently, cal-
culation of gradients can be carried out using the backpropagation algorithm, where reverse mode
automatic differentiation provides a powerful way of computing the derivatives for general archi-
tectures (Rumelhart et al., 1986b). Yet it has long been recognized that backpropagation fails to
be a biologically plausible algorithm. Fundamentally, it is a non-local procedure—updating the
weight between a presynaptic and postsynaptic neuron requires knowledge of the weights between
the postsynaptic neuron and other neurons. No known biological mechanism exists for propagating
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information in this manner. This limits the use of artificial neural networks as a tool for understand-
ing learning in the brain.

A wide range of approaches have been explored as a potential basis for learning and synaptic plas-
ticity. Hebbian learning is the most fundamental procedure for adjusting weights, where repeated
stimulation by a presynaptic neuron that results in the subsequent firing of the postsynapic neuron
will result in an increased strength in the connection between the two cells (Hebb, 1961; Paulsen &
Sejnowski, 2000). Several variants of Hebbian learning, some making connections to principal com-
ponents analysis, have been proposed (Oja, 1982; Sejnowski & Tesauro, 1989; Sejnowski, 1999).
In this paper, our focus is on a formulation of Lillicrap et al. (2016) based on random backprop-
agation weights that are fixed during the learning process, called the “feedback alignment” (FA)
algorithm. Lillicrap et al. (2016) show that the model can still learn from data, and observe the
interesting phenomenon that the error signals propagated with the forward weights align with those
propagated with fixed random backward weights during training. Direct feedback alignment (DFA)
(Nøkland, 2016) extends FA by adding skip connections to send the error signals directly to each
hidden layer, allowing parallelization of weight updates. Empirical studies given by Launay et al.
(2020) show that DFA can be successfully applied to train a number of modern deep learning mod-
els, including transformers. Based on DFA, Frenkel et al. (2021) proposes direct the random target
projection (DRTP) algorithm that trains the network weights with a random projection of the target
vector instead of the error, and shows alignment for linear networks. Related proposals, including
methods based on the use of differences of neuron activities, have been made in a series of recent
papers (Akrout et al., 2019; Bellec et al., 2019; Lillicrap et al., 2020). A comparison of some of
these methods is made by Bartunov et al. (2018).

The use of random feedback weights, which are not directly tied to the forward weights, removes
issues of non-locality. However, it is not clear under what conditions optimization of error and learn-
ing can be successful. While Lillicrap et al. (2016) give suggestive simulations and some analysis
for the linear case, it has been an open problem to explain the behavior of this algorithm for training
the weights of a neural network. In this paper, we study the mathematical properties of the feedback
alignment procedure by analyzing convergence and alignment for two-layer networks under squared
error loss. In the overparameterized setting, we prove that the error converges to zero exponentially
fast. We also show, unexpectedly, that the parameters become aligned with the random backpropa-
gation weights only when regularization is used. Simulations are given that are consistent with this
analysis and suggest further generalizations. The following section gives further background and an
overview of our results.

2 Problem Statement and Overview of Results

In this section we provide a formulation of the backpropagation algorithm to establish notation and
the context for our analysis. We then formulate the feedback aligment algorithm that uses random
backpropation weights. A high-level overview of our results is then presented, together with some
of the intuition and proof techniques behind these results; we also contrast with what was known
previously.

We mainly consider two-layer neural networks in the regression setting, specified by a family of
functions f : Rd → R with input dimension d, sample size n, and p neurons in the hidden layer. For
an input x ∈ Rd, the network outputs

f(x) = 1
√
p

p∑
r=1

βrψ(wᵀ
rx) = 1

√
p
β
ᵀ
ψ(Wx), (2.1)

where W = (w1, ..., wp)ᵀ ∈ Rp×d and β = (β1, ..., βp)ᵀ ∈ Rp represent the feed-forward weights
in the first and second layers, and ψ denotes an element-wise activation function. The scaling by

√
p

is simply for convenience in the analysis.

