
Under review as a conference paper at ICLR 2022

GENOME SEQUENCE RECONSTRUCTION USING GATED
GRAPH CONVOLUTIONAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

A quest to determine the human DNA sequence from telomere to telomere started
three decades ago and was finally finished in 2021. This accomplishment was a
result of a tremendous effort of numerous experts with an abundance of data, var-
ious tools, and often included manual inspection during genome reconstruction.
Therefore, such method could hardly be used as a general approach to assem-
bling genomes, especially when the assembly speed is important. Motivated by
this achievement and aspiring to make it more accessible, we investigate a previ-
ously untaken path of applying geometric deep learning to the central part of the
genome assembly—untangling a large assembly graph from which a genomic se-
quence needs to be reconstructed. A graph convolutional network is trained on a
dataset generated from human genomic data to reconstruct the genome by finding
a path through the assembly graph. We show that our model can compute scores
from the lengths of the overlaps between the sequences and the graph topology
which, when traversed with a greedy search algorithm, outperforms the greedy
search over the overlap lengths only. Moreover, our method reconstructs the cor-
rect path through the graph in the fraction of time required for the state-of-the-art
de novo assemblers. This favourable result paves the way for the development of
powerful graph machine learning algorithms that can solve the de novo genome
assembly problem much quicker and possibly more accurately than human hand-
crafted techniques.

1 INTRODUCTION

Fast and accurate de novo genome assembly is one of the most difficult problems in bioinformatics
and it remains unsolved to this day. It focuses on reconstructing the original genomic sequence
from a sample of shorter overlapping fragments, called reads, without any prior knowledge about
the original sequence. The first major achievement of de novo genome assembly happened in the
early 2000s when the Human Genome Project was finished, an effort that took over a decade and
cost billions of dollars (Lander et al., 2001). The reported results of the project were that 99% of the
genome had been reconstructed with less than 400 gaps. Unfortunately, that was not entirely correct,
as only the euchromatic portion of the genome was considered while the heterochromatin was left
out. When the heterochromatin regions—which include centromeres, telomeres, and tandem gene
arrays—are also taken into account, the final result is that more than 5% of the entire genome was
either missing or incorrect.

Since then, the sequencing technologies have improved significantly in many ways, but most notably
in terms of the lengths and accuracies of the reads they produce. At the forefront of the latest
sequencing technologies are the HiFi reads developed by PacBio (Wenger et al., 2019) and the ultra-
long reads by Oxford Nanopore Technologies (Jain et al., 2018), both of which were crucial for
the most recent breakthrough in the field of de novo genome assembly—full reconstruction of the
entire human genome, with no regions left unsolved (Nurk et al., 2021). Nevertheless, this was
enabled not only by the latest sequencing technologies, but also by a tremendous effort of numerous
researchers and bioinformaticians who used various de novo assembly tools and manually inspected
large genomic regions.

One of the more common approaches to de novo genome assembly, which was also the one used in
the recent reconstruction of the human genome, is the Overlap-Layout-Consensus (OLC) paradigm.

1

Under review as a conference paper at ICLR 2022

Figure 1: An assembly graph of one part of chromosome 11, containing the repetitive region. A
zoomed-in view of the repetitive region can be seen on the right. In the graph, orange nodes represent
nodes taken for the optimal genome reconstruction, while the blue nodes should be avoided. Figure
generated with Graphia (Freeman et al., 2020).

In the Overlap phase, the reads in the sample are mapped onto each other in an all-versus-all manner
in order to find overlaps between them. All reads that are entirely contained in other reads are
removed from further processing. From the rest of the overlapped reads, an assembly graph is
built—a directed graph in which nodes represent reads and edges represent the suffix-prefix overlaps
between the reads. In the Layout phase, the assembly graph is simplified in order to find a path
through it that would reconstruct the original genome. Finally, in the Consensus phase, all the reads
are aligned to the reference in order to clean the assembly sequence of errors that happened during
the rest of the process.

