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ABSTRACT

As deep learning(DL) advances, effective feature extraction from big data remains critical for
enhancing DL model’s performance. This paper proposes a method for feature extraction in
the frequency domain, utilizing advantages such as concentrated signal energy and pronounced
data features. However, existing frequency component selection algorithms face challenges like
difficulty adapting to diverse tasks and achieving only locally optimal results with extended pro-
cessing times. To address these challenges, we introduce the Adaptive Fast Frequency Selection
(AFFS) algorithm, tailored for various subsequent tasks. AFFS incorporates a frequency com-
ponent selection factor layer, integrating it with the subsequent DL model to select globally
optimal frequency component combinations for the DL. model. Additionally, we propose a fast
selection algorithm to expedite the process, leveraging the experimental observation of rapid
convergence of selection factor ranking. Experimental results demonstrate that AFFS achieves
superior performance across three datasets and three DL models. By using AFFS to select ap-
propriate frequency components, even though our input data size is only 10% of the original
frequency feature, the classification accuracy of the model is improved by about 1%. Further-
more, the early stopping mechanism can shorten the selection process by approximately 80%.

1 INTRODUCTION

The rapid advancement of deep learning (DL) techniques has garnered increasing interest for handling data in
various applications, such as sentiment analysis (Ma et al., 2023), speech recognition (Li et al., 2022; Dhanjal
& Singh, 2024), object detection (Chan et al., 2023; Gui et al., 2024), and video recognition (Yan et al., 2022).
Typically, these studies tackle data handling in two steps: extracting features from the data and subsequently
inputting these features into DL models to achieve various objectives.

Feature extraction has become a crucial step in DL-based applications, directly impacting their performance. While
traditional methods usually encode data from the original high-dimensional space to low-dimensional spatial-
temporal feature embeddings, they often neglect the information in the frequency domain and struggle with issues
like noise and outliers.

Recent studies (Kong et al., 2023; Patro et al., 2023; Zhou et al., 2022) advocate transforming data to the frequency
domain for feature extraction. Some application examples include: Image Domain: JPEG (Hudson et al., 2017)
uses the Discrete Cosine Transform (DCT) to compress images by retaining significant frequency components
and discarding high-frequency parts. Speech Signal Domain: Techniques like the Short-Time Fourier Transform
(STFT) (Zhou et al., 2022; Kawamura et al., 2023; Kadiri et al., 2023) enable spectral analysis of speech signals
for applications such as coding, noise reduction, and recognition. Sensor Data Domain: Frequency-domain pre-
processing for sensor data, such as environmental and health monitoring, uses methods like the Fourier Transform
to enhance feature extraction and reduce noise (Xu et al., 2023).

These applications demonstrate that utilizing feature extraction in the frequency domain can enhance task perfor-
mance. The main advantages over direct processing in spatial or temporal domains can be summarized as follows:

Energy Concentration: Frequency domain transformations often concentrate the signal’s energy into a few major
frequency components, facilitating data compression by retaining these key components.

Enhanced Feature Extraction: Techniques like the Fourier Transform can separate different frequency compo-
nents, making certain features more prominent.

After frequency transformation, data typically consists of multiple frequency components. Some studies
(El Qacimy et al., 2014; Fu & Guimaraes, 2016) have found that DL models exhibit varying sensitivities to different
frequency components. Thus, selecting the most effective frequency components for tasks like image classifica-
tion (Mauricio et al., 2023; Bharadiya, 2023), speech recognition (Jeon et al., 2023a;b), and time series prediction
(Morid et al., 2023; Dudukcu et al., 2023; Ruan et al., 2023) is crucial.

Consequently, various studies (El Qacimy et al., 2014; Qin et al., 2021; dos Santos et al., 2020; Xu et al., 2020)
propose some methods to select the more important subsets of frequency components. These methods aim to
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extract important features and reduce redundancy by selecting various sets of frequency components. Among
these, most of them focus on the fixed frequency selection methods. For instance, DCT upper left corner (ULC)
coefficients (El Qacimy et al., 2014; Fu & Guimaraes, 2016; dos Santos et al., 2020), DCT zigzag coefficients.
However, they suffer from the following problems:

Non-Adaptive: They often rely on fixed components that are not optimized for the specific subsequent task.
Utilizing identical frequency components across different tasks can lead to suboptimal model performance.

Apart from fixed selection methods, some studies(Qin et al., 2021; Xu et al., 2020) propose learning-based methods
to adaptively select frequencies for different subsequent tasks. Although promising, they still have some problems:

Local Optima: They often struggle to determine the optimal combination of frequency components simultane-
ously. Typically, these methods employ a greedy algorithm that sequentially selects the optimal frequency com-
ponents (e.g., first selecting the component that yields the best performance for the subsequent tasks, then the
next best component, and so forth). However, this approach may result in a locally optimal solution rather than a
globally optimal one.

Slow Selection Speed: Their approach involves continuously evaluating the model performance achievable with
each selected frequency component, ultimately determining the optimal combination of frequency components
through a greedy method. This makes the frequency component selection process computationally expensive.
Therefore, designing a fast selection method is crucial to accelerate this process.

1.1 THE CONTRIBUTIONS OF OUR METHOD

To address the aforementioned challenges, we propose the Adaptive Fast Frequency Selection (AFFS) algorithm.
This algorithm is designed to adaptively select the most critical frequency components for various subsequent
tasks. The main steps involve converting data into frequency components using the Discrete Cosine Transform
(DCT), quantifying the importance of each component using selection factors, and selecting components based on
their values. The key contributions of this paper are as follows:

1) Task-Specific Frequency Component Selection: We design an easily implementable selection factor layer
that requires only minor modifications to existing DL models. Specifically, we add a selection factor layer after
frequency conversion and before the subsequent DL model. This layer enables adaptive adjustment based on
different subsequent tasks, dynamically selecting the optimal combination of frequency components. Importantly,
the selection factors are trained concurrently with the parameters of the subsequent DL model, allowing them to
automatically adjust to any subsequent task. Once training is complete, we can select the optimal combination of
frequency components at once, thereby avoiding the issue of local optima. Moreover, our FCS module is easy to
implement and has plug-and-play functionality for various subsequent tasks due to the minor modifications to the
subsequent DL model.

2) Fast Frequency Selection Algorithm: We propose a fast frequency selection algorithm to accelerate the selec-
tion of the most important frequency components. From extensive experiments, we discover that the ranking of the
most important selection factors is typically determined within the initial few iterations of model training, rather
than waiting for the model to converge. Moreover, we propose a metric called SFVA to effectively monitor the
convergence of the selection factor ranking, and further propose an early stopping mechanism to accelerate the se-
lection of frequency components, which significantly reduces training time while maintaining model performance.

