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Abstract
Adaptive experiment is widely adopted to esti-
mate conditional average treatment effect (CATE)
in clinical trials and many other scenarios. While
the primary goal in experiment is to maximize es-
timation accuracy, due to the imperative of social
welfare, it’s also crucial to provide treatment with
superior outcomes to patients, which is measured
by regret in contextual bandit framework. Further-
more, privacy concerns arise in clinical scenar-
ios containing sensitive data like patients health
records. Therefore, it’s essential for the treatment
allocation mechanism to incorporate robust pri-
vacy protection measures. In this paper, we inves-
tigate the tradeoff between loss of social welfare
and statistical power of CATE estimation in con-
textual bandit experiment. We propose a matched
upper and lower bound for the multi-objective op-
timization problem, and then adopt the concept of
Pareto optimality to mathematically characterize
the optimality condition. Furthermore, we pro-
pose differentially private algorithms which still
matches the lower bound, showing that privacy is
”almost free”. Additionally, we derive the asymp-
totic normality of the estimator, which is essential
in statistical inference and hypothesis testing.

1. Introduction
1.1. Background

The contextual bandit framework, a prominent and effective
approach for sequential decision-making, is distinguished
by its adaptability in progressively refining decisions based
on accumulating information. This stands in contrast to re-
liance on static, offline datasets and batch learning method-
ologies. While most literature focus on developing algo-

*Equal contribution 1Laboratory for Information and Decision
Systems, MIT, Cambridge, U.S. 2Department of Statistics, The
University of Chicago, Chicago, U.S.. Correspondence to: Jiachun
Li <jiach334@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

rithms like UCB or Thompson sampling to minimize the
cumulative loss of rewards (like revenue or social welfare),
it has been shown in (Lai & Robbins, 1985) that adaptive
allocation strategies can surpass the efficiency of certain
conventional random experimental approaches, such as Ran-
domized Control Trials (RCTs)and has drawn much atten-
tion in recent experiment design works (Zhao 2023, Dai
et al. 2023).

Considering the following motivating example of clinical
trials. These trials necessitate evaluating the efficacy of new
pharmaceutical interventions across diverse patient circum-
stances. Regret here is measured as the cumulative detriment
to patient welfare, thus necessitating its minimization. This
imperative becomes particularly acute in the case of rare or
fatal diseases, where the goal is to allocate the most effective
treatment possible to patients. The heterogeneity of patient
profiles, characterized by diverse attributes such as age, gen-
der, and genotype, significantly influences the efficacy of
treatment. Therefore, it’s crucial to evaluate the efficacy of
drugs across varied patient profiles to identify treatments
with superior therapeutic benefits while mitigating potential
adverse effects for specific patient groups. This illustrates
the necessity to estimate the conditional average treatment
effect (CATE) (see Abrevaya et al. 2015, Fan et al. 2022,
Wager & Athey 2018) in adaptive allocation assignment
problems while keeping the loss of welfare, or regret at min-
imum. This dual focus on minimizing regret and accurately
estimating CATE is central to both experimental design and
contextual bandits in academic literature.

While online regret minimization and statistical inference
have been extensively studied separately, the simultaneous
pursuit of these objectives introduces novel complexities.
This duality of purpose can result in conflicting optimal allo-
cation strategies, as illustrated in some recent works (Simchi-
Levi & Wang 2023). In specific, better accuracy of statistical
inference typically necessitates broader exploration of vari-
ous treatment options while a focus on minimizing regret
restricts the algorithm’s engagement with suboptimal arms.
Moreover, the presence of patient-specific features and het-
erogeneous treatment effects introduce further complexity.
The estimation and inference for one subgroup of patients
cannot be transferred to another, and the arrival of various
types of patients may be highly non-stationary, which com-
plicates the inference process for certain subgroups due to
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insufficient data. While the tradeoff of regret and estimation
accuracy has been clearly characterized in homogeneous
ATE setting, it remains unknown for the conditional average
treatment case when covariates are present. We formulate it
in the following question:

Question 1: Given a budget of welfare loss (or regret),
what’s the best possible accuracy of estimation for CATE
and how can we achieve such an accuracy?

Privacy concerns arise in scenarios involving sensitive data
types, such as healthcare records, financial information, or
digital footprints. (Carlini et al. 2019, Melis et al. 2019, Niu
et al. 2022). Such privacy risks also exist the estimation
of Conditional Average Treatment Effect (CATE), which
has the potential to inadvertently disclose sensitive individ-
ual information, including covariates, treatment statuses or
outcomes. Differential Privacy (DP) has been established
as a rigorous mathematical framework for defining privacy,
which has gained widespread adoption in practices by major
organizations such as the U.S. Census Bureau and compa-
nies like Apple and Google for data publication and analysis
(Erlingsson et al. 2014, Abowd 2018). However, it is widely
known that in the realms of both statistical estimation and
regret minimization, ”Privacy comes at a cost”. While it is
well established for DP-statistical estimation with offline,
identically and independently distributed data, it’s much
more subtle to perform valid DP-estimation for online, po-
tentially correlated data. Similarly, it has been a long stand-
ing problem to develop a differentially private algorithm for
regret minimization in contextual bandit framework. Con-
sidering our objective to design an allocation mechanism
that achieves enhanced accuracy while simultaneously mini-
mizing regret,a DP version of our mechanism necessitates a
delicate balance of these dual tasks. This leads to a critical
inquiry: to what extent must one incur a ”cost” to ensure
privacy while striving to optimize both accuracy and regret
minimization?

Question 2: With the constraint that the experimenter need
to protect the privacy of participants, is it still possible
to attain the same estimation accuracy as well as social
welfare loss?

To the best of our knowledge, our work is the first one to
handle these two tasks simultaneously in a DP manner.

1.2. Problem Formulation

In adaptive experiment design with heterogeneous treat-
ment effect, there is a binary set A = {0, 1} of arms
(i.e., treatments or controls) and a finite feature set X =
{X1, X2, · · · , XM} with |X | =M . Suppose n is the time
horizon (or the total number of experimental units). The
features at each time period follow a sequence of discrete dis-
tributions PX = {P tX}t≥1, where P tX = (pt1, · · · , ptM ) ∈

(0, 1)M with
∑M
j=1 p

t
j = 1,∀t ≥ 1, representing the prob-

ability of observing experimental unit with feature Xj at

time t as ptj . Denote fj(m) := E
[∑

1≤t≤m 1{xt=Xj}

]
=∑

1≤t≤m p
t
j , which represents the expected number of oc-

currences of feature Xj in the first m periods, for any
1 ≤ j ≤ M and 1 ≤ m ≤ n. We have the following
assumption for the distribution of features.

Assumption 1.1. Seasonal Nonstationarity
(1)∃C1, C2 > 1, s.t. ∀1 ≤ j ≤M , C1 <

fj(n)
fj(

n
2 ) < C2.

(2)fmin(n) := min1≤j≤M fj(n) ≥ Ω(log n)

Intuitively, this assumption says in the first and the second
half periods, every features will be expected to appear ap-
proximately same and at least Ω(log n) times. Compared to
the simplest assumption where the distribution of features
for patients is stationary at each time period, our assump-
tion greatly expands the applicability of our method. For
example, different types of patients may have completely
different patterns of occurrence on weekdays and weekends,
or during different seasons. In this case, the simple assump-
tion that patients’ features have a stable distribution will
no longer hold, but this situation may still conform to our
non-stationary seasonal assumption.
Remark 1.2. Though here we denote it as non-stationarity,
in fact our assumption is very mild and contains oblivious
adversarial case. To see this, note that we allow the distri-
bution PXt to be arbitrary, so for any oblivious adversarial
sequence (Ht)

n
t=1 satisfying assumption 1.1, we can just set

pti = 1 for Ht = Xi and ptj = 0 for any j ̸= i to obtain the
desired sequence.

After observing the feature xt, the experimenter will choose
a treatment allocation at ∈ {0, 1} based on policy π, and
the reward of the chosen arm rt = rt (at|xt) ∈ [0, 1] can be
observed. where Pi(Xj) is the distribution of the rewards of
arm i and feature Xj and PX is the distribution of features.
We define the conditional average treatment effect (CATE)
of a feature x as ∆(Xj) := E [rt(1|Xj)]−E [rt(0|Xj)], for
any Xj ∈ X . We also denote σji = V [r(i|Xj)] for i = 0, 1
and j = 1, · · · ,M as the variance of reward of playing arm
iwhen facing contextXj . In this paper, we will elaborate on
|∆(x)| = Θ(1) for all x ∈ X , which is arguably the most
fundamental case in real applications. Denote all stochastic
MAB instances satisfying the mentioned assumptions to
constitute a feasible set E0.

