
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059

Under review as a conference paper at ICLR 2025

AFFS: ADAPTIVE FAST FREQUENCY SELECTION ALGORITHM
FOR DEEP LEARNING FEATURE EXTRACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

As deep learning(DL) advances, effective feature extraction from big data remains critical for
enhancing DL model’s performance. This paper proposes a method for feature extraction in
the frequency domain, utilizing advantages such as concentrated signal energy and pronounced
data features. However, existing frequency component selection algorithms face challenges like
difficulty adapting to diverse tasks and achieving only locally optimal results with extended pro-
cessing times. To address these challenges, we introduce the Adaptive Fast Frequency Selection
(AFFS) algorithm, tailored for various subsequent tasks. AFFS incorporates a frequency com-
ponent selection factor layer, integrating it with the subsequent DL model to select globally
optimal frequency component combinations for the DL model. Additionally, we propose a fast
selection algorithm to expedite the process, leveraging the experimental observation of rapid
convergence of selection factor ranking. Experimental results demonstrate that AFFS achieves
superior performance across three datasets and three DL models. By using AFFS to select ap-
propriate frequency components, even though our input data size is only 10% of the original
frequency feature, the classification accuracy of the model is improved by about 1%. Further-
more, the early stopping mechanism can shorten the selection process by approximately 80%.

1 INTRODUCTION

The rapid advancement of deep learning (DL) techniques has garnered increasing interest for handling data in
various applications, such as sentiment analysis (Ma et al., 2023), speech recognition (Li et al., 2022; Dhanjal
& Singh, 2024), object detection (Chan et al., 2023; Gui et al., 2024), and video recognition (Yan et al., 2022).
Typically, these studies tackle data handling in two steps: extracting features from the data and subsequently
inputting these features into DL models to achieve various objectives.

Feature extraction has become a crucial step in DL-based applications, directly impacting their performance. While
traditional methods usually encode data from the original high-dimensional space to low-dimensional spatial-
temporal feature embeddings, they often neglect the information in the frequency domain and struggle with issues
like noise and outliers.

Recent studies (Kong et al., 2023; Patro et al., 2023; Zhou et al., 2022) advocate transforming data to the frequency
domain for feature extraction. Some application examples include: Image Domain: JPEG (Hudson et al., 2017)
uses the Discrete Cosine Transform (DCT) to compress images by retaining significant frequency components
and discarding high-frequency parts. Speech Signal Domain: Techniques like the Short-Time Fourier Transform
(STFT) (Zhou et al., 2022; Kawamura et al., 2023; Kadiri et al., 2023) enable spectral analysis of speech signals
for applications such as coding, noise reduction, and recognition. Sensor Data Domain: Frequency-domain pre-
processing for sensor data, such as environmental and health monitoring, uses methods like the Fourier Transform
to enhance feature extraction and reduce noise (Xu et al., 2023).

These applications demonstrate that utilizing feature extraction in the frequency domain can enhance task perfor-
mance. The main advantages over direct processing in spatial or temporal domains can be summarized as follows:

Energy Concentration: Frequency domain transformations often concentrate the signal’s energy into a few major
frequency components, facilitating data compression by retaining these key components.

Enhanced Feature Extraction: Techniques like the Fourier Transform can separate different frequency compo-
nents, making certain features more prominent.

After frequency transformation, data typically consists of multiple frequency components. Some studies
(El Qacimy et al., 2014; Fu & Guimaraes, 2016) have found that DL models exhibit varying sensitivities to different
frequency components. Thus, selecting the most effective frequency components for tasks like image classifica-
tion (Maurı́cio et al., 2023; Bharadiya, 2023), speech recognition (Jeon et al., 2023a;b), and time series prediction
(Morid et al., 2023; Dudukcu et al., 2023; Ruan et al., 2023) is crucial.

Consequently, various studies (El Qacimy et al., 2014; Qin et al., 2021; dos Santos et al., 2020; Xu et al., 2020)
propose some methods to select the more important subsets of frequency components. These methods aim to

1

060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

Under review as a conference paper at ICLR 2025

extract important features and reduce redundancy by selecting various sets of frequency components. Among
these, most of them focus on the fixed frequency selection methods. For instance, DCT upper left corner (ULC)
coefficients (El Qacimy et al., 2014; Fu & Guimaraes, 2016; dos Santos et al., 2020), DCT zigzag coefficients.
However, they suffer from the following problems:

Non-Adaptive: They often rely on fixed components that are not optimized for the specific subsequent task.
Utilizing identical frequency components across different tasks can lead to suboptimal model performance.

Apart from fixed selection methods, some studies(Qin et al., 2021; Xu et al., 2020) propose learning-based methods
to adaptively select frequencies for different subsequent tasks. Although promising, they still have some problems:

Local Optima: They often struggle to determine the optimal combination of frequency components simultane-
ously. Typically, these methods employ a greedy algorithm that sequentially selects the optimal frequency com-
ponents (e.g., first selecting the component that yields the best performance for the subsequent tasks, then the
next best component, and so forth). However, this approach may result in a locally optimal solution rather than a
globally optimal one.

Slow Selection Speed: Their approach involves continuously evaluating the model performance achievable with
each selected frequency component, ultimately determining the optimal combination of frequency components
through a greedy method. This makes the frequency component selection process computationally expensive.
Therefore, designing a fast selection method is crucial to accelerate this process.

1.1 THE CONTRIBUTIONS OF OUR METHOD

To address the aforementioned challenges, we propose the Adaptive Fast Frequency Selection (AFFS) algorithm.
This algorithm is designed to adaptively select the most critical frequency components for various subsequent
tasks. The main steps involve converting data into frequency components using the Discrete Cosine Transform
(DCT), quantifying the importance of each component using selection factors, and selecting components based on
their values. The key contributions of this paper are as follows:

1) Task-Specific Frequency Component Selection: We design an easily implementable selection factor layer
that requires only minor modifications to existing DL models. Specifically, we add a selection factor layer after
frequency conversion and before the subsequent DL model. This layer enables adaptive adjustment based on
different subsequent tasks, dynamically selecting the optimal combination of frequency components. Importantly,
the selection factors are trained concurrently with the parameters of the subsequent DL model, allowing them to
automatically adjust to any subsequent task. Once training is complete, we can select the optimal combination of
frequency components at once, thereby avoiding the issue of local optima. Moreover, our FCS module is easy to
implement and has plug-and-play functionality for various subsequent tasks due to the minor modifications to the
subsequent DL model.

2) Fast Frequency Selection Algorithm: We propose a fast frequency selection algorithm to accelerate the selec-
tion of the most important frequency components. From extensive experiments, we discover that the ranking of the
most important selection factors is typically determined within the initial few iterations of model training, rather
than waiting for the model to converge. Moreover, we propose a metric called SFVA to effectively monitor the
convergence of the selection factor ranking, and further propose an early stopping mechanism to accelerate the se-
lection of frequency components, which significantly reduces training time while maintaining model performance.

3) Extensive Experimental Validation: We conduct extensive experiments on three datasets(e.g., CIFAR10,
ImageNet, NWPU-RESISW45) and three subsequent DL models(e.g., ResNet18, ResNet50, DenseNet121) to
verify the effectiveness of our AFFS algorithm. We have the following observations in experimental results:

Accurate selection. Compared with other frequency component selection methods, our AFFS achieves higher
performance across different datasets and models, demonstrating its ability to adaptively select the optimal com-
bination of frequency components for various subsequent tasks. Fast selection. Our proposed early stopping
mechanism reduces training time by over 80%, enabling fast frequency component selection. Smaller size but
higher performance. After feature extraction using our algorithm, the size of the resulting feature data is reduced
by nearly 90% compared to the original frequency feature data. Moreover, even with the much smaller size of the
extracted feature data, the model performance improves by nearly 1% compared to using the original data.