3) Extensive Experimental Validation: We conduct extensive experiments on three datasets(e.g., CIFAR10,
ImageNet, NWPU-RESISW45) and three subsequent DL models(e.g., ResNet18, ResNet50, DenseNetl121) to
verify the effectiveness of our AFFS algorithm. We have the following observations in experimental results:

Accurate selection. Compared with other frequency component selection methods, our AFFS achieves higher
performance across different datasets and models, demonstrating its ability to adaptively select the optimal com-
bination of frequency components for various subsequent tasks. Fast selection. Our proposed early stopping
mechanism reduces training time by over 80%, enabling fast frequency component selection. Smaller size but
higher performance. After feature extraction using our algorithm, the size of the resulting feature data is reduced
by nearly 90% compared to the original frequency feature data. Moreover, even with the much smaller size of the
extracted feature data, the model performance improves by nearly 1% compared to using the original data.

Overall, the AFFS algorithm not only enhances the performance of subsequent DL model by selecting the opti-
mal frequency components but also significantly reduces computational requirements, making it able to achieve
efficient and effective feature extraction for various subsequent tasks.

2 RELATED WORK

This section reviews the methods of frequency transformation and the techniques for selecting frequency compo-
nents.
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2.1 THE FREQUENCY TRANSFORMATION METHOD

There are various transformation methods available for frequency-domain data processing. The Fourier Transform
(FT)(Bracewell, 1989) is widely used for converting signals from the temporal domain to the frequency domain,
allowing for the analysis of different frequency components. However, the FT tends to distribute signal energy
across a wide range of frequencies, which can lead to inefficiencies in feature extraction. The Wavelet Transform
(WT) (Zhang & Zhang, 2019) offers a multi-resolution analysis, providing both temporal and frequency local-
ization. It is particularly useful for analyzing non-stationary signals and capturing transient features but involves
higher computational complexity and implementation challenges.

Different from FT and WT, the Discrete Cosine Transform (DCT) is a widely used frequency domain transforma-
tion method in signal processing, particularly for digital images and videos, due to its strong energy concentration
characteristics and high computational efficiency (Ahmed et al., 1974; Barbero et al., 1992). So we choose to use
the DCT over these methods.

With the rise of deep learning, several studies (Ravi et al., 2016; Gueguen et al., 2018; Rajesh et al., 2019) have
integrated DCT into DL-based computer vision frameworks. For example, Gueguen et al. (2018) modify the
libjpeg library to generate DCT coefficients, applying these coefficients to train the ResNet-50 model for image
classification. This approach reduces image decoding time and achieves significant training acceleration by directly
using all DCT coefficients for network training. Building on this, Rajesh et al. (2019) propose a novel CNN model
called DCT-CompCNN, which can accept both quantized and non-quantized DCT coefficients as input. Their
results show that this method can produce performance similar to traditional CNN methods with faster model
training speed.

However, these methods use all frequency components for training and inference, without considering the varying
impacts of different frequency components on specific tasks. This results in a large amount of redundant informa-
tion, leading to unnecessary computational overhead. By evaluating the importance of frequency components and
selecting key frequency components, we can reduce input data redundancy and improve the performance of the
subsequent DL model.

2.2 FREQUENCY SELECTION

After transforming the original data to the frequency domain using DCT, the data comprises multiple frequency
components. To extract efficient feature information, it is necessary to select specific frequency components. We
categorize frequency component selection methods into the following two types:

Fixed Selection. This method primarily involves selecting fixed low-frequency components in the DCT coefficient
matrix. Fu & Guimaraes (2016) introduce a method combining DCT with truncation to accelerate neural network
training. They transform the original input into the DCT domain and, based on the energy compaction property
of DCT, truncate the upper-left portion of the DCT coefficient matrix, thereby reducing feature dimensions. dos
Santos et al. (2020) extend the ResNet-50 network improved by Gueguen et al. (2018) by incorporating a Fre-
quency Band Selection (FBS) technique to select the most relevant DCT coefficients before inputting them into
the network. The principle of FBS is that high-frequency information has a minimal visual impact on images, so
only the lowest n frequency components from Y, Cr, and Cb (YCrCb color space) are selected. While effective,
this method discards high-frequency information, resulting in a loss of image details and failing to consider the
different impacts of Y, Cr, and Cb on the model, which may reduce accuracy. These methods do not account for
the impact of other frequency components and are tailored for specific tasks, limiting their adaptability to various
subsequent tasks.

Learning-Based Selection. Different from the fixed selection methods, Qin et al. (2021) apply DCT to channel at-
tention and proposed a two-stage frequency selection method. They first evaluate the model performance resulting
from different frequency components individually. Then, they select frequency components one by one that lead
to the current optimal performance, until a sufficient number of components have been chosen. This method aims
to find a local optimum at each step without considering the global performance, which always results in the local
optimal solutions. Moreover, after selecting each frequency component, it is necessary to reassess the impact of
all remaining frequency components on the model performance, which is high computation cost.

Additionally, Xu et al. (2020) introduce a frequency channel selection gate module, which assigns two numbers
to each frequency channel and decides whether to retain the channel by sampling from the Bernoulli distribution
Bern(p). Due to the non-differentiable nature of the Bernoulli sampling process, they employ the Gumbel Softmax
reparameterization method to update the gate module weights, allowing gradients to backpropagate through the
discrete sampling process. Although effective, the gate module’s training process has high computational cost too.

To select the optimal combination of frequency components for different subsequent tasks, we propose the Adap-
tive Fast Frequency Selection (AFFS) algorithm. This method addresses the loss of high-frequency information in
the Fixed Selection approach and can adaptively select the optimal frequency combination for any subsequent task.
Additionally, we design an early stopping mechanism to accelerate the selection process of frequency components.
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3 PROPOSED METHOD

Leveraging the DCT’s exceptional energy concentration, which can condense the energy of a signal or image into a
few frequency components, we propose a frequency component selection method called Adaptive Fast Frequency
Selection (AFFS). This method dynamically selects frequency components for the subsequent task, achieving
efficient data feature extraction.

In this paper, we use the image classification task as an example to demonstrate how AFFS operates. By prepro-
cessing image data using the proposed AFFS, we can make minor modifications to existing neural network models
(e.g., image classification DL models), significantly reducing the input data size and improving the performance
of the subsequent DL model.