In an ideal scenario, the Layout phase would be formulated as finding a Hamiltonian path over
the assembly graph—visit every node in the graph exactly once. However, due to imperfect read
qualities, sequencing artifacts, and repetitive genomic regions, finding a Hamiltonian path is usually
not possible and an unknown number of nodes and edges has to be removed. Because of this,
instead of finding a path through the graph directly, modern assemblers rely on heuristics to simplify
the entire graph, by iteratively removing nodes and edges deemed unnecessary, such as removing
transitive edges, trimming tips, and popping bubbles (Li, 2016; Vaser & Šikić, 2021). Frequently,
however, the assembly graphs are highly complex, and even this is not a straightforward task, as
some regions cannot be simplified by the current heuristics. One such region can be seen in Figure
1 on the right. For lack of a better method, these complex regions are cut out of the graph, and we
are left with multiple fragments of the original genome instead of the continuous sequence. To this
day, the problem of fragmentation continues to plague all the existing assemblers.

The central part of reconstructing the full human genome was untangling these complex regions in
the assembly graph instead of cutting them. This approach required an abundance of data, various
tools, and a detailed manual inspection of certain regions and individual reads. Reproducing such
efforts on new genomes seems infeasible, and thus fast and accurate de novo genome assembly
remains elusive.

In this work, we propose a novel approach to de novo genome assembly, one based on deep learn-
ing and finding a path through the graph instead of relying on handcrafted heuristics to simplify
the graph. We train a non-autoregressive model based on gated graph convolutional network (Gat-
edGCN) introduced by Bresson & Laurent (2017) that takes an assembly graph and outputs a score
for each edge. These scores can then be used to guide a search algorithm over the graph, producing
a path that represents the reconstructed genome. Our idea is illustrated in Figure 1, where the orange
nodes represent the nodes traversed in the optimal path, and blue the ones that should be avoided. For

2

Under review as a conference paper at ICLR 2022

this, we create a synthetic dataset of reads from the real human genomic data, and generate assem-
bly graphs prior to any simplification steps in order to avoid any errors such simplifications might
produce. We believe, this approach could reduce the fragmentation of the reconstructed genomes as
well as the runtime of the assembly process, since some simplification steps can be time-consuming.
Thus, we make both the codes1 and the data2 available for other researchers to use and join in on
tackling the de novo genome assembly using deep learning.

Lately, graph neural networks have been applied to a variety of biological problems, ranging from
drug design (Stokes et al., 2020) and protein interactions (Gainza et al., 2020), to predicting anti-
cancer foods (Gonzalez et al., 2021). However, to the best of our knowledge, the only work based
on geometric deep learning that addresses de novo genome assembly is Vrček et al. (2020), which
is more of a proof-of-concept work that simulates the deterministic simplification algorithms in the
Layout phase, instead of tackling the tangled regions themselves. Moreover, the data used in Vrček
et al. (2020) was completely synthetic, not generated from the biological sequences. Here, we go a
step further by starting with the complete human genome and focusing on one of the main problems
in genome assembly.

The rest of the paper is composed as follows: In Section 2 we describe the dataset preparation, in
Section 3 we formulate the problem mathematically, in Section 4 we describe the architecture of
the used model, in Section 5 we state the performed experiments, and in Section 6 we discuss the
results. Finally, Section 7 concludes this paper.

2 DATASET

Generating the dataset can roughly be separated into three tasks. First, we simulate the genomic data
from the human genome. Second, we adapt an existing tool for de novo genome assembly, Raven
(Vaser & Šikić, 2021), to build an assembly graph for each set of reads. Finally, we implement
an algorithm that leverages the information stored during the read-simulation phase and finds a
ground-truth path through an assembly graph. We use these paths as the supervision signal during
the training phase.

2.1 SIMULATING READS

To simulate the reads faithfully, we start with the recently reconstructed human genome, called
CHM13 (Nurk et al., 2021), which consists of one chromosome from each of 23 pairs of human
chromosomes. In the assembly process, each chromosome would ideally be represented by a single
component of the large disconnected graph of the entire human genome, but in a realistic case,
several chromosomes could be connected into a single component. Starting from a simpler scenario,
we isolated one chromosome and split it into shorter ”mini-references”, each 2 million base pairs
(bp) long.

During the sequencing process of the real samples, all information about the ordering of the reads
and their position on the genome is lost. This is the main reason why we are not using sequenced
human data, but simulate our own by sampling the reads from the mini-references. Thus, we are
able to store the positional information for each read, which allows us to construct the ground-truth
path for training.