Overall, the AFFS algorithm not only enhances the performance of subsequent DL model by selecting the opti-
mal frequency components but also significantly reduces computational requirements, making it able to achieve
efficient and effective feature extraction for various subsequent tasks.

2 RELATED WORK

This section reviews the methods of frequency transformation and the techniques for selecting frequency compo-
nents.

2

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

Under review as a conference paper at ICLR 2025

2.1 THE FREQUENCY TRANSFORMATION METHOD

There are various transformation methods available for frequency-domain data processing. The Fourier Transform
(FT)(Bracewell, 1989) is widely used for converting signals from the temporal domain to the frequency domain,
allowing for the analysis of different frequency components. However, the FT tends to distribute signal energy
across a wide range of frequencies, which can lead to inefficiencies in feature extraction. The Wavelet Transform
(WT) (Zhang & Zhang, 2019) offers a multi-resolution analysis, providing both temporal and frequency local-
ization. It is particularly useful for analyzing non-stationary signals and capturing transient features but involves
higher computational complexity and implementation challenges.

Different from FT and WT, the Discrete Cosine Transform (DCT) is a widely used frequency domain transforma-
tion method in signal processing, particularly for digital images and videos, due to its strong energy concentration
characteristics and high computational efficiency (Ahmed et al., 1974; Barbero et al., 1992). So we choose to use
the DCT over these methods.

With the rise of deep learning, several studies (Ravı̀ et al., 2016; Gueguen et al., 2018; Rajesh et al., 2019) have
integrated DCT into DL-based computer vision frameworks. For example, Gueguen et al. (2018) modify the
libjpeg library to generate DCT coefficients, applying these coefficients to train the ResNet-50 model for image
classification. This approach reduces image decoding time and achieves significant training acceleration by directly
using all DCT coefficients for network training. Building on this, Rajesh et al. (2019) propose a novel CNN model
called DCT-CompCNN, which can accept both quantized and non-quantized DCT coefficients as input. Their
results show that this method can produce performance similar to traditional CNN methods with faster model
training speed.

However, these methods use all frequency components for training and inference, without considering the varying
impacts of different frequency components on specific tasks. This results in a large amount of redundant informa-
tion, leading to unnecessary computational overhead. By evaluating the importance of frequency components and
selecting key frequency components, we can reduce input data redundancy and improve the performance of the
subsequent DL model.

2.2 FREQUENCY SELECTION

After transforming the original data to the frequency domain using DCT, the data comprises multiple frequency
components. To extract efficient feature information, it is necessary to select specific frequency components. We
categorize frequency component selection methods into the following two types:

Fixed Selection. This method primarily involves selecting fixed low-frequency components in the DCT coefficient
matrix. Fu & Guimaraes (2016) introduce a method combining DCT with truncation to accelerate neural network
training. They transform the original input into the DCT domain and, based on the energy compaction property
of DCT, truncate the upper-left portion of the DCT coefficient matrix, thereby reducing feature dimensions. dos
Santos et al. (2020) extend the ResNet-50 network improved by Gueguen et al. (2018) by incorporating a Fre-
quency Band Selection (FBS) technique to select the most relevant DCT coefficients before inputting them into
the network. The principle of FBS is that high-frequency information has a minimal visual impact on images, so
only the lowest n frequency components from Y, Cr, and Cb (YCrCb color space) are selected. While effective,
this method discards high-frequency information, resulting in a loss of image details and failing to consider the
different impacts of Y, Cr, and Cb on the model, which may reduce accuracy. These methods do not account for
the impact of other frequency components and are tailored for specific tasks, limiting their adaptability to various
subsequent tasks.

Learning-Based Selection. Different from the fixed selection methods, Qin et al. (2021) apply DCT to channel at-
tention and proposed a two-stage frequency selection method. They first evaluate the model performance resulting
from different frequency components individually. Then, they select frequency components one by one that lead
to the current optimal performance, until a sufficient number of components have been chosen. This method aims
to find a local optimum at each step without considering the global performance, which always results in the local
optimal solutions. Moreover, after selecting each frequency component, it is necessary to reassess the impact of
all remaining frequency components on the model performance, which is high computation cost.

Additionally, Xu et al. (2020) introduce a frequency channel selection gate module, which assigns two numbers
to each frequency channel and decides whether to retain the channel by sampling from the Bernoulli distribution
Bern(p). Due to the non-differentiable nature of the Bernoulli sampling process, they employ the Gumbel Softmax
reparameterization method to update the gate module weights, allowing gradients to backpropagate through the
discrete sampling process. Although effective, the gate module’s training process has high computational cost too.

To select the optimal combination of frequency components for different subsequent tasks, we propose the Adap-
tive Fast Frequency Selection (AFFS) algorithm. This method addresses the loss of high-frequency information in
the Fixed Selection approach and can adaptively select the optimal frequency combination for any subsequent task.
Additionally, we design an early stopping mechanism to accelerate the selection process of frequency components.

3

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

Under review as a conference paper at ICLR 2025

3 PROPOSED METHOD

Leveraging the DCT’s exceptional energy concentration, which can condense the energy of a signal or image into a
few frequency components, we propose a frequency component selection method called Adaptive Fast Frequency
Selection (AFFS). This method dynamically selects frequency components for the subsequent task, achieving
efficient data feature extraction.

In this paper, we use the image classification task as an example to demonstrate how AFFS operates. By prepro-
cessing image data using the proposed AFFS, we can make minor modifications to existing neural network models
(e.g., image classification DL models), significantly reducing the input data size and improving the performance
of the subsequent DL model.

Fig. 1 illustrates the architecture of our approach, which comprises three main modules: Data Frequency Domain
Transformation (DFDT), Frequency Component Selection (FCS), and Adaptive Channel Matching (ACM). The
DFDT and FCS modules primarily address the initial step of feature extraction and selection in deep learning tasks
within the frequency domain. Given that mature and commonly used DL models typically have fixed-sized input
requirements, the ACM module is designed to adapt the size of the extracted features to the subsequent DL model.

Figure 1: The overall architecture of our approach.

In the DFDT mod-
ule, we convert
original data to the
frequency domain
using 8 × 8 DCT
and frequency
combination. The
input to this mod-
ule is an RGB
image XRGB ∈
RC×H×W , where
C represents the
channels, H repre-
sents the height, and
W represents the
width. The output is
the frequency components Freq ∈ RC′×H′×W ′

, where C ′ = 64× C, H ′ = H/8, and W ′ = W/8.

In the FCS module, we introduce a selection factor layer between the DFDT module and the subsequent DL
model. This layer includes multiple selection factors, each corresponding to the weight of a frequency component.
During training, the DL model and the selection factor layer are trained together. This allows us to adaptively
and efficiently select the optimal combination of frequency components for the specific task, thus avoiding local
optima. The input to this module is the output from the DFDT module (i.e., the frequency components Freq),
and the output is the selected frequency components Freq S ∈ RK×H′×W ′

, where K represents the number of
selected components.

Through extensive experiments, we discover that the importance of frequency components is quickly determined
during the model training process. To exploit this phenomenon and accelerate the frequency component selection
process, we design a significance change indicator called Selection Factor Vibration Amplitude (SFVA) to monitor
the convergence of the selection factor ranking. Building on this, we propose an early stopping algorithm to
accelerate the selection of important frequency components.

In the ACM module, we design multiple 1 × 1 convolution kernels to convert the obtained Freq S to match the
input size required by the subsequent backbone model.

Next, we will detail the design of each module.