A key index to measure the efficiency of online learn-
ing policy π is accumulative regret R(n, π), defined
as the expected difference between the reward under
the optimal policy and the policy π, i.e., R(n, π) =
Eπ [

∑n
i=1 [ri(a

∗(xi)|xi)− ri (ai|xi)]], where a∗(xi) is the
optimal arm of feature xi. In addition, an admissible adap-
tive estimator ∆̂(Xj) maps the historyHn to an estimation
of ∆(Xj). We use the mean square error of ∆̂(Xj), i.e.,
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e
(
n, ∆̂(Xj)

)
= E

[(
∆(Xj)− ∆̂(Xj)

)2]
to measure the

quality of the estimation. We define ∆̂ := {∆̂(Xj)}1≤j≤M
to represent all the estimators on the gap between two arms
for each feature. A design of an contextual bandit experi-
ment can then be represented by an admissible pair (π, ∆̂).
Different from traditional contextual bandit problems, the
optimal design of contextual bandit experiments in this pa-
per is solving the following minimax multi-objective opti-
mization problem:

min
(π,∆̂)

max
ν∈E0

(
Rν(n, π), max

1≤j≤M
eν

(
n, ∆̂(Xj)

))
(1)

where we use the subscript ν to denote the contextual bandit
instance. Eq.1 mathematically describes the two goals: min-
imizing the regret and the largest estimation error among all
features.

The above is a rigorous mathematical description of the
first question that we presented. This sets the stage for
our second question, which concerns about the price of
protecting privacy for both regret and CATE estimation, and
how it will affect the balance between minimizing regret and
estimation error. In order to rigorously address this question,
we first need the following definition of differential privacy.

Definition 1.3. ((ε, δ)-anticipating private contextual
bandit algorithm).
A bandit algorithm π is (ε, δ)-private if for two neighboring
datasets D = {(xi, ai, ri)ni=1} and D′ = {(x̂i, âi, r̂i)ni=1}
of feature, action and reward pairs that differs in at most one
time step t, then for all S ⊆ AT−t:
P (π (at+1, · · · , an) ∈ S | D)) ≤ eεP (π (at+1, · · · , an) ∈ S | D′)) + δ,

where A = {0, 1} is the set of actions.

This definition is slightly different with the classical differen-
tial privacy (DP). (Shariff & Sheffet, 2018) propose a notion
of ”joint DP” in the context of linear contextual bandits and
is later adopted by (Chen et al., 2022) as anticipating DP
(ADP). The key difference of ADP is to restrict the output
sets as allocations strictly after a patient of interest at time
t. Such a restriction is motivated by two reasons. The first
one is that following the classical DP will inevitably lead to
linear regret. The second reason is that classical DP assumes
that the adversary has access to the provided action at at
time t, which is unreasonable in most adaptive experiments,
as communication about (xt, at, rt) at time t is expected to
be secured and the data prior to time t have no impact on the
privacy of patient t because the decision making algorithm
has no knowledge of xt before time t. Therefore, only the
privacy of outputs after time t needs to be protected. For a
more detailed discussion about ADP, one can refer to (Chen
et al., 2022).

Definition 1.4. ((ε, δ)-private CATE estimator) An
admissible CATE estimator ∆̂ which takes a dataset

{(xi, ai, ri)}ni=1 as input, and output M estimations for
ATE of each feature {∆̂(Xi)}Mi=1 is (ε, δ)-private if for
two neighboring datasets D = {(xi, ai, ri)ni=1} and D′ =
{(x̂i, âi, r̂i)ni=1} of feature, action and reward pairs that dif-
fers in at most one time step t, then for any measurable set
S ⊂ RM :
P
(
(∆̂(X1), · · · , ∆̂(XM ) ∈ S | D

)
≤ eεP

(
(∆̂(X1), · · · , ∆̂(XM ) ∈ S | D′

)
+ δ.

Since a design of contextual bandit experiments can be
represented as an admissible pair (π, ∆̂), in this paper we
say a contextual bandit experiment design is (ε, δ)-private
when both π and ∆̂ are (ε, δ)-private.

Technical Difficulties and Our Contribution

1. Elaborating on the Length of RCTs with a Regret
Budget for Different Features. As claimed in (Simchi-
Levi & Wang, 2023), the key idea of balancing regret and
estimation error is to properly set the length of RCT. How-
ever, in our setting each feature may vary enormously in
their occurrences, and it can also be highly non-stationary.
Since we are interested in the worst estimation among all
features, we should set the length of RCTs for all features
to be the same as that of the feature with least occurrence
frequency, i.e, fmin(n). Since we don’t know fmin(n) at
the beginning of experiment, by the assumption of seasonal
non-stationarity, we propose an algorithm named ConSE,
which divides the experiment into two phase: in the first half
periods, it chooses to minimize regret while learning the
frequency of occurrences fj(n2 ), and in the second half peri-
ods ConSE runs RCT for f̂min(n2 ) periods for each feature,
which is estimated from the first phase.

Another contribution of our result is the improvement of
analysis compared to existing work(Simchi-Levi & Wang
2023). In particular, we develop a tighter upper bound which
is tight up to constant, which helps to have a better character-
ization of the Pareto optimal curve for regret and estimation
error. Besides, the proposed estimator in this paper is asymp-
totically normal, which is vital in constructing confidence
interval and testing hypothesis and has been a long standing
issue for adaptive experiment design literature(Simchi-Levi
& Wang 2023, Dai et al. 2023, Zhao 2023). See section 3
for a more detailed discussion.

2. Privatizing Feature Information in Non-stationary
Environment. Differential privacy is known to be more
challenging in bandit setting due to its highly correlated
data. For multi-arm bandit, algorithms based on tree mecha-
nism proposed in (Chan et al., 2011) have been proved to
be optimal up to polylog factors(see Tossou & Dimitrakakis
2016, Azize & Basu 2022, Sajed & Sheffet 2019). However,
when it comes to contextual bandit, things become more
complicated, as the algorithm not only needs to privatize
the reward of each arm, but also the context of each pa-
tient. Most existing works focus on setting where reward
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function is in a specific function class like (generalized)
linear function (Hanna et al. 2022, Shariff & Sheffet 2018,
Zheng et al. 2020, Chen et al. 2022). However, in clinical
trials, it’s risky to believe the treatment effect of one type of
customer can be generalized to other types in certain way
(like a linear function). Therefore, in this paper we don’t
assume any structure of CATE among different types of
patients, which forces us to propose mechanisms different
from existing literature. The second difficulty arises from
the non-stationarity assumption, which has been considered
in very few works. In particular, this rules out the possibil-
ity of merging different features as a whole and applying a
unified mechanism.

To overcome all the difficulties mentioned, we propose a
”Doubly Private” algorithm, which treats each feature sepa-
rately and doubly privatize the patients’ information: first
of all, we use the idea of tree mechanism and divide the
whole experiment into batches, where the estimation of re-
wards are only updated at the end of each batches. Secondly,
we randomize the length of each batch to protect the con-
text information, which is, to our best knowledge, novel in
DP-contextual bandit setting. Finally, our ”Doubly Private”
allows experimenters to balancing regret and the estimation
accuracy of CATE in any given level, and our subsequent
theoretical guarantees ensure that no method can simulta-
neously outperform our algorithm in minimizing regret and
accurately estimating CATE.

1.3. Literature Review

Adaptive Experiment Design. Experimental design is wit-
nessing a surge in popularity across operations research,
econometrics, and statistics (see, e.g., Johari et al. 2015,
Bojinov et al. 2021, Bojinov et al. 2023,Xiong et al. 2023)
Adaptive experimental design emerges as a particularly rel-
evant area to our current focus(Hahn et al. 2011, Atan et al.
2019, Greenhill et al. 2020, Kato et al. 2020, Qin & Russo
2022) There are some recent works trying to demonstrate
the statistical superiority of adaptive experiment compared
classical non-adaptive experiment design, where the mea-
surement of precision is the (asymptotic) variance of the
estimator. In (Dai et al., 2023), they propose a measurement
called Neyman regret, and show that an adaptive design with
asymptotically optimal variance is equivalent to sub-linear
Neyman regret, thus transforming it into a regret minimiza-
tion problem. (Zhao, 2023) consider a similar setting, but
adopt a competitive analysis framework.

Another emerging field is multitasking bandit problems,
where minimizing regret is not the only objective (see, e.g.,
Yang et al. 2017, Yao et al. 2021, Zhong et al. 2021). (Er-
raqabi et al., 2017) also consider the tradeoff between re-
gret and estimation error, and propose a new loss function
combining these two objectives together. The most related

work to this paper may be (Simchi-Levi & Wang, 2023),
where they consider the tradeoff between regret and ATE
estimation. We extend their framework to contextual bandit
setting, derive a similar Pareto optimality characterization,
and consider the additional requirement to protect patients’
privacy.