The reads are simulated by mimicking the sequencing process. The mini-reference is sampled in a
manner that each base of the mini-reference is covered approximately 20 times, which represents the
number of times genomes are copied and fragmented prior to sequencing. The lengths of the reads
are sampled from a normal distribution with the mean value of 20,000 and the standard deviation
of 1,500. These values were determined empirically so that the simulated reads would resemble the
real PacBio HiFi reads. In contrast to sequencers, we introduce no errors to the simulated data to
facilitate. Considering that the average accuracies of the real PacBio reads are usually over 99.5%
and that there are tools that perform error correction of reads (Cheng et al., 2021), the assumption
of errorless reads is not too far-fetched.

1Code: https://anonymous.4open.science/r/gnn-genome-reconstruction-4462
2Data: currently available under supplementary materials

3

https://anonymous.4open.science/r/gnn-genome-reconstruction-4462

Under review as a conference paper at ICLR 2022

2.2 GENERATING GRAPHS

Once the reads are simulated, we can construct the graphs. For this purpose, we use an adapted
version of Raven, an assembler that follows the OLC paradigm and can output the assembly graphs
at different stages of the Layout phase (Vaser & Šikić, 2021). Additionally, we required Raven to
keep only the perfect overlaps between the reads. Therefore, unless two reads have a suffix and
prefix which are matching in all the bases, they will not be connected with an edge in the assembly
graph.

At the end of the Overlap phase, the assembly graph is constructed. We output the generated graph
at the start of the Layout phase, prior to any simplification algorithm applied, in order to avoid errors
that can occur during the simplification steps. The end result of this entire process is 50 graphs,
each containing around 3,500 nodes and 50,000 edges. Considering that the reads are perfect and
the similarity score of each overlap is 1.0, we only rely on overlap lengths as edge features, and use
no node features (or rather, we specify feature of each node to be 1). A possible approach would
be to encode the genomic sequences with a 1D-CNN and use the read-sequence encodings as node
features and overlap-sequence encodings as additional edge features, but we leave that for future
work. Therefore, in order to train on the generated graphs, the last thing needed is the supervision
signal—a ground-truth path for each graph.

2.3 GROUND-TRUTH PATHS

A ground-truth path is a path in the assembly graph that produces the longest length of the recon-
structed genome. For this, we utilize the positional information that was stored for each read during
the sampling process and implement an algorithm resembling depth-first search, with an additional
preference for successor nodes that are closer to the current node on the mini-reference. The neigh-
bors that don’t share position on the mini-reference with the current node are avoided. Although
the reads and the overlaps in the created graphs are both perfect, connections between the distant
genomic regions can still exist. The main culprits for this are repetitive regions, regularly found in
telomeres, centromeres, and highly duplicated ribosomal RNA genes.

In a way, this algorithm can be described as an exhaustive search with an oracle. Even though the
oracle—the reads’ positions on the mini-reference—guarantees that the reconstructed genome will
be optimal, we noticed cases when the length of the reconstruction was less than of the original mini-
reference. There are two reasons for this. First, during the Overlap phase, all the reads are trimmed,
which slightly reduces them in length. Since the ends of the mini-reference are covered only by the
ends of the reads, trimming the reads necessarily leads to loss of information. Second, and the more
interesting case, happens due to an error during the Overlap phase resulting in fragmented assembly
graph. This occurs even though the sampled reads can cover the entire mini-reference (apart from
a few bases on either end). We believe this happen due to a combination of repetitive regions and
discarding of reads completely contained inside the other reads. However, more analysis is needed
to make a definite claim.

3 FORMULATING THE PROBLEM

Let G(V,E) be the graph obtained from a set of reads R. A node i ∈ V , represents a read ri ∈ R,
while an edge i → j ∈ E represents a suffix-prefix overlap between reads ri and rj . For a node i
in the graph G, there exists a node feature xi ∈ Rdv , while for an edge i→ j exists an edge feature
zij ∈ Rde , where dv and de are the dimensionalities of the node and edge features, respectively.

