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Abstract

Drug target interaction (DTI) prediction is central to computational drug discovery.
While deep learning has advanced DTI modeling, existing approaches primarily
rely on SMILES–protein pairs, failing to exploit rich multimodal information
available for molecules and proteins. We introduce GRAM-DTI, a pre-training
framework that integrates multimodal molecular and protein inputs into unified
representations. GRAM-DTI extends volume-based contrastive learning to four
modalities, capturing higher-order semantic alignment beyond pairwise approaches.
We propose adaptive modality dropout to dynamically regulate each modality’s
contribution during pre-training, and incorporate IC50 activity measurements, when
available, as weak supervision to ground representations in biologically meaningful
interaction strengths. Experiments on four datasets demonstrate that GRAM-DTI
consistently outperforms state-of-the-art baselines, highlighting the benefits of
multimodal alignment and adaptive modality utilization for robust DTI prediction.

1 Introduction
Drug target interaction (DTI) prediction is central to computational drug discovery, enabling rational
drug design, drug repurposing, and mechanistic insights [31]. While experimental screening remains
reliable, computational methods are increasingly critical for prioritizing candidate drug–protein pairs,
accelerating discovery and reducing costs [22, 13]. DTI prediction has evolved from similarity-based
heuristics to deep learning approaches [26, 22]. Modern neural models learn directly from SMILES
and amino acid sequences [23, 39, 15, 33], but remain largely restricted to SMILES–protein pairs,
overlooking richer multimodal information that could yield more robust predictions.

While multimodal pre-training substantially improves molecular property prediction [18, 16], existing
approaches rely on pairwise contrastive learning that cannot capture higher-order interdependen-
cies [5]. Besides, they assume equal informativeness of all modalities, ignoring that data sources
differ in quality and relevance. Additionally, valuable publicly available IC50 activity measurements
remain underutilized during pre-training despite their biological relevance for DTI tasks.

We propose GRAM-DTI, a multimodal pre-training framework that integrates diverse small molecule
and protein representations while accounting for varying modality informativeness. Our approach
(Fig. 1) extends volume-based contrastive learning [5] to integrate multimodal small molecule and
protein representations for DTI prediction while introducing an adaptive modality dropout scheme
to dynamically regulate modality contributions during pre-training based on gradient-informed
informativeness of different modalities. This prevents dominant but less informative modalities
from overwhelming complementary signals. Additionally, we mine IC50 activity measurements
from public databases when available and use them as weak auxiliary supervision to ground learned
representations in biologically meaningful interaction strengths. Evaluation on four public datasets
demonstrates consistent improvements with GRAM-DTI over state-of-the-art baselines.
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Figure 1: Overview of the GRAM-DTI architecture, including pre-training and downstream setup.

2 Methodology

Building upon recent advances [5, 11] in volume-based modality alignment for effective representation
learning, we extend the foundational concept of volume loss [5], which was originally formulated
for audio-video-text data, to the domain of protein-small molecule interactions. We aim to learn a
unified embedding space that: 1) captures semantic relationships across modalities; 2) remains robust
when modalities vary in informativenes; and 3) improves downstream DTI prediction task.

Formally, assume a pretraining dataset D = {(xs
i , x

t
i, x

h
i , x

p
i , δ

IC50
yi

)}Ni=1, where xs
i , xt

i, x
h
i , and xp

i
denote the SMILES sequence, textual description, hierarchical taxonomic annotation (HTA) [11],
and protein sequence, respectively. The variable δIC50

yi
indicates the IC50 activity class yIC50

i if
a measured IC50 value is available for the protein–molecule pair (xp

i , x
s
i ), and 0 otherwise. As

illustrated in Fig. 1, we employ pretrained encoders Ei (MolFormer[25] for SMILES, MolT5[6]
for text and HTA, and ESM-2[14] for proteins) to obtain initial modality-specific embeddings. To
keep pretraining efficient and scalable, we freeze the backbone encoders and train lightweight
neural projectors Fm

ϕ that map each modality embedding into a shared representation space where
they are semantically aligned. The resulting projected embeddings are denoted fm, where m ∈
{SMILES, text, HTA, protein}.

2.1 Gramian Volume-Based Multimodal Alignment
In contrast to traditional multi-modal representation learning approaches which have been known
to fail in capturing the complex interdependencies among three or more modalities [5, 11], volume
loss uses Gramian volume-based alignment of modailities ensuring semantic coherence across all
modalities simultaneously.
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i , f

p
i ∈ Rd that are learned from the four modalities
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the Gram matrix G ∈ R4×4 where Gkj = ⟨fk

i , f
j
i ⟩, k, j ∈ {s, t, h, p}. The 4-dimensional volume

spanned by these embedded vectors is equal to the square root of the determinat of the Gramian
matrix [5]: V (fs

i , f
t
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h
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p
i ) =

√
det(G). From multimodal alignment perspective, smaller volume

intuitively suggests stronger semantic alignment, as the embeddings occupy a more compact and
cohesive subspace and vice-versa.

Volume-Based Contrastive Loss Given the Gramian volume, contrastive objective is cast as
volume minimization/maximization. As proposed in [5], to construct negative pairs, we chose an
anchor modality a ∈ {s, t, h, p} as one of the four modalities. Therefore, for a batch of B samples,
the contrastive loss on their learned embeddings is defined as follows:
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where, for example, the first modality fs
i is chosen as the anchor ai, negative pairs are con-

structed by permuting the anchor, and τ is the temperature parameter. We also add the
reverse loss (w.r.t. negative pairs construction) to ensure symmetric alignment: L←vol =

− 1
B

∑B
i=1 log

exp(−V (ai,f
t
i ,f

h
i ,fp

i )/τ)∑B′
j=1 exp(−V (ai,ft

j ,f
h
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j ))/τ)
. The combined volume-based loss is Lvol =

1
2 (L

→
vol +

Lvol).