Fig. 1 illustrates the architecture of our approach, which comprises three main modules: Data Frequency Domain
Transformation (DFDT), Frequency Component Selection (FCS), and Adaptive Channel Matching (ACM). The
DFDT and FCS modules primarily address the initial step of feature extraction and selection in deep learning tasks
within the frequency domain. Given that mature and commonly used DL models typically have fixed-sized input
requirements, the ACM module is designed to adapt the size of the extracted features to the subsequent DL model.

In the DFDT mod- Subsequent
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W represents the Figure 1: The overall architecture of our approach.
width. The output is

the frequency components Freq € RE *H' *W' ‘where C' = 64 x C, H' = H/8, and W’ = W/8.

In the FCS module, we introduce a selection factor layer between the DFDT module and the subsequent DL
model. This layer includes multiple selection factors, each corresponding to the weight of a frequency component.
During training, the DL model and the selection factor layer are trained together. This allows us to adaptively
and efficiently select the optimal combination of frequency components for the specific task, thus avoiding local
optima. The input to this module is the output from the DFDT module (i.e., the frequency components F'req),
and the output is the selected frequency components Freq_S € RE*H W' where K represents the number of
selected components.

Through extensive experiments, we discover that the importance of frequency components is quickly determined
during the model training process. To exploit this phenomenon and accelerate the frequency component selection
process, we design a significance change indicator called Selection Factor Vibration Amplitude (SFVA) to monitor
the convergence of the selection factor ranking. Building on this, we propose an early stopping algorithm to
accelerate the selection of important frequency components.

In the ACM module, we design multiple 1 x 1 convolution kernels to convert the obtained F'req_S to match the
input size required by the subsequent backbone model.

Next, we will detail the design of each module.

3.1 DATA FREQUENCY DOMAIN TRANSFORMATION

This section outlines the process of transforming image data to the frequency domain, which is crucial for feature
extraction. The DFDT module encompasses the following four steps:

Step 1: RGB to YCrCb. Convert the image from the RGB color space to the YCrCb color space, which separates
luminance (Y) from chrominance (Cr and Cb). Post conversion, the image Xy c.cp, € RE*H>*W is decomposed
into three parts: Xy, X¢p, and X¢p.

Step 2: 8 x 8 DCT. In this step, we transform the image data from the original domain to the frequency domain
using DCT. Take Xy as an example, we apply block-wise DCT to Xy. The Xy is divided into multiple non-
overlapping image blocks of size 8 x 8, following the JPEG method (Hudson et al., 2017). Among which, each
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blocks of Xy can be represented by f,,, , € R®*8, where m € {0,1,2,...,H' —1},n € {0,1,2,..., W' —1}.
Then, we perform DCT on f, .

Step 3: Frequency Combination. After DCT, we obtain H' x W’ DCT coefficient matrices F,, , € R®*8, each
containing 64 DCT coefficients, where H' = H/8, and W’ = W/8. In this step, we combine coefficients at
the same position from different DCT matrices (i.e., Fy,, [z, y]) into single-frequency component (i.e., Freq_Y",
where t € {0,1,2,...,63}). After combining all frequency component matrices, concatenate them along the
component dimension to obtain frequency component tensor Freq_Y .

Step 4: Concatenate. After performing Steps 2 and 3 on channels Y, C'r, and Cb, we concatenate the resulting
tensors F'req.Y, Freq_Cr, and Freq_Cb along the component dimension to form the final frequency component

! ’ ’
tensor Freq € RC *H xW",

For more details on this section, please refer to Appendix A.1.

3.2 FREQUENCY COMPONENT SELECTION

In Section 3.1, we obtain the frequency component tensor F'req to represent the RGB image data Xpsp in the
frequency domain. Each slice Freqli, :, :] corresponds to a specific frequency component of X ¢ g, in this section,
we aim to select the optimal subset from F'req.

Research has shown (El Qacimy et al., 2014; Fu & Guimaraes, 2016) that different frequency components can have
varying impacts on the performance of DL models. Therefore, to effectively extract crucial features and minimize
redundancy in frequency-domain data, selecting the most relevant frequency components is essential.

As discussed in Section.2, the existing
methods often select the fixed frequency /
components that are not tailored for spe-
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Freg.outli,:,] = v'Fregli,.,:], (1) Figure 2: Frequency Component Selection

where i € {0,1,2,...,C" — 1}. Freq-out represents the output after applying the selection factors.

The magnitude of »* directly affects Freg_out[i, :,:]. A smaller 7 results in a smaller Freq_out[i, :, :], indicating
that the corresponding frequency component is less significant for the subsequent task. Thus, v* reflects the
importance of each frequency component.

If 7" approaches zero, the corresponding frequency component Freq_out|i, :, ] becomes negligible, allowing us
to remove it. The sparsity of -y ensures that only the most impactful components are retained.

Training of . To ensure that the selected frequency components adapt to various tasks, we train ~y jointly with the
subsequent DL model. We apply L; regularization to enforce sparsity in ~y, ensuring that only the most important
components are selected. The loss function is formulated as follows:
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arg rgiwn(ﬁo,y(X) + Al[v[1), @

where Ly ., (*) represents the loss function for the subsequent task, 6 denotes the parameters of the task model, A
is a hyperparameter for regularization, X is the input (e.g., X rgp), and || - ||1 denotes L; regularization.

During training, Eq. (2) serves as the loss function. The selection factors  are trained alongside the task model
parameters 6, allowing the importance of frequency components to be determined by the task.

Selection of Frequency Components. After training, the selection factors -y reflect the importance of each fre-
quency component. We select the K largest values of 4" and record their indices in the set (). The selected
frequency components are then:

Freq.S = Freq[index, :, ], 3)
s.t. index € €.

As illustrated in Fig. 2b, the frequency components corresponding to the largest y values are selected to form a
new tensor F'req_S € REXH xW'

Our method offers the following advantages:

(1) Adaptive to subsequent tasks. Unlike fixed selection methods, our approach is data-driven, allowing the
importance of frequency components to be determined by the specific task through the training of ~.

(2) Global optima. By selecting the best frequency components simultaneously, our method avoids the local
optima problem associated with greedy approaches. The well-designed selection factors ensure an optimal combi-
nation of frequency components.

(3) Plug-and-play functionality. Due to the well-designed selection factor layer between the DFDT module and
subsequent DL model, our FCS module is easy to implement and can be easily integrated into various subsequent
tasks.