Given n input-response pairs {(xi, yi)}ni=1, the training objective is to minimize the squared error

L(W,β) = 1
2

n∑
i=1

(
yi − f(xi)

)2
. (2.2)
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Algorithm 1 Feedback Alignment

Input: Dataset {(xi, yi)}ni=1, step size η
1: initialize W , β and b as Gaussian
2: while not converged do
3: βr ← βr − η√

p

∑n
i=1 eiψ(wᵀ

rxi)
4: wr ← wr− η√

p

∑n
i=1 eibrψ

′(wᵀ
rxi)xi

5: for r ∈ [p]
6: end while

Figure 1: Standard backpropagation updates the first layer weights for a hidden node r with the
second layer feedforward weight βr. We study the procedure where the error is backpropagated
instead using a fixed, random weight br.

Standard gradient descent attempts to minimize (2.2) by updating the feed-forward weights follow-
ing gradient directions according to

βr(t+ 1) = βr(t)− η
∂L

∂βr
(W (t), β(t))

wr(t+ 1) = wr(t)− η
∂L

∂wr
(W (t), β(t)),

for each r ∈ [p], where η > 0 denotes the step size. We initialize β(0) and wr(0) as standard
Gaussian vectors. We introduce the notation f(t), e(t) ∈ Rn, with fi(t) = f(xi) denoting the
network output on input xi when the weights are W (t) and β(t), and ei(t) = yi − fi(t) denoting
the corresponding prediction error or residual. With this notation, the gradients are expressed as

∂L

∂βr
= 1
√
p

n∑
i=1

eiψ(wᵀ
rxi),

∂L

∂wr
= 1
√
p

n∑
i=1

eiβrψ
′(wᵀ

rxi)xi.

Here it is seen that the the gradient of the first-layer weights ∂L
∂wr

involves not only the local input
xi and the change in the response of the r-th neuron, but also the backpropagated error signal eiβr.
The appearance of βr is, of course, due to the chain rule; but in effect it requires that the forward
weights between layers are identical to the backward weights under error propagation. There is no
evidence of biological mechanisms that would enable such “synaptic symmetry.”

In the feedback alignment procedure of (Lillicrap et al., 2016), when updating the weightswr, the er-
ror signal is weighted, and propagated backward, not by the second layer feedforward weights β, but
rather by a random set of weights b ∈ Rp that are fixed during the course of training. Equivalently,
the gradients for the first layer are replaced by the terms

∂̃L

∂wr
= 1
√
p

n∑
i=1

eibrψ
′(wᵀ

rxi)xi. (2.3)

Note, however, that this update rule does not correspond to the gradient with respect to a modified
loss function. The use of a random weight br when updating the first layer weights wr does not vio-
late locality, and could conceivably be implemented by biological mechanisms; we refer to Lillicrap
et al. (2016); Bartunov et al. (2018); Lillicrap et al. (2020) for further discussion. A schematic of
the relationship between the two algorithms is shown in Figure 1.

We can now summarize the main results and contributions of this paper. Our first result shows that
the error converges to zero when using random backpropagation weights.

• Under Gaussian initialization of the parameters, if the model is sufficiently over-
parameterized with p � n, then the error converges to zero linearly. Moreover, the pa-
rameters satisfy ‖wr(t)− wr(0)‖ = Õ

(
n√
p

)
and |βr(t)− βr(0)| = Õ

(
n√
p

)
.

The precise assumptions and statement of this result are given in Theorem 3.2. The proof shows in
the over-parameterized regime that the weights only change by a small amount. While related to
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results for standard gradient descent, new methods are required because the “effective kernel” is not
positive semi-definite.

We next turn to the issue of alignment of the second layer parameters β with the random back-
propagation weights b. Such alignment was first observed in the original simulations of Lilli-
crap et al. (2016). With h ∈ Rp denoting the hidden layer of the two-layer network, the term
δBP(h) := ∂L

∂h = 1√
pβ
∑n
i=1 ei represents how the error signals ei are sent backward to update

the feed-forward weights. With the use of random backpropagation weights, the error is instead
propagated backward as δFA(h) = 1√

pb
∑n
i=1 ei.

Lillicrap et al. (2016) notice a decreasing angle between δBP(h) and δFA(h) during training, which
is a sufficient condition to ensure that the algorithm converges. In the case of k-way classification,
the last layer has k nodes, β and b are p × k matrices, and each error term ei is a k-vector. In the
regression setting, k = 1 so the angle between δBP(h) and δFA(h) is the same as the angle between
β and b. Intuitively, the possibility for alignment is seen in the fact that while the updates for W use
the error weighted by the random weights b, the updates for β indirectly involveW , allowing for the
possibility that dependence on b will be introduced into β.