3.1 DATA FREQUENCY DOMAIN TRANSFORMATION

This section outlines the process of transforming image data to the frequency domain, which is crucial for feature
extraction. The DFDT module encompasses the following four steps:

Step 1: RGB to YCrCb. Convert the image from the RGB color space to the YCrCb color space, which separates
luminance (Y) from chrominance (Cr and Cb). Post conversion, the image XY CrCb ∈ RC×H×W is decomposed
into three parts: XY , XCr, and XCb.

Step 2: 8 × 8 DCT. In this step, we transform the image data from the original domain to the frequency domain
using DCT. Take XY as an example, we apply block-wise DCT to XY . The XY is divided into multiple non-
overlapping image blocks of size 8 × 8, following the JPEG method (Hudson et al., 2017). Among which, each

4

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

Under review as a conference paper at ICLR 2025

blocks of XY can be represented by fm,n ∈ R8×8, where m ∈ {0, 1, 2, . . . ,H ′ − 1}, n ∈ {0, 1, 2, . . . ,W ′ − 1}.
Then, we perform DCT on fm,n.

Step 3: Frequency Combination. After DCT, we obtain H ′ ×W ′ DCT coefficient matrices Fm,n ∈ R8×8, each
containing 64 DCT coefficients, where H ′ = H/8, and W ′ = W/8. In this step, we combine coefficients at
the same position from different DCT matrices (i.e., Fm,n[x, y]) into single-frequency component (i.e., Freq Y t,
where t ∈ {0, 1, 2, . . . , 63}). After combining all frequency component matrices, concatenate them along the
component dimension to obtain frequency component tensor Freq Y .

Step 4: Concatenate. After performing Steps 2 and 3 on channels Y , Cr, and Cb, we concatenate the resulting
tensors Freq Y , Freq Cr, and Freq Cb along the component dimension to form the final frequency component
tensor Freq ∈ RC′×H′×W ′

.

For more details on this section, please refer to Appendix A.1.

3.2 FREQUENCY COMPONENT SELECTION

In Section 3.1, we obtain the frequency component tensor Freq to represent the RGB image data XRGB in the
frequency domain. Each slice Freq[i, :, :] corresponds to a specific frequency component of XRGB , in this section,
we aim to select the optimal subset from Freq.

Research has shown (El Qacimy et al., 2014; Fu & Guimaraes, 2016) that different frequency components can have
varying impacts on the performance of DL models. Therefore, to effectively extract crucial features and minimize
redundancy in frequency-domain data, selecting the most relevant frequency components is essential.

(a)

(b)

Figure 2: Frequency Component Selection

As discussed in Section.2, the existing
methods often select the fixed frequency
components that are not tailored for spe-
cific downstream tasks which may result in
suboptimal model performance. Although
some other studies propose the learning-
based method to select frequency compo-
nents by greedy strategy, they still suffer
from the local optima and high computa-
tion cost.

Design of the Selection Factor Layer.
To adaptively select the optimal frequency
components for various tasks, we add a
selection factor layer between the DFDT
module and the subsequent DL model.
Thus, we can minimize modifications to
subsequent DL model as much as possible,
achieving plug-and-play functionality. The
selection factor layer is illustrated in Fig.
2. This layer includes a learnable parame-
ter for each frequency component, denoted
as selection factor γi. This results in selec-
tion factors γ ∈ RC′

, which have the same
size (i.e., C ′) with the number of frequency
components in Freq.

With the selection factor layer, each com-
ponent of Freq is scaled by its correspond-
ing selection factor:

Freq out[i, :, :] = γiFreq[i, :, :], (1)

where i ∈ {0, 1, 2, . . . , C ′ − 1}. Freq out represents the output after applying the selection factors.

The magnitude of γi directly affects Freq out[i, :, :]. A smaller γi results in a smaller Freq out[i, :, :], indicating
that the corresponding frequency component is less significant for the subsequent task. Thus, γi reflects the
importance of each frequency component.

If γi approaches zero, the corresponding frequency component Freq out[i, :, :] becomes negligible, allowing us
to remove it. The sparsity of γ ensures that only the most impactful components are retained.

Training of γ. To ensure that the selected frequency components adapt to various tasks, we train γ jointly with the
subsequent DL model. We apply L1 regularization to enforce sparsity in γ, ensuring that only the most important
components are selected. The loss function is formulated as follows:

5

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

Under review as a conference paper at ICLR 2025

argmin
θ,γ

(Lθ,γ(X) + λ||γ||1), (2)

where Lθ,γ(∗) represents the loss function for the subsequent task, θ denotes the parameters of the task model, λ
is a hyperparameter for regularization, X is the input (e.g., XRGB), and || · ||1 denotes L1 regularization.

During training, Eq. (2) serves as the loss function. The selection factors γ are trained alongside the task model
parameters θ, allowing the importance of frequency components to be determined by the task.

Selection of Frequency Components. After training, the selection factors γ reflect the importance of each fre-
quency component. We select the K largest values of γi and record their indices in the set Ω. The selected
frequency components are then:

Freq S = Freq[index, :, :],
s.t. index ∈ Ω.

(3)

As illustrated in Fig. 2b, the frequency components corresponding to the largest γ values are selected to form a
new tensor Freq S ∈ RK×H′×W ′

.

Our method offers the following advantages:

(1) Adaptive to subsequent tasks. Unlike fixed selection methods, our approach is data-driven, allowing the
importance of frequency components to be determined by the specific task through the training of γ.

(2) Global optima. By selecting the best frequency components simultaneously, our method avoids the local
optima problem associated with greedy approaches. The well-designed selection factors ensure an optimal combi-
nation of frequency components.

(3) Plug-and-play functionality. Due to the well-designed selection factor layer between the DFDT module and
subsequent DL model, our FCS module is easy to implement and can be easily integrated into various subsequent
tasks.

3.3 EARLY STOPPING: GET γ QUICKLY

While the method described in Section 3.2 effectively identifies critical frequency components, it requires the
model to converge, resulting in significant time overhead. However, our selection process focuses on the relative
importance of each selection factor rather than their final values. By sorting the selection factors in descending
order and selecting the top K, we can determine the set Ω of indices corresponding to these factors. If we can
ascertain Ω before the model fully converges, we can expedite the frequency selection process, avoiding prolonged
training.

Rapid Convergence of Selection Factor Ranking. Our method updates γ each training epoch to evaluate the
relative importance of frequency components and select the K most significant ones. Fig. 3 illustrates the evolution
of all selection factors during training, with epochs on the horizontal axis and selection factor values on the vertical
axis.

As shown in Fig. 3, the selection factors are categorized into two groups: unselected (brown in legend) and
selected (other colors in legend). From the outset of training, the values of selected factors are markedly higher
than those of unselected factors. The unselected factors’ values decline rapidly early in training and remain near
zero, indicating the minimal contribution of their corresponding frequency components to subsequent tasks. Since
Ω is the index set of the top K selection factors, its elements stabilize early in training and remain unchanged. For
example, if K = 6, we finally select the 0-th, 1-th, 64-th, 65-th, 128-th, and 129-th frequency components, result
in Ω = {0, 1, 64, 65, 128, 129}. We can find that the Ω can be determined after 6 epochs and no longer changes
in the following epochs, due to the selection factors γ0, γ1, γ64, γ65, γ128, and γ129 are significantly larger than
other selection factors.

Therefore, if we can detect this stabilization epoch, we can halt the training of γ at that point, to accelerate the
selection of frequency component.

Designing the Early Stopping Mechanism. To leverage this rapid convergence phenomenon and accelerate the
training process of γ, we introduce a metric to determine whether Ω has converged and propose an early stopping
mechanism based on this metric.