3.3 EARLY STOPPING: GET vy QUICKLY

While the method described in Section 3.2 effectively identifies critical frequency components, it requires the
model to converge, resulting in significant time overhead. However, our selection process focuses on the relative
importance of each selection factor rather than their final values. By sorting the selection factors in descending
order and selecting the top K, we can determine the set {2 of indices corresponding to these factors. If we can
ascertain () before the model fully converges, we can expedite the frequency selection process, avoiding prolonged
training.

Rapid Convergence of Selection Factor Ranking. Our method updates « each training epoch to evaluate the
relative importance of frequency components and select the K most significant ones. Fig. 3 illustrates the evolution
of all selection factors during training, with epochs on the horizontal axis and selection factor values on the vertical
axis.

As shown in Fig. 3, the selection factors are categorized into two groups: unselected (brown in legend) and
selected (other colors in legend). From the outset of training, the values of selected factors are markedly higher
than those of unselected factors. The unselected factors’ values decline rapidly early in training and remain near
zero, indicating the minimal contribution of their corresponding frequency components to subsequent tasks. Since
) is the index set of the top K selection factors, its elements stabilize early in training and remain unchanged. For
example, if K = 6, we finally select the O-th, 1-th, 64-th, 65-th, 128-th, and 129-th frequency components, result
in Q = {0,1,64,65,128,129}. We can find that the ) can be determined after 6 epochs and no longer changes
in the following epochs, due to the selection factors 40, v, 464, 495, 4128 ‘and ~'29 are significantly larger than
other selection factors.

Therefore, if we can detect this stabilization epoch, we can halt the training of ~ at that point, to accelerate the
selection of frequency component.

Designing the Early Stopping Mechanism. To leverage this rapid convergence phenomenon and accelerate the
training process of -y, we introduce a metric to determine whether {2 has converged and propose an early stopping
mechanism based on this metric.

The metric, called Selection Factor Vibration Amplitude (SFVA), is used to monitor the convergence of the selec-
tion factor ranking, and it is defined as:

SFVAK = - K, “

N-1

K
U a5,
j=0
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where N is a hyperparameter representing the number of consecutive rounds to consider (the value of N will be
discussed in the experimental section), Q< ; denotes the index set corresponding to the top K selection factors

in the (¢ — j)-th iteration, Ujvzfol QK ; represents the union set of top K indexes from iteration i — (N — 1) to
iteration 4, and |-| denotes the cardinality of the union set. The i-th iteration represents the current iteration. When
calculating the SFVA for the i-th iteration, we also take into account the Q¥ from the previous (N — 1) iterations.
This can reduce the impact of noise and outliers that may arise from a single iteration, thereby improving the

stability of the results.
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Figure 3: The trend of v on RE- Figure 4: In each epoch, the selec- Figure 5: The training period is
SISC45. tion factors... greatly shortened.

For example, as shown in Fig. 4, with K = 5 and NV = 4, each row represents the index sequence obtained
by sorting v in descending order in the ¢-th iteration, and each row in the green box is the selected index set
QK. From these iterations, we obtain five 2 sets: QF = [0,1,2,4,5], Q3 = [0,2,3,4,6], Q3 = [0,1,2,3,4],

Q; =10,1,2,4,6], Q3 = [0, 1,2, 3, 4]. Therefore, we can calculate SF'V A3 and SFV A2 as follows:

SFVA=[QUQUQIUQS| - K SFVAI=[QUQuUQiuQl - K
=1{0,1,2,3,4,5,6}| — 5 = 2, =1{0,1,2,3,4,6}| — 5= 1.

&)

The SFVA value indicates the degree of change in the elements of 2. A smaller SFVA value signifies a more stable
Q. Therefore, our early stopping mechanism is: when SFVA = 0, it indicates that () is identical across the
consecutive N epochs, thereby triggering early stopping of training; otherwise, training continues.

As shown in Fig. 5, without early stopping, the model is typically trained for a full 100 epochs. By implementing
the early stopping mechanism, we utilize the SFVA metric to automatically monitor the training progress of v,
allowing the network to stop training at the appropriate epoch based on SFVA. The red line in the figure indicates
the early stopping epoch. With early stopping, we can limit training to approximately 20 epochs, significantly
reducing the training time for v and enabling fast selection of frequency components.

Discussion on N. The choice of N is crucial for the effectiveness of the early stopping mechanism. If N is too
small, the SFVA metric may not capture sufficient stability in the selection factors, leading to premature stopping
and potentially selecting suboptimal frequency components. Conversely, if N is too large, the early stopping
mechanism may not trigger soon enough, thereby reducing the benefit of accelerated training.

In our experiments, we empirically determine the optimal value of IV by evaluating the trade-off between training
time and the stability of 2. We find that an NV value in the range of 4 to 5 often provides a good balance, ensuring
that ) has stabilized while still achieving significant reductions in training time. This range allows the SFVA
metric to effectively monitor the convergence of the selection factors and trigger early stopping at an appropriate
point.

3.4 ADAPTIVE CHANNEL MATCHING

Classic subsequent DL models typically use multi-layer neural networks for feature extraction, then input the
feature data X into the backbone model. As shown in Fig.6a, this is a typical example of using ResNet to process
data. It takes a 3 x 224 x 224 RGB image as input, and then uses the input layer(Conv + BN + ReLU + MaxPool)
to perform simple feature extraction to obtain a tensor of size 64 x 56 x 56, which is the size accepted by the
backbone network of ResNet.

In this paper, we want to use the existing backbone model for subsequent tasks, which requires that the size of
our frequency features match the input size required by the backbone model. In our AFFS algorithm, we perform
feature extraction in the frequency domain using the DFDT and FCS modules to obtain Freq_§ € REXH xW',
Then we design an ACM module to transform F'req_S into input that matches the existing model.

Specifically, in the ACM module, we mainly design a 1 x 1 convolution layer in which the number of convolution
kernels is the same as the number of input channels required by the backbone model, followed by a BN layer and
a ReLU layer. This allows us to feed the extracted frequency features into the existing model.
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Note that, in our method, larger images can be used as input. We randomly crop and scale the original image to a
larger size (e.g., 448 x 448) instead of 224 x 224, allowing us to obtain more information from an image.

The pseudocode and execution process of this paper can be found in Appendix A.2.

Feature Extraction

—’ | Conv l—'l BN |—>| Relu |—>| Max Pooling | —'—' Backbone

ResNet

(a) Traditional ResNet

Feature Extraction

‘ 3x448x448 ‘—» ‘DFDT ‘—»‘ FCS ‘ a‘ Kx56x56 ‘a ACM — 64x56x56 |—| Backbone

ResNet

Conv

1ot | —[ BN ][ Relu ]

Stride=1

(b) ResNet with ACM module

Figure 6: (a) Traditional ResNet. (b) ResNet with ACM module.