2.2 Gradient-Informed Adaptive Modality Selection
While volume-based contrastive loss treats all modalities equally, different modalities may vary in
quality and relevance, with contributions that change during training. Static fusion strategies risk either
underutilizing weaker modalities or overfitting to dominant ones. We propose a gradient-informed
modality dropout mechanism that dynamically adapts modality usage based on their instantaneous
contribution to the loss function.

Gradient Contribution Analysis Assume Lt̃ denotes mini-batch loss at training step t̃. We
measure the importance of modality m ∈ {s, t, h, p} by the magnitude of the gradient with respect to

its embedding: gm
t̃

=

∥∥∥∥∥ ∂Lt̃

∂fm
t̃

∥∥∥∥∥
2

, where fm
t̃
∈ Rd is the learned embedding of modality m at gradient

step t̃. To avoid noisy decisions, we track the history of gradient contributions over the past K

steps: ḡm
t̃

=
∑K−1

k=0 αkgm
t̃−k∑K−1

k=0 αk
, where α ∈ (0, 1) is an exponential decay factor which yields a smooth,

temporally discounted importance score for each modality.

Adaptive Modality Dropping Strategy We employ a principled adaptive strategy that con-
siders both the magnitude and variance of gradient contributions. Let µt̃ = 1

4

∑
m ḡm

t̃
and

σt̃ =
√

1
4

∑
m(ḡm

t̃
− µt̃)

2 denote the mean and standard deviation of weighted gradients across

modalities at the current gradient step t̃. We will drop a modality from the volume based contrastive
loss calculation with a probability of pdrop, which is a hyperparameter. The criteria to drop a modality
is defined as follows:

m
(t̃)
drop =


argmaxm ḡm

t̃
if dominance detected, e.g., ḡm

t̃
> µt̃ + λσσt̃,

argminm ḡm
t̃

otherwise,
none with probability (1− pdrop).

where λσ = 1.5 is the threshold multiplier. This means that we adaptively drop modalities based on
two criteria: 1) Dominance prevention: if a modality’s contribution is much larger than others, we
drop it to avoid overfitting; 2) Low-contribution pruning: Otherwise, we drop the modality with the
smallest gradient contribution to encourage use of more informative signals. This dynamic selection
balances stability and diversity, ensuring all modalities remain engaged throughout training.

2.3 Weak Supervision Through IC50 Activity Measure
As the IC50 values for wide range of protein-small molecule pairs are availabe on public data
sources (BindingDB [8]), we introduce an additional classification task as an auxiliary objective
during pre-training. However, IC50 labels are not available for all possible protein-small molecule
pairs, this task provides only weak supervisory signal during pre-training when IC50 information is
available. We train a classifier F IC50

ϕ to predict the IC50 class from the learned embeddings of all
four modalities: f fused = [fs; f t; fh; fp] ∈ R4d. Note that IC50 values are continuous, but given the
inherent challenges of IC50 regression, including heterogeneous value distributions, wide dynamic
ranges spanning several orders of magnitude, and noisy measurements, we formulate the problem
as a three-class classification task by employing discretizations on IC50 values (see Appendix B).
However, this discretization comes with class-imbalance described in Appendix B. To address this
issue, we employ a weighted cross-entropy loss: LIC50 = − 1

|S|
∑

i∈S wyi
log p(yi|f fused

i ), where
S denotes the set of samples with valid IC50 annotations, and class weights are computed as:
wc = Ntotal

C·Nc
, where Ntotal being the total number of samples, C the number of classes, and Nc the

number of samples in class c.

Auxiliary Bimodal Contrastive Loss As the downstream task involves protein and molecule
embeddings, to emphasize alignment between these two, we also incorporate traditional pairwise
contrastive losses between SMILES and protein modalities:Lbi =

1
2 (Ls→p + Lp→s) where Ls→p

and Lp→s follow the standard CLIP-style contrastive formulation.
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Table 1: Performance comparison on DTI and MoA prediction benchmarks.
Data Metric Scenario CPL-GNN MPNN-CNN TransformerCPI KGE-NFM DTIAM GRAM-DTI Data AI-DTI DTIAM GRAM-DTI

Ya
m

an
is

hi
_0

8
AUPR

Warm start 0.431 0.816 0.802 0.817 0.901 0.904

A
ct

iv
at

io
n

0.583 0.623 0.642
Drug cold start 0.167 0.408 0.410 0.341 0.439 0.440 0.550 0.611 0.628
Target cold start 0.380 0.602 0.646 0.761 0.844 0.849 0.219 0.391 0.470

AUROC
Warm start 0.821 0.952 0.953 0.948 0.967 0.977 0.888 0.903 0.914
Drug cold start 0.629 0.797 0.767 0.779 0.818 0.828 0.879 0.907 0.913
Target cold start 0.800 0.856 0.870 0.923 0.941 0.955 0.652 0.792 0.834

H
et

io
ne

t AUPR
Warm start 0.441 0.734 - 0.789 0.879 0.864

In
hi

bi
tio

n

0.840 0.845 0.776
Drug cold start 0.219 0.453 - 0.391 0.514 0.535 0.830 0.731 0.721
Target cold start 0.433 0.470 - 0.612 0.799 0.630 0.215 0.397 0.484