Differentially Private (Contextual) Bandit Learning and
Estimation. Differential privacy (Dwork et al. 2006)
has emerged as gold-standard for privacy preserving data-
analysis, as it ensures that the output of the data-analysis
algorithm has minimum dependency on any individual da-
tum. Differentially private variants of online learning al-
gorithms have been successfully developed in various set-
tings (Guha Thakurta & Smith 2013), including a private
UCB-algorithm for the MAB problem ( Azize & Basu 2022,
Tossou & Dimitrakakis 2016) as well as UCB variations
in the linear bandit settings (Hanna et al. 2022, Shariff &
Sheffet 2018). These algorithms are in general motivated
by techniques named ”tree mechanism”(Chan et al. 2011,
Dwork et al. 2010), which functions by continuously releas-
ing aggregated statistics over a stream of T observations,
introducing only polylog(T )

ε noise in each time period, and
thus leading to an added pseudo regret of order polylog(T )

ε . It
was shown in Shariff & Sheffet 2018 that any ϵ-DP stochas-
tic MAB algorithm must incur an added pseudo regret of
Ω(K log(T )

ϵ ), and this lower bound is matched by Sajed &
Sheffet 2019, using a batched elimination algorithm.

However, when it comes to DP-contextual bandit, so far
there isn’t a golden standard that works for general contex-
tual bandit problems. Instead, most works focus on con-
textual linear bandit (Shariff & Sheffet 2018, Hanna et al.
2022,Charisopoulos et al. 2023) and adopt a relaxed def-
inition named joint-DP or anticipating-DP. These works
are in general variants of Lin-UCB (Abbasi-Yadkori et al.,
2011), which is known to be optimal for contextual linear
bandits. A lower bound for contextual linear bandit was
proposed in Shariff & Sheffet 2018, and then was matched
in Shariff & Sheffet 2018, Hanna et al. 2022 up to polylog
factors. (Chen et al., 2022) consider differential privacy in
dynamic pricing problem in a generalized linear model. A
follow-up work (Chen et al. 2021) considers dynamic pric-
ing in a non-parametric model and derive an upper bound
of Õ

(
T (d+2)/(d+4) + ε−1T d/(d+4)

)
, which is not known

to be optimal.

There has been some initial work on differentially private
causal inference methods. Lee & Bell 2013 proposed a
privacy-preserving inverse propensity score estimator for
estimating average treatment effect (ATE). Komarova &
Nekipelov 2020 study the ramifications of differential pri-
vacy on the identification of statistical models and demon-
strate the obstacles encountered in regression discontinuity
design with privacy constraints. However, when it comes to
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adaptive experiment, to our knowledge there is no similar
work trying to estimating CATE privately.

2. A Warm-up: Upper and Lower Bound
Without Privacy Constraint

In this section, we aim to answer the first question proposed
in subsection 1.1, i.e. what’s the best possible accuracy
of estimation for CATE given a budget of regret, by first
showing a lower bound and then proposing an algorithm
ConSE with matching upper bound. Besides, we also use
this section as a warm-up to describe the technical difficul-
ties of this problem and how to solve them, which can be
helpful to understand the more complicated algorithm in
section 3 with privacy constraints. In the following theorem,
we provide a mini-max lower bound to explicitly show the
best possible estimation accuracy with a constraint on regret
budget.

Theorem 2.1. For any admissible pair
(
π, ∆̂n

)
, there al-

ways exists a hard instance ν ∈ E0 such that eν
(
n, ∆̂n

)
≥

Ω
(

M
Rν(n,π)

)
, or in other words

inf
(π,∆̂n)

max
ν∈E0

[
eν

(
n, ∆̂n

)
Rν(n, π)

]
≥ Ω(M).

Theorem 2.1 mathematically highlights the trade-off that a
small regret will inevitably lead to a large error on the CATE
estimation. In specific, it states that for any admissible pair(
π, ∆̂n

)
, there exists a hard instance ν ∈ E such that the

expected error is lower bounded by M times the inverse of
the regret, i.e., eν

(
n, ∆̂n

)
≥ Ω

(
M

Rν(n,π)

)
. In particular,

since Rν(n, π) = O(log(n)) for UCB and TS algorithms,
no estimators can not achieve smaller error than the or-
der Ω

(
M

log(n)

)
consistently over all the possible instances,

which explicitly shows the limitation of regret optimal poli-
cies in terms of statistical power for estimating the CATE.
On the other hand, if we ignore the regret and simply run
random control trials (RCT), it can be easily shown that
eν(n, ∆̂n) = max1≤j≤M E

[(
∆̂n(Xj)−∆(Xj)

)2]
= O

(
1

fmin(n)

)
,

which is the best possible accuracy one can obtain but will
result in O(n) regret.

The above two cases can be regarded as two extreme cases
(note that they don’t match the lower bound), but in practice,
the experimenter may want to find a balance of estimation
accuracy and regret between these two extreme cases. In the
following, we provide a family of algorithms named ConSE
which depends on a parameter α ∈ [0, 1]. A larger α leads
to smaller regret budget and larger estimation error. In par-
ticular, when α = 1, the algorithm ignores estimation error
and focuses on minimizing regret. On the contrary, when

α = 0, the algorithm only focuses on minimizing estima-
tion error. Moreover, for each given α, ConSE achieves the
lower bound provided in theorem 2.1, which shows that it
can attain every Pareto optimal point from one extreme case
to the other (see figure 1). In the figure, the endpoints of the
curve represent two extreme cases with minimum regret and
estimation error. The other points on the curve characterize
the tradeoff between these two objectives. Namely, this
is the Pareto optimal curve for regret and estimation error.
In section 4, we will have a more detailed discussion on
variants of the Pareto optimal curve.
Remark 2.2. (Intuitive example to illustrate the trade-off)
Since the two objectives presented in theorem 2.1 seems
to be not conflicting at first glance, we find it necessary to
provide an intuitive example here to illustrate why there is
indeed a trade-off between these two objectives. Assume
that there are only 2 arms with mean µ1 and µ2, where ∆ =
µ1 − µ2 > 0. Now by definition, the regret is Reg = ∆ ∗
T (arm2), where T (arm2) is the frequency of playing arm
2. So consider the following two tasks. The first task is to
identify µ1 > µ2, and the second task is to estimate µ1, µ2

as accurate as possible. It’s quite intuitive here that task 1 is
strictly easier than task 2. Indeed, concentration inequalities
tell us that it only takes O( log T∆2 ) times for each arm to
complete task one, while basic statistical lower bound tells
us that to estimate µ1, µ2 with accuracy 1

Tα , it’s necessary
to play at least Tα times of each arm. Therefore, in order
to minimize regret, one should only play each arm O( log T∆2 )
times, identify that µ1 > µ2, and never play arm 2 again.
In this case, it would lead to a very bad estimation of µ2

with accuracy ∆2

log T , but it’s already necessary and sufficient
for regret minimization. On the contrary, if the goal is to
estimate µ2 much more precisely with accuracy 1

Tα , then
from the above analysis, we know that it’ll inevitably lead
to a regret of O(Tα).

Figure 1. Pareto Optimal Curve
In the ConSE algorithm, we need the following notations.
Define three number sequences:
For e = epoch = 1, 2, 3, ... and the number of total patients
n, define:
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∆e = 2−epoch

Re = max{ 32 log(16n·epoch2)
∆2

e
, 8 log(8n·epoch2)

∆e
}+ 1

he =
√

log(16n·epoch2)
2Re

Algorithm 1 ConSE

1: Input: α
2: Initialize: Sj ← {0, 1}, epoch ej ← 0, rj ← 0, µ̄ji ←

0, nj ← 0 (i = 0, 1; j = 1, 2, ...,M)
3: for t = 1 to [n2 ] do
4: Get feature xt = Xjt ∈ X
5: Increment njt ← njt + 1
6: if |Sjt | = 2 then
7: Select action at ∈ {0, 1} with equal probabilities

( 12 ,
1
2 ) and update mean µ̄jtat

8: Increment rjt ← rjt + 1
9: if rjt ≥ Rejt then

10: if ejt ≥ 1 then
11: Remove arm i from Sjt if max{µ̄jt1 , µ̄

jt
2 } −

µ̄jti > 2he (i = 0, 1)
12: end if
13: Increment epoch ejt ← ejt + 1
14: Set rjt ← 0

15: Zero means: µ̄jti ← 0 ∀i ∈ {1, 2}
16: end if
17: else
18: Pull the arm in Sjt
19: end if
20: if t = [n2 ] then
21: f̂j = nj(1 ≤ j ≤M)

22: Tmin = max{log n,min{f̂1−α1 , f̂1−α2 , · · · , f̂1−αM }}
23: end if
24: end for
25: for j = 1 to M do
26: nj = 0
27: end for
28: for t = [n2 ] + 1 to n do
29: Get feature xt = Xjt ∈ X
30: Increment njt ← njt + 1
31: if njt ≤ Tmin then
32: Select action at ∈ {0, 1} with equal probabilities

( 12 ,
1
2 ) and update mean µ̄jtat

33: if njt = Tmin then
34: Output ∆̂(Xjt) = µ̄jt1 − µ̄

jt
0

35: end if
36: else
37: Pull the arm in Sjt . (if |Sjt | = 2, pull any arm

at ∈ Sjt )
38: end if
39: end for

Theorem 2.3. Let Algorithm 1 runs with any given α ∈
[0, 1]. For any instance ν, the regret and estimation error

Table 1. Comparison with Simchi-Levi & Wang 2023.