The metric, called Selection Factor Vibration Amplitude (SFVA), is used to monitor the convergence of the selec-
tion factor ranking, and it is defined as:

SFV AK
i =

∣∣∣∣∣
N−1⋃
j=0

ΩK
i−j

∣∣∣∣∣−K, (4)

6

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

Under review as a conference paper at ICLR 2025

where N is a hyperparameter representing the number of consecutive rounds to consider (the value of N will be
discussed in the experimental section), ΩK

i−j denotes the index set corresponding to the top K selection factors
in the (i − j)-th iteration,

⋃N−1
j=0 ΩK

i−j represents the union set of top K indexes from iteration i − (N − 1) to
iteration i, and |·| denotes the cardinality of the union set. The i-th iteration represents the current iteration. When
calculating the SFVA for the i-th iteration, we also take into account the ΩK from the previous (N − 1) iterations.
This can reduce the impact of noise and outliers that may arise from a single iteration, thereby improving the
stability of the results.

Figure 3: The trend of γ on RE-
SISC45.

Figure 4: In each epoch, the selec-
tion factors...

Figure 5: The training period is
greatly shortened.

For example, as shown in Fig. 4, with K = 5 and N = 4, each row represents the index sequence obtained
by sorting γ in descending order in the i-th iteration, and each row in the green box is the selected index set
ΩK

i . From these iterations, we obtain five Ω sets: Ω5
1 = [0, 1, 2, 4, 5], Ω5

2 = [0, 2, 3, 4, 6], Ω5
3 = [0, 1, 2, 3, 4],

Ω5
4 = [0, 1, 2, 4, 6], Ω5

5 = [0, 1, 2, 3, 4]. Therefore, we can calculate SFV A5
4 and SFV A5

5 as follows:

SFV A5
4 =

∣∣Ω5
1 ∪ Ω5

2 ∪ Ω5
3 ∪ Ω5

4

∣∣−K

= |{0, 1, 2, 3, 4, 5, 6}| − 5 = 2,

SFV A5
5 =

∣∣Ω5
2 ∪ Ω5

3 ∪ Ω5
4 ∪ Ω5

5

∣∣−K

= |{0, 1, 2, 3, 4, 6}| − 5 = 1.
(5)

The SFVA value indicates the degree of change in the elements of Ω. A smaller SFVA value signifies a more stable
Ω. Therefore, our early stopping mechanism is: when SFVA = 0, it indicates that Ω is identical across the
consecutive N epochs, thereby triggering early stopping of training; otherwise, training continues.

As shown in Fig. 5, without early stopping, the model is typically trained for a full 100 epochs. By implementing
the early stopping mechanism, we utilize the SFVA metric to automatically monitor the training progress of γ,
allowing the network to stop training at the appropriate epoch based on SFVA. The red line in the figure indicates
the early stopping epoch. With early stopping, we can limit training to approximately 20 epochs, significantly
reducing the training time for γ and enabling fast selection of frequency components.

Discussion on N . The choice of N is crucial for the effectiveness of the early stopping mechanism. If N is too
small, the SFVA metric may not capture sufficient stability in the selection factors, leading to premature stopping
and potentially selecting suboptimal frequency components. Conversely, if N is too large, the early stopping
mechanism may not trigger soon enough, thereby reducing the benefit of accelerated training.

In our experiments, we empirically determine the optimal value of N by evaluating the trade-off between training
time and the stability of Ω. We find that an N value in the range of 4 to 5 often provides a good balance, ensuring
that Ω has stabilized while still achieving significant reductions in training time. This range allows the SFVA
metric to effectively monitor the convergence of the selection factors and trigger early stopping at an appropriate
point.

3.4 ADAPTIVE CHANNEL MATCHING

Classic subsequent DL models typically use multi-layer neural networks for feature extraction, then input the
feature data X into the backbone model. As shown in Fig.6a, this is a typical example of using ResNet to process
data. It takes a 3× 224× 224 RGB image as input, and then uses the input layer(Conv + BN + ReLU + MaxPool)
to perform simple feature extraction to obtain a tensor of size 64 × 56 × 56, which is the size accepted by the
backbone network of ResNet.

In this paper, we want to use the existing backbone model for subsequent tasks, which requires that the size of
our frequency features match the input size required by the backbone model. In our AFFS algorithm, we perform
feature extraction in the frequency domain using the DFDT and FCS modules to obtain Freq S ∈ RK×H′×W ′

.
Then we design an ACM module to transform Freq S into input that matches the existing model.

Specifically, in the ACM module, we mainly design a 1× 1 convolution layer in which the number of convolution
kernels is the same as the number of input channels required by the backbone model, followed by a BN layer and
a ReLU layer. This allows us to feed the extracted frequency features into the existing model.

7

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

Under review as a conference paper at ICLR 2025

Note that, in our method, larger images can be used as input. We randomly crop and scale the original image to a
larger size (e.g., 448× 448) instead of 224× 224, allowing us to obtain more information from an image.

The pseudocode and execution process of this paper can be found in Appendix A.2.

(a) Traditional ResNet

(b) ResNet with ACM module

Figure 6: (a) Traditional ResNet. (b) ResNet with ACM module.

4 EXPERIMENT

We conduct extensive experiments to evaluate our proposed method, addressing the following research questions:

RQ1: How do parameters K and N impact classification accuracy and early stopping?

RQ2: How does our method compare to spatial domain methods and other frequency selection methods?

RQ3: How effective is the early stopping mechanism?

RQ4: How effective are the selection factors?

RQ5: Is our method a general feature extraction technique that has robust effectiveness across various DL models?

For details on the dataset and implementation, please refer to Appendix A.3, A.4.

4.1 COMPARISON OF CLASSIFICATION ACCURACY WITH OTHER METHODS

Table 1: Precision comparison of different methods on three datasets. Best results are highlighted in bold.

Model Backbone Domain Input Size Acc

CIFAR10 ImageNet20 RESISC45

ResNet

ResNet-18

RGB 3 × 224 × 224 92.10 81.65 95.11
SENet RGB 3 × 224 × 224 92.37 81.93 95.53

FCANet RGB 3 × 224 × 224 92.40 81.97 95.55
DCTNet-192 Frequency 192 × 56 × 56 92.45 81.82 95.26
DCTNet-24 Frequency 24 × 56 × 56 92.66 82.95 95.45

AFFS-24 (ours) Frequency 24 × 56 × 56 93.06 83.56 95.89

ResNet

ResNet-50

RGB 3 × 224 × 224 92.43 81.73 95.35
SENet RGB 3 × 224 × 224 92.61 81.95 95.67

FCANet RGB 3 × 224 × 224 92.66 82.03 95.71
DCTNet-192 Frequency 192 × 56 × 56 91.59 81.89 95.43
DCTNet-24 Frequency 24 × 56 × 56 92.87 82.65 95.78

AFFS-24 (ours) Frequency 24 × 56 × 56 93.11 83.67 96.04

DenseNet

DenseNet-121

RGB 3 × 224 × 224 92.45 84.81 96.01
DCTNet-192 Frequency 192 × 56 × 56 92.65 84.84 96.12
DCTNet-24 Frequency 24 × 56 × 56 92.85 85.49 96.44

AFFS-24 (ours) Frequency 24 × 56 × 56 93.21 85.87 96.72

In this section, we conduct experiments on three datasets (e.g., CIFAR10, ImageNet20, RESISC45) and three back-
bone models (e.g., ResNet-18(He et al., 2016), ResNet-50(He et al., 2016), DenseNet-121(Huang et al., 2017)).

To answer RQ2, we implement the following classification methods on ResNet18 and ResNet50: SENet(Hu et al.,
2018), FCANet(Qin et al., 2021), DCTNet-192(Qin et al., 2021), DCTNet-24(Qin et al., 2021), and our AFFS-24.

8

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

In addition, we also implement DCTNet-192(Qin et al., 2021), DCTNet-24(Qin et al., 2021), and our AFFS-24
methods on Densenet121.