AUROC
Warm start 0.810 0.956 - 0.968 0.957 0.982 0.952 0.954 0.950
Drug cold start 0.685 0.831 - 0.803 0.752 0.863 0.948 0.921 0.940
Target cold start 0.810 0.858 - 0.915 0.917 0.921 0.605 0.819 0.823

2.4 Unified Training Objective
The complete training objective integrates all components with appropriate weighting: Ltotal =
λ1Lvol + λ2Lbi + λ3LIC50 where λ1, λ2, λ3 are hyperparameters. Note that Lvol and Lbi are applied
on all the training instances while LIC50 are only applied for pairs of protein and molecule with valid
IC50 annotations. For gradient-based dropping of a modality in volume contrastive loss, we use
L = λ2Lbi + λ3LIC50. See Appendix E for model architecture and parameters.

3 Experiments
For pre-training, we employ the dataset proposed in [11] consisting of 47,269 triplets of SMILES, text
descriptions, and HTA annotations, and extend it with BindingDB[8] protein binding data and IC50
information when available. To prevent data leakage between pretraining and downstream evaluation,
we removed overlapping (SMILES, protein) pairs from the pretraining set. After filtering, the dataset
contained 6,545 unique molecules and 4,418 proteins, forming a total of 50,968 quadruplets with
16,035 containing IC50 measurements.For downstream DTI evaluation, we used four benchmark
datasets from DTIAM [17]: Activation (1,913 interactions, 1,426 drugs, 281 targets), Yamanishi_08
(5,127 DTIs, 791 drugs, 989 targets), Hetionet (49,942 DTIs, 1,384 drugs, 5,763 targets), and
Inhibition (21,055 interactions, 14,049 drugs, 1,088 targets). See Appendix C for details.

To assess generalization, we follow the splits in [17] comprising 1) warm start: no common protein-
molecule pairs in train/test. 2) drug cold start: no molecules shared between sets. 3) target cold
start: no proteins shared. These evaluate performance on unseen pairs, molecules, or proteins. We
follow the DTIAM framework: 10-fold cross-validation for DTI tasks (Yamanishi_08, Hetionet) and
5-fold for MoA tasks (Activation, Inhibition), reporting mean and std across folds. We compared
GRAM-DTI’s performance with state-of-the-art models across all benchmark datasets to demonstrate
its effectiveness. Table 1 compares GRAM-DTI with five baselines: CPL-GNN [30], MPNN-CNN
[7], TransformerCPI [4], and KGE-NFM [35] on the Yamanishi_08 Hetionet dataset and with AI-DTI
[12], DTIAM [17]on Activation and Inhibation dataset, showing significant improvements across
datasets and evaluation scenarios.

GRAM-DTI demonstrates strong performance across benchmark datasets, particularly excelling in
target cold start scenarios. On Yamanishi_08, our method achieves significant improvements in both
warm start and target cold start settings. On the larger Hetionet dataset, GRAM-DTI outperforms most
baselines in multiple scenarios. For MoA prediction, GRAM-DTI consistently outperforms baselines
on the Activation dataset, especially in target cold start scenarios. On the Inhibition dataset, GRAM-
DTI demonstrates excellent target cold start performance. These results suggest that activation
mechanisms rely more on sequence and semantic features captured by our multimodal approach.
The strong performance in target cold start scenarios highlights the robustness of our volume-based
multimodal alignment for discovering interactions with novel protein targets. Additional experimental
analysis and ablation studies are provided in Appendix D.

4 Conclusion
We presented GRAM-DTI, a multimodal pretraining framework that extends volume-based contrastive
learning to four modalities with gradient-informed adaptive modality dropout and IC50 auxiliary
supervision. Evaluation across four benchmark datasets shows GRAM-DTI consistently outperforms
baselines, particularly in cold start scenarios. Ablation studies (Appendix section D) confirm
synergistic contributions of each component. These results highlight the potential of multimodal
pretraining for drug discovery, where integrating diverse data sources leads to more robust prediction
models. Future work could explore additional modalities and extend our adaptive mechanism to other
domains.
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A Related Works

Multimodal Molecular Representation Learning Recent advancements in molecular represen-
tation learning have shifted towards integrating multiple data modalities to enhance predictive
performance. For instance, frameworks like TRIDENT [10] combine SMILES strings, hierarchical
taxonomic annotations, and functional text of small molecules to capture richer molecular semantics.
These approaches leverage contrastive learning to align diverse data sources, even in the absence
of fully paired datasets, thereby improving generalization across various molecular tasks. Beyond
TRIDENT, several molecular foundation models have been introduced, including MolFM [18] and
MolCA [16], which integrate molecular graphs, textual descriptions, and domain-specific annota-
tions into unified representations. Similarly, cross-modal pretraining strategies such as BioT5+ [37]
demonstrate that incorporating protein, molecular, and textual modalities at scale improves trans-
ferability to downstream tasks such as property prediction and binding affinity estimation. These
works highlight the broader trend of leveraging multimodal pretraining to construct general-purpose
molecular representations.