DIFFERENCES SIMCHI-LEVI & WANG 2023 THIS PAPER

CONTEXT NO YES
LOWER BOUND Ω(1) Ω(M)
UPPER BOUND O(logn) O(M)
DIFFERENTIAL PRIVACY NO YES
ASYMPTOTIC NORMALITY NO YES

are

Rν(n, π) ≤ O
(
M max{fmin(n)1−α, log n}

)
,

eν(n, ∆̂n) ≤ O
(

1

max{fmin(n)1−α, log n}

)
.

Therefore, the product of regret and estimation error is
always O(M), i.e.,

eν(n, ∆̂n)Rν(n, π) ≤ O(M)

Combining the two theorems above, we can now an-
swer Question 1: Given a budget of social welfare loss
Rν(n, π), the best possible accuracy of inference for CATE
is O

(
M

Rν(n,π)

)
and is attained by ConSE.

Remark 2.4. While we prove an upper bound of ConSE
under non-stationary setting, the result proved in theorem
2.3 cannot be improved when the distribution of feature
is stationary. This can be shown by noticing that the hard
instance in lower bound in theorem 2.1 is constructed under
the stationary case. That is to say, ConSE is optimal in both
stationary and non-stationary settings.
Remark 2.5. Compared to previous work in bandit experi-
ment (Simchi-Levi & Wang 2023), while the high level idea
is similar, we consider an alternative estimator and improve
the analysis in the proof. Specifically, in (Simchi-Levi &
Wang, 2023), the upper bound is tight up to poly-log term,
while in this paper the upper bound is tight up to constant.
First of all, since classical bandit algorithms like UCB or
TS attain regret bound ofO(log n), we believe that poly-log
factors do matter. Besides, this improved upper bound help
us have a better characterization of Pareto optimal curve
that we will explain in section 3. Finally, the estimator in
our algorithm is asymptotically normal, which means we
can construct (asymptotic) normal confidence interval for
inference and hypothesis testing, which has been a long
standing issue for existing adaptive experiment design lit-
erature (Simchi-Levi & Wang 2023, Zhao 2023, Dai et al.
2023).

Proposition 2.6. The estimators for all features ∆̂(Xj)

are unbiased, i.e., E
[
∆̂(Xj)

]
= ∆(Xj) (∀1 ≤ j ≤ M).

Moreover, ∆̂(Xj) is asymptotically normal for any j, or
formally,
limn→∞

√
max{fmin(n)1−α, log n}(∆̂(Xj)−∆(Xj))⇝ N(0, σ2

j0 + σ2
j1).
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Intuitively speaking, ConSE can be divided into three steps:

Step 1. (From line 3 to 24) In the first half periods, we
use Successive Elimination algorithm separately for each
arm to eliminate the suboptimal arm and maintain log n
regret. At the same time, we use these data to estimate the
appearance frequency fj(n2 ) of each feature Xj as defined
in assumption 1.

Step 2. (From line 25 to 35) At the beginning of second
half periods, we run RCT f̂min(n2 ) times for every feature,
where f̂min(n2 ) is estimated from Phase 1.

Step 3. (From line 36 to 38) Play the optimal arm for each
feature in the remaining time of experiment.

Although it becomes more complicated with privacy con-
straints, our main goal is still to do the three steps privately.
A more detailed discussion will be provided in next section.

3. Privacy is Free: A Doubly-Private
Algorithm for Bandit Experiment

In this section, our focus is to answer Question 2, i.e., with
the constraint that the experimenter need to protect the pri-
vacy of participants, is it still possible to attain the same es-
timation accuracy as well as social welfare loss? Roughly
speaking, our answer is yes (when ε is a small, constant num-
ber, which is the most common case). In other words, we
will provide a DP version of ConSE that matches the lower
bound provided in theorem 2.1 for any given α ∈ [0, 1],
where the meaning of α is exactly the same as in ConSE
described in last section. The framework of DP-ConSE
is quite similar to ConSE, with changes only in technical
details. Due to limitation of space, we omit the precise
description of DP-ConSE here and put it in appendix A.4.
Instead, in the following we will provide an intuitive expla-
nation of three steps in DP-ConSE, together with important
theoretical guarantees.

Step 1. In the first half periods, we use an improved ”DP
Successive Elimination” algorithm in (Sajed & Sheffet,
2019) for each feature. Our goal in this phase is twofold
for each feature: to identify the optimal action and estimate
the frequency of occurrences (based on our non-stationary
seasonal assumption) with minimal regret. For each feature
we compare the privatized average rewards of two actions
in batches. If the difference is large, we eliminate the sub-
optimal arm and claim that we find the optimal arm with
high probability. There are two technical designs involved
here. First, the length of batches increases exponentially,
which strikes a balance between differential privacy pro-
tection and regret loss. Similar idea can be found in “DP
Successive Elimination” algorithm (Sajed & Sheffet 2019)
and widely used ”tree mechanism” ((Chan et al., 2011)) in
DP-bandit algorithms. Second, we use a novel technique

by adding noise to the batch lengths for each feature. The
reason for this is that due to the seasonal non-stationarity
assumption, it’s essential to run batched learning for each
feature independently, and to protect the patients’ feature,
the length of batches should also be privatized. To the
best of our knowledge, this technique has not appeared in
DP-bandit literature and again highlights the difficulty of
DP-contextual bandit compared to bandit setting.

After identifying the optimal action, we will continue to
execute this action until the first half of the experiment is
completed. After the completion of the first half, based on
the occurrence frequencies of features observed, we can
estimate fj(n) for each feature Xj . This helps us to decide
the length of RCTs in second half periods to estimate CATE.

To make our claim valid, we first need to show that the elim-
ination process will end in step 1 (with high probability).
This is confirmed by the following lemma.

Lemma 3.1. Let DP-ConSE runs with any given α ∈ [0, 1]
and ε > 0. Then w.p. ≥ 1 − 1

n it holds that DP-ConSE
pulls the bad arm of any feature Xj in the first half periods
for at most

O
(
(log nj + log log (1/∆(Xj)))

(
1

∆(Xj)2
+

1

ε∆(Xj)

))
where nj is the number of occurrences of the feature Xj

(1 ≤ j ≤M).

So when ε is a small constant and n is sufficiently large, we
can find the optimal arm for each feature in the first half
with high probability, and the number of playing suboptimal
arm is bounded. As a corollary, we can bound the regret in
the first half periods as claimed.

Corollary 3.2. For sufficiently large n, the expected pseudo
regret in the first half periods of DP-ConSE is at most
O
((∑

1≤j≤M
logn
∆(Xj)

)
+ M logn

ε

)
.

Step 2. In the second half periods, our primary objective
is to ensure the required accuracy of estimating the CATE.
Using the estimated fj(n) from step 1, we can determine
the length of RCTs for each feature to attain the desired
accuracy. It is important to remember that we still need
to add noise to the length of RCTs for the same reason as
stated in step 1.

After step 2, the main task of estimating CATE is completed,
and the estimation accuracy is provided in the following
theorem.

Theorem 3.3. If DP-ConSE runs with α ∈ [0, 1] and ε > 0,
the estimate error is

e(n, ∆̂) = O

(
1

max{fmin(n)1−α, lognε }

)
.
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Step 3. Finally, for each feature, after completing RCT
phase in step 2, we simply play the optimal action obtained
in the first half periods for the remaining patients with the
aim of achieving minimum regret. The cumulative regret in
the second half periods can be bounded as in the following
lemma.

Lemma 3.4. The expected regret in the sec-
ond half periods of DP-ConSE is at most
O
(
max{fmin(n)1−α, lognε }

∑
1≤j≤M ∆(Xj)

)
.

We have elaborated on how our algorithm strikes a balance
between estimation, regret minimization and differential pri-
vacy, and to wrap things up, we have the following theorem
to answer Question 2. A rigorous proof can be found in
appendix.

Theorem 3.5. DP-ConSE is (ε, 1
n )-private. Moreover, let

DP-ConSE runs with any given α ∈ [0, 1] and ε > 0. The
regret is

O
(
M max{fmin(n)1−α,

log n

ε
}
)
,

As a result, we have

eν(n, ∆̂n)Rν(n, π) ≤ O(M),

which is the same as theorem 2.3 and matches the lower
bound in theorem 2.1.