Among these, the ResNet is the classic residual network model, and the DenseNet is a variant of ResNet which
connects each layer to all preceding layers, resulting in a network with more connections and more comprehen-
sive information flow. The SENet enhances ResNet by adding a weight to each convolutional layer’s kernel to
implement channel-wise attention learning and the FCANet uses DCT weight coefficients as the weight of each
channel. These three models usually input the image data in the original spatial domain rather than transform it
to the frequency domain. Differently, the DCTNet-192 and DCTNet-24 take frequency domain data as input and
propose a gate module to select 192 and 24 frequency components, respectively.

Comparison with Other Classification Methods. As shown in Table 1, the column Domain indicates whether
spatial domain data or frequency domain data is input to the network, RGB indicates spatial domain data, and
Frequency indicates frequency domain data. The column Input Size indicates the size of the data input into the
model. The experimental results in Table 1 shows:

Accuracy: The size of the feature data extracted by our AFFS reduced by nearly 90% of the original frequency
feature, thereby decreasing the data size input to the subsequent backbone models, this means that even if we input
much smaller data feature, we can improve the model accuracy by about 1% across all experiments.

These results demonstrate that processing data in the frequency domain, rather than the spatial domain, more
effectively extracts key information, reduces data volume, and enables the model to better extract features, thereby
improving classification accuracy.

Table 2: Accuracy comparison between different frequency selection modes.
Best results are highlighted in bold.

Selection Mode Dataset Number of Components (K)

27 30 45 48

Square
CIFAR10

92.19 — — 92.12
Triangle — 92.23 92.31 —

Ours 92.97 92.91 92.87 92.85

Square
ImageNet20

82.60 — — 82.27
Triangle — 81.45 82.05 —

Ours 83.35 83.30 82.85 82.83

Square
RESISC45

95.15 — — 95.11
Triangle — 95.38 95.29 —

Ours 95.73 95.69 95.55 95.51

Comparison with Fixed Fre-
quency Selection. To vali-
date the effectiveness of our
frequency selection strategy us-
ing γ, we compare it with
two fixed frequency selection
modes: Square and Triangle.
In square selection mode, we
select the K lowest frequency
components for each compo-
nent of Y, Cr, and Cb, respec-
tively. These components are
concentrated in the upper left
corner of the DCT coefficients
and arranged in a rectangular shape. The triangle selection mode is similar, except that the selected components
are arranged in a triangular shape in the DCT coefficient matrix. These specific selection modes are illustrated in
Fig. 7.

The experimental results are presented in Table 2. It can be seen that when the number of selected frequency
components is the same, our method leads to higher model accuracy in all cases. Although both fixed selection
patterns choose low-frequency components that contain the most information, they overlook the varying impor-
tance of different frequencies for the subsequent tasks. Our method, by using γ to represent the significance of
each frequency component, precisely selects the most relevant frequencies for the task at hand as γ is trained with
the task. This adaptive approach allows the model to retain or discard frequency components based on task-specific
requirements, thereby optimizing input features and enhancing classification performance.

(a) (b)

Figure 7: (a) Square selection mode. (b) Triangle selection mode.

Selected Frequency Components by AFFS. To understand the frequency components selected by our method,
we visualize the distribution of frequencies in the DCT coefficient matrix for K = 24. The results are shown in
Fig. 12. Frequencies marked with ✓ indicate the components selected by our method. Observations include:

The selected frequencies show similar distributions across the three datasets, with some variations in individual
frequency selections.

9

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

Under review as a conference paper at ICLR 2025

The majority of selected frequencies are located in the top-left corner of the DCT coefficient matrix, represent-
ing low-frequency components. However, for the Y component, some mid-to-high-frequency components in the
bottom-left and top-right corners are also chosen, this means that these mid-to-high-frequency components have
better performance in specific tasks, but they are roughly discarded in the fixed selection method.

Across all datasets, the model prefers selecting more Y components, which represent the luminance information
of the image. The Cr and Cb components are chosen less frequently, which represent the chrominance information
of the image. This mirrors human visual perception, which is more sensitive to luminance information, suggesting
that neural networks also extract features more effectively from luminance information.

These findings indicate that in image classification tasks, luminance information contributes more significantly,
and low-frequency components, which carry richer information, are predominantly retained by the network. Our
approach demonstrates the ability to dynamically select frequencies based on data-driven methods across various
datasets. The number and positions of selected Y, Cr, and Cb components are different in datasets, allowing
the model to adapt its selection strategy according to dataset characteristics, thereby maximizing classification
performance. This dynamic selection enables the model to better capture and utilize key information in images,
leading to improved classification accuracy.

4.2 THE OTHER EXPERIMENTAL RESULTS.

To answer RQ1, we conduct some experiments to understand the influence of the parameter K on classification
accuracy and early stopping. Those results indicate that training neural networks based on features extracted and
selected in the frequency domain effectively supports image classification tasks. An optimal number of frequency
components yield better performance than baseline models. A consistent pattern across the datasets shows that
more frequency components do not necessarily lead to better performance, highlighting the importance of select-
ing the right number of components to maximize accuracy and achieve significant data compression. Balancing
the reduction of training epochs with improving accuracy is crucial to selecting an appropriate N . From the exper-
imental results, setting N to 4 or 5 achieves an optimal balance, reducing training time for γ by about 80% without
a significant drop in accuracy. In this paper, we choose N = 5. For more details on the experiment, please refer to
Appendix A.5.

To answer RQ3, we evaluate the impact of indexes selected by γ using the early stopping mechanism compared to
full training. Experiments were conducted on the RESISC45 dataset with three different backbone networks. The
experimental results confirm that the effectiveness of the early stopping mechanism, indicating that useful γ values
can be obtained with fewer iterations. Table 4 also highlights the stability of γ, as the indexes selected for the same
dataset remain consistent across different models with minor fluctuations. For more details on the experiment,
please refer to Appendix A.6.

To answer RQ4, we validate the effectiveness of the γ proposed in this paper by conducting ablation experiments.
The results show two major advantages of selection factors. First, each frequency component is weighted by
selection factor to enhance useful information and suppress invalid information. Even if we do not make any
selections, the model accuracy improves. Secondly, the selection factor reflects the importance of each frequency
component, so we can select the most important subset of Freq according to it. This can remove a lot of redundant
information and even improve accuracy. For more details on the experiment, please refer to Appendix A.7.

RQ5 is answered in Appendix A.4.

5 CONCLUSION

To extract more effective data features for different subsequent DL models in the frequency domain, we propose
a novel approach for task-specific frequency component selection in the context of deep learning. By designing
the selection factor layer, we can dynamically identify optimal frequency component combinations for different
subsequent tasks. Moreover, we propose the SFVA metric to effectively monitor the convergence of the selection
factor ranking, and further propose an early stopping mechanism to accelerates the selection of frequency compo-
nents, which significantly reduces training time but maintaining or even improving model performance. Extensive
experimental results demonstrate that our method achieves higher subsequent DL model accuracy compared to
other frequency component selection methods, while significantly improving selection speed.

REFERENCES

Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Discrete cosine transform. IEEE transactions on Computers,
100(1):90–93, 1974.

Mario Barbero, H Hofmann, and ND Wells. Dct source coding and current implementations for hdtv. EBU
Technical Review, 251:22–33, 1992.

10

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Under review as a conference paper at ICLR 2025

J Bharadiya. Convolutional neural networks for image classification. International Journal of Innovative Science
and Research Technology, 8(5):673–677, 2023.

Ronald N Bracewell. The fourier transform. Scientific American, 260(6):86–95, 1989.