Drug–Target Interaction (DTI) Prediction DTI prediction has traditionally relied on unimodal
representations, such as SMILES strings for drugs and amino acid sequences for proteins. Early deep
learning models such as DeepDTA [21], MT-DTI [27], and TransformerCPI [4] demonstrated the
effectiveness of sequence-based architectures for interaction prediction. Beyond sequence-based
methods, more recent work has explored graph neural networks and SE(3)-equivariant geometric deep
learning models, such as GraphDTA [20] and EquiBind [28], which leverage spatial and structural
information of drugs and proteins to enhance binding affinity prediction. In parallel, knowledge
graph–based methods such as NeoDTI [32] and Hetionet-based repurposing frameworks [9] exploit
biomedical networks to capture higher-order relations among drugs, targets, and diseases. More
recently, multimodal approaches have been proposed to better capture the complexity of drug–target
interactions. For example, MDTips [33] integrates knowledge graphs, gene expression profiles, and
structural information, while MGNDTI [23] employs a multimodal graph neural network to improve
robustness and generalization.

Another emerging direction is pretraining with large-scale unlabeled data to mitigate the scarcity
of labeled DTI pairs. For instance, DTIAM [17] introduces separate pretraining for drug and target
modalities before merging the learned representations for DTI prediction. In contrast, our framework
performs joint multimodal pretraining that integrates multiple drug and protein modalities into a
unified space from the outset. This allows us to capture higher-order semantic relationships beyond
pairwise fusion.

Modality Dropout Modality dropout techniques have been proposed to enhance the robustness of
multimodal models by preventing over-reliance on any single modality. For instance, the Learnable
Irrelevant Modality Dropout (IMD) method [1] selectively drops irrelevant modalities during training,
improving performance in multimodal action recognition tasks. Additionally, approaches like aggres-
sive modality dropout have been shown to mitigate negative co-learning effects and enhance model
accuracy in multimodal settings [19]. Beyond dropout, adaptive fusion mechanisms have also been
investigated. Cross-attention and gating strategies [29, 23] dynamically regulate modality contribu-
tions, while tensor fusion methods [36] capture higher-order interactions across modalities. These
ideas inform the design of adaptive strategies in molecular contexts, where modality informativeness
often varies across data sources and training stages.

B IC50 Values discretizations

Given the inherent challenges of IC50 regression—including heterogeneous value distributions, wide
dynamic ranges spanning several orders of magnitude, and noisy measurements—we formulate the
problem as a three-class classification task. The IC50 values are discretized based on pharmaceutical
relevance thresholds:

IC50 class =


0 if IC50 < 10µM (effective)
1 if 10µM ≤ IC50 ≤ 1000µM (moderate)
2 if IC50 > 1000µM (ineffective)

(2)
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This discretization strategy aligns with established drug discovery practices [24, 3, 2] where com-
pounds with IC50 < 10µM are considered highly active, those between 10−1000µM show moderate
activity, and those > 1000µM are typically considered inactive.

C Dataset

Pretraining Data Our pretraining dataset builds upon the high-quality multimodal molecular
dataset from TRIDENT [11], which provides comprehensive molecular representations through
the integration of SMILES strings, natural language descriptions, and Hierarchical Taxonomic
Annotations (HTA). The original TRIDENT dataset contains 47,269 carefully curated ⟨SMILES,
Text, HTA⟩ triplets sourced from PubChem, where each molecule is annotated across 32 diverse
taxonomic classification systems.

To enable protein-molecule interaction modeling, we extended this dataset by incorporating binding
affinity information from BindingDB, a comprehensive database of measured binding affinities for
protein-molecule interactions. We mapped molecules from the TRIDENT dataset to BindingDB
entries using molecular identifiers, creating 5-tuples of the form ⟨SMILES, Text, HTA, Protein,
IC50⟩. This integration combines the rich semantic and structural information from TRIDENT
with quantitative binding affinity measurements, providing a unified multimodal representation that
captures both molecular properties and protein-molecule interactions. Following standard practices in
molecular property prediction, we implemented careful data filtering to prevent information leakage
between pretraining and downstream evaluation. Specifically, we removed all SMILES-protein
binding pairs that appear in our downstream task datasets to ensure fair evaluation and prevent
overfitting to specific molecular-protein combinations seen during pretraining.

After filtering, 6,545 unique molecules have associated protein binding information. Considering
that each molecule can interact with multiple proteins, this results in a total of 50,968 quadruplets
⟨Protein, SMILES, Text, HTA⟩, covering 4,418 unique proteins. Among these quadruplets, 16,035
entries include quantitative IC50 measurements, providing high-quality binding affinity annotations
for modeling.

Downstream Task Datasets We evaluated our approach on four benchmark datasets (see Table 2)
from the DTIAM framework [17], covering drug-target interaction (DTI) prediction and mechanism
of action (MoA) prediction tasks. 1) Activation dataset obtained from the Therapeutic Target
Database (TTD) [40], containing 1,426 drugs, 281 targets, and 1,913 known activation interactions.
2) Yamanishi_08 originally introduced by [34] and consists of four sub-datasets: G-Protein Coupled
Receptors (GPCR), Ion Channels (IC), Nuclear Receptors (NR), and Enzymes (E). We use the
combined dataset constructed by [35], containing 791 drugs, 989 targets, and 5,127 known DTIs. 3)
Hetionet dataset constructed by [9], which integrated biomedical data from 29 public resources,
comprising 1,384 drugs, 5,763 targets, and 49,942 DTIs. 4) Inhibition dataset also derived from
TTD [40], containing 14,049 drugs, 1,088 targets, and 21,055 known inhibition interactions.

Table 2: Statistics of downstream task datasets for binary classification. Known Interactions represents
the number of positive drug-target binding pairs, while Total Samples includes both positive samples
and 10 times negative samples generated following standard practice.