4 EXPERIMENT

We conduct extensive experiments to evaluate our proposed method, addressing the following research questions:
RQ1: How do parameters K and IV impact classification accuracy and early stopping?

RQ2: How does our method compare to spatial domain methods and other frequency selection methods?

RQ3: How effective is the early stopping mechanism?

RQ4: How effective are the selection factors?

RQ5: Is our method a general feature extraction technique that has robust effectiveness across various DL models?

For details on the dataset and implementation, please refer to Appendix A.3, A.4.

4.1 COMPARISON OF CLASSIFICATION ACCURACY WITH OTHER METHODS

Table 1: Precision comparison of different methods on three datasets. Best results are highlighted in bold.

Model Backbone Domain Input Size Ace
CIFAR10 ImageNet20 RESISC45

ResNet RGB 3 x 224 x 224 92.10 81.65 95.11
SENet RGB 3 X 224 x 224 92.37 81.93 95.53
FCANet ResNet-18 RGB 3 X 224 x 224 92.40 81.97 95.55
DCTNet-192 Frequency 192 x 56 x 56 92.45 81.82 95.26
DCTNet-24 Frequency 24 x 56 x 56 92.66 82.95 95.45
AFFS-24 (ours) Frequency 24 x 56 x 56 93.06 83.56 95.89
ResNet RGB 3 X 224 x 224 92.43 81.73 95.35
SENet RGB 3 X 224 x 224 92.61 81.95 95.67
FCANet ResNet-50 RGB 3 X 224 x 224 92.66 82.03 95.71
DCTNet-192 Frequency 192 x 56 x 56 91.59 81.89 95.43
DCTNet-24 Frequency 24 X 56 x 56 92.87 82.65 95.78
AFFS-24 (ours) Frequency 24 x 56 x 56 93.11 83.67 96.04
DenseNet RGB 3 X 224 x 224 92.45 84.81 96.01
DCTNet-192 Frequency 192 x 56 x 56 92.65 84.84 96.12
DCTNet-24 DenseNet-121 Frequency 24 X 56 x 56 92.85 85.49 96.44
AFFS-24 (ours) Frequency 24 x 56 X 56 93.21 85.87 96.72

In this section, we conduct experiments on three datasets (e.g., CIFAR10, ImageNet20, RESISC45) and three back-
bone models (e.g., ResNet-18(He et al., 2016), ResNet-50(He et al., 2016), DenseNet-121(Huang et al., 2017)).

To answer RQ2, we implement the following classification methods on ResNet18 and ResNet50: SENet(Hu et al.,
2018), FCANet(Qin et al., 2021), DCTNet-192(Qin et al., 2021), DCTNet-24(Qin et al., 2021), and our AFFS-24.
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In addition, we also implement DCTNet-192(Qin et al., 2021), DCTNet-24(Qin et al., 2021), and our AFFS-24
methods on Densenet121.

Among these, the ResNet is the classic residual network model, and the DenseNet is a variant of ResNet which
connects each layer to all preceding layers, resulting in a network with more connections and more comprehen-
sive information flow. The SENet enhances ResNet by adding a weight to each convolutional layer’s kernel to
implement channel-wise attention learning and the FCANet uses DCT weight coefficients as the weight of each
channel. These three models usually input the image data in the original spatial domain rather than transform it
to the frequency domain. Differently, the DCTNet-192 and DCTNet-24 take frequency domain data as input and
propose a gate module to select 192 and 24 frequency components, respectively.

Comparison with Other Classification Methods. As shown in Table 1, the column Domain indicates whether
spatial domain data or frequency domain data is input to the network, RGB indicates spatial domain data, and
Frequency indicates frequency domain data. The column Input Size indicates the size of the data input into the
model. The experimental results in Table 1 shows:

Accuracy: The size of the feature data extracted by our AFFS reduced by nearly 90% of the original frequency
feature, thereby decreasing the data size input to the subsequent backbone models, this means that even if we input
much smaller data feature, we can improve the model accuracy by about 1% across all experiments.

These results demonstrate that processing data in the frequency domain, rather than the spatial domain, more
effectively extracts key information, reduces data volume, and enables the model to better extract features, thereby
improving classification accuracy.

Comparison with Fixed Fre- Typle 2: Accuracy comparison between different frequency selection modes.

quency Selectipn. To vali- Best results are highlighted in bold.
date the effectiveness of our

Number of Components (K)

frequency selection strategy us- Selection Mode Dataset
ing 7, we compare it with 27 30 45 48
two fixed frequency selection Square 9219 — — 9212
modes:  Saquare and Triancle Triangle CIFAR10 — 9223 9231  —
I oq oo 1 gle. Ours 9297 9291 9287 9285
n square selection mode, we Squars o0 E——
select the K lowest frequency Triangle ImageNet20  — 8145 8205  —
components for each compo- Ours 8335 8330 8285 82.83
nent of Y, Cr, and Cb, respec- Square 95.15  — — 9511
tively. These components are Triangle RESISC45 — 9538 9529 @ —
Ours 9573 95.69 9555 9551

concentrated in the upper left
corner of the DCT coefficients
and arranged in a rectangular shape. The triangle selection mode is similar, except that the selected components
are arranged in a triangular shape in the DCT coefficient matrix. These specific selection modes are illustrated in
Fig. 7.

The experimental results are presented in Table 2. It can be seen that when the number of selected frequency
components is the same, our method leads to higher model accuracy in all cases. Although both fixed selection
patterns choose low-frequency components that contain the most information, they overlook the varying impor-
tance of different frequencies for the subsequent tasks. Our method, by using 7 to represent the significance of
each frequency component, precisely selects the most relevant frequencies for the task at hand as + is trained with
the task. This adaptive approach allows the model to retain or discard frequency components based on task-specific
requirements, thereby optimizing input features and enhancing classification performance.
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Figure 7: (a) Square selection mode. (b) Triangle selection mode.

Selected Frequency Components by AFFS. To understand the frequency components selected by our method,
we visualize the distribution of frequencies in the DCT coefficient matrix for K = 24. The results are shown in
Fig. 12. Frequencies marked with v* indicate the components selected by our method. Observations include:

The selected frequencies show similar distributions across the three datasets, with some variations in individual
frequency selections.
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The majority of selected frequencies are located in the top-left corner of the DCT coefficient matrix, represent-
ing low-frequency components. However, for the Y component, some mid-to-high-frequency components in the
bottom-left and top-right corners are also chosen, this means that these mid-to-high-frequency components have
better performance in specific tasks, but they are roughly discarded in the fixed selection method.