Jireh Yi-Le Chan, Khean Thye Bea, Steven Mun Hong Leow, Seuk Wai Phoong, and Wai Khuen Cheng. State of
the art: a review of sentiment analysis based on sequential transfer learning. Artificial Intelligence Review, 56
(1):749–780, 2023.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark and state of
the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Amandeep Singh Dhanjal and Williamjeet Singh. A comprehensive survey on automatic speech recognition using
neural networks. Multimedia Tools and Applications, 83(8):23367–23412, 2024.

Samuel Felipe dos Santos, Nicu Sebe, and Jurandy Almeida. The good, the bad, and the ugly: Neural networks
straight from jpeg. In 2020 IEEE International Conference on Image Processing (ICIP), pp. 1896–1900. IEEE,
2020.

Hatice Vildan Dudukcu, Murat Taskiran, Zehra Gulru Cam Taskiran, and Tulay Yildirim. Temporal convolutional
networks with rnn approach for chaotic time series prediction. Applied soft computing, 133:109945, 2023.

Bouchra El Qacimy, Mounir Ait Kerroum, and Ahmed Hammouch. Feature extraction based on dct for handwritten
digit recognition. International Journal of Computer Science Issues (IJCSI), 11(6):27, 2014.

Dan Fu and Gabriel Guimaraes. Using compression to speed up image classification in artificial neural networks.
Technical report, 2016.

Lionel Gueguen, Alex Sergeev, Ben Kadlec, Rosanne Liu, and Jason Yosinski. Faster neural networks straight
from jpeg. Advances in Neural Information Processing Systems, 31, 2018.

Shengxi Gui, Shuang Song, Rongjun Qin, and Yang Tang. Remote sensing object detection in the deep learning
era—a review. Remote Sensing, 16(2):327, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7132–7141, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708,
2017.

Graham Hudson, Alain Léger, Birger Niss, and István Sebestyén. Jpeg at 25: Still going strong. IEEE MultiMedia,
24(2):96–103, 2017.

Jaeho Jeon, Seongyong Lee, and Hohsung Choe. Beyond chatgpt: A conceptual framework and systematic review
of speech-recognition chatbots for language learning. Computers & Education, pp. 104898, 2023a.

Jaeho Jeon, Seongyong Lee, and Seongyune Choi. A systematic review of research on speech-recognition chat-
bots for language learning: Implications for future directions in the era of large language models. Interactive
Learning Environments, pp. 1–19, 2023b.

Sudarsana Reddy Kadiri, Paavo Alku, and Bayya Yegnanarayana. Analysis of instantaneous frequency components
of speech signals for epoch extraction. Computer Speech & Language, 78:101443, 2023.

Masaya Kawamura, Yuma Shirahata, Ryuichi Yamamoto, and Kentaro Tachibana. Lightweight and high-fidelity
end-to-end text-to-speech with multi-band generation and inverse short-time fourier transform. In ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE,
2023.

Lingshun Kong, Jiangxin Dong, Jianjun Ge, Mingqiang Li, and Jinshan Pan. Efficient frequency domain-based
transformers for high-quality image deblurring. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5886–5895, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Jinyu Li et al. Recent advances in end-to-end automatic speech recognition. APSIPA Transactions on Signal and
Information Processing, 11(1), 2022.

11

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

Under review as a conference paper at ICLR 2025

Pingli Ma, Chen Li, Md Mamunur Rahaman, Yudong Yao, Jiawei Zhang, Shuojia Zou, Xin Zhao, and Marcin
Grzegorzek. A state-of-the-art survey of object detection techniques in microorganism image analysis: from
classical methods to deep learning approaches. Artificial Intelligence Review, 56(2):1627–1698, 2023.

José Maurı́cio, Inês Domingues, and Jorge Bernardino. Comparing vision transformers and convolutional neural
networks for image classification: A literature review. Applied Sciences, 13(9):5521, 2023.

Mohammad Amin Morid, Olivia R Liu Sheng, and Joseph Dunbar. Time series prediction using deep learning
methods in healthcare. ACM Transactions on Management Information Systems, 14(1):1–29, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Badri N Patro, Vinay P Namboodiri, and Vijay Srinivas Agneeswaran. Spectformer: Frequency and attention is
what you need in a vision transformer. arXiv preprint arXiv:2304.06446, 2023.

Zequn Qin, Pengyi Zhang, Fei Wu, and Xi Li. Fcanet: Frequency channel attention networks. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 783–792, 2021.

Bulla Rajesh, Mohammed Javed, Shubham Srivastava, et al. Dct-compcnn: A novel image classification net-
work using jpeg compressed dct coefficients. In 2019 IEEE Conference on Information and Communication
Technology, pp. 1–6. IEEE, 2019.

Daniele Ravı̀, Miroslaw Bober, Giovanni Maria Farinella, Mirko Guarnera, and Sebastiano Battiato. Semantic
segmentation of images exploiting dct based features and random forest. Pattern Recognition, 52:260–273,
2016.

Li Ruan, Yu Bai, Shaoning Li, Shuibing He, and Limin Xiao. Workload time series prediction in storage systems:
a deep learning based approach. Cluster Computing, pp. 1–11, 2023.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. Interna-
tional journal of computer vision, 115:211–252, 2015.

Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the frequency
domain. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1740–
1749, 2020.

Shige Xu, Lei Zhang, Yin Tang, Chaolei Han, Hao Wu, and Aiguo Song. Channel attention for sensor-based
activity recognition: embedding features into all frequencies in dct domain. IEEE Transactions on Knowledge
and Data Engineering, 35(12):12497–12512, 2023.

Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu, Mi Zhang, Chen Sun, and Cordelia Schmid. Multiview
transformers for video recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3333–3343, 2022.

Dengsheng Zhang and Dengsheng Zhang. Wavelet transform. Fundamentals of image data mining: Analysis,
Features, Classification and Retrieval, pp. 35–44, 2019.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced
decomposed transformer for long-term series forecasting. In International conference on machine learning, pp.
27268–27286. PMLR, 2022.

A APPENDIX

A.1 DFDT

Step 1: RGB to YCrCb. Convert the image from the RGB color space to the YCrCb color space, which separates
luminance (Y) from chrominance (Cr and Cb). Post conversion, the image XY CrCb ∈ RC×H×W is decomposed
into three parts:

XY = XY CrCb[:, :, 0] ∈ RH×W ,

XCr = XY CrCb[:, :, 1] ∈ RH×W ,

XCb = XY CrCb[:, :, 2] ∈ RH×W .

(6)

Since the operations are identical for each channel, we’ll use the Y channel as an example for the following steps.

12

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

Under review as a conference paper at ICLR 2025

Figure 8: 8 × 8 DCT. (a) XY is divided into multiple non-overlapping 8 × 8 blocks. (b) f0,0 is the first image
block. (c) F0,0 is the coefficient matrix obtained after performing DCT on f0,0.

Step 2: 8 × 8 DCT. In this step, we transform the image data from the original domain to the frequency domain
using DCT. Specifically, we apply block-wise DCT to XY . The XY is divided into multiple non-overlapping
image blocks of size 8× 8, following the JPEG method (Hudson et al., 2017). Among which, each blocks of XY

can be represented by fm,n ∈ R8×8, where m ∈ {0, 1, 2, . . . ,H ′ − 1}, n ∈ {0, 1, 2, . . . ,W ′ − 1}. Then, we
perform DCT on fm,n as follows:

Fm,n(u, v) =
cucv
4

7∑
i=0

7∑
j=0

fm,n(i, j) cos

(
(2i+ 1)uπ

2× 8

)
cos

(
(2j + 1)vπ

2× 8

)
,

where cu, cv =

{
1√
2

for u, v = 0,

1 otherwise,
0 ≤ u, v ≤ 7.