Dataset Task Type Drugs Targets Known Interactions Total Samples
Yamanishi_08 DTI 791 989 5,127 56,397
Hetionet DTI 1,384 5,763 49,942 549,362
Activation MoA 1,426 281 1,913 21,043
Inhibition MoA 14,049 1,088 21,055 231,605

The MoA refers to how a drug works on its target to produce the desired effects, which involve two
major roles: activation and inhibition mechanisms. Distinguishing the activation and inhibition MoA
between drugs and targets is critical and challenging in the drug discovery and development process,
as well as their clinical applications [38].
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C.1 Experimental Setup

In the DTI and MoA prediction task, the objective is to determine whether a given drug-target pair
interacts, which constitutes a binary classification problem. Note that dataset only includes those
pairs that interacts (positive class). Following standard practice, we generated negative samples using
a 1:10 ratio with positive samples for all datasets. To evaluate the model’s generalization performance,
we employed three different data splitting strategies for train-test division: 1) warm start: The data
is split based on protein-molecule pairs, ensuring that no common pairs appear in both the training
and test sets. 2) drug cold start: This split is performed at the molecule level, guaranteeing that no
drug in the test set is present in the training set. 3) target cold start: Similar to the above, but split
at the protein level, meaning no protein in the test set is seen during training. These three settings
allow us to assess how well the model performs when faced with unseen molecule-protein pairs,
unseen molecules, or unseen proteins, respectively. For evaluation, we followed the cross-validation
protocols established in the original DTIAM framework: 10-fold cross-validation for DTI prediction
tasks (Yamanishi_08 and Hetionet datasets) and 5-fold cross-validation for MoA prediction tasks
(Activation and Inhibition datasets). All results report the mean and standard deviation across folds.

Table 3: Performance of GRAM-DTI under different training objectives across data splits on Activa-
tion dataset.

Experiment Split Type AUROC ↑ AUPRC↑ Sensitivity↑ F1 ↑ Accuracy ↑

Exp 1: Ltotal

warm start 0.914±0.008 0.642±0.022 0.516±0.024 0.600±0.007 0.936±0.002
drug cold start 0.913±0.007 0.628±0.022 0.514±0.035 0.588±0.019 0.935±0.003
target cold start 0.834±0.026 0.470±0.047 0.331±0.058 0.463±0.053 0.922±0.006

Exp 2: λ2Lbi + λ3LIC50

warm start 0.903±0.009 0.625±0.022 0.504±0.026 0.580±0.020 0.934±0.004
drug cold start 0.901±0.011 0.628±0.018 0.457±0.016 0.553±0.011 0.934±0.002
target cold start 0.813±0.020 0.448±0.044 0.269±0.033 0.381±0.035 0.921±0.008

Exp 3: λ1Lvol + λ3LIC50

warm start 0.876±0.008 0.506±0.012 0.320±0.074 0.420±0.061 0.919±0.006
drug cold start 0.884±0.010 0.514±0.027 0.353±0.054 0.448±0.043 0.922±0.001
target cold start 0.805±0.020 0.385±0.032 0.253±0.042 0.335±0.034 0.909±0.013

Exp 4: λ1Lvol + λ2Lbi

warm start 0.903±0.005 0.605±0.014 0.476±0.037 0.556±0.024 0.931±0.005
drug cold start 0.904±0.010 0.605±0.027 0.444±0.047 0.538±0.047 0.932±0.001
target cold start 0.833±0.021 0.450±0.026 0.308±0.035 0.405±0.028 0.918±0.009

Exp 5: w/o Modality Dropout
warm start 0.886±0.007 0.590±0.009 0.464±0.012 0.545±0.010 0.930±0.005
drug cold start 0.884±0.006 0.575±0.012 0.455±0.037 0.538±0.020 0.929±0.001
target cold start 0.815±0.021 0.444±0.018 0.292±0.047 0.394±0.047 0.919±0.009

Table 4: Performance of GRAM-DTI under different training objectives across different data split
strategies on Yamanishi_08 dataset.

Experiment Split Type AUROC↑ AUPRC↑ Sensitivity ↑ F1 ↑ Accuracy↑

Exp 1: Ltotal

warm start 0.977±0.005 0.904±0.016 0.802±0.035 0.844±0.011 0.973±0.003
drug cold start 0.828±0.027 0.440±0.059 0.196±0.065 0.302±0.076 0.919±0.014
target cold start 0.955±0.013 0.849±0.034 0.727±0.048 0.790±0.030 0.965±0.004

Exp 2: λ2Lbi + λ3LIC50

warm start 0.971±0.005 0.906±0.012 0.804±0.021 0.848±0.015 0.974±0.002
drug cold start 0.801±0.046 0.392±0.060 0.153±0.084 0.235±0.117 0.916±0.013
target cold start 0.949±0.017 0.843±0.039 0.721±0.054 0.784±0.040 0.964±0.005

Exp 3: λ1Lvol + λ3LIC50

warm start 0.959±0.006 0.844±0.012 0.694±0.034 0.769±0.016 0.962±0.002
drug cold start 0.793±0.045 0.373±0.062 0.112±0.066 0.182±0.098 0.913±0.014
target cold start 0.941±0.015 0.805±0.028 0.641±0.059 0.731±0.036 0.958±0.004