Our first result shows that, in fact, alignment will not occur in the over-parameterized setting. (So,
while the error may still converge, “feedback alignment” may be a bit of a misnomer for the algo-
rithm.)

• The cosine of the angle between the p-dimensional vectors δFA and δBP satisfies
cos∠(δFA, δBP(t)) = cos∠(b, β(t)) = O

(
n√
p

)
.

However, we show that regularizing the parameters will cause δBP to align with δFA and therefore
the parameters β to align with b. Since β(0) and b are high dimensional Gaussian vectors, they
are nearly orthogonal with high probability. The effect of regularization can be seen as shrinking
the component of β(0) in the parameters over time. Our next result establishes this precisely in the
linear case.

• Supposing that ψ(u) = u, then introducing a ridge penalty λ(t)‖β‖2 where λ(t) = λ for
t ≤ T and λ(t) = 0 for t > T on β causes the parameters to align, with cos∠(b, β(t)) ≥
c > 0 for sufficiently large t.

The technical conditions are given in Theorem 4.6. Our simulations are consistent with this result,
and also show alignment with a constant regularization λ(t) ≡ λ, for both linear and nonlinear
activation functions. Finally, we complement this result by showing that convergence is preserved
with regularization, for general activation functions. This is presented in Theorem 4.2.

3 Convergence with Random Backpropagation Weights

Due to the replacement of backward weights with the random backpropagation weights, there is no
guarantee a priori that the algorithm will reduce the squared error loss L. Lillicrap et al. (2020) study
the convergence on two-layer linear networks in a continuous time setting. Through the analysis of
a system of differential equations on the network parameters, convergence to the true linear target
function is shown, in the population setting of arbitrarily large training data. Among recent studies
of over-parametrized networks under backpropagation, the neural tangent kernel (NTK) is heavily
utilized to describe the evolution of the network during training (Jacot et al., 2018; Chen & Xu,
2020). For any neural network f(x, θ) with parameter θ, the NTK is defined as

Kf (x, y) =
〈∂f(x, θ)

∂θ
,
∂f(y, θ)
∂θ

〉
.

Given a dataset {(xi, yi)}ni=1, we can also consider its corresponding Gram matrix K =
(Kf (xi, xj))n×n. Jacot et al. (2018) show that in the infinite width limit, Kf converges to a con-
stant at initialization and does not drift away from initialization throughout training. In the over-
parameterized setting, if the Gram matrix K is positive definite, then K will remain close to its ini-
tialization during training, resulting in linear convergence of the squared error loss (Du et al., 2018,
2019; Gao & Lafferty, 2020). For the two-layer network f(x, θ) defined in (2.1) with θ = (β,W ),
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the kernel Kf can be written in two parts, Gf and Hf , which correspond to β and W respectively:

Kf (x, y) = Gf (x, y) +Hf (x, y) :=
〈∂f(x, θ)

∂β
,
∂f(y, θ)
∂β

〉
+

p∑
r=1

〈∂f(x, θ)
∂wr

,
∂f(y, θ)
∂wr

〉
.

Under the feedback alignment scheme with random backward weights b, Gf remains the same as

for standard backpropagation, while one of the gradient terms ∂f
∂wr

in Hf changes to ∂̃f(x,θ)
∂wr

=
1√
pbrψ

′(wᵀ
rx)x, with Hf replaced by Hf =

∑p
r=1

〈
∂̃f(x,θ)
∂wr

, ∂f(y,θ)
∂wr

〉
. As a result, Hf is no longer

positive semi-definite and close to 0 at initialization if the network is over-parameterized. How-
ever, if G = (Gf (xi, xj))n×n is positive definite and H = (Hf (xi, xj))n×n remains small during
training, we are still able to show that the loss L will converge to zero exponentially fast.

Assumption 3.1. Define the matrix G ∈ Rn×n with entries Gi,j = Ew∼N(0,Ip)ψ(wᵀxi)ψ(wᵀxj).
Then we assume that the minimum eigenvalue satisfies λmin(G) ≥ γ, where γ is a positive constant.