Similar to the estimator without privacy constraint, we can
also prove that the estimator in DP-ConSE is asymptotically
normal, and more interestingly, it has the same asymptotic
variance as in ConSE. This again shows that privacy is ”free”
in the case of statistical inference, as the Laplacian noise
converges to 0 faster as n → ∞ compared to Guassian
variable, and thus has no impact on asymptotic variance of
the estimator.
Proposition 3.6. The estimators for all features ∆̂(Xj)

are unbiased, i.e., E
[
∆̂(Xj)

]
= ∆(Xj) (∀1 ≤ j ≤ M).

Moreover, ∆̂(Xj) is asymptotically normal for any j, or
formally,

lim
n→∞

√
max{fmin(n)1−α,

logn

ε
}(∆̂(Xj)−∆(Xj))⇝ N(0, σ

2
j0+σ

2
j1).

4. Pareto Optimal Curve
In this section, we will characterize the Pareto optimal curve
of regret and estimation error, which is the standard mea-
surement in multi-objective optimization problems and is
widely adopted in multi-objective bandit literature (Simchi-
Levi & Wang 2023, Zhong et al. 2021). A formal definition
is provided in the following.

Definition 4.1. A pair of regret and estimation error
(x(n), y(n)) is Pareto optimal with respect to n if there

exists no algorithm which can attain a regret and estima-
tion error pair (α(n), β(n)) such that α(n) ≤ O(x(n)),
β(n) = o(y(n)) or α(n) = o(x(n)), β(n) ≤ O(y(n)) as
n→∞.

From the upper and lower bound we derive above in theorem
2.1, 2.3, 3.5, we know exactly what the Pareto optimal curve
is.
Theorem 4.2. The Pareto optimal curve for regret and esti-
mation error (with or without privacy constraint) is charac-
terized by

eν(n, ∆̂n)Rν(n, π) = O(M),

Figure 2. Pareto Optimal Curve (General)

Figure 2 shows the Pareto optimal curve in general case.
We can see that the applicability of the Pareto optimal curve
depends on the privacy protection indicator ϵ and the mini-
mum feature occurrence fmin. As for the privacy protection
parameter ϵ, we claim that it is almost ”for free” in terms of
the trade-off between regret and estimation error, as it does
not affect the equation of our Pareto optimal curve. While
here we can see that the higher the requirement for privacy
protection, the shorter our optimal curve will be. This is due
to the fact that the smallest possible estimation error and
regret depend on ε, which is ϵ

lognand M logn
ε , respectively.

The minimum feature occurrence fmin is entirely deter-
mined by the (nonstationary) distribution of patient fea-
tures rather than by the experimenter. Therefore, in differ-
ent scenarios, we may have different optimal curves. Fig-
ure 3 shows Pareto optimal curves in different scenarios,
namely when fmin takes different values. We can see that as
fmin decreases gradually, the Pareto optimal curve shortens
and eventually collapses into a single point. Compared to
(Simchi-Levi & Wang, 2023), since they cannot deal with
sub-polynomial terms, it’s impossible for them to character-
ize the case when fmin = polylog(n) (see figure 3). The
light blue areas in different scenarios show the regions of
estimation error and regret pair

(
eν(n, ∆̂n),Rν(n, π)

)
that

algorithms may achieve, while there exists no algorithm that
can attain the region below Pareto optimal curves.
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Figure 3. Pareto Optimal Curves (In Different Scenarios)

5. Experiments
In this section, we use numerical results to illustrate the
theoretical findings and performance of the proposed algo-
rithms. In particular, we focus on evaluating the algorithm
ConSE in 2. First of all, we want to mention that ConSE is
in fact a meta algorithm consisting of two phases, one for
regret minimization and one for statistical estimation. For
each phase, one can adopt scenario-specific algorithms to en-
hance potential better performance. In this paper, we adopt
the batched sequential elimination for regret minimization,
and RCT for CATE estimation, mainly because it’s easier to
privatize these two algorithms. However, when privacy is
not a primary concern, one may adopt the celebrated UCB
or Thopmson Sampling for regret minimization, and other
estimation algorithms like adaptive neyman allocation pro-
posed in (Zhao, 2023), or double machine learning methods
with further structure assumption to improve estimation effi-
ciency. In particular, when the outcome is assumed to have a
linear structure, it was shown in (Kim et al., 2021) that dou-
bly robust method can be adopted to capture the information
in missing data. Below, we provide numerical results for
estimation accuracy for both our RCT estimation and double
machine learning estimation under different regret budget.
We denote the mean difference estimator as MD, and double
machine learning estimator as DML. The length of every
experiment is 20000. For simplicity, we don’t consider the
heterogeneity of treatment effect among different features
and assume no existence of features.

Exp 1: Normal Linear Bandit In experiment 1, we set
a0 = [1, 0], a1 = [0, 1], θ∗ = [1, 1], µ1 = µ0 = 1. The
experiment results are averaged on 50 replications. From
the experiment results, we can conclude that:

1. DML for predicting missing data is not helpful when
experiment length n is sufficiently large.

MD Error DML Error
Reg=200 0.31 0.53
Reg=400 0.03 0.07
Reg=800 0.008 0.02

Table 2. Normal Linear Bandit

MD Error DML Error
Reg=400 0.03 4.1
Reg=800 0.008 4.0

Table 3. When regularity assumption of Linear Bandit Fails

2. The regret-estimation tradeoff always holds regardless of
estimator.

Exp 2: When regularity assumption of Linear Bandit Fails

In experiment 2, we set a0 = [1, 0.001], a1 = [1, 0], µ0 =
3, µ1 = 1. In this case, the linear structure is ill-conditioned.
The experiment results are averaged on 50 replications. In
this experiment, MD estimator significantly outperforms
DML estimator, which shows that

3. DML estimator is very sensitive in extreme cases, while
MD estimator is robust.

4. MD estimator is much more efficient. The experiment
of MD estimator can be finished within 1 second, while
it takes 5 minutes to finish experiment of DML estimator.
So to conclude, our numerical results validate the regret-
estimation tradeoff and show that naive MD estimator is
already efficient and powerful when experiment is long
enough.

While the above experiments compare two specific estima-
tors, it remains interesting to compare different estimation
methods under various problem structures and more com-
plex environments.

6. Concluding Remarks
In this paper, we statistically investigate the trade-off be-
tween efficiency in decision-making and estimation preci-
sion of CATE in contextual bandit experiments. We adopt
the minimax multi-objective optimization framework and
Pareto optimality to characterize the trade-off. We first
provide a lower bound of the multi-objective optimization
problem and then propose ConSE to match that lower bound.
Going one step further, we consider the constraint of pro-
tecting patients’ privacy and propose a differentially private
version of ConSE (DP-ConSE) which still matches the lower
bound, demonstrating that privacy is ”almost” free. Besides,
we also develop the asymptotic normality for both ConSE
and DP-ConSE, which is crucial for statistical inference and
hypothesis testing.
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Impact Statement
This paper presents work whose goal is to advance the field
of adaptive experiment design. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.
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A. Appendix
A.1. Proof to Theorem 2.1

We first consider the case that M = 1. In this case, we are actually talking about an ATE problem, that means no feature.
And first, we start from proving the Lemma 1.1 below.
Lemma 1.1 For any given online decision-making policy π, the error of any ATE estimators can be lower bounded as
follows, for any function ϕ : n→

[
0, 14

]
and any u ∈ E0

inf
∆̂n

max
ν∈E0

Pν
(∣∣∣∆̂n −∆ν

∣∣∣ ≥ ϕ(n)) ≥ 1

2

[
1−

√
16

3
ϕ(n)2

Ru(n, π)
|∆u|

]

We define a Rademacher-like distribution as X ∼ Rad(p) means X = −1 with probability p and X = 1 with probability
1−p. Consider the following two bandits instance ν1 =

(
Rad

(
1−ξ
2

)
,Rad

(
1
2

))
and ν2 =

(
Rad

(
1−ξ
2

)
,Rad

(
1+2ϕ(t)

2

))
.