Exp 4: λ1Lvol + λ2Lbi

warm start 0.961±0.005 0.851±0.016 0.704±0.032 0.781±0.020 0.964±0.003
drug cold start 0.775±0.065 0.378±0.088 0.150±0.071 0.237±0.103 0.916±0.012
target cold start 0.942±0.015 0.814±0.035 0.675±0.046 0.754±0.035 0.960±0.005

Exp 5: w/o Modality Dropout
warm start 0.966±0.007 0.871±0.017 0.750±0.019 0.807±0.017 0.967±0.003
drug cold start 0.798±0.036 0.381±0.072 0.147±0.050 0.237±0.071 0.916±0.013
target cold start 0.949±0.010 0.827±0.028 0.689±0.048 0.763±0.025 0.961±0.005

D Ablation Study

Note that our main objective consists of three components (Eq.2.4). To evaluate the contribution of
each component, we conducted a comprehensive ablation study, comparing the performance of our
model with each component systematically removed. This results in five experimental setups:
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Table 5: Performance of GRAM-DTI under different training objectives across different data split
strategies on Inhibition dataset.

Experiment Split Type AUROC↑ AUPRC↑ Sensitivity ↑ F1 ↑ Accuracy↑

Exp 1: Ltotal

warm start 0.950±0.002 0.785±0.006 0.659±0.011 0.720±0.006 0.954±0.001
drug cold start 0.940±0.002 0.756±0.003 0.595±0.018 0.680±0.008 0.949±0.001
target cold start 0.823±0.021 0.464±0.056 0.258±0.087 0.369±0.087 0.922±0.009

Exp 2: λ2Lbi + λ3LIC50

warm start 0.947±0.001 0.787±0.005 0.660±0.001 0.725±0.004 0.955±0.001
drug cold start 0.934±0.002 0.747±0.007 0.598±0.011 0.681±0.007 0.949±0.001
target cold start 0.818±0.042 0.463±0.058 0.298±0.080 0.408±0.079 0.923±0.008

Exp 3: λ1Lvol + λ3LIC50

warm start 0.925±0.002 0.697±0.006 0.507±0.013 0.613±0.007 0.942±0.001
drug cold start 0.917±0.002 0.675±0.007 0.483±0.039 0.592±0.024 0.940±0.001
target cold start 0.821±0.025 0.441±0.064 0.218±0.089 0.320±0.105 0.920±0.008

Exp 4: λ1Lvol + λ2Lbi

warm start 0.923±0.002 0.688±0.005 0.472±0.032 0.590±0.019 0.940±0.001
drug cold start 0.914±0.003 0.667±0.005 0.461±0.017 0.577±0.012 0.939±0.001
target cold start 0.824±0.025 0.436±0.062 0.213±0.074 0.320±0.088 0.920±0.008

Exp 5: w/o Modality Dropout
warm start 0.933±0.002 0.725±0.006 0.558±0.013 0.652±0.007 0.946±0.001
drug cold start 0.922±0.002 0.692±0.004 0.511±0.015 0.612±0.008 0.941±0.001
target cold start 0.827±0.024 0.442±0.063 0.227±0.096 0.330±0.110 0.920±0.010

Table 6: Performance of GRAM-DTI under different training objectives across different data split
strategies on Hetionet dataset.

Experiment Split Type AUROC ↑ AUPRC ↑ Sensitivity ↑ F1↑ Accuracy↑

Exp 1: Ltotal

warm start 0.982±0.001 0.864±0.004 0.767±0.010 0.793±0.005 0.964±0.001
drug cold start 0.863±0.040 0.535±0.069 0.298±0.062 0.420±0.064 0.927±0.012
target cold start 0.921±0.007 0.630±0.022 0.430±0.030 0.530±0.022 0.932±0.004

Exp 2: λ2Lbi + λ3LIC50

warm start 0.981±0.001 0.863±0.004 0.760±0.008 0.792±0.005 0.964±0.001
drug cold start 0.880±0.030 0.553±0.059 0.266±0.044 0.392±0.049 0.926±0.013
target cold start 0.921±0.009 0.620±0.025 0.433±0.042 0.535±0.035 0.932±0.004

Exp 3: λ1Lvol + λ3LIC50

warm start 0.973±0.001 0.819±0.005 0.700±0.028 0.741±0.010 0.956±0.001
drug cold start 0.768±0.046 0.353±0.054 0.143±0.060 0.229±0.080 0.916±0.016
target cold start 0.921±0.008 0.617±0.025 0.461±0.051 0.549±0.036 0.932±0.004

Exp 4: λ1Lvol + λ2Lbi

warm start 0.975±0.001 0.829±0.006 0.717±0.015 0.752±0.006 0.957±0.001
drug cold start 0.843±0.040 0.489±0.065 0.242±0.064 0.359±0.077 0.923±0.016
target cold start 0.923±0.006 0.627±0.019 0.457±0.043 0.551±0.030 0.933±0.004

Exp 5: w/o Modality Dropout
warm start 0.978±0.001 0.844±0.006 0.730±0.016 0.768±0.005 0.960±0.001
drug cold start 0.838±0.052 0.491±0.091 0.247±0.098 0.360±0.117 0.924±0.016
target cold start 0.919±0.008 0.616±0.025 0.443±0.049 0.538±0.035 0.932±0.004

1. Exp 1: Training using full objective, i.e., L = Ltotal

2. Exp 2: Training without volume loss, i.e., L = λ2Lbi + λ3LIC50

3. Exp 3: Training without traditional pairwise contrastive loss, i.e., L = λ1Lvol + λ3LIC50

4. Exp 4: Training without IC50 supervision, i.e., L = λ1Lvol + λ2Lbi

5. Exp 5: Without adaptive modality dropout (using all four modalities consistently)

The ablation study results are presented in Tables 3, 4, 5, and 6. Several key insights emerge from
these comprehensive experiments:

Volume-based Loss Contribution: The Gramian volume-based alignment demonstrates clear
benefits across multiple datasets. On the Activation dataset, comparing the full model (Exp 1)
with the version excluding volume loss (Exp 2) shows consistent improvements: warm start AUPR
increases from 0.625 to 0.642 and target cold start from 0.448 to 0.470. Similar patterns are observed
on Yamanishi_08, where the volume-based component contributes to improved performance across
different evaluation scenarios.