Theorem 3.2. Let W (0), β(0) and b have i.i.d. standard Gaussian entries. Assume (1) Assump-
tion 3.1 holds, (2) ψ is smooth, ψ, ψ′ and ψ′′ are bounded and (3) |yi| and ‖xi‖ are bounded for
all i ∈ [n]. Then there exists positive constants c1, c2, C1 and C2, such that for any δ ∈ (0, 1), if

p ≥ max
(
C1

n2

δγ2 , C2
n4 log p
γ4

)
, then with probability at least 1− δ we have that

‖e(t+ 1)‖ ≤ (1− ηγ

4 )‖e(t)‖ (3.1)

and

‖wr(t)− wr(0)‖ ≤ c1
n
√

log p
γ
√
p

, |βr(t)− βr(0)| ≤ c2
n

γ
√
p

(3.2)

for all r ∈ [p] and t > 0.

We note that the matrix G in Assumption 3.1 is the expectation of G with respect to the random
initialization, and is thus close to G due to concentration. To justify the assumption, we provide
the following proposition, which states that Assumption 3.1 holds when the inputs xi are drawn
independently from a Gaussian distribution. The proofs of Theorem 3.2 and Proposition 3.3 are
deferred to ??.

Proposition 3.3. Suppose x1, ..., xn
i.i.d.∼ N(0, Id/d) and the activation function ψ is sigmoid or

tanh. If d = Ω(n), then Assumption 3.1 holds with high probability.

4 Alignment with Random Backpropagation Weights

The most prominent characteristic of the feedback alignment algorithm is the phenomenon that the
error signals propagated with the forward weights align with those propagated with fixed random
backward weights during training. Specifically, if we denote h ∈ Rp to be the hidden layer of the
network, then we write δBP(h) := ∂L

∂h to represent the error signals with respect to the hidden layer
that are backpropagated with the feed-forward weights and δFA(h) as the error signals computed
with fixed random backward weights. In particular, the error signals δBP(h) and δFA(h) for the
two-layer network (2.1) are given by

δBP(h) = 1
√
p
β

n∑
i=1

ei and δFA(h) = 1
√
p
b

n∑
i=1

ei.

Lillicrap et al. (2016) notice a decreasing angle between δBP(h) and δFA(h) during training. We
formalize this concept of alignment by the following definition.

Definition 4.1. We say a two-layer network aligns with the random weights b during training if there
exists a constant c > 0 and time Tc such that cos∠(δFA, δBP(t)) = cos∠(b, β(t)) = 〈b,β(t)〉

‖b‖‖β(t)‖ ≥ c

for all t > Tc.
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4.1 Regularized feedback alignment

Unfortunately, alignment between β(t) and b is not guaranteed for over-parameterized networks
and the loss (2.2). In particular, we control the cosine value of the angle by inequalities (3.2) from
Theorem 3.2, i.e.,∣∣∣ cos∠(b, β(t))

∣∣∣ ≤ |〈 b
‖b‖ , β(0)〉|+ ‖β(t)− β(0)‖
‖β(0)‖ − ‖β(t)− β(0)‖ = O

(
n
√
p

)
,

which indicates that β(t) and b become orthogonal as the network becomes wider. Intuitively, this
can be understood as resulting from the parameters staying near their initializations during training
when p is large, where β(0) and b are almost orthogonal to each other. This motivates us to regularize
the network parameters. We consider in this work the squared error loss with an `2 regularization
term on β:

L(t,W, β) = 1
2

n∑
i=1

(
f(xi)− yi

)2 + 1
2λ(t)‖β‖2, (4.1)

where {λ(t)}∞t=0 is a sequence of regularization rates, which defines a series of loss functions for
different training steps t. Thus, the update for wr remains the same and the update for β changes to

βr(t+ 1) = (1− λ(t))βr(t)−
η
√
p

n∑
i=1

ei(t)ψ(wr(t)ᵀxi), for r ∈ [p].

Comparing to Algorithm 1, an extra contraction factor 1−λ(t) is added in the update of β(t), which
doesn’t affect the locality of the algorithm but helps the alignment by shrinking the component of
β(0) in β(t).