Given such a graph, our objective is to identify the sequence of nodes (i.e., a path), which recon-
structs the genome optimally:

(i∗1, . . . , i
∗
n) = argmax

(i1,...,in)

RecLen(i1, . . . , in), (1)

where RecLen is the length of the reconstructed genome for the given node sequence. Finding such
a path in an exact manner would be an NP-hard problem, so we need to reformulate our objective
in a probabilistic way: given graph G(V,E), identify a sequence of nodes which maximizes the
conditional probability that the chosen sequence is optimal:

4

Under review as a conference paper at ICLR 2022

P (i1, . . . , in is optimal | G) = (2)

= P (i1 = i∗1 | G) · P (i2 = i∗2 | G, i1 = i∗1) · . . . · P (in = i∗n | G, . . . in−1 = i∗n−1) (3)

≈
n−1∏
k=1

P (ik+1 = i∗k+1 | G, ik = i∗k) ≈
n−1∏
k=1

pik,ik−1
. (4)

In the last line, we introduce two approximations. First, we assume that the conditional probability
of choosing the correct next node depends only on the current node and not on all the previous
choices. Second, the exact conditional probabilities are unknown, and thus we approximate them
with scores pij ≈ P (i∗k+1 = j | G, i∗k = i). Therefore, our task comes down to finding a way to
compute the scores pij so that they would resemble the real conditional probabilities as much as
possible. We propose two approaches:

Naive approach. Considering that in the current setting we use no node features and use only
overlap length as the edge features, a naive approach would be to normalize overlap lengths over the
neighborhood:

pij =
len(i→ j)∑

i→j′ len(i→ j′)
, (5)

where, for sake of simpler notation, len(i → j) denotes the length of the overlap between reads ri
and rj . Longer overlap between two reads indicates that they might be closer on the reference and
thus the lesser chance of making an error in the traversal.

GNN approach. The second approach is based on training a graph neural network to compute
the scores. We deem that such a model, with enough data and expressive power, might be able to
leverage the topology of the graph and thus produce scores of higher quality.

Once these scores are computed, a search algorithm guided by these scores can be run on the graph.
In this work, we consider greedy search which will always choose the highest score. This implies
that, in case the scores don’t faithfully represent the conditional probabilities, the chosen sequence
of nodes will certainly be suboptimal. Different choices of search algorithms are also possible, e.g.,
beam search, but we leave that for future work. Notice that, in a setting where scores are predicted
with the naive approach, and the search algorithm is greedy, the entire task comes down to greedily
choosing edges with the longest overlap.

4 MODEL ARCHITECTURE

The proposed model for obtaining the probability scores is non-autoregressive and can be split into
three parts—encoder, processor, and decoder.

Encoder. A layer that transforms node features xi ∈ Rdv and edge features zij ∈ Rde into the
d-dimensional node and edge representations. As stated in Section 2, we use xi = 1.0 and zij =
len(i → j), thus making dv = de = 1. Encoder for both node and edge features is a single linear
layer:

h0i =W1xi + b1 ∈ Rd, (6)

e0ij =W2zij + b2 ∈ Rd, (7)

where h0i is the initial node representation of the node i, e0ij is the initial representation of the edge
i→ j, and W1 ∈ Rd×dv ,W2 ∈ Rd×de , b1, b2 ∈ Rd are learnable parameters.

Processor. The main part of the network consists of multiple GNN layers. For this task, we modify
the GatedGCN (Bresson & Laurent, 2017) to perform on directed graphs by including the informa-
tion from both the predecessors and successors of every node. In addition to the original GatedGCN,
we include the edge feature representations, and use a dense attention map ηij for the edge gates, as
proposed in Bresson & Laurent (2019); Joshi et al. (2019).

5

Under review as a conference paper at ICLR 2022

Figure 2: Left: updating the edge representations, both forward (blue) and backward (magenta).
Right: Updating the node representation (green).

The motivation for using this layer comes mainly from its performance on the Traveling Salesman
Problem (Joshi et al., 2019). Since the problem of finding the optimal walk on the assembly graph
is similar to that of TSP, it makes sense to reuse the architecture. In addition, it was shown that the
GatedGCN outperforms many other models in several tasks (Dwivedi et al., 2020), which gives us
further reason to use this architecture.

Since we are working with the directed graphs, we will distinguish between the messages passed
along the edges (forwards), and in the opposite direction of the edges (backwards). Thus, we will
also use two sets of edge representations at a layer l, forward edge representations ef,lij ∈ Rd and
backward edge representations eb,lij ∈ Rd. For the initial values of both of them, we choose the initial
edge representation obtained from the encoder, ef,0ij = eb,0ij = e0ij . Accordingly, we also use forward
and backward edge gates at a layer l, ηf,lij and ηb,lij respectively.