Bimodal Contrastive Loss Importance: The comparison between Exp 1 and Exp 3 reveals that the
auxiliary SMILES-protein contrastive loss is critical for maintaining model performance. Removing
this component leads to substantial performance degradation across datasets. On Yamanishi_08,
the drug cold start AUPR drops from 0.440 (Exp 1) to 0.373 (Exp 3), representing a notable 15.2%
performance loss. This validates our design choice to maintain traditional pairwise alignment
alongside higher-order volume-based objectives, as the two approaches provide complementary
benefits.
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IC50 Supervision Benefits: The incorporation of IC50 auxiliary supervision consistently improves
performance across most evaluation scenarios. Comparing Exp 1 and Exp 4 (without IC50 super-
vision) shows that the additional biological supervision enhances model generalization. On the
Inhibition dataset, incorporating IC50 supervision improves drug cold start AUPR from 0.667 to
0.756, representing a substantial 13.4% improvement. The benefits are particularly pronounced in
cold start scenarios, where the biological grounding helps the model handle novel compounds and
targets.

Adaptive Modality Dropout Impact: The adaptive modality dropout mechanism shows positive
effects across several datasets. Comparing the full model with Exp 5 (without adaptive dropout)
reveals improvements in multiple scenarios. On the Activation dataset, the adaptive mechanism
enhances warm start AUPR from 0.590 to 0.642 and target cold start from 0.444 to 0.470. The
benefits appear most pronounced in challenging scenarios involving novel targets, where dynamic
modality selection helps prevent overfitting to dominant but potentially less informative modalities.

Synergistic Effects: The full model (Exp 1) achieves the best overall performance across the majority
of evaluation scenarios, demonstrating that the combination of all components provides synergistic
benefits. Each component addresses different aspects of the learning challenge: volume-based
alignment captures higher-order multimodal relationships, bimodal contrastive loss ensures stable
SMILES-protein alignment, IC50 supervision provides biological grounding, and adaptive dropout
prevents modality dominance.

E Pre-training Setup and Architectural Details

E.1 Pre-training Infrastructure

Our four-modal contrastive learning framework employs a two-stage training pipeline. First, we
extract embeddings from domain-specific pre-trained models (MoLFormer-XL [25] for SMILES,
MolT5[6] for text/HTA, ESM2 [14] for proteins). Second, we train projection networks and the
GRAM4Modal loss using distributed training across multiple GPUs. The complete training proce-
dure is detailed in Algorithm 1, which incorporates our gradient-based modality dropping strategy
(Algorithm 2).

Notably, we deliberately exclude Lvol from the gradient computation for modality dropping to avoid
circular dependency, where the volume loss computation would depend on gradients derived from that
same computation. Instead, we use L = λ2Lbi + λ3LIC50 to assess modality importance for two key
reasons: 1) Avoiding circular dependency: The bimodal contrastive loss and IC50 loss provide stable,
interpretable signals about each modality’s contribution without creating computational circularity; 2)
Leveraging weak supervision: IC50 values, though sparsely available, offer biologically meaningful
supervision that directly reflects protein-molecule interaction strength. The gradients from LIC50
thus provide valuable information about which modalities are most important for predicting drug-
target activity, making them suitable signals for adaptive modality selection. Table 7 provides
comprehensive training configuration details.

E.2 Model Architecture

The projection networks Fm
ϕ map pre-computed embeddings to a unified 512-dimensional space.

Each projection consists of three linear layers with GELU activations, layer normalization, and
dropout (rate=0.1). The IC50 classification head F IC50

ϕ concatenates all four modality features
f fused = [fs; f t; fh; fp] and predicts binding affinity classes through a two-layer MLP with dropout
(rate=0.3). The pre-trained encoder specifications are detailed in Table 8. All encoders Em are frozen
during training to leverage their pre-trained representations while only fine-tuning the projection
networks Fm

ϕ for computational efficiency.

E.3 Volume Computation Details

The GRAM4Modal and GRAM3Modal functions compute volumes using Gram matrix determinants.
For anchor features fa and target features {f t1 , f t2 , f t3}, the 4×4 Gram matrix G has entries
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Gkj = ⟨fk, f j⟩. The volume is computed as V =
√
|det(G)|, then converted to similarity via

negative volume scaling: S = −V/τ .

Algorithm 2 implements our gradient-informed adaptive modality selection strategy, which maintains
consistency between forward L→vol and reverse L←vol contrastive computations by using a single drop
decision per forward pass.