Following Theorem 3.2, we provide an error bound for regularized feedback alignment in Theo-
rem 4.2. Since regularization terms λ(t) make additional contributions to the error e(t) as well as
to the kernel matrix G, an upper bound on

∑
t≥0 λ(t) is needed to ensure positivity of the minimal

eigenvalue of G during training, in order for the error e(t) to be controlled. In particular, if there is
no regularization, i.e., λ(t) = 0 for all t ≥ 0, then we recover exponential convergence for the error
e(t) as in Theorem 3.2. The proof of Theorem 4.2 is also deferred to ??.

Theorem 4.2. Assume all the conditions from Theorem 3.2. Assume
∑∞
t=0 λ(t) ≤ S̃λ =

c̃S
γ2√p

ηn2
√

log p
for some constant c̃S . Then there exist positive constants C1 and C2, such that for

any δ ∈ (0, 1), if p ≥ max
(
C1

n2

δγ2 , C2
n4 log p
γ4

)
, then with probability at least 1− δ, we have

‖e(t+ 1)‖ ≤
(

1− ηγ

4 − ηλ(t)
)
‖e(t)‖+ λ(t)‖y‖ (4.2)

for all t ≥ 0.

4.2 Alignment analysis for linear networks

In this section, we focus on the theoretical analysis of alignment for linear networks, which is equiv-
alent to setting the activation function ψ to the identity map. The loss function can be written as

L(t,W, β) = 1
2
∥∥ 1
√
p
XW

ᵀ
β − y

∥∥2 + λ(t)
2 ‖β‖

2,

where X = (x1, . . . , xn)ᵀ; this is a form of over-parameterized ridge regression. Before present-
ing our results on alignment, we first provide a linear version of Theorem 4.2 that adopts slightly
different conditions.
Theorem 4.3. Assume (1) ‖y‖ = Θ(

√
n), λmin(XXᵀ) > γ and λmax(XXᵀ) < M for some

constants M > γ > 0, and (2)
∑∞
t=0 λ(t) ≤ Sλ = cS

γ
√
γp

η
√
nM

for some constant cS . Then for any

δ ∈ (0, 1), if p = Ω(Md log(d/δ)
γ ), the following inequality holds for all t ≥ 0 with probability at

least 1− δ:
‖e(t+ 1)‖ ≤

(
1− ηγ

2 − ηλ(t)
)
‖e(t)‖+ λ(t)‖y‖. (4.3)
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We remark that in the linear case, the kernel matrix G reduces to the form XW ᵀWXᵀ and its
expectationG at initialization also reduces toXXᵀ. Thus, Assumption 3.1 holds ifXXᵀ is positive
definite, which is equivalent to the xi’s being linearly independent. The result of Theorem 4.2 can
not be directly applied to the linear case since we assume that ψ is bounded, which is true for sigmoid
or tanh but not for the identity map. This results in a slightly different order for Sλ and an improved
order for p.

Our results on alignment also rely on an isometric condition onX , which requires the minimum and
the maximum eigenvalues of XXᵀ to be sufficiently close (cf. Definition 4.4). On the other hand,
this condition is relatively mild and can be satisfied when X has random Gaussian entries with a
gentle dimensional constraint, as demonstrated by Proposition 4.5. Finally, we show in Theorem 4.6
that under a simple regularization strategy where a constant regularization is adopted until a cutoff
time T , regularized feedback alignment achieves alignment if X satisfies the isometric condition.
Definition 4.4 ((γ, ε)-Isometry). Given positive constants γ and ε, we say X is (γ, ε)-isometric if
λmin(XXᵀ) ≥ γ and λmax(XXᵀ) ≤ (1 + ε)γ.

Proposition 4.5. Assume X ∈ Rn×d has independent entries drawn from N(0, 1/d). For any
ε ∈ (0, 1/2) and δ ∈ (0, 1), if d = Ω( 1

ε log n
δ + n

ε log 1
ε ), then X is (1 − ε, 4ε)-isometric with

probability 1− δ.
Theorem 4.6. Assume all conditions from Theorem 4.3 hold and X is (γ, ε)-isometric with a small
constant ε. Let the regularization weights satisfy

λ(t) =
{
λ, t ≤ T,
0, t > T,

with λ = Lγ and T = bSλ/λc for some large constant L. Then for any δ ∈ (0, 1), if p =
Ω(d log(d/δ)), with probability at least 1 − δ, regularized feedback alignment achieves alignment.
Specifically, there exist a positive constant c = cδ and time Tc, such that cos∠(b, β(t)) ≥ c for all
t > Tc.