Let now node i be the node whose representation we want to update, and let its representation after
a layer l be hli. Also, let all the predecessors of node i be denoted with j and all its successors with
k. Then, in the layer l + 1, the node and edge representations will be:

hl+1
i = hli +ReLU

(
BN

(
Al

1h
l
i +
∑
j→i

ηf,l+1
ji �Al

2h
l
j +

∑
i→k

ηb,l+1
ik �Al

3h
l
k

))
∈ Rd, (8)

ef,l+1
ji = ef,lji +ReLU

(
BN
(
Bl

1e
f,l
ji +Bl

2h
l
j +Bl

3h
l
i

))
∈ Rd, (9)

eb,l+1
ik = eb,lik +ReLU

(
BN
(
Cl

1e
b,l
ik + Cl

2h
l
i + Cl

3h
l
k

))
∈ Rd, (10)

where all A,B,C ∈ Rd×d are learnable parameters, ReLU stands for rectified linear unit, BN for
batch normalization, and � for Hadamard product. The edge gates are defined as:

ηf,lji =
σ
(
ef,lji

)
∑

j′→i σ
(
ef,lj′i

)
+ ε
∈ Rd

+, ηb,lik =
σ
(
eb,lik

)
∑

i→k′ σ
(
eb,lik′

)
+ ε
∈ Rd

+ (11)

where σ is the sigmoid function, and ε is a small value in order to avoid division by zero. This rather
complicated updating procedure is illustrated in Figure 2.

6

Under review as a conference paper at ICLR 2022

Decoder. A multi-layer perceptron (MLP) decodes the obtained representations into the probabil-
ity scores. Probability score pik for traversing an edge i→ k is computed from node representations
of nodes i and k, as well as both forward and backward edge representations of the edge i→ k, all
after the final GatedGCN layer L:

pik = MLP(hLi ‖ hLk ‖ e
f,L
ik ‖ e

b,L
ik), (12)

where (· ‖ ·) is the concatenation operator.

5 EXPERIMENTS

5.1 TRAINING

Processing of a graph during one training epoch is done iteratively. In a single iteration, the graph is
fed to the model providing us with scores for all the edges. We start the traversal from the starting
node of the ground-truth path and take w steps, where w is a hyperparameter and we refer to it as
the walk length. In each step, best successor is predicted from their probability scores, while the
correct next node is obtained from the ground-truth path. The cross-entropy loss is computed over
the current node’s successors, followed by teacher forcing where we choose the successor given
by the ground-truth as the next node. This is repeated for w, after which the copmuted losses are
avereged, the backpropagation is performed, and the next iteration starts, continuing from the last
visited node. This is repeated until the end of the ground-truth walk. It is important to notice
that, while computing the loss, the number of candidates in each step can vary, as the number of
successors also varies.

The training was performed on a dataset consisting of 50 graphs with a 30/10/10 train/validation/test
split. Each graph had about 3,500 nodes and 50,000 edges, all of them generated from 2 Mbp mini-
references coming from chromosome 11. We used Adam optimizer (Kingma & Ba, 2014), with the
inital learning learning rate of 10−4. We also decay the learning rate multiplying by with 0.9 in case
there was no improvement in the validation loss for 5 epochs. The evaluation metric used during
training to keep track of the learning process was the accuracy of predicting the best next neighbor,
which we also refer to as the local reconstruction metric. The entire training was done on a single
Nvidia A100 GPU.

Node-level prediction accuracy. Predicting the best successor is the only metric used during the
training, since it is easy to calculate the corresponding loss and accuracy. In a way, the better the
model follows the ground-truth, the better it should reconstruct the entire sequence. However, there
are some situations where choosing the incorrect node makes no difference (e.g., transitive edges
such as i → k, when there also exist i → j and j → k), as well as situations where choosing the
correct node is crucial (e.g., dead-end nodes). Therefore, even though used for training, this is not
the best metric for genome assembly in general. Still we expect a certain transferability between the
local and the global task, and this approach simplifies the training significantly. In addition, we also
perform teacher forcing during the validation and testing—even though the model makes a mistake,
we will put it back on the right path for the sake of easier evaluation of the training process.