Note that the treatment effects of ν1 and ν2 is ∆1 = ξ and ∆2 = ξ + 2ϕ(t). ξ can be any number in (0, 1]. By such
constructions and the symmetry, ν1 and ν2 can represent all the possible instances without loss of generality. We define the
minimum distance test ψ

(
∆̂t

)
that is associated to ∆̂t by ψ

(
∆̂t

)
= argmini=1,2

∣∣∣∆̂t −∆i

∣∣∣. If ψ
(
∆̂t

)
= 1, we know

that
∣∣∣∆̂t −∆1

∣∣∣ ≤ ∣∣∣∆̂t −∆2

∣∣∣. By the triangle inequality, we can have, if ψ
(
∆̂t

)
= 1,

∣∣∣∆̂t −∆2

∣∣∣ ≥ |∆1 −∆2| −
∣∣∣∆̂t −∆1

∣∣∣ ≥ |∆1 −∆2| −
∣∣∣∆̂t −∆2

∣∣∣ ,
which yields that

∣∣∣∆̂t −∆2

∣∣∣ ≥ 1
2 |∆1 −∆2| = ϕ(t). Symmetrically, if ψ

(
∆̂t

)
= 2, we can have | ∆̂t−∆1

∣∣≥ 1
2

∣∣∆1 −
∆2 |= ϕ(t). Therefore, we can use this to show

inf
∆̂t

max
ν∈E0

Pν
(∣∣∣∆̂t −∆ν

∣∣∣
2
≥ ϕ(t)

)
≥ inf

∆̂t

max
i∈{1,2}

Pνi
(∣∣∣∆̂t −∆i

∣∣∣
2
≥ ϕ(t)

)
≥ inf

∆̂t

max
i∈{1,2}

Pνi
(
ψ
(
∆̂t

)
̸= i
)

≥ inf
ψ

max
i∈{1,2}

Pνi(ψ ̸= i)

where the last infimum is taken over all tests ψ based onHt that take values in {1, 2}.

inf
∆̂t

max
ν∈E0

Pν
(∣∣∣∆̂t −∆ν

∣∣∣
2
≥ ϕ(t)

)
≥ inf

ψ
max
i∈{1,2}

Pνi(ψ ̸= i)

≥ 1

2
inf
ψ

(Pν1(ψ = 2) + Pν2(ψ = 1))

=
1

2
[1− TV (Pν1 ,Pν2)]

≥ 1

2

[
1−

√
1

2
KL (Pν1 ,Pν2)

]

≥ 1

2

[
1−

√
8ϕ(t)2

3ξ
Rν1(t, π)

]

where the equality holds due to Neyman-Pearson lemma and the third inequality holds due to Pinsker’s inequality, and the
fourth inequality holds due to the following:

12
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KL (Pν1 ,Pν2) =

t∑
s=1

Eν1 [KL (P1,At
, P2,At

)]

=

2∑
i=1

Eν1 [Ti(n)] KL (P1,i, P2,i)

=
(ϕ(t))2

1
4 − (ϕ(t))2

(Eν1 [Ti(n)])

≤ 16ϕ(t)2

3ξ
Rν1(t, π)

where we use KL
(
Rad

(
1
2

)
,Rad

(
1+2ϕ(t)

2

))
= ϕ(t)2

1/4−ϕ(t)2 ≤
16ϕ(t)2

3 , and the last inequality holds because the historyHt
is generated by π and ξEν1 [Ti(n)] is just the expected regret of ν1, which is just the definition of regret. Now we finish the
proof of Lemma 1.1.

Then, we can have, given policy π, and ∆̂n, if ϕ(n) ≤
√

3|∆u|
32Ru(n,π)

for some u ∈ E0,

max
ν∈E0

E
[∣∣∣∆̂n −∆ν

∣∣∣2] ≥ ϕ(t)2 max
ν∈E0

Pν
(∣∣∣∆̂t −∆ν

∣∣∣
2
≥ ϕ(t)

)
≥ ϕ(n)2

2

[
1−

√
8ϕ(t)2

3ξ
Rν1(t, π)

]

≥ ϕ(n)2

4
,

where the second inequality holds due to Lemma 1.1.

We use νπ,∆̂n
to denote argmaxν∈E0

E
[∣∣∣∆̂n −∆ν

∣∣∣2] for any given policy π and ∆̂n,

max
ν∈E0

[
eν

(
n, ∆̂n

)
Rν(n, π)

]
≥ eνπ,∆̂n

(
n, ∆̂n

)
Rνπ,∆̂n

(n, π)

≥ ϕ(n)2

4
Rνπ,∆̂n

(n, π)

= Θ(1),

where the last equation holds because we plug in ϕ(n) and ∆ν = Θ(1) for ν ∈ E0. Since the above inequalities hold for any
policy π and ∆̂n, we finish the proof of the no feature case.
In general case, for any 1 ≤ j ≤M , we have the following:

Rjν(n, π) := Eπ
[

n∑
i=1

I{xi=Xj} [ri(a
∗(xi)|xi)− ri (ai|xi)]

]
= E [Rν(nj , π)] ,

where nj =
∑n
i=1 I{xi=Xj} is a random variable and E

[∑M
j=1Rν(nj , π)

]
=
∑M
j=1Rjν(n, π) = Rν(n, π).

For using the result in no feature case, consider the following two bandits instance νM1 = {Xj : ν1|1 ≤ j ≤ M},
νM2 = {Xj : ν2|1 ≤ j ≤ M}, where ν1 =

(
Rad

(
1−ξ
2

)
,Rad

(
1
2

))
and ν2 =

(
Rad

(
1−ξ
2

)
,Rad

(
1+2ϕ(t)

2

))
are

introduced in the case M = 1.
Using the result in no feature case, we have the following:

max
ν∈E0

[
eν

(
n, ∆̂n(Xj)

)
Rν(nj , π)

]
≥ Θ(1)

13
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for any given nj and 1 ≤ j ≤M .
Add their squares up, for any given {nj}Mj=1,we have

max
ν∈E0

( max
1≤j≤M

eν

(
n, ∆̂n(Xj)

)) M∑
j=1

Rν(nj , π)

 ≥ Θ(M),

Therefore, we have the result

max
ν∈E0

[(
max

1≤j≤M
eν

(
n, ∆̂n(Xj)

))
Rν(n, π)

]
≥ Θ(M),

Q.E.D.

A.2. Proof to Theorem 2.3

Firstly, we give the proof ofRν(n, π) ≤ O
(
M max{fmin(n)1−α, log n}

)
below.

Lemma 2.1 Let Algorithm 1 runs with any given α ∈ [0, 1]. Then w.p. ≥ 1− 1
n it holds that Algorithm 1 pulls the bad arm

of any feature Xj in the first half periods for at most

O
(
(log nj + log log (1/∆(Xj)))

1

∆(Xj)2

)
where nj is the number of occurrences of the feature Xj (1 ≤ j ≤M).
Proof of Lemma 2.1
Given an epoch e we denote by Ee the event where for all arms a ∈ S it holds that |µa − µ̄a| ≤ he and also denote
E =

⋂
e≥1 Ee. (we use T := nj represents the number of occurrences of the feature Xj and β = 1

n below)
First, by definition, we can calculate that:
R1 ≥ 16 log T , so Re ≥ 2Re−1 ≥ 2e+3 log T .
Furthermore, the Hoeffding bound gives that Pr [Ee] ≥ 1− β

4e2 , thus Pr[E ] ≥ 1− β
4

(∑
e≥1 e

−2
)
≥ 1− 1

T (T ≥ 3). The
remainder of the proof continues under the assumption the E holds, and so, for any epoch e and any viable arm a in this epoch
we have |µa − µ̄a| ≤ he. As a result for any epoch e and any two arms a1, a2 we have that |(µ̄a1 − µ̄a2)− (µa1 − µa2)| ≤
2he.

Next, we argue that under E the optimal arm a∗ is never eliminated. Indeed, for any epoch e, we denote the arm
ae = argmaxa∈S µ̄a and it is simple enough to see that µ̄ae − µ̄a∗ ≤ 0 + 2he, so the algorithm doesn’t eliminate a∗.

Next, we argue that, under E , in any epoch e we eliminate all viable arms with suboptimality gap ≥ 2−e = ∆e. Fix an
epoch e and a viable arm a with suboptimality gap ∆a ≥ ∆e. Note that we have set parameter Re so that

he =

√
log (16 · e2/β)

2Re
<

√√√√ log (16 · e2/β)
2 · 32 log(16e2/β)

∆2
e

=
∆e

8
;

Therefore, since arm a∗ remains viable, we have that µ̄max−µ̄a ≥ µ̄a∗−µ̄a ≥ ∆a−(2he) >∆e

(
1− 2

8 −
2
8

)
≥ ∆e

2 > 2he,
guaranteeing that arm a is removed from S.

Lastly, fix a suboptimal arm a and let e(a) be the first epoch such that ∆a ≥ ∆e(a), implying ∆e(a) ≤ ∆a < ∆e(a)−1 = 2∆e.
Using the immediate observation that for any epoch e we have Re ≤ Re+1/2, we have that the total number of pulls of arm
a is ∑

e≤e(a)

Re ≤
∑
e≤e(a)

2e−e(a)Re(a) ≤ Re(a)
∑
i≥0

2−i ≤ 6

(
32 log

(
16 · e(a)2/β

)
∆2
e

+
8 log

(
8 · e(a)2/β

)
∆e

)

The bounds ∆e > ∆a/2, |S| ≤ 2, e(a) < log2 (2/∆a) allow us to conclude and infer that under E the total number of pulls
of arm a is at most

log (2 log (2/∆a) /β)

(
1024

∆2
a

+
96

∆a

)
= O

(
(log nj + log log (1/∆(Xj)))

1

∆(Xj)2

)
14
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We finish the proof of Lemma 2.1.
Therefore we have the following straightforward corollary.
Corollary 2.2 For sufficiently large n, the expected pseudo regret in the first half periods of Algorithm 1 is at most
O
(∑

1≤j≤M
logn
∆(Xj)

)
.