We defer the proofs of Proposition 4.5, Theorem 4.3 and Theorem 4.6 to ??. In fact, we prove
Theorem 4.6 by directly computing β(t) and the cosine of the angle. Although b doesn’t show up in
the update of β, it can still propagate to β through W . Since the size of the component of b in β(t)
depends on the inner-product 〈e(t), e(t′)〉 for all previous steps t′ ≤ t, the norm bound (4.3) from
Theorem 4.3 is insufficient; thus, a more careful analysis of e(t) is required.

We should point out that the constant c in the lower bound is independent of the sample size n, input
dimension d, network width p and learning rate η. We also remark that the cutoff schedule of λ(t) is
just chosen for simplicity. For other schedules such as inverse-squared decay or exponential decay,
one could also obtain the same alignment result as long as the summation of λ(t) is less than Sλ.

Large sample scenario. In Theorems 4.3 and 4.6, we consider the case where the sample size n is
less than the input dimension d, so that positive definiteness of XXᵀ can be established. However,
both results still hold for n > d. In fact, the squared error loss L can be written as

n∑
i=1

(
f(xi)− y

)2 =
∥∥ 1
√
p
XW

ᵀ
β − y

∥∥2 =
∥∥ 1
√
p
XW

ᵀ
β − ȳ

∥∥2 + ‖ȳ − y‖2,

where ȳ denotes the projection of y onto the column space of X . Without loss of generality, we
assume y = ȳ. As a result, y and the columns of X are all in the same d-dimensional subspace of
Rn andXXᵀ is positive definite on this subspace, as long asX has full column rank. Consequently,
we can either work on this subspace of Rn or project all the vectors onto Rd, and the isometric
condition is revised to only consider the d nonzero eigenvalues of XXᵀ.

5 Simulations

Our experiments apply the feedback alignment algorithm to two-layer networks, using a range of
networks with different widths and activations. The numerical results suggest that regularization is
essential in achieving alignment, in both regression and classification tasks, for linear and nonlinear
models. We implement the feedback alignment procedure in PyTorch as an extension of the autograd
module for backpropagation, and the training is done on V100 GPUs from internal clusters.
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Feedback alignment on synthetic data. We first train two-layer networks on synthetic data,
where each network f shares the architecture shown in (2.1) and the data are generated by an-
other network f0 that has the same architecture but with random Gaussian weights. We present the
experiments for both linear and nonlinear networks, where the activation functions are chosen to
be Rectified Linear Unit (ReLU) and hyperbolic tangent (Tanh) for nonlinear case. We set training
sample sample size to n = 50 and the input dimension d = 150, but vary the hidden layer width
p = 100 × 2k with k ∈ [7]. During training, we take step size η = 10−4 for linear networks and
η = 10−3, 10−2 for ReLU and Tanh networks, respectively.
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(a) Alignment on linear network.
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(b) Alignment on ReLU network.
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(c) Alignment on Tanh network.
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(f) Loss on Tanh network.

Figure 2: Comparisons of alignment and convergence for the feedback alignment algorithm with
different levels of `2 regularization. In Figs. 2a to 2c, the data points represent the mean value
computed across simulations, and the error bars mark the standard deviation out of 50 independent
runs. In Figs. 2d to 2f, we show the trajectories of the training loss for networks with p = 3200,
with the shaded areas indicating the standard deviation over 50 independent runs. The x-axes on the
first row and the y-axes on the second row are presented using a logarithmic scale.

In Figs. 2a to 2c, we show how alignment depends on regularization and the degree of overparam-
eterization as measured by the hidden layer width p. Alignment is measured by the cosine of the
angle between the forward weights β and backward weights b. We train the networks until the loss
function converges; this procedure is repeated 50 times for each p and λ. For all three types of net-
works, as p increases, alignment vanishes if there is no regularization, and grows with the level of
regularization λ for the same network. We complement the alignment plots with the corresponding
loss curves, where the training loss converges slower with larger regularization. These numerical
results are consistent with our theoretical statements. Due to the regularization, the loss converges
to a positive number that is of the same order as λ.