5.2 INFERENCE

At inference, the predictions are performed not performed iteratively, but all in one go—we feed
the graph to the model and find the path with a greedy algorithm, depending on the probability
scores. The greedy algorithm runs until it reaches a node without outgoing edges or all of the node’s
successors have already been visited. Since there is no good option for choosing the starting node,
we run the greedy search from all the nodes that have in-degree zero and choose the longest walk. At
inference, we cannot evaluate the performance by the accuracy of choosing the best next neighbor,
since there is no ground-truth. Moreover, genome assemblers usually work in a completely different
way, so this would make the comparison against them impossible. Therefore, we evaluate our model
on two other tasks—length of the reconstruction and the execution time.

Reconstructed sequence length. We measure the reconstructed length as the percentage of the
original mini-reference length from which the graph was generated. This metric is robust to errors

7

Under review as a conference paper at ICLR 2022

Table 1: Comparison of GNN, naive approach, Raven, and exhaustive search.

Method 2 Mbp 5 Mbp 10 Mbp
length [%] time [s] length [%] time [s] length [%] time [s]

ES∗ 99.79± 0.16 2.5± 0.1 95.82± 14.67 7.5± 1.1 95.93± 13.94 23.0± 5.0

Greedy 93.50± 17.88 0.2± 0.0 90.21± 24.01 0.7± 0.1 82.11± 33.14 1.4± 0.6

Raven 90.85± 26.74 18.0± 0.5 93.68± 17.25 65.0± 2.0 95.92± 13.96 131.0± 5.0

GNN 99.20± 1.86 0.5± 0.1 93.51± 18.31 1.4± 0.3 95.73± 13.90 3.0± 0.4

while choosing transitive edges, but harshly punishes choosing dead-end nodes and wrong paths in
general. Ideally, the length ratio would be 1, but it is expected that it will be slightly less due to
the way the reads are simulated and processed prior to the Layout phase (e.g., trimming of reads
mentioned in Section 2.3).

Execution time. One of the main pitfalls for many assemblers is their execution time. We evaluate
the time needed for the model to process the graph and the search algorithm to find the best path
through it. All the experiments related to execution time were performed on a single Intel Xeon
E5-2698 v4 CPU.

Benchmark. We benchmark our model on the mentioned tasks against three other approaches.
First, the naive approach where the scores are calculated as normalized overlap lengths, as proposed
in 3. This approach comes down to running a greedy algorithm over the overlap lengths, and thus
refer to it as the greedy in the next section. Second approach is the one used for obtaining the
ground-truth paths as explained in Section 2.3, the exhaustive search with oracle. Finally, we also
compare the developed model against an existing assembler Raven, which was used to generate the
assembly graphs in Section 2.2.

6 RESULTS

The results reported here were obtained by the best-performing model, which had 8 GatedGCN
layers, latent dimension 32, and the walk length was 10. The MLP classifier consisted of a single
layer. During training this model achieved a 99.90% accuracy on the test set and upon deeper
inspection, we noticed that the errors mostly consisted of traversing transitive edges.

Table 1 shows the evaluation results of our model (GNN) benchmarked against greedy approach,
Raven, and exhaustive search with oracle (ES∗). For the reported lengths, first the percentage of the
reconstruction was calculated for each graph, after which all the percentages were averaged. With
the aim to test how our model scales to larger graphs, and thus larger genomes, we trained it on
graphs generated from 2 Mbp mini-references, and evaluate on graphs generated from 2, 5, and 10
Mbp mini-references. The number of nodes and edges scaled linearly with the length of the mini-
reference. For the evaluation on graphs generated from 2 Mbp mini-reference, we reuse the graphs
from the test set, coming from chromosome 11. Additionally, we cut chromosome 10 into 5 Mbp
mini-references and chromosome 12 into 10 Mbp mini-references. There was no particular reason
for choosing the chromosomes 10, 11, and 12.

GNN vs ES∗. The developed GNN-based method doesn’t manage to reconstruct the genomes as
well as the exhaustive search, but does not fall far behind either. The difference comes from the cases
where our model got stuck in a dead-end node, similarly to what happened to the greedy algorithm.

GNN vs Greedy. We notice that our model consistently outperforms the greedy algorithm in terms
of reconstructed length. This means that the model managed to leverage the graph topology in order
to avoid some pitfalls where the greedy algorithm got stuck, such as dead-end nodes. The greedy
algorithm is slightly faster than our model, which comes as no surprise. Interestingly, the difference

8

Under review as a conference paper at ICLR 2022

in execution times is relatively small, mainly because the neural network we used is also relatively
small so a single forward pass through it can be efficiently done on a single CPU.