Across all datasets, the model prefers selecting more Y components, which represent the luminance information
of the image. The Cr and Cb components are chosen less frequently, which represent the chrominance information
of the image. This mirrors human visual perception, which is more sensitive to luminance information, suggesting
that neural networks also extract features more effectively from luminance information.

These findings indicate that in image classification tasks, luminance information contributes more significantly,
and low-frequency components, which carry richer information, are predominantly retained by the network. Our
approach demonstrates the ability to dynamically select frequencies based on data-driven methods across various
datasets. The number and positions of selected Y, Cr, and Cb components are different in datasets, allowing
the model to adapt its selection strategy according to dataset characteristics, thereby maximizing classification
performance. This dynamic selection enables the model to better capture and utilize key information in images,
leading to improved classification accuracy.

4.2 THE OTHER EXPERIMENTAL RESULTS.

To answer RQ1, we conduct some experiments to understand the influence of the parameter K on classification
accuracy and early stopping. Those results indicate that training neural networks based on features extracted and
selected in the frequency domain effectively supports image classification tasks. An optimal number of frequency
components yield better performance than baseline models. A consistent pattern across the datasets shows that
more frequency components do not necessarily lead to better performance, highlighting the importance of select-
ing the right number of components to maximize accuracy and achieve significant data compression. Balancing
the reduction of training epochs with improving accuracy is crucial to selecting an appropriate /N. From the exper-
imental results, setting IV to 4 or 5 achieves an optimal balance, reducing training time for -y by about 80% without
a significant drop in accuracy. In this paper, we choose N = 5. For more details on the experiment, please refer to
Appendix A.5.

To answer RQ3, we evaluate the impact of indexes selected by ~ using the early stopping mechanism compared to
full training. Experiments were conducted on the RESISC45 dataset with three different backbone networks. The
experimental results confirm that the effectiveness of the early stopping mechanism, indicating that useful v values
can be obtained with fewer iterations. Table 4 also highlights the stability of v, as the indexes selected for the same
dataset remain consistent across different models with minor fluctuations. For more details on the experiment,
please refer to Appendix A.6.

To answer RQ4, we validate the effectiveness of the v proposed in this paper by conducting ablation experiments.
The results show two major advantages of selection factors. First, each frequency component is weighted by
selection factor to enhance useful information and suppress invalid information. Even if we do not make any
selections, the model accuracy improves. Secondly, the selection factor reflects the importance of each frequency
component, so we can select the most important subset of F'req according to it. This can remove a lot of redundant
information and even improve accuracy. For more details on the experiment, please refer to Appendix A.7.

RQS5 is answered in Appendix A.4.

5 CONCLUSION

To extract more effective data features for different subsequent DL models in the frequency domain, we propose
a novel approach for task-specific frequency component selection in the context of deep learning. By designing
the selection factor layer, we can dynamically identify optimal frequency component combinations for different
subsequent tasks. Moreover, we propose the SFVA metric to effectively monitor the convergence of the selection
factor ranking, and further propose an early stopping mechanism to accelerates the selection of frequency compo-
nents, which significantly reduces training time but maintaining or even improving model performance. Extensive
experimental results demonstrate that our method achieves higher subsequent DL model accuracy compared to
other frequency component selection methods, while significantly improving selection speed.
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A APPENDIX

A.l1 DFDT

Step 1: RGB to YCrCb. Convert the image from the RGB color space to the YCrCb color space, which separates
luminance (Y) from chrominance (Cr and Cb). Post conversion, the image Xy oo € REXHXW g decomposed
into three parts:

Xy = Xycreol:, 0] € RV,
Xer = Xycresls, 1] € R, (6)
Xeov = Xyerepls 2] € RV,

Since the operations are identical for each channel, we’ll use the Y channel as an example for the following steps.
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Figure 8: 8 x 8 DCT. (a) Xy is divided into multiple non-overlapping 8 x 8 blocks. (b) fo o is the first image
block. (c) Fp is the coefficient matrix obtained after performing DCT on fj g.

Step 2: 8 x 8 DCT. In this step, we transform the image data from the original domain to the frequency domain
using DCT. Specifically, we apply block-wise DCT to Xy. The Xy is divided into multiple non-overlapping
image blocks of size 8 x 8, following the JPEG method (Hudson et al., 2017). Among which, each blocks of Xy
can be represented by f,, , € R®*® where m € {0,1,2,...,H' — 1},n € {0,1,2,..., W’ — 1}. Then, we
perform DCT on f,, ,, as follows:

7 7
CyuCy .. 2t 4+ 1)urw 25+ 1)vm
Fn10) = 325 i) cos (PR Y eos (5357 )

1
—= foru,v =0

where ¢y, ¢, = ¢ V2 T "0<u,v<T.
1 otherwise,

N

here, u and v are the horizontal and vertical frequencies, f,,., (i, ) is the pixel value at (4, 5), and F,, , € R8*8
is the resulting DCT coefficient matrix. The frequency component mentioned in this paper is converted from this
coefficient matrix.
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Figure 9: Frequency Combination: Combine frequencies at the same position in each block F7, ,, to form a
frequency component matrix Freg_Yt. Finally, concatenate all matrices to obtain the tensor Freq_Y .

Step 3: Frequency Combination. After DCT, we obtain H’ x W’ DCT coefficient matrices F,, , € R8>8, each
containing 64 DCT coefficients, where H' = H/8, and W’ = W/8.

In this step, we combine coefficients at the same position from different DCT matrices (i.e., F}, ,[z,y]) into
single-frequency component (i.e., Freq Y, where t € {0,1,2,...,63}) as follows:
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Freq Y'[i,j] = Fpnlz,yl,

st.x=|t/8], y=1t%8, ®)
i€{0,1,2,... H —1},

je{0,1,2,..., W —1}.

After combining all frequency component matrices by Eq.(8), concatenate them along the component dimension
to obtain frequency component tensor F'req_Y':

FreqY = Concat([Freq,YO, ..., FreqY?t, ..., Freq,YGS]). ©)]

Similarly, F'req_Cr and Freq_Cb are obtained by:

Freq_Cr = Concat([Freq.Cr°, ..., Freq Cr',. .., Freq Cr%)), (10)
Freq_Cb = Concat([Freq.Ct°, ..., Freq.Cb,. .. Freq.Cb%)).