Algorithm 1 Four-Modal Contrastive Learning with Gradient-based Modality Dropping
Require: Pre-computed embeddings {xs

i , x
t
i, x

h
i , x

p
i }

Require: Drop probability pdrop, temperature τ

Ensure: Projected features {fs, f t, fh, fp}
1: fm ← Fm

ϕ (Em(xm)) for m ∈ {s, t, h, p}
2: fm ← ∥fm∥2 = 1 for all modalities
3: d← GradientBasedDrop({fm},L, pdrop)
4: if d.should_drop = False then
5: Vf ← GRAM4Modal(fp, {fs

all, f
t
all, f

h
all})

6: Vr ← GRAM4Modal(fp
all, {fs, f t, fh})T

7: else
8: ma ← d.anchor_modality
9: {m1,m2} ← remaining_modalities \ {ma}

10: Vf ← GRAM3Modal(fma , {fm1

all , fm2

all })
11: Vr ← GRAM3Modal(fma

all , {fm1 , fm2})T
12: end if
13: Sf ← −Vf/τ , Sr ← −Vr/τ
14: Lvol ← 1

2 [L
→
vol + L←vol]

15: return Ltotal = λ1Lvol + λ2Lbi + λ3LIC50

Algorithm 2 Gradient-based Adaptive Modality Dropping
Require: Features {fm}m∈{s,t,h,p}, current loss Lt̃, drop probability pdrop
Require: Gradient history length K, decay factor α, threshold λσ = 1.5
Ensure: Drop decision {should_drop, mdrop, anchor_modality}

1: if random() > pdrop or not training then
2: return {False, none, protein}
3: end if
4: for m ∈ {s, t, h, p} do
5: gm

t̃
←

∥∥∥ ∂Lt̃

∂fm
t̃

∥∥∥
2

6: Update gradient history for modality m
7: end for
8: for m ∈ {s, t, h, p} do

9: ḡm
t̃
←

∑K−1
k=0 αkgm

t̃−k∑K−1
k=0 αk

10: end for
11: µt̃ ← 1

4

∑
m ḡm

t̃
, σt̃ ←

√
1
4

∑
m(ḡm

t̃
− µt̃)

2

12: for m ∈ {s, t, h, p} do
13: if ḡm

t̃
> µt̃ + λσσt̃ then

14: m
(t̃)
drop ← m; break

15: end if
16: end for
17: if m(t̃)

drop not found then

18: m
(t̃)
drop ← argminm ḡm

t̃
19: end if
20: manchor ← random_choice({s, t, h, p} \ {m(t̃)

drop})
21: return {True, m(t̃)

drop, manchor}
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Table 7: Training Configuration Parameters

Parameter Configuration
Hardware Multi-GPU NVIDIA (CUDA)
Training framework PyTorch DDP, NCCL
Batch size 1280 per GPU
Learning rate 1× 10−4 (Adam)
Epochs 40
Temperature τ 0.07
Drop probability pdrop 0.8
Gradient history length K 5
Decay factor α 0.9
Threshold multiplier λσ 1.5
Loss weights λ1, λ2, λ3 1.0, 1.0, 1.0
Label smoothing 0.1

Table 8: Pre-trained Encoder Specifications

Modality Model Em Output Dim
SMILES (xs) MoLFormer-XL-both-10pct 768
Text (xt) MolT5-base 768
HTA (xh) MolT5-base (shared) 768
Protein (xp) ESM2_t33_650M_UR50D 1280

E.4 Downstream Task Architecture

For drug-target interaction (DTI) prediction evaluation, we employ a lightweight classification archi-
tecture that leverages the pre-trained embeddings from our four-modal framework. The downstream
architecture is detailed in Algorithm 3 and uses only the drug (SMILES) and protein modalities
relevant for binding prediction.

Algorithm 3 Drug-Target Interaction Prediction
Require: Pre-trained embeddings fs, fp ∈ R512

Require: Drug-protein pair (xs
i , x

p
j ), binding label yij ∈ {0, 1}

Ensure: Binding prediction ŷij
1: fs

i ← FROZEN(F s
ϕ(Es(x

s
i ))) {Use pre-trained SMILES embedding}

2: fp
j ← FROZEN(F p

ϕ (Ep(x
p
j ))) {Use pre-trained protein embedding}

3: f concat ← [fs
i ; f

p
j ] ∈ R1024 {Concatenate embeddings}

4: h1 ← ReLU(Linear1024→512(f
concat))

5: h1 ← Dropout0.3(h1)
6: h2 ← ReLU(Linear512→256(h1))
7: h2 ← Dropout0.3(h2)
8: logits← Linear256→2(h2)
9: ŷij ← argmax(softmax(logits))

10: return ŷij

E.5 Evaluation Metrics

We employ five standard binary classification metrics to comprehensively assess DTI prediction
performance. Given the confusion matrix with true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN), the metrics are defined as follows:

Area Under ROC Curve (AUROC) AUROC measures the model’s ability to discriminate between
positive and negative classes across all classification thresholds:

AUROC =

∫ 1

0

TPR(FPR−1(t)) dt (3)
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where TPR = TP
TP+FN and FPR = FP

FP+TN .

Area Under Precision-Recall Curve (AUPRC) AUPRC is particularly informative for imbalanced
datasets and measures performance across different precision-recall trade-offs:

AUPRC =

∫ 1

0

Precision(Recall−1(t)) dt (4)

where Precision = TP
TP+FP and Recall = TP

TP+FN .

Sensitivity (Recall) Sensitivity measures the proportion of actual positive cases correctly identified:

Sensitivity =
TP

TP + FN
(5)

F1-Score F1-score provides the harmonic mean of precision and recall, balancing both measures:

F1 = 2 · Precision× Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
(6)

Accuracy Accuracy measures the overall proportion of correct predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)
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