(7)

here, u and v are the horizontal and vertical frequencies, fm,n(i, j) is the pixel value at (i, j), and Fm,n ∈ R8×8

is the resulting DCT coefficient matrix. The frequency component mentioned in this paper is converted from this
coefficient matrix.

Figure 9: Frequency Combination: Combine frequencies at the same position in each block Fm,n to form a
frequency component matrix Freq Y t. Finally, concatenate all matrices to obtain the tensor Freq Y .

Step 3: Frequency Combination. After DCT, we obtain H ′ ×W ′ DCT coefficient matrices Fm,n ∈ R8×8, each
containing 64 DCT coefficients, where H ′ = H/8, and W ′ = W/8.

In this step, we combine coefficients at the same position from different DCT matrices (i.e., Fm,n[x, y]) into
single-frequency component (i.e., Freq Y t, where t ∈ {0, 1, 2, . . . , 63}) as follows:

13

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

Under review as a conference paper at ICLR 2025

Freq Y t[i, j] = Fm,n[x, y],
s.t. x = ⌊t/8⌋ , y = t%8,
i ∈ {0, 1, 2, . . . ,H ′ − 1},
j ∈ {0, 1, 2, . . . ,W ′ − 1}.

(8)

After combining all frequency component matrices by Eq.(8), concatenate them along the component dimension
to obtain frequency component tensor Freq Y :

Freq Y = Concat([Freq Y 0, . . . , F req Y t, . . . , F req Y 63]). (9)

Similarly, Freq Cr and Freq Cb are obtained by:

Freq Cr = Concat([Freq Cr0, . . . , F req Crt, . . . , F req Cr63]),
F req Cb = Concat([Freq Cb0, . . . , F req Cbt, . . . , F req Cb63]).

(10)

Step 4: Concatenate. After performing Steps 2 and 3 on channels Y , Cr, and Cb, we concatenate the resulting
tensors Freq Y , Freq Cr, and Freq Cb along the component dimension to form the final frequency component
tensor Freq ∈ RC′×H′×W ′

, as illustrated in Fig. 10.

Figure 10: Concatenate Freq Y , Freq Cr, and Freq Cb along the component dimension to form the tensor
Freq with a size of 192×H/8×W/8, where 192 = (64 + 64 + 64).

A.2 EXECUTION PROCESS

As previously discussed, DL-based approaches primarily involve two stages: feature extraction and inputting the
extracted feature data into subsequent DL model. Our AFFS algorithm adheres to this two-step process, as depicted
in Algorithm 1.

In lines 4 − 14, we concentrate on the feature extraction stage. Initially, we transform the input data X into the
frequency domain using the DFDT module (line 4). Subsequently, the FCS module is employed to select the
optimal frequency components (denoted as Freq S) for the subsequent DL model (lines 5 − 15). During this
phase, an early stopping mechanism is utilized to expedite the frequency component selection, as outlined in lines
7− 13.

Upon selecting the frequency components, we obtain the extracted features Freq S in the frequency domain. We
then move to the second stage: inputting the extracted features Freq S into the subsequent DL model for fine-
tuning and final output (lines 15 − 17). To facilitate this, the ACM module is applied to adjust the dimensions of
Freq S to meet the dimension requirements of the subsequent DL model.

Although we use image classification as the task to illustrate our algorithm, AFFS is a general-purpose algorithm
that can efficiently and effectively select frequency components that are sensitive to various deep learning tasks.

A.3 DATASETS

Our method is a general frequency-based feature extraction technique designed to enhance DL model’s perfor-
mance by leveraging a smaller subset of selected frequency features. To evaluate its effectiveness, we implement
our method in conjunction with a multi-class image classification task using three real-world datasets, described
as follows:

CIFAR10 (Krizhevsky et al., 2009): This dataset comprises 60,000 RGB images distributed across 10 categories,
including airplanes, cars, and birds. Each category contains 6,000 images, with 50,000 images allocated for training
and 10,000 for testing. The images have a resolution of 32× 32.

ImageNet (Russakovsky et al., 2015): The original ImageNet1000 dataset contains 1.2 million training images,
50,000 validation images, and 10,000 test images, spanning 1,000 categories. For our experiments, we randomly
selected 20 categories, using 500 images per category for training and 100 images per category for testing. The
average image size in this dataset is 482× 415.

14

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899

Under review as a conference paper at ICLR 2025

Algorithm 1 AFFS
1: Input: X , N , K
2: Output: Trained Model
3: Begin
4: Transform X to Freq using DFDT
5: for epoch from 1 to 100 do
6: Train Model Lθ,γ using Eq. (2), obtain θ, γ
7: // Start early stopping detection
8: Calculate SFV A using Eq. (4)
9: if SFV A == 0 then

10: break // Early Stopping
11: end if
12: // Complete early stopping detection
13: end for
14: Select Freq S from Freq using Eq. (3)
15: Match Freq S with the model’s required input using ACM
16: Fine-tune the model with the selected frequency components
17: Return the trained model
18: End

NWPU-RESISC45 (Cheng et al., 2017): This remote sensing image dataset covers 45 scene categories, each
containing 700 images, totaling 31,500 images. We used 27,000 images for training and 4,500 images for testing.
The images have a resolution of 256× 256. Hereafter, we refer to this dataset as RESISC45.

(a) (b) (c)

Figure 11: Accuracy with different numbers of components.

A.4 IMPLEMENTATION DETAILS

Our method is a versatile technique with the potential to positively impact various DL models. To demonstrate this
and answer RQ5, we implement the image classification task in three different ways by using three widely adopted
CNNs as backbone models: ResNet18 (He et al., 2016), ResNet50 (He et al., 2016), and DenseNet121 (Huang
et al., 2017). All models are implemented using the PyTorch (Paszke et al., 2019) framework and are trained on a
single NVIDIA GeForce RTX 3090 GPU.

We employ the SGD optimizer with a momentum of 0.9 and a weight decay of 0.0001. During the training of the
selection factors γ, the batch size is set to 16, the initial learning rate is 0.01, and the regularization parameter λ
is 0.0002. The selection factors γ are initialized as a vector of all ones. For fine-tuning with the selected critical
data, the batch size is increased to 64, and the initial learning rate is 0.1. All training employs cosine learning rate
decay and label smoothing. We train all models from scratch for 100 epochs.

The loss function Lloss used in this study is the cross-entropy loss, which is directly related to accuracy. We
use accuracy (Acc) as the evaluation metric, which measures the proportion of predictions where the model’s
predicted class matches the true class. Specifically, it assesses the proportion of instances where the model’s
highest probability prediction corresponds to the true label, reflecting the model’s ability to correctly identify the
single most likely class.

Due to the nature of the DCT, the values between different frequency components can vary significantly. Therefore,
we pre-compute the mean and variance of each component across all training data and standardize each component
accordingly.

15

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959

Under review as a conference paper at ICLR 2025

(a) CIFAR10.

(b) ImageNet20.

(c) RESISC45.

Figure 12: Distribution of selected components in Y, Cr, Cb (K = 24).

A.5 THE IMPACT OF PARAMETERS K AND N

To answer RQ1, we conduct the following experiments to understand the influence of the parameter K on classi-
fication accuracy and early stopping.

Impact of K on Classification Accuracy. The parameter K denotes the number of frequency components selected
from Freq. Using the selection method described in Section 3.2, we chose the K most relevant components out of
192 available frequency components for training and inference. Fig. 11 displays the results across three datasets,
revealing consistent patterns:

• Single Component (Freq-0): When only the first frequency component is used for training, reducing the
data dimension from 3×448×448 to 1×56×56, the model still performs well. This is due to the DCT’s
energy concentration property, which compresses most of the signal’s energy into the DC component at
frequency 0, retaining significant information from the original image.