GNN vs Raven. We notice that Raven slightly outperforms the GNN model on the two larger
datasets, but on the 2 Mbp dataset falls behind even the greedy approach. After a more thorough
analysis, we noticed that Raven underperformed on only one graph, while on all the other graphs
in that dataset it was as good as the GNN. The graph on which Raven failed came from a highly
repetitive region, and since Raven tries to simplify the graph by removing nodes and edges, it ends
up cutting the graph into numerous fragments, the longest one being only around 15% of the original
mini-reference. GNN managed to correctly find a path through that graph. This is a critical result, as
the repetitive regions are the main reason why the assemblers fail to accurately reconstruct genomes.
At the same time, our method clearly outperforms Raven in terms of speed.

Generalization. We show that the model performs well consistently over graphs of different sizes,
both in terms of accuracy and speed. Yet, human chromosomes are up to 250 Mbp long, so a definite
conclusion on how it would perform in such a setting cannot be made.

7 CONCLUSION

In this work, we introduce a novel approach to solving de novo genome assembly based on graph
neural networks and finding a path through the assembly graph. We created a dataset of assembly
graphs based on real human genomic data on which the developed model was trained and evaluated.
The model was also evaluated against a naive greedy approach, an exhaustive search using the
positional information of reads, and an existing genome assembler Raven (Vaser & Šikić, 2021). It
was shown that it consistently outperforms the greedy approach in terms of reconstructed length and
Raven in terms of execution speed. More interestingly, it was shown that the model outperformed
Raven when given a highly complex graph from a repetitive region.

These results are particularly promising to solve challenging regions more accurately and in far
less time than the existing assemblers can. Future work will investigate the proposed technique on
sequenced instead of generated data, with the ultimate aim of using it as a tool for untangling the
assembly graphs to reduce the fragmentation and the execution time. We believe that combining
path-finding techniques with deep learning will play a major role in improving de novo genome
assembly.

REPRODUCIBILITY STATEMENT

All the codes and the data used in this paper are made available, apart from the simulated
reads due to their size, but the reads are not necessary for reproducing the results as we in-
clude the assembly graphs built from those reads. The human reference genome CHM13 which
we used to generate the mini-references, as explained in Section 2, is publicly available here:
https://github.com/marbl/CHM13. The codes used to simulate the reads from the mini-
references are available together with the rest of the code here https://anonymous.4open.
science/r/gnn-genome-reconstruction-4462. For generating assembly graphs we
used an adapted version of Raven assembler, which is available here: https://anonymous.
4open.science/r/raven-D8F7. In order to make the efforts to reproduce our results as eas-
ily as possible, we also make available the dataset we used for training and evaluation, as well as
the best performing model—both available as supplementary material (this includes the assembly
graphs and additional information). The instructions to help reproduce the results are available with
the rest of the code.

REFERENCES

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Xavier Bresson and Thomas Laurent. A two-step graph convolutional decoder for molecule gener-
ation. arXiv preprint arXiv:1906.03412, 2019.

9

https://github.com/marbl/CHM13
https://anonymous.4open.science/r/gnn-genome-reconstruction-4462
https://anonymous.4open.science/r/gnn-genome-reconstruction-4462
https://anonymous.4open.science/r/raven-D8F7
https://anonymous.4open.science/r/raven-D8F7

Under review as a conference paper at ICLR 2022

Haoyu Cheng, Gregory T Concepcion, Xiaowen Feng, Haowen Zhang, and Heng Li. Haplotype-
resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 18(2):
170–175, 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Thomas Freeman, Sebastian Horsewell, Anirudh Patir, Josh Harling-Lee, Tim Regan, Barbara B
Shih, James Prendergast, David A Hume, and Tim Angus. Graphia: A platform for the graph-
based visualisation and analysis of complex data. bioRxiv, 2020.

Pablo Gainza, Freyr Sverrisson, Frederico Monti, Emanuele Rodola, D Boscaini, MM Bronstein,
and BE Correia. Deciphering interaction fingerprints from protein molecular surfaces using geo-
metric deep learning. Nature Methods, 17(2):184–192, 2020.