Actually, by using the result of lemma 2.1, for n > log 1/∆(Xj), we have

Rfirstν (n, π) ≤ Σ1≤j≤M∆(Xj)O
(
(log nj + log log (1/∆(Xj)))

1

∆(Xj)2

)

≤ O

 ∑
1≤j≤M

log n

∆(Xj)


For the regret of the second half periods, noticed that with the probability ≥ 1 − 1

n , the optimal arm would be chosen
correctly in the first half periods. Therefore, the expected regret of the second half periods of DP-ConSE is:

Rsecondν (n, π) ≤ Σ1≤j≤M∆(Xj)E [Tmin] +
1

n
O (n) = O

max{fmin(n)1−α, log n}
∑

1≤j≤M

∆(Xj)


Therefore, when ∆(Xj) = O(1) (∀1 ≤ j ≤M), we have

Rν(n, π) = Rfirstν (n, π) +Rsecondν (n, π) ≤ O
(
M max{fmin(n)1−α, log n}

)
Secondly, we give the proof of eν(n, ∆̂n) ≤ O

(
1

max{fmin(n)1−α,logn}

)
below.

Note that for any feature Xj(1 ≤ j ≤ M), we learn at least Tj = min{fj(n) − fj(
n
2 ), Tmin} periods with equal

probabilities of two arms, so the MSE estimation error of feature Xj is bounded as O
(

1
Tj

)
. Hence, our estimation error is

bounded as O
(

1
min1≤j≤M Tj

)
.

Now we focus on Tj .
For any 1 ≤ j ≤ M and 1 ≤ t ≤ n, notice the characteristic function I{xt=Xj} ∈ {0, 1} and follows Bernoulli(ptj), we

have E
[
f̂j

]
= fj(

n
2 ) =

∑
1≤t≤n

2
ptj

Therefore, by Chernoff bound (multiplicative form (relative error)), we have

P
(
f̂j <

fj(
n
2 )

2

)
≤

 e−
1
2(

1
2

) 1
2

fj(
n
2 )

=

(√
2

e

)fj(n
2 )

≤ e−0.06fj(
n
2 )

≤ e−Cfmin(n)

where C = 0.06
C2

> 0, the last inequality is correct due to our assumption (1).
Combining (1) and (2) in our assumption 1.1, we know min1≤j≤M Tj ≥ Ω

(
max{fmin(n)1−α, log n}

)
with at least the

probability 1−Me−Cfmin(n). Therefore, our estimation error is bounded as

eν(n, ∆̂n) ≤ O
(

1

max{fmin(n)1−α, log n}

)
+Me−Cfmin(n)O (1) = O

(
1

max{fmin(n)1−α, log n}

)
Thus, we finish the proof of theorem 2.2.

15
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A.3. Proof to Theorem 3.3

The following proof is under the event
⋂

1≤j≤M (Tj ≥ 1
2Tmin), which probability is at least 1− M

n2 .
Note that for any feature Xj(1 ≤ j ≤ M), we learn at least Tj = min{fj(n) − fj(

n
2 ),

1
2Tmin} periods with equal

probabilities of two arms, so the MSE estimation error of feature Xj is bounded as O
(

1
Tj

)
. Hence, our estimation error is

bounded as O
(

1
min1≤j≤M Tj

)
.

Now we focus on Tj .
For any 1 ≤ j ≤ M and 1 ≤ t ≤ n, notice the characteristic function I{xt=Xj} ∈ {0, 1} and follows Bernoulli(ptj), we

have E
[
f̂j

]
= fj(

n
2 ) =

∑
1≤t≤n

2
ptj

Therefore, by Chernoff bound (multiplicative form (relative error)), we have

P
(
f̂j <

fj(
n
2 )

2

)
≤

 e−
1
2(

1
2

) 1
2

fj(
n
2 )

=

(√
2

e

)fj(n
2 )

≤ e−0.06fj(
n
2 ) ≤ e−Cfmin(n)

where C = 0.06
C2

> 0, the last inequality is correct due to our assumption (1).

Combining (1) and (2) in our assumption 1.1, we know min1≤j≤M Tj ≥ Ω
(
max{fmin(n)1−α, lognε }

)
with at least the

probability 1−Me−Cfmin(n). Therefore, our estimation error is bounded as

O

(
1

max{fmin(n)1−α, lognε }

)
+Me−Cfmin(n)O (1) +

M

n2
O (1) = O

(
1

max{fmin(n)1−α, lognε }

)
.

A.4. DP-ConSE Algorithm

In this subsection, we provide the precise formulation of algorithm DP-ConSE, which is a differentially private version of
ConSE provided in section 2.

Before introducing the DP-ConSE algorithm, we need to provide two notations.
Define a r.v. generator:
Given ε > 0, ∀m > 0, denote Lap+(m) = Lap+ε (m) is a random variable, satisfies:
∀k ≥ −[m], k ∈ Z ,

P (Lap+(m) = [m] + k) = e−
ε
2
|k|(e

ε
2 −1)

e
ε
2 +1−e

ε
2
[m]

Define four number sequences:
For e = epoch = 1, 2, 3, ..., and ε > 0 and the number of total patients n, define:
∆e = 2−epoch

Re = max{ 32 log(16n·epoch2)
∆2

e
, 8 log(8n·epoch2)

ε∆e
}+ 1

he =
√

log(16n·epoch2)
2Re

ce =
2 log(8n·epoch2)

Reε

Algorithm 2 DP-ConSE

1: Input: α, privacy-loss ε
2: Initialize: Sj ← {0, 1}, epoch ej ← 0, rj ← 0, µ̄ji ← 0, nj ← 0 (i = 0, 1; j = 1, 2, ...,M)
3: for t = 1 to [n2 ] do
4: Get feature xt = Xjt ∈ X
5: Increment njt ← njt + 1
6: if |Sjt | = 2 then
7: Select action at ∈ {0, 1} with equal probabilities ( 12 ,

1
2 ) and update mean µ̄jtat

16
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8: Increment rjt ← rjt + 1
9: if rjt ≥ Rjtejt then

10: if ejt ≥ 1 then
11: Set µ̃jti ← µ̄jti + Lap( 2

εRejt

)

12: Remove arm i from Sjt if max{µ̃jt1 , µ̃
jt
2 } − µ̃

jt
i > 2he + 2ce (i = 0, 1)

13: end if
14: Increment epoch ejt ← ejt + 1
15: Set rjt ← 0

16: Zero means: µ̄jti ← 0 ∀i ∈ {1, 2}
17: end if
18: else
19: Pull the arm in Sjt
20: end if
21: if t = [n2 ] then
22: f̂j = nj(1 ≤ j ≤M)

23: Tmin = max{log n,min{f̂1−α1 , f̂1−α2 , · · · , f̂1−αM }}
24: end if
25: end for
26: for j = 1 to M do
27: Tj = Lap+ε (Tmin)
28: nj = 0
29: end for
30: for t = [n2 ] + 1 to n do
31: Get feature xt = Xjt ∈ X
32: Increment njt ← njt + 1
33: if njt ≤ Tjt then
34: Select action at ∈ {0, 1} with equal probabilities ( 12 ,

1
2 ) and update mean µ̄jtat

35: if njt = Tjt then
36: Output ∆̂(Xjt) = µ̄jt1 − µ̄

jt
0 + Lap( 2

εTjt
)

37: end if
38: else
39: Pull the arm in Sjt . (if |Sjt | = 2, pull any arm at ∈ Sjt )
40: end if
41: end for

A.5. Proof to Lemma 3.1, Corollary 3.2, Lemma 3.4 and Theorem 3.5

A.5.1. PROOF OF LEMMA 3.1

Given an epoch e we denote by Ee the event where for all arms a ∈ S it holds that (we use T := nj represents the number
of occurrences of the feature Xj and β = 1

n below)
(i) |µa − µ̄a| ≤ he;
(ii) |µ̄a − µ̃a| ≤ ce;
(iii) Re ≤ Rje ≤ 3Re;
and also denote E =

⋂
e≥1 Ee.

First, by definition, we can calculate that:
R1 ≥ 16 log T

ϵ , so Re ≥ 2Re−1 ≥ 2e+3 log T
ϵ .