• Increasing Components: As the number of selected components increases, the input information be-
comes richer, leading to improved accuracy. Peak accuracy is observed at 24 components. Beyond this
point, additional components may introduce redundant data or noise, causing a slight decrease in accuracy.

• Optimal Components: Using the top 24 components results in the best model accuracy, reducing the
size of the data input into the subsequent DL model by nearly 90% compared to using all 192 frequency
components. Despite the reduced input size, improvements of 0.96%, 1.91%, and 0.78% in classification
accuracy are observed. This demonstrates that appropriate frequency component selection can largely
reduce the original frequency feature size to 10% while enhancing model performance.

These results indicate that training neural networks based on features extracted and selected in the frequency do-
main effectively supports image classification tasks. An optimal number of frequency components yield better
performance than baseline models. A consistent pattern across the datasets shows that more frequency compo-
nents do not necessarily lead to better performance, highlighting the importance of selecting the right number of
components to maximize accuracy and achieve significant data compression.

Impact of K on Early Stopping. To understand K’s effect on early stopping, we conducted experiments using
ResNet18 on ImageNet20. Fig. 13 shows the results:

• Training Time: As K increases, the early stopping mechanism’s stopping time is delayed, leading to
longer training times for γ.

16

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

Under review as a conference paper at ICLR 2025

• Balance: While a smaller K shortens training time, it should not be too small to avoid reducing accuracy
and causing early stopping, which leads to insufficient training of γ. Balancing model accuracy and
training time, we set K = 24 as the optimal value.

(a) K = 16 (b) K = 24 (c) K = 32 (d) K = 64

Figure 13: Effect of parameter K on early stopping.

The Impact of N on Classification Accuracy and Early Stopping. N is a parameter in SFVA, representing
the number of consecutive epochs considered in our analysis. We evaluated its impact using ResNet18 on the
ImageNet20 and RESISC45 datasets. The experimental results, summarized in Table 3, reveal the following
insights:

• Smaller N : When N is smaller, training stops earlier, resulting in less effective γ. This leads to lower
accuracy after fine-tuning based on γ. An insufficiently trained γ results in suboptimal frequency compo-
nent selection due to inaccurate rankings.

• Larger N : As N increases, more training epochs are considered to evaluate the stable status of the
order of frequency factors, allowing γ to undergo more extensive training. This results in more accurate
combinations of frequency components. However, excessively large N values increase training epochs
significantly, defeating the purpose of early stopping.

Balancing the reduction of training epochs with improving accuracy is crucial to selecting an appropriate N . From
the experimental results, setting N to 4 or 5 achieves an optimal balance, reducing training time for γ by about
80% without a significant drop in accuracy. In this paper, we choose N = 5.

Table 3: The impact of parameter N on training epochs and accuracy (K = 24).
N 2 3 4 5 6 7

ImageNet20
(Epoch/Acc) 14/82.35 15/82.35 20/83.51 28/83.49 29/83.49 56/83.52

RESISC45
(Epoch/Acc) 6/94.76 13/95.42 15/95.81 19/95.85 27/95.84 36/95.86

A.6 EFFECT OF EARLY STOPPING MECHANISM

To answer RQ3, we evaluate the impact of indexes selected by γ using the early stopping mechanism compared
to full training. Experiments were conducted on the RESISC45 dataset with three different backbone networks.
Table 4 summarizes the results, revealing:

• In all models, after adding the early stopping mechanism, the models stop training early after 20 epochs of
training. Compared with the case without early stopping, the training process of selection factors is shortened by
about 80%, which demonstrates the mechanism’s effectiveness across different architectures.

• There is minimal difference in selected indexes between full training and early stopping. Only a few mid-range
frequencies differ, which has a negligible impact on accuracy.

These findings confirm the effectiveness of the early stopping mechanism, indicating that useful γ values can be
obtained with fewer iterations. Table 4 also highlights the stability of γ, as the indexes selected for the same dataset
remain consistent across different models with minor fluctuations.

A.7 ABLATION STUDY

To answer RQ4, we validate the effectiveness of the γ proposed in this paper by conducting ablation experiments
on the following three aspects:

1. “192 components, without γ”: The obtained Freq by DFDT is directly input into the subsequent DL model.

17

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Impact of Early Stopping (N = 5,K = 24).

Backbone Early
Stopping

Training
Epoch

Training
Time Top24-indexes Acc

ResNet18

NO 100 33457s
0, 1, 2, 3, 4, 5, 8, 10, 11, 16,
17, 18, 19, 24, 25, 26, 32, 40,

64, 65, 72, 128, 129, 136
95.89

YES 19 6230s
0, 1, 2, 3, 4, 5, 8, 10, 11, 15,
17, 18, 19, 24, 25, 27, 32, 40,

64, 65, 72, 128, 129, 136
95.85

ResNet50

NO 100 35192s
0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 16,

17, 18, 19, 24, 25, 32, 40,
64, 65, 72, 128, 129, 136

96.04

YES 21 6659s
0, 1, 2, 3, 4, 5, 8, 9, 10, 12, 16,

17, 18, 20, 24, 25, 32, 40,
64, 65, 72, 128, 129, 136

95.97

DenseNet121

NO 100 39684s
0, 1, 2, 3, 4, 5, 8, 10, 12, 16,
17, 18, 19, 24, 25, 26, 32, 40,

64, 65, 72, 128, 129, 136
96.72

YES 17 6605s
0, 1, 2, 3, 4, 5, 8, 9, 16, 17,

18, 19, 24, 25, 26, 27, 32, 40,
64, 65, 72, 128, 129, 136

96.64

2. “192 components, with γ”: The obtained Freq is first processed through the selection factor layer to obtain
Freq out (as shown in Eq. 1), and then Freq out is input into the DL model.

3. “24 components, selected by γ”: The obtained Freq is precisely selected into 24 components according to γ
(Freq S(K = 24)) and then input into the DL model.

Table 5 presents the detailed results:

• “192 components, without γ”: The model achieves the lowest classification accuracy among all settings.

• “192 components, with γ”: Introducing γ to scale the frequency components enhances effective information and
suppresses noise, resulting in improved accuracy compared with that “192 components, without γ”.

• “24 components, selected by γ”: Selecting key frequency components via γ optimizes model performance by
retaining critical information and discarding noise, achieving the best results.

The results in Table 5 show two major advantages of selection factors. First, each frequency component is weighted
by selection factor to enhance useful information and suppress invalid information. Even if we do not make any
selections, the model accuracy improves. Secondly, the selection factor reflects the importance of each frequency
component, so we can select the most important subset of Freq according to it. This can remove a lot of redundant
information and even improve accuracy.

Table 5: Ablation Experiment.

Ablation Backbone Acc

CIFAR10 ImageNet20 RESISC45

192 components, without γ
ResNet-18

92.32 82.35 95.27
192 components, with γ 92.69 82.93 95.58

24 components, selected by γ 93.06 83.56 95.89

192 components, without γ
ResNet-50

92.48 82.44 95.54
192 components, with γ 92.79 82.96 95.79

24 components, selected by γ 93.11 83.67 96.04

192 components, without γ
DenseNet-121

92.71 84.12 95.75
192 components, with γ 92.98 85.05 96.32

24 components, selected by γ 93.21 85.87 96.72

18

	Introduction
	The Contributions of Our Method

	Related Work
	The Frequency Transformation Method
	Frequency Selection

	Proposed Method
	Data Frequency Domain Transformation
	Frequency Component Selection
	Early Stopping: Get Quickly
	Adaptive Channel Matching

	Experiment
	Comparison of Classification Accuracy with Other Methods
	The Other Experimental Results.

	Conclusion
	Appendix
	DFDT
	Execution Process
	Datasets
	Implementation Details
	The Impact of Parameters K and N
	Effect of Early Stopping Mechanism
	Ablation Study