Guadalupe Gonzalez, Shunwang Gong, Ivan Laponogov, Michael Bronstein, and Kirill Veselkov.
Predicting anticancer hyperfoods with graph convolutional networks. Human Genomics, 15(1):
1–12, 2021.

Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A Sasani, John R
Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, et al. Nanopore sequencing and
assembly of a human genome with ultra-long reads. Nature biotechnology, 36(4):338–345, 2018.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C Zody, Jennifer Baldwin,
Keri Devon, Ken Dewar, Michael Doyle, William FitzHugh, et al. Initial sequencing and analysis
of the human genome. 2001.

Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103–2110, 2016.

Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V. Bzikadze, Alla Mikheenko,
Mitchell R. Vollger, Nicolas Altemose, Lev Uralsky, Ariel Gershman, Sergey Aganezov, Savan-
nah J. Hoyt, Mark Diekhans, Glennis A. Logsdon, Michael Alonge, Stylianos E. Antonarakis,
Matthew Borchers, Gerard G. Bouffard, Shelise Y. Brooks, Gina V. Caldas, Haoyu Cheng, Chen-
Shan Chin, William Chow, Leonardo G. de Lima, Philip C. Dishuck, Richard Durbin, Tatiana
Dvorkina, Ian T. Fiddes, Giulio Formenti, Robert S. Fulton, Arkarachai Fungtammasan, Erik Gar-
rison, Patrick G.S. Grady, Tina A. Graves-Lindsay, Ira M. Hall, Nancy F. Hansen, Gabrielle A.
Hartley, Marina Haukness, Kerstin Howe, Michael W. Hunkapiller, Chirag Jain, Miten Jain,
Erich D. Jarvis, Peter Kerpedjiev, Melanie Kirsche, Mikhail Kolmogorov, Jonas Korlach, Milinn
Kremitzki, Heng Li, Valerie V. Maduro, Tobias Marschall, Ann M. McCartney, Jennifer Mc-
Daniel, Danny E. Miller, James C. Mullikin, Eugene W. Myers, Nathan D. Olson, Benedict
Paten, Paul Peluso, Pavel A. Pevzner, David Porubsky, Tamara Potapova, Evgeny I. Rogaev,
Jeffrey A. Rosenfeld, Steven L. Salzberg, Valerie A. Schneider, Fritz J. Sedlazeck, Kishwar
Shafin, Colin J. Shew, Alaina Shumate, Yumi Sims, Arian F. A. Smit, Daniela C. Soto, Ivan
Sović, Jessica M. Storer, Aaron Streets, Beth A. Sullivan, Françoise Thibaud-Nissen, James Tor-
rance, Justin Wagner, Brian P. Walenz, Aaron Wenger, Jonathan M. D. Wood, Chunlin Xiao,
Stephanie M. Yan, Alice C. Young, Samantha Zarate, Urvashi Surti, Rajiv C. McCoy, Megan Y.
Dennis, Ivan A. Alexandrov, Jennifer L. Gerton, Rachel J. O’Neill, Winston Timp, Justin M.
Zook, Michael C. Schatz, Evan E. Eichler, Karen H. Miga, and Adam M. Phillippy. The complete
sequence of a human genome. bioRxiv, 2021. doi: 10.1101/2021.05.26.445798. URL https:
//www.biorxiv.org/content/early/2021/05/27/2021.05.26.445798.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

10

https://www.biorxiv.org/content/early/2021/05/27/2021.05.26.445798
https://www.biorxiv.org/content/early/2021/05/27/2021.05.26.445798

Under review as a conference paper at ICLR 2022

Robert Vaser and Mile Šikić. Time-and memory-efficient genome assembly with raven. Nature
Computational Science, 1(5):332–336, 2021.

Lovro Vrček, Petar Veličković, and Mile Šikić. A step towards neural genome assembly. arXiv
preprint arXiv:2011.05013, 2020.

Aaron M Wenger, Paul Peluso, William J Rowell, Pi-Chuan Chang, Richard J Hall, Gregory T
Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov, Nathan D Olson, et al.
Accurate circular consensus long-read sequencing improves variant detection and assembly of a
human genome. Nature biotechnology, 37(10):1155–1162, 2019.

11

	Introduction
	Dataset
	Simulating reads
	Generating graphs
	Ground-truth paths

	Formulating the problem
	Model architecture
	Experiments
	Training
	Inference

	Results
	Conclusion