We remark that using dropout as a form of regularization can also help the alignment between
forward and backward weights (Wager et al., 2013). However, our numerical results suggest that
dropout regularization fails to keep the alignment away from zero for networks with large hidden
layer width. No theoretical result is available that explains the underlying mechanism.

Feedback alignment on the MNIST dataset. The MNIST dataset is available under the Creative
Commons Attribution-Share Alike 3.0 license (Deng, 2012). It consists of 60,000 training images
and 10,000 test images of dimension 28 by 28. We reshape them into vectors of length d = 784 and
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Figure 3: Comparisons on alignment and accuracy for feedback alignment algorithm with λ =
0, 0.1, 0.3. The left figure shows alignment defined by cos∠(δBP(h), δFA(h)), and right figure
shows the accuracy on the test set. The dashed lines and corresponding shaded areas represent the
means and the standard deviations over 10 runs with random initialization.

normalize them by their mean and standard deviation. The network structure is 784-1000-10 with
ReLU activation at the hidden layer and with softmax normalization at output layer. During training,
we choose the batch size to be 600 and the step size η = 10−2. The training procedure uses 300
epochs in total. We repeat the training 10 times for each choice of λ.

Fig. 3 shows the performance of feedback alignment with regularization λ = 0, 0.1, 0.3. Since the
output of the network is not one-dimensional but 10-dimensional, the alignment is now measured
by cos∠(δBP(h), δFA(h)), where δBP(h) is the error signal propagated to the hidden neurons h
through forward weights β, and δFA(h) the error weighted by the random backward weights b. We
observe that both alignment and convergence are improved by adding regularization to the training,
and increasing the regularization level λ can further facilitate alignment, with a small gain in test
accuracy.

6 Discussion

In this paper we have analyzed the feedback alignment algorithm of Lillicrap et al. (2016), showing
convergence of the algorithm. The convergence is subtle, as the algorithm does not directly minimize
the target loss function; rather, the error is transferred to the hidden neurons through random weights
that do not change during the course of learning. The supplement to Lillicrap et al. (2016) presents
interesting insights on the dynamics of the algorithm, such as how the feedback weights act as
pseudoinverse of the forward weights. After giving an analysis of convergence in the linear case,
the authors state that “a general proof must be radically different from those used to demonstrate
convergence for backprop” (Supplementary note 16), observing that the algorithm does not minimize
any loss function. Our proof of convergence in the general nonlinear case leverages techniques from
the use of neural tangent kernel analysis in the over-parameterized setting, but requires more care
because the kernel is not positive semi-definite at initialization. In particular, as a sum of two terms
G and H , the matrix G is concentrated around its postive-definite mean, while H is not generally
postive-semidefinite. However, we show that the entries of both matrices remain close to their
initial values, due to over-parameterization, and analyze the error term in a Taylor expansion, which
establishes convergence.

In analyzing alignment, we unexpectedly found that regularization is essential; without it, the align-
ment may not persist as the network becomes wider, as our simulations clearly show. Our analysis
in the linear case proceeds by essentially showing that

β(t) = (1− ηλ)t−1β(0) + η
√
p
W (0)Xᵀ

α1(t− 1) +
(
η
√
p

)
bα2(t− 1)
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and controlling α1 while showing that α2 remains sufficiently large; the regularization kills off the
first term. Although we see no obstacle, in principle, to carrying out this proof strategy in the
nonlinear case, the calculations are more complex. While convergence requires analysis of the norm
of the error, alignment requires understanding the direction of the error. But our simulations strongly
suggest this result will go through.

In terms of future research, a technical direction is to extend our results to multilayer networks. It
would be interesting to explore local methods to update the backward weights b, rather than fixing
them, perhaps using a Hebbian update rule in combination with the forward weights W . More
generally, it is important to study other biologically plausible learning rules that can be implemented
in deep learning frameworks at scale and without loss of performance. The results presented here
offer support for this as a fruitful line of research. Biologically plausible computational learning
contributes to, and shares societal impact with, a large body of fundamental research that aims to
understand the basis for cognition in animals, including humans.
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