Hence, P ((iii)c) ≤ 2exp{−Reϵ} ≤ 2T−2e+3

Furthermore, given (iii), the Hoeffding bound, concentration of the Laplace distribution and the union bound over all arms
in S0 give that Pr [Ee] ≥ 1 −

(
β
4e2 + β

4e2 + 2T−2e+3
)

, thus Pr[E ] ≥ 1 − β
2

(∑
e≥1 e

−2
)
−
∑
e≥1 2T

−2e+3 ≥ 1 − 1
T

(T ≥ 3). The remainder of the proof continues under the assumption the E holds, and so, for any epoch e and any viable
arm a in this epoch we have |µ̃a − µa| ≤ he + ce. As a result for any epoch e and any two arms a1, a2 we have that
|(µ̃a1 − µ̃a2)− (µa1 − µa2)| ≤ 2he + 2ce.

17
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Next, we argue that under E the optimal arm a∗ is never eliminated. Indeed, for any epoch e, we denote the arm
ae = argmaxa∈S µ̃a and it is simple enough to see that µ̃ae − µ̃a∗ ≤ 0 + 2he + 2ce, so the algorithm doesn’t eliminate a∗.

Next, we argue that, under E , in any epoch e we eliminate all viable arms with suboptimality gap ≥ 2−e = ∆e. Fix an
epoch e and a viable arm a with suboptimality gap ∆a ≥ ∆e. Note that we have set parameter Re so that

he =

√
log (16 · e2/β)

2Re
<

√√√√ log (16 · e2/β)
2 · 32 log(16e2/β)

∆2
e

=
∆e

8
;

ce =
log
(
8 · e2/β

)
Reε

<
log
(
8 · e2/β

)
ε · 8 log(8e2/β)

ε∆e

=
∆e

8

Therefore, since arm a∗ remains viable, we have that µ̃max − µ̃a ≥ µ̃a∗ − µ̃a ≥ ∆a − (2he + 2ce) >∆e

(
1− 2

8 −
2
8

)
≥

∆e

2 > 2he + 2ce, guaranteeing that arm a is removed from S.

Lastly, fix a suboptimal arm a and let e(a) be the first epoch such that ∆a ≥ ∆e(a), implying ∆e(a) ≤ ∆a < ∆e(a)−1 = 2∆e.
Using the immediate observation that for any epoch e we have Re ≤ Re+1/2, we have that the total number of pulls of arm
a is∑
e≤e(a)

Rje ≤ 3
∑
e≤e(a)

Re ≤ 3
∑
e≤e(a)

2e−e(a)Re(a) ≤ 3Re(a)
∑
i≥0

2−i ≤ 6

(
32 log

(
16 · e(a)2/β

)
∆2
e

+
8 log

(
8 · e(a)2/β

)
ε∆e

)

The bounds ∆e > ∆a/2, |S| ≤ 2, e(a) < log2 (2/∆a) allow us to conclude and infer that under E the total number of pulls
of arm a is at most

3 log (2 log (2/∆a) /β)

(
1024

∆2
a

+
96

ε∆a

)
= O

(
(log nj + log log (1/∆(Xj)))

(
1

∆(Xj)2
+

1

ε∆(Xj)

))

A.5.2. PROOF OF COROLLARY 3.2

By using the result of lemma 3.1, for n > log 1/∆(Xj), we have

Rfirstν (n, π) ≤ Σ1≤j≤M∆(Xj)O
(
(log nj + log log (1/∆(Xj)))

(
1

∆(Xj)2
+

1

ε∆(Xj)

))

≤ O

 ∑
1≤j≤M

log n

∆(Xj)

+
M log n

ε


A.5.3. PROOF OF LEMMA 3.4

Noticed that with the probability ≥ 1− 1
n , the optimal arm would be chosen correctly in the first half periods. Therefore,

the expected regret of the second half periods of DP-ConSE is
Rsecondν (n, π) ≤ Σ1≤j≤M∆(Xj)E [Tj ] +

1
nO (n) = O

(
max{fmin(n)1−α, lognε }

∑
1≤j≤M ∆(Xj)

)

A.5.4. PROOF OF THEOREM 3.5

By adding the result of corollary 1 and lemma 2, under the condition that ∆(Xj) = O(1) (∀1 ≤ j ≤ M) we can easily

proof thatRν(n, π) ≤ O
(
M max{fmin(n)1−α, lognε }

)
.

As a result, we have eν(n, ∆̂n)Rν(n, π) ≤ O(M), which is the same as theorem 2.3, and matches the lower bound in
theorem 2.1.

18
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Finally, we need to prove that the DP-ConSE is
(
ε, 1
n

)
-private.

The following proof is under the event
⋃

1≤j≤M
⋃
e≥1(R

j
e ≥ Re), which probability is at least 1− 1

n (n ≥ 3M).
For any two neighboring datasets D and D’, suppose D and D’ are only different at time t.We discuss different cases for t as
following:
(1) t is in the second half, i.e. [n2 ] + 1 ≤ t ≤ n;
In this case, since the probabilities of arms(actions) are not dependent of features or rewards (always ( 12 ,

1
2 ), and noticed

that the output ∆ and running time periods Tj are added Laplace mechanism, which are both ϵ
2 -private. Therefore, in this

case, P (D) ≤ eϵP (D′). (2)t is in the first half, i.e. 1 ≤ t ≤ [n2 ];
Noticed that |Tmin − T ′

min| ≤ 1 and Tj and T ′
j are added Laplace mechanism, which is ϵ

2 -private for the second half.
Moreover, for the first half, the mean values µs and each running periods are all added Laplace mechanism, which are
ϵ
2 -private.
Therefore, by the composition theorem, P (D) ≤ eϵP (D′).
In conclusion, for any two neighboring datasets D and D’, we have P (D) ≤ eϵP (D′) + M

n2 ≤ eϵP (D′) + 1
n

A.6. Proof of Proposition 2.6 and Proposition 3.6

A.6.1. PROOF OF PROPOSITION 2.6

By our definition and Central Limit Theorem (CLT), we know Tmin = max{fmin(n)1−α, log n} and

lim
n→∞

√
Tmin(∆̂(Xj)−∆(Xj))⇝ N(0, σ2

j0 + σ2
j1)

.

A.6.2. PROOF OF PROPOSITION 3.6

We know Tmin = max{fmin(n)1−α, lognε }, therefore, we have√
max{fmin(n)1−α,

log n

ε
}(∆̂(Xj)−∆(Xj)) =

√
Tmin

(
(µ̄j1 − µ̄

j
0)− (µj1 − µ

j
0) + Lap(2/εTj)

)
To prove the above expression is asymptotically normal, we will give the proof of the three solutions below:
(1) Tj

Tmin

P−→ 1.

(2)
√
TminLap(2/εTj)

P−→ 0.

(3)
√
Tmin

(
(µ̄j1 − µ̄

j
0)− (µj1 − µ

j
0)
)

L−→ N(0, σ2
j0 + σ2

j1).
For the solution (1), by our definition of Tj , we know for any δ > 0,

P

(∣∣∣∣ TjTmin
− 1

∣∣∣∣ ≥ δ) ≤ 2
∑

k≥δTmin

e−
ε
2 |k| → 0

as Tmin ≥ log n→ +∞.
For the solution (2), by using the solution (1), we know for any δ ∈ (0, 1),

P (|X| > δ) ≤ P
(∣∣∣∣ TjTmin

− 1

∣∣∣∣ ≥ δ)+P

(
|X| > δ,

∣∣∣∣ TjTmin
− 1

∣∣∣∣ ≤ δ) ≤ P (∣∣∣∣ TjTmin
− 1

∣∣∣∣ ≥ δ)+e−(1−δ)δ
√
Tminϵ → 0

as Tmin ≥ log n→ +∞, where r.v. X follows the distribution
√
TminLap(2/εTj).

For the solution (3), denote STj = Tj

(
(µ̄j1 − µ̄

j
0)− (µj1 − µ

j
0)
)

is the sum of Tj i.i.d differences. Similarly, we denote

STmin
is the sum of Tmin i.i.d. differences who follow the same distribution with expectation 0 and variance σ2

j0 + σ2
j1.

Obviously, by Central Limit Theorem (CLT), we have STmin√
Tmin

L−→ N(0, σ2
j0 + σ2

j1). Therefore, we only need to prove that

STmin
− STj√

Tmin

P−→ 0
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By using the solution (1), we know for any δ, δ′ > 0,

P

(∣∣∣∣STmin
− STj√

Tmin

∣∣∣∣ > δ′
)
≤ P

(∣∣∣∣ TjTmin
− 1

∣∣∣∣ ≥ δ)+ P

(∣∣∣∣STmin
− STj√

Tmin

∣∣∣∣ > δ′,

∣∣∣∣ TjTmin
− 1

∣∣∣∣ ≤ δ)
≤ P

(∣∣∣∣ TjTmin
− 1

∣∣∣∣ ≥ δ)+
δ

δ′2
(σ2
j0 + σ2

j1)

→ 0

as Tmin ≥ log n→ +∞ and letting δ → 0, where the last inequality is because of Markov inequality.
Combining solutions (2) and (3), we can easily know the proposition 3.6 is correct.
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