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ABSTRACT

Surrogate models are used to predict the behavior of complex energy systems
that are too expensive to simulate with traditional numerical methods. Our work
introduces the use of language descriptions, which we call “system captions”
or SysCaps, to interface with such surrogates. We argue that interacting with
surrogates through text, particularly natural language, makes these models more
accessible for both experts and non-experts. We introduce a lightweight multimodal
text and timeseries regression model and a training pipeline that uses large language
models (LLMs) to synthesize high-quality captions from simulation metadata. Our
experiments on two real-world simulators of buildings and wind farms show that
our SysCaps-augmented surrogates have better accuracy on held-out systems than
traditional methods while enjoying new generalization abilities, such as handling
semantically related descriptions of the same test system. Additional experiments
also highlight the potential of SysCaps to unlock language-driven design space
exploration and to regularize training through prompt augmentation.

1 INTRODUCTION

Data-driven surrogates enable computational scientists to efficiently predict the results of expensive
numerical simulations that run on supercomputers (Lavin et al., 2021; Carter et al., 2023). Surrogates
are particularly valuable for emulating simulations of complex energy systems (CES), which model
dynamic interactions between humans, earth systems, and infrastructure. Examples of CES include
buildings (Vazquez-Canteli et al., 2019; Dai et al., 2023; Bhavsar et al., 2023), electric vehicle
fleets (Vepsäläinen et al., 2019), and microgrids (Du & Li, 2019). Advancing the science of CES
contributes to reducing emissions and accelerating the adoption of clean energy, which is needed to
address the impacts of climate change.

These models perform a fairly standard regression task, predicting simulation output quantities of
interest from a) an input system configuration and b) a deployment scenario. For example, we might
want to predict the amount of energy a building will consume given a) a list of building characteristics
and b) a weather timeseries spanning an entire year. In this case, this involves performing long
sequence timeseries regression, which traditional regression techniques such as gradient-boosted
decision trees have difficulty with (Bhavsar et al., 2023; Zhang et al., 2021).

Surrogate models are not only used by experts. Surrogates are also used to inform highly conse-
quential policy and investment decisions about complex systems made by non-experts in industry
and governments (Rackauckas & Abdelrehim, 2024), such as when planning to build and deploy
a new renewable energy system (Harrison-Atlas et al., 2024). In this work, we design and analyze
language interfaces for such surrogates. Intuitively, language interfaces make surrogate models more
accessible, particularly for non-experts, by simplifying how we inspect and alter a complex system’s
configuration. Language interfaces are powerful—they ground interactions between humans and
machines in the human’s preferred way (Vaithilingam et al., 2024). The idea of using language to
create interfaces for complex data or models is not new (Hendrix et al., 1978; Quamar et al., 2022),
but interest has renewed due to the success of large language models (LLMs) and their demonstrated
ability to generate high-quality synthetic natural captions (Schick & Schütze, 2021; Doh et al., 2023;
Mei et al., 2023a; Hegselmann et al., 2023). Our work defines a “system caption”, or SysCap, as
text-based descriptions of knowledge about the system being simulated. The only available knowledge
our work assumes is the system configuration found in simulator metadata files as lists of attributes.
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In general, it is unknown whether textual inputs, and particularly natural language inputs, are suitable
for real-world tabular regression tasks. Tabular data, such as the system attributes in question, are
sets of both discrete (categorical, binary, or string) and continuous (numeric) variables. Previous
work demonstrated inconclusive evidence when using language models to do tabular regression from
text-encoded inputs, with and without modifications to the architecture (Dinh et al., 2022; Jablonka
et al., 2024; Bellamy et al., 2023; Yan et al., 2024), motivating further study. Regression with text-
encoded tabular inputs is promising because a) language is a more intuitive and flexible user interface
than traditional encoding strategies (e.g., one-hot encodings), and b) using language embeddings to
encode system attributes unlocks the ability to exploit the semantic information contained in SysCaps
to generalize across related systems.

Our paper introduces a framework for training multimodal surrogates for CES with text (for system
attributes) and timeseries inputs (for the deployment scenario) and makes contributions towards
addressing the following technical challenges:

• We introduce a simple and lightweight multimodal surrogate model architecture for time-
series regression that a) fuses text embeddings obtained from fine-tuned language models
(LMs) with b) timeseries encoded by a bidirectional sequence encoder. We expect this to be
insightful for future multimodal text and timeseries studies.