Step 4: Concatenate. After performing Steps 2 and 3 on channels Y, Cr, and Cb, we concatenate the resulting
tensors F'req.Y, Freq_Cr, and Freq_Cb along the component dimension to form the final frequency component
tensor Freq € R *H *W" a5 illustrated in Fig. 10.

Concat
[ 7 7 7
= ool
FreqY Freq Cr Freq Cb Freq

Figure 10: Concatenate Freq.Y, Freq_Cr, and Freq_Cb along the component dimension to form the tensor
Freq with a size of 192 x H/8 x W/8, where 192 = (64 + 64 + 64).

A.2 EXECUTION PROCESS

As previously discussed, DL-based approaches primarily involve two stages: feature extraction and inputting the
extracted feature data into subsequent DL model. Our AFFS algorithm adheres to this two-step process, as depicted
in Algorithm 1.

In lines 4 — 14, we concentrate on the feature extraction stage. Initially, we transform the input data X into the
frequency domain using the DFDT module (line 4). Subsequently, the FCS module is employed to select the
optimal frequency components (denoted as F'req_S) for the subsequent DL model (lines 5 — 15). During this
phase, an early stopping mechanism is utilized to expedite the frequency component selection, as outlined in lines
7—13.

Upon selecting the frequency components, we obtain the extracted features F'req_S in the frequency domain. We
then move to the second stage: inputting the extracted features F'req_S into the subsequent DL model for fine-
tuning and final output (lines 15 — 17). To facilitate this, the ACM module is applied to adjust the dimensions of
Freq_S to meet the dimension requirements of the subsequent DL model.

Although we use image classification as the task to illustrate our algorithm, AFFS is a general-purpose algorithm
that can efficiently and effectively select frequency components that are sensitive to various deep learning tasks.

A.3 DATASETS

Our method is a general frequency-based feature extraction technique designed to enhance DL model’s perfor-
mance by leveraging a smaller subset of selected frequency features. To evaluate its effectiveness, we implement
our method in conjunction with a multi-class image classification task using three real-world datasets, described
as follows:

CIFAR10 (Krizhevsky et al., 2009): This dataset comprises 60,000 RGB images distributed across 10 categories,
including airplanes, cars, and birds. Each category contains 6,000 images, with 50,000 images allocated for training
and 10,000 for testing. The images have a resolution of 32 x 32.

ImageNet (Russakovsky et al., 2015): The original ImageNet1000 dataset contains 1.2 million training images,
50,000 validation images, and 10,000 test images, spanning 1,000 categories. For our experiments, we randomly
selected 20 categories, using 500 images per category for training and 100 images per category for testing. The
average image size in this dataset is 482 x 415.
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Algorithm 1 AFFS
1: Input: X, N, K

2: Output: Trained Model

3: Begin

4: Transform X to F'req using DFDT

5: for epoch from 1 to 100 do

6:  Train Model Ly - using Eq. (2), obtain 0,y
7./ Start early stopping detection

8:  Calculate SF'V A using Eq. (4)

9: if SFVA == 0 then
10: break // Early Stopping
11:  endif
12:  // Complete early stopping detection
13: end for

14: Select F'req_S from Freq using Eq. (3)

15: Match F'req_S with the model’s required input using ACM
16: Fine-tune the model with the selected frequency components
17: Return the trained model

18: End

NWPU-RESISC45 (Cheng et al., 2017): This remote sensing image dataset covers 45 scene categories, each
containing 700 images, totaling 31,500 images. We used 27,000 images for training and 4,500 images for testing.
The images have a resolution of 256 x 256. Hereafter, we refer to this dataset as RESISC45.
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Figure 11: Accuracy with different numbers of components.

A.4 IMPLEMENTATION DETAILS

Our method is a versatile technique with the potential to positively impact various DL models. To demonstrate this
and answer RQS, we implement the image classification task in three different ways by using three widely adopted
CNNs as backbone models: ResNetl18 (He et al., 2016), ResNet50 (He et al., 2016), and DenseNet121 (Huang
et al., 2017). All models are implemented using the PyTorch (Paszke et al., 2019) framework and are trained on a
single NVIDIA GeForce RTX 3090 GPU.

We employ the SGD optimizer with a momentum of 0.9 and a weight decay of 0.0001. During the training of the
selection factors ~, the batch size is set to 16, the initial learning rate is 0.01, and the regularization parameter A
is 0.0002. The selection factors -y are initialized as a vector of all ones. For fine-tuning with the selected critical
data, the batch size is increased to 64, and the initial learning rate is 0.1. All training employs cosine learning rate
decay and label smoothing. We train all models from scratch for 100 epochs.

The loss function Lo used in this study is the cross-entropy loss, which is directly related to accuracy. We
use accuracy (Acc) as the evaluation metric, which measures the proportion of predictions where the model’s
predicted class matches the true class. Specifically, it assesses the proportion of instances where the model’s
highest probability prediction corresponds to the true label, reflecting the model’s ability to correctly identify the
single most likely class.

Due to the nature of the DCT, the values between different frequency components can vary significantly. Therefore,
we pre-compute the mean and variance of each component across all training data and standardize each component
accordingly.
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Figure 12: Distribution of selected components in Y, Cr, Cb (K = 24).

A.5 THE IMPACT OF PARAMETERS K AND N

To answer RQ1, we conduct the following experiments to understand the influence of the parameter K on classi-
fication accuracy and early stopping.

Impact of K on Classification Accuracy. The parameter K denotes the number of frequency components selected
from F'req. Using the selection method described in Section 3.2, we chose the K most relevant components out of
192 available frequency components for training and inference. Fig. 11 displays the results across three datasets,
revealing consistent patterns:

* Single Component (Freq-0): When only the first frequency component is used for training, reducing the
data dimension from 3 x 448 x 448 to 1 x 56 x 56, the model still performs well. This is due to the DCT’s
energy concentration property, which compresses most of the signal’s energy into the DC component at
frequency 0, retaining significant information from the original image.

* Increasing Components: As the number of selected components increases, the input information be-
comes richer, leading to improved accuracy. Peak accuracy is observed at 24 components. Beyond this
point, additional components may introduce redundant data or noise, causing a slight decrease in accuracy.

* Optimal Components: Using the top 24 components results in the best model accuracy, reducing the
size of the data input into the subsequent DL model by nearly 90% compared to using all 192 frequency
components. Despite the reduced input size, improvements of 0.96%, 1.91%, and 0.78% in classification
accuracy are observed. This demonstrates that appropriate frequency component selection can largely
reduce the original frequency feature size to 10% while enhancing model performance.

These results indicate that training neural networks based on features extracted and selected in the frequency do-
main effectively supports image classification tasks. An optimal number of frequency components yield better
performance than baseline models. A consistent pattern across the datasets shows that more frequency compo-
nents do not necessarily lead to better performance, highlighting the importance of selecting the right number of
components to maximize accuracy and achieve significant data compression.

Impact of K on Early Stopping. To understand K’s effect on early stopping, we conducted experiments using
ResNet18 on ImageNet20. Fig. 13 shows the results:

* Training Time: As K increases, the early stopping mechanism’s stopping time is delayed, leading to
longer training times for 7.
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* Balance: While a smaller K shortens training time, it should not be too small to avoid reducing accuracy
and causing early stopping, which leads to insufficient training of . Balancing model accuracy and
training time, we set K = 24 as the optimal value.
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Figure 13: Effect of parameter K on early stopping.

The Impact of NV on Classification Accuracy and Early Stopping. N is a parameter in SFVA, representing
the number of consecutive epochs considered in our analysis. We evaluated its impact using ResNet18 on the
ImageNet20 and RESISC45 datasets. The experimental results, summarized in Table 3, reveal the following
insights:

e Smaller N: When N is smaller, training stops earlier, resulting in less effective . This leads to lower
accuracy after fine-tuning based on . An insufficiently trained ~y results in suboptimal frequency compo-
nent selection due to inaccurate rankings.

e Larger N: As N increases, more training epochs are considered to evaluate the stable status of the
order of frequency factors, allowing v to undergo more extensive training. This results in more accurate
combinations of frequency components. However, excessively large N values increase training epochs
significantly, defeating the purpose of early stopping.

Balancing the reduction of training epochs with improving accuracy is crucial to selecting an appropriate /N. From
the experimental results, setting N to 4 or 5 achieves an optimal balance, reducing training time for v by about
80% without a significant drop in accuracy. In this paper, we choose N = 5.

Table 3: The impact of parameter N on training epochs and accuracy (K = 24).

N 2 3 4 5 6 7
ImageNet20 ) ) 35 15/8235 20/83.51 28/83.49 20/83.49 56/83.52
(Epoch/Acc)

RESISCAS  C04 76 13/95.42 15/95.81 19/95.85 27/95.84 36/95.86
(Epoch/Acc)

A.6 EFFECT OF EARLY STOPPING MECHANISM

To answer RQ3, we evaluate the impact of indexes selected by ~ using the early stopping mechanism compared
to full training. Experiments were conducted on the RESISC45 dataset with three different backbone networks.
Table 4 summarizes the results, revealing:

e In all models, after adding the early stopping mechanism, the models stop training early after 20 epochs of
training. Compared with the case without early stopping, the training process of selection factors is shortened by
about 80%, which demonstrates the mechanism’s effectiveness across different architectures.

e There is minimal difference in selected indexes between full training and early stopping. Only a few mid-range
frequencies differ, which has a negligible impact on accuracy.

These findings confirm the effectiveness of the early stopping mechanism, indicating that useful v values can be
obtained with fewer iterations. Table 4 also highlights the stability of v, as the indexes selected for the same dataset
remain consistent across different models with minor fluctuations.

A.7 ABLATION STUDY

To answer RQ4, we validate the effectiveness of the  proposed in this paper by conducting ablation experiments
on the following three aspects:

1. “192 components, without v”: The obtained F'req by DFDT is directly input into the subsequent DL model.
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Table 4: Impact of Early Stopping (N = 5, K = 24).

Early Training Training
Stopping Epoch  Time

Backbone Top24-indexes Acc

0,1,2,3,4,5,8,10, 11, 16,

NO 100 33457s 17, ,24,25,26,32,40, 95.89

—_

2,128,129, 136
,4,5,8,10, 11, 15,
YES 19 6230s 17,18, 19, 24, 25,27, 32,40, 95.85
64, 65,72, 128, 129, 136

0,1,2,3,4,5,8,9,11, 12, 16,
NO 100 35192s 17,18, 19, 24, 25, 32,40,  96.04
64, 65,72, 128, 129, 136
0,1,2,3,4,5,8,9,10, 12, 16,
YES 21 6659s 17, 18, 20, 24, 25, 32,40,  95.97
64, 65,72, 128, 129, 136

0,1,2,3,4,5,8,10, 12, 16,
NO 100 39684s 17,18, 19, 24,25, 26, 32, 40, 96.72
64, 65,72,128, 129, 136
0,1,2,3,4,5,8,9, 16, 17,
YES 17 6605s 18,19, 24, 25, 26, 27, 32, 40, 96.64
64, 65,72, 128, 129, 136

18,1
4, 65,
1,2

ResNet18 0

ResNet50

DenseNetl121

2. “192 components, with y”: The obtained F'req is first processed through the selection factor layer to obtain
Freqg_out (as shown in Eq. 1), and then F'req_out is input into the DL model.

3. “24 components, selected by v”: The obtained F'req is precisely selected into 24 components according to
(Freq_S(K = 24)) and then input into the DL model.

Table 5 presents the detailed results:
e “192 components, without 4”’: The model achieves the lowest classification accuracy among all settings.

e “192 components, with 7”’: Introducing +y to scale the frequency components enhances effective information and
suppresses noise, resulting in improved accuracy compared with that “192 components, without 7.

e “24 components, selected by 7”: Selecting key frequency components via y optimizes model performance by
retaining critical information and discarding noise, achieving the best results.

The results in Table 5 show two major advantages of selection factors. First, each frequency component is weighted
by selection factor to enhance useful information and suppress invalid information. Even if we do not make any
selections, the model accuracy improves. Secondly, the selection factor reflects the importance of each frequency
component, so we can select the most important subset of F'req according to it. This can remove a lot of redundant
information and even improve accuracy.

Table 5: Ablation Experiment.

Ablation Backbone Ace
CIFAR10 ImageNet20 RESISC45

192 components, without 92.32 82.35 95.27
192 components, with v ResNet-18 92.69 82.93 95.58

24 components, selected by ~y 93.06 83.56 95.89
192 components, without ~y 92.48 82.44 95.54
192 components, with ResNet-50 92.79 82.96 95.79
24 components, selected by ~y 93.11 83.67 96.04
192 components, without y 92.71 84.12 95.75
192 components, with v  DenseNet-121  92.98 85.05 96.32
24 components, selected by ~y 93.21 85.87 96.72
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