• To address the lack of human-labeled natural language descriptions of complex systems,
we describe a process that uses LLMs to generate high-quality natural language SysCaps
from simulation metadata. Although LLMs have previously been used to generate text
captions from metadata (Doh et al., 2023; Mei et al., 2023b), we believe our application to
multi-modal surrogate modeling is novel.

• We develop an automatic evaluation strategy to assess caption quality–specifically, we
estimate the rate at which ground truth attributes appear in the synthetic description with a
multiclass attribute classifier.

Our experiments are based on two real-world CES simulators of buildings and wind farm wake.
We rigorously evaluate accuracy on held-out systems and show that SysCaps-augmented surrogates
have better accuracy than one-hot baselines. We also show generalization beyond the capabilities of
traditional regression approaches enabled by the use of text embeddings, e.g., robustness to replacing
attributes names with synonyms in test captions. We qualitatively show that text interfaces unlock
system design space exploration via language. As there are no standard benchmarks for comparing
surrogate modeling performance for CES, we will open-source all data and code and contribute the
generated SysCaps datasets to facilitate future work.

2 RELATED WORK

Language interfaces for scientific machine learning: An increasing amount of work is exploring
language interfaces for advanced scientific machine learning (SciML) models, including protein
representation learning (Xu et al., 2023), protein design (Liu et al., 2023b), and activity prediction for
drug discovery (Seidl et al., 2023). LLM-powered natural language interfaces are also being designed
for complicated scientific workflows including synchrotron management (Potemkin et al., 2023),
automated chemistry labs (Bran et al., 2023), and fluid dynamics workflows (Kumar et al., 2023). We
add to this body of work by studying language interfaces for lightweight surrogate models.

Large language models for regression: Another line of work asks whether LLMs can perform
regression with both text inputs and outputs (numbers encoded as tokens), such as for tabular
problems (Dinh et al., 2022) or black-box optimization (Song et al., 2024; Liu et al., 2024). We do
not use an LLM to do regression directly, but rather train a lightweight multimodal architecture that
predicts continuous outputs instead of tokens. Moreover, one study (Dinh et al., 2022) found mixed
results when comparing to simple gradient-boosted tree baselines and highlighted difficulty with
interpolation, raising questions about the effectiveness of LLM-based regression.

Multimodal text and timeseries forecasting: Timeseries forecasting aims to predict future values
of an input timeseries given past values. Surrogate modeling can be cast as a forecasting problem
when the goal is to train a model to emulate a dynamical system and predict its future behavior (e.g.,
predicting future energy demand from past energy usage). Previous work has explored multimodal
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timeseries forecasting where auxiliary text data is introduced as covariates to improve the forecasting
accuracy (Rodrigues et al., 2019; Emami et al., 2023a; Jin et al., 2024). Notably, Time-LLM (Jin
et al., 2024) “reprograms” an LLM to process both text prompts and timeseries. However, our
timeseries regression setting (Section 3) differs in that our surrogates are trained to map simulator
inputs (e.g., building characteristics and a weather timeseries) to simulator outputs (e.g., energy
usage). In our problem, models critically depend on the system information encoded as text, whereas
in Time-LLM the text only contains auxiliary information that slightly improves forecasting accuracy.
This critical dependence partially motivates our development of a custom architecture for fusing
text and timeseries embeddings. Recent evidence (Merrill et al., 2024; Tan et al., 2024) also brings
into question whether LLMs are useful at all for reasoning about temporal data; thus, research on
lightweight multimodal models is warranted.

Multimodal text and timeseries contrastive pretraining: Various efforts have explored contrastive
pretraining objectives for modeling text and timeseries data (Agostinelli et al., 2023; Huang et al.,
2022; Liu et al., 2023a; Zhou et al., 2023). For example, Agostinelli et al. (2023) aligns embeddings of
captions that describe the audio. In our setting, captions describe system attributes, and the timeseries
inputs are exogenous simulator inputs. Here, the text and timeseries inputs share no information with
which to learn a shared embedding space.

Knowledge-enhanced PDE surrogates: Numerical simulation of partial differential equations
(PDEs) is extremely computationally intensive, and thus a large body of SciML work is focused on
developing neural PDE surrogates which are efficient to evaluate. Recent work has tried to encode
knowledge about the physical system under study (the PDE) into a surrogate to facilitate generalization
within and across families of PDEs. Specifically, methods that embed equation parameters (i.e., the
system attributes) within the architecture to generalize to unseen parameters include CAPE (Takamoto
et al., 2023) and those explored in Gupta & Brandstetter (2022). Others embed structural knowledge
about the PDE into the surrogate model architecture (Rackauckas et al., 2020; Ye et al., 2024) or the
loss (Raissi et al., 2019). Concurrent work has explored “PDE captions” (Lorsung et al., 2024; Yang
et al., 2024), which are a type of SysCaps for neural PDE surrogates where the system knowledge is
PDE equations encoded as text.

3 PROBLEM STATEMENT

Our goal is to learn a surrogate f : X ×Z → Y that regresses the outputs of a simulator F directly
from its inputs. We are given a dataset D of pairs of simulator inputs and outputs. The inputs are a
deployment scenario x1:T ∈ X (a timeseries) and the tabular system attributes z ∈ Z . The outputs
are a timeseries y1:T ∈ Y . For simplicity, we consider only univariate timeseries outputs in this work
(yt ∈ R). However, the number of timesteps T may be large ( thousands of steps), the timeseries
inputs X are multivariate, and the mapping f which approximates the simulator is highly nonlinear.

To summarize, we have a timeseries regression problem modeled as y1:T = f(x1:T , z). By condition-
ing the surrogate on system knowledge z, it can potentially generalize to new system configurations.
However, learning transferable representations of variable-length, heterogeneous input features such
as z is notoriously difficult for deep neural networks, and is a key focus of tabular deep learning
(see survey (Badaro et al., 2023)). In our work, we develop and analyze a framework for learning
multimodal surrogates where z is encoded as text.

Some simulators may have inputs that are not clearly distinguishable into what is X and Z , for
example, if a dynamical system simulation is configured to be in steady-state or assumes fixed
exogenous conditions. In these cases, we allow X to be a vector of real-valued scalars (a timeseries
with T = 1), or, simply an empty set (leaving only Z).

Example: In many CES, the timeseries X are exogenous inputs to the system such as weather
timeseries consisting of temperature or wind speed. Attributes Z of a wind farm might include the
number of turbines in the wind farm and turbine blade length.

4 SYNTHESIZING SYSTEM CAPTIONS (SYSCAPS) WITH LLMS

Our work is motivated by the idea that language interfaces for surrogates represent a path towards
improving the accessibility of these models for expert and non-expert users, e.g., when using them for
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"A:1.0 | B:Blue | C:99"

LLM
"This is a blue system
with type A sub-system

set to 1.0..."

"This is a blue system
with type A sub-system

set to 1.0..."

"A:1.0 | B:Blue | C:99"

Text
Encoder

(e.g.,
BERT)

Multimodal
surrogate

model

1. A = 1.0
2. B = Blue
3. C = 99

LLM for scalable natural
language SysCaps training

data generation

Key-value template SysCaps

Timeseries
simulator inputs

"A green system whose
type A sub-system is

assigned a value of 7.0..."

"A:7.0 | B:Green | C:99"

(a) Training: Data generated
from simulator metadata

(b) Testing: Prompt the
surrogate with descriptions

of unseen systems

Trained jointly end-to-end for text-
timeseries embedding alignment

Figure 1: Our pipeline for augmenting multimodal simulation surrogates with language interfaces
using “system captions”, or SysCaps. SysCaps are text descriptions of knowledge about the system
being simulated. In our work, the SysCaps describe the system’s characteristics, as found in simulation
metadata files. During training (a), we create paired datasets of temporal simulator inputs with key-
value template SysCaps or LLM-generated natural language SysCaps. At test time (b), we prompt the
surrogate model with one or more key-value template captions or natural language captions. LLMs
are only used to generate synthetic training data; we use a lightweight BERT-style text encoder and
an efficient long-sequence encoder to keep the computational cost of our surrogate low.

downstream system design tasks (Vaithilingam et al., 2024). Our proposed framework for augmenting
surrogates with language interfaces is visualized in Figure 1. During training, we create SysCaps
out of system attributes specified in simulation metadata. To create large amounts of synthetic
natural language SysCaps, we use LLMs. The ultimate goal is to enable scientists to “chat" with
the multi-modal surrogate model at test time via text prompting. In this section, we describe two
approaches for converting system attributes into text: key-value templates and natural language.

For the key-value approach, attributes are described as key-value pairs key:value and joined by
a separator “|” (SysCaps-kv). For example, if a simulation has attributes A=1.0 and B=blue, we
create the string A:1.0|B:blue. Generating these strings is easy to do and incurs a negligible
amount of extra computational overhead. In the natural language approach (SysCaps-nl, Figure 1),
attributes are described in a conversational manner, which we believe is more flexible and expressive
than key-value captions and thereby more accessible for non-experts. However, we do not have
access to large quantities of natural language descriptions for each system and simulation. We avoid
the time-consuming task of enlisting domain experts to create this data by instead prompting a
powerful LLM to generate synthetic natural language descriptions given attributes. In our work, we
use the open-source LLM llama-2-7b-chat (Touvron et al., 2023). The details of the prompt
are provided next.

Prompt design: We append a carefully written instruction template to a list of system attributes to
help guide the LLM in generating a caption via prompting (see Figure 1). The system prompt is:
You are a <CES> expert who provides <CES> descriptions <STYLE>. The user prompt is: Write a
<CES> description based on the following attributes. Your answer should be <NUM> sentences.
Please note that your response should NOT be a list of attributes and should be entirely based on
the information provided. The last part is added to discourage the LLM from changing or omitting
attributes. The tags <CES>, <STYLE>, <NUM> are filled in with the CES type (e.g., buildings),
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Text Encoder

[CLS] Bidirectional
Sequence Encoder

Exogenous timeseries inputs

"The wind plant consists of 66 turbines arranged in
a single string configuration, each with a rotor
diameter of 130 meters and a rated power of 3.4
MW. The turbines are spaced at a distance of
approximately 5 times the rotor diameter from each
other, resulting in an efficient and effective use of
the available wind resource. With this layout, the
plant is capable of generating a significant amount
of clean and renewable energy."

"Plant Layout: single string |
Number of Turbines: 66 | Mean
Turbine Spacing: 5 | Rotor
Diameter: 130.0 meters |
Turbine Rated Power: 3.4 MW"

SysCap (natural language)

SysCap (key-value template)

Figure 2: Building blocks of our surrogate model, f = hθ ◦ gψ , that includes a multimodal encoder,
gψ, and a top model, hθ. The multimodal encoder, gψ = gseqψ ◦ gtextψ , is a composition of a text
encoder, gtextψ , and a bidirectional sequence encoder, gseqψ , for timeseries inputs. The text embedding
vector ẑ is broadcasted (dashed lines) to create a sequence that is concatenated with the timeseries
input. This multimodal sequence is the input to the sequence encoder.

the style of the description (e.g, with an objective tone), and the number of sentences to use in the
description (e.g., “4-6”), respectively.

Attribute subset selection: Simulations of real-world systems may have attributes that only weakly
correlate with the output quantity of interest, or have a large number of attributes, which can be
challenging for deep learning approaches. Since the length of a SysCap is proportional to the number
of attributes, the computational burden incurred by text-based encodings of attributes can grow
significantly in these cases. In these cases, reducing the number of attributes can be handled with
classic feature selection methods such as recursive feature elimination (RFE) (Guyon et al., 2002) or
by recommendations from domain experts, as a pre-processing step.

5 TEXT AND TIMESERIES SURROGATE MODEL

We now describe a lightweight multimodal surrogate model for timeseries regression. The surrogate
f (Figure 2) is a composition of a multimodal encoder function gψ : (Z,X ) → {Rd}1:T and a top
model hθ : Rd → R, where for simplicity, the model parameters θ are shared across timesteps to
predict each timeseries output yt. The training objective is to minimize the expected mean square
error averaged over simulation timesteps,

min
θ,ψ

E(z,x1:T ,y1:T )∼D

[
1

T

T∑
t=1

(
[hθ(gψ(z, x1:T ))]t − yt

)2]
. (1)

Although more sophisticated loss functions than Eq. 1 could be used that account for predictive
uncertainty, we left this extension for future work to simplify our exposition and experiments.

Multimodal encoder gψ: A text encoder gtextψ extracts an embedding ẑ from a SysCap z then
broadcasts and concatenates this embedding with the timeseries inputs to create a sequence of
multimodal feature vectors. These features get processed by a bidirectional sequence encoder gseqψ to
produce a sequence of time-dependent fused multimodal features e1:T , e1:T = gseqψ (gtextψ (z), x1:T ) ,
which are finally used to regress outputs.

Text encoder gtextψ : To encode textual inputs we use pretrained BERT (Devlin et al., 2018) and
DistilBERT (Sanh et al., 2019) models that are relatively more efficient than LLMs. We use the
model’s default pretrained tokenizer. Tokenized sequences are bracketed by [CLS] and [EOS]
tokens, and we use the final activation at the [CLS] token position to produce a text embedding

5
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ẑ ∈ Rd. Following standard fine-tuning practices, all layers for BERT are fine-tuned while only the
last layer of DistilBERT is fine-tuned.

Bidirectional sequence encoder gseqψ : We broadcast the text embedding ẑ to create a sequence
of length T , ẑ → {ẑt}Tt=1, and concatenate each ẑt with the timeseries input x1:T , {ẑt;xt}T1 .
This simplifies the task of learning timestep-specific correlations between system attributes ẑ and
timeseries x1:T in the multimodal encoder gψ . To efficiently embed long timeseries with thousands of
timesteps, we explore both bidirectional LSTMs (Hochreiter & Schmidhuber, 1997) and bidirectional
SSMs (Goel et al., 2022) for gseqψ . Our bidirectional SSM uses stacks of S4 blocks (Gu et al., 2021)
without downpooling layers. We use the last layer’s hidden states as temporal features e1:T for the
top model. If T = 1 or for non-sequential surrogate models, we instead use an MLP with residual
layers (ResNet MLP) to embed each {ẑt;xt} per-timestep to get et.

Top model hθ: The multimodal encoder gψ produces T feature vectors e1:T . For simplicity, the
output ŷt at each timestep is predicted from et by a shared MLP with a single hidden layer.

6 EXPERIMENTS

This section presents our experimental results, which include: quantifying the quality of LLM-
generated SysCaps (Section 6.1), accuracy on held-out systems (Section 6.2), generalization under
distribution shifts (Section 6.3), a design space exploration application (Section 6.4), and a study on
SysCaps prompt augmentation (Section 6.5). These experiments are based on two real-world CES
simulators for buildings and wind farms. All SysCaps are synthetically generated in this work. We
provide additional qualitative examples of SysCaps in Appendix B.

Setup: Our main experiments focus on training building stock surrogate models for the building
energy simulator EnergyPlus (Crawley et al., 2001). Given an annual hourly weather timeseries (T
= 8,760) with 7 variables and a list of tabular building attributes, surrogates predict the building’s
energy consumption at each hour of the year. Each building initially has 17 attributes; using RFE with
a tuned LightGBM (Ke et al., 2017) model, we selected the 13 most important attributes. We use the
commercial building split of the Buildings-900K dataset (Emami et al., 2023b), which are building
stock simulation runs representative of the United States commercial building stock. Commercial
building stock surrogates can provide significant speedups compared to EnergyPlus, e.g., 96% (Zhang
et al., 2021). Since this dataset only provides energy timeseries, we extract the building configuration
and weather timeseries from the End-Use Load Profiles database (Wilson et al.) for each building.
Our training set is comprised of 330K buildings, and we use 100 buildings for validation, and 6K
held-out buildings for testing. We also reserved a held-out set of 10K buildings for RFE. We carefully
tune the hyperparameters of all models (details in Appendix A.2).

We created three SysCaps datasets: a “medium” caption length dataset where <NUM> :=“4-6”,
a “short” dataset using 2-3 sentences, and a “long” dataset using 7-9 sentences. The SSMs in our
experiments are trained with medium captions. Generating these datasets with llama-2-7b-chat
used ∼1.5K GPU hours on a cluster with 16 NVIDIA A100-40GB GPUs.

6.1 EVALUATING CAPTION QUALITY

The LLM that generates natural language SysCaps may erroneously ignore or hallucinate attributes,
which may negatively impact downstream performance. To test this, we propose evaluating generated
captions by estimating the fraction of attributes which the LLM successfully includes per caption. To
compute this metric, we train a multi-class classifier to predict each categorical attribute in a SysCaps
from its text embedding. We used a held-out validation set of captions to check that the classifier was
not overfitting. The test rate of missing or incorrect attributes is around 9-12% across the “short”,
“medium”, and “long” caption types, with “short” captions having the highest error (Table 2). This
increases our confidence that our LLM-based approach for generating natural language SysCaps
preserves sufficient information for surrogate modeling.
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Table 1: Accuracy. We show the mean NRMSE across 3 random seeds. Lower NRMSE is better.
Building-hourly is the NRMSE normalized per building and per hour. Stock-annual first sums the
predictions and targets over all buildings and hours, before computing the NRMSE (equivalent to the
normalized mean bias error—see Appendix A.1). When using a BERT encoder instead of DistilBERT,
SysCaps surrogates achieve better accuracy than one-hot baselines. We trained one SSM without any
attribute information (Attribute Encoding “X”) as an ablation study; the poor accuracy shows that our
multimodal architecture successfully learns to fuse the text-based attribute and timeseries inputs.

Model Text Encoder Attribute Encoding Buildings-Hourly
(NRMSE)

Stock-Annual
(NRMSE)

SSM - X 1.712± 0.003 0.658± 0.008

SSM - onehot 0.450± 0.019 0.041± 0.021

LSTM - onehot 0.449± 0.025 0.045± 0.024

ResNet - onehot 0.634± 0.009 0.072± 0.008

LightGBM - onehot 0.679± 0.014 0.094± 0.003

SSM DistilBERT SysCaps-nl 0.532± 0.010 0.069± 0.010

SSM BERT SysCaps-nl 0.543± 0.011 0.035± 0.005

SSM DistilBERT SysCaps-kv 0.454± 0.012 0.046± 0.003

SSM BERT SysCaps-kv 0.450± 0.007 0.020± 0.012

LSTM DistilBERT SysCaps-kv 0.489± 0.021 0.063± 0.005

LSTM BERT SysCaps-kv 0.439± 0.037 0.022± 0.011

ResNet DistilBERT SysCaps-kv 0.633± 0.020 0.081± 0.011

ResNet BERT SysCaps-kv 0.670± 0.043 0.049± 0.015
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Figure 3: System captions unlock text-prompt-style surrogate modeling for complex systems.
We show building stock daily load profiles aggregated for Warehouse building type, created with
caption templates. From left to right, we use captions with one, three, and six attributes.

6.2 ACCURACY ON HELD-OUT SYSTEMS

Following Emami et al. (2023b), we use the normalized root mean square error (NRMSE) metric
to compare model accuracy, averaged across 3 random seeds. In addition to comparing the ResNet
MLP, LSTM, and SSM, we also trained a tuned LightGBM Gradient Boosting Decision Tree baseline.
Does the sequential architecture matter? Yes—Table 1 shows that the LSTM and SSM encoders
outperform both the ResNet and our carefully tuned LightGBM baseline, and the SSM outperforms the
LSTM. How do different system attribute encoding approaches compare? Surprisingly, the best
SSM and LSTM with key-value SysCaps achieve comparable building-hourly test accuracy to one-hot
baselines and the best accuracy at the stock-annual aggregation level (equivalent to the normalized
mean bias error—see Appendix A.1). The SSM and LSTM with natural language SysCaps has slightly
worse accuracy than with the key-value SysCaps, yet they comfortably outperform the non-sequential
models (including LightGBM) and the one-hot baselines at the stock-annual aggregation level. We
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Table 2: Caption quality. We estimate the presence of
each attribute in a SysCap, measured by the average test
accuracy of a multi-class classifier trained to predict each
categorical attribute. Our metric suggests ∼9-12% of at-
tributes are missing or incorrect per SysCap, due to errors
made by llama-2-7b-chat.

Caption length (13 attributes) Accuracy (%)

Short (2-3 sent.) 88.90
Medium (4-6 sent.) 90.90

Long (7-9 sent.) 90.38

Table 3: SysCaps zero-shot length
generalization. NRMSE is per-
building-hourly. Results are for the
SSM model trained with medium-
length SysCaps and evaluated zero-shot
on short and long captions.

SysCaps length NRMSE

Short 0.57± 0.02

Medium 0.53± 0.01

Long 0.64± 0.02

Table 4: Generalization to attribute synonyms. We quantify how text embeddings make our models
robust to the use of attribute synonyms. The metric is the difference in NRMSE between the original
caption and the modified caption. We bold the best method, i.e, closest to 0. Column 3 replaces the
building type with a synonym, column 4 removes the building type and sub-type attributes from the
caption, and column 5 randomly swaps the correct building type attributes with incorrect ones.

Building Type Synonym With
Synonym

Without
Building Type

Random
Building Type

FullServiceRestaurant FineDiningRestaurant 0.52± 0.05 0.93± 0.01 1.17± 0.07

RetailStripmall ShoppingCenter 0.01± 0.00 0.68± 0.02 0.28± 0.04

Warehouse StorageFacility 0.35± 0.30 0.55± 0.31 4.02± 0.32

RetailStandalone ConvenienceStore 0.00± 0.01 0.30± 0.04 0.40± 0.03

SmallOffice Co-WorkingSpace 0.03± 0.01 0.02± 0.02 1.95± 0.30

PrimarySchool ElementarySchool 0.00± 0.01 0.38± 0.02 0.52± 0.17

MediumOffice Workplace 0.08± 0.02 0.03± 0.04 0.91± 0.11

SecondarySchool HighSchool -0.01± 0.04 0.52± 0.06 0.67± 0.33

Outpatient MedicalClinic 0.02± 0.01 0.55± 0.09 0.32± 0.06

QuickServiceRestaurant FastFoodRestaurant 0.10± 0.07 0.83± 0.01 0.85± 0.01

LargeOffice OfficeTower 0.12± 0.13 0.23± 0.03 0.29± 0.11

LargeHotel Five-Star Hotel 0.03± 0.01 0.46± 0.06 0.29± 0.09

SmallHotel Motel 0.26± 0.07 0.88± 0.07 0.70± 0.14

Hospital HealthcareFacility 0.03± 0.04 0.62± 0.12 0.20± 0.07

initially expected to see a non-negligible drop in regression accuracy for SysCaps models, even
key-value SysCaps, because the text encoder has to compress the caption into a single embedding
vector. However, the BERT encoder is sufficiently expressive to mitigate this. We observe that the
stock-level NRMSE reduces by about half when switching from DistilBERT to BERT. We believe
the performance gap between key-value templates and natural language SysCaps is mostly explained
by the caption quality (Table 2). We ablate the importance of the system attributes by training an
SSM baseline with these inputs removed (SSM with Attribute Encoding “X”); this model is unable to
learn this task. We trained a SysCaps-nl model without fine-tuning BERT, but it does poorly (stock
NRMSE of 0.356), emphasizing the importance of fine-tuning for multi-modal alignment.

Figure 3 qualitatively shows how a SysCaps model performs with natural language captions (created
with a sentence template) provided to the model. Note that we did not train our models on any
captions with missing attributes. Prediction accuracy improves as more information is given; notably,
there is a large jump in accuracy once the building square footage is known.

6.3 CAPTION GENERALIZATION

Length generalization: We assess how accuracy varies when surrogates are provided with natural
language SysCaps having different lengths than seen during training. We evaluate zero-shot general-
ization to the short and long captions. The results (Table 3) show a small increase in error for shorter
captions with a larger increase in error for longer captions, as might be expected. The error on long
captions remains lower than the error achieved by our tuned LightGBM baseline.
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Figure 4: Design space exploration using language. a) We show that the model has learned a
physically plausible relationship between building square footage (sqft) and number (#) of stories. b)
Failure case: When tested on unseen values of sqft (blue crosses), the model’s predictions appear to
be physically implausible—the model underestimates the energy consumption at these sqft values.

Attribute synonyms: To quantitatively evaluate the extent to which natural language SysCaps
surrogates gain a level of robustness to distribution shifts such as word order changes, synonyms,
or writing style (Hendrycks et al., 2020), we created captions for the held-out systems where the
“building type” attribute is replaced by a synonym. We avoid biasing the choice of building type
synonym by 5-shot prompting llama-2 to suggest the synonyms. There are two baselines we
compare the synonym caption accuracy against: 1) accuracy when testing the model on captions
with the building type attribute removed, and 2) accuracy when testing the model on captions with
a random building type. Examples and results are shown in Table 4, where for 11/14 building type
synonyms the increase in NRMSE is less than 13%, while the average increase for the two baselines
is 54% and 90%, respectively.

6.4 DESIGN SPACE EXPLORATION APPLICATION USING LANGUAGE

We visualize in Figure 4a a use of SysCaps to conduct a sensitivity analysis on two system attributes,
as might be performed for an early-stage design space exploration task. We use a simple template to
create a caption for each test building that enumerates all combinations of the number of stories and
square footage attributes, totaling 160 configurations; the entire analysis requires simulating 960K
buildings, and took 1 hour on a single NVIDIA A100 GPU. We observe that the model has indeed
learned physically plausible relationships between these two attributes. However, the model fails to
predict the energy usage for buildings over 100K square feet—such buildings are in the “long tail” of
the training data distribution. Figure 4b also shows a failure case where the model underestimates
energy usage at unseen numeric building square footage attribute values.

6.5 PROMPT AUGMENTATION: WIND FARM WAKE

This experiment uses the Wind Farm Wake Modeling Dataset (Ramos et al., 2023), made with the
FLORIS simulator, to train a surrogate to predict a wind farm’s power generation in steady-state
atmospheric conditions. The speed-up provided by surrogate models for downstream optimization
use-cases is ∼700× (Harrison-Atlas et al., 2024). The difficulty of this task is in modeling losses due
to wake effects, given only a coarse description of the wind farm layout. There are three numeric
simulator inputs x specifying atmospheric conditions, and five system attributes which include
categorical variables indicating wind farm shape (four different layout types), number of turbines,
and average turbine spacing. We do not use RFE. In this dataset, there are only 500 unique system
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configurations (split 3:1:1 for train, val, test), although each configuration is simulated under 500
distinct atmospheric conditions.

Table 5: Wind farm surrogate ac-
curacy. The base architecture is
ResNet. Average across 3 random
seeds. SysCaps-nl* does not use
prompt augmentation.

Model NRMSE

LightGBM 0.196±0.000

one-hot 0.212± 0.009

SysCaps-kv 0.054± 0.024

SysCaps-nl* 0.038± 0.001

SysCaps-nl 0.035± 0.001

We explore generating multiple captions for each system con-
figuration through prompt augmentation to increase diversity.
Specifically, we replace the <STYLE> tag in the prompt with
phrases encouraging different description styles, e.g., with an
objective tone, with an objective tone (creative paraphrasing is
acceptable), to a colleague, and to a classroom. The simulation
is run assuming steady-state conditions (i.e., time-independent),
so we tune hyperparameters for and train the non-sequential
ResNet models. The ResNet baseline with one-hot encoded
attributes suffers from severe overfitting (Table 5), likely due
to the small number (300) of training systems, whereas the
SysCaps models generalize better to unseen systems. This
suggests SysCaps can have a regularizing effect in small data
settings. Notably, the prompt augmentation helps the natural
language SysCaps model to achieve the lowest NRMSE.

7 CONCLUSION

In this work, we introduced a lightweight, multimodal text and timeseries surrogate models for
complex energy systems such as buildings and wind farms, and described a process for using LLMs
to synthesize natural language descriptions of such systems, which we call SysCaps. Our experi-
ments showcase SysCaps-augmented surrogates that achieve better accuracy than standard feature
engineering (e.g., one-hot encoding) while also enjoying the advantages of using text embeddings
such as robustness to caption paraphrasing (e.g., synonyms of attributes). For a problem with only a
small number of training systems available, we showed that SysCaps-nl prompt augmentation has a
regularizing effect that helps mitigate overfitting. Overall, these results underscore that language is a
viable interface for interacting with real-world surrogate models.

Limitations: Current BERT-style tokenizers struggle with numerical values (Wallace et al., 2019);
for one example, they interpolate poorly to unseen numbers (Figure 4b). For another, because
llama-2-7b-chat tends to add a comma to large numbers (e.g., 200, 000) when generating
SysCaps, we found that our surrogates failed to understand large numbers without commas (had
high error). Orthogonal research on improving number encodings for language model inputs (Golkar
et al., 2023; Yan et al., 2024) can benefit our framework. Another potential concern is with creating
SysCaps for simulators with a large number of attributes (e.g., over 100). A more powerful LLM
than llama-2-7b-chat with a longer context window may be needed in this case. In general, we
expect that more powerful LLMs will further improve the quality of the training captions.

Broader impacts: Improving surrogate models for CES has the potential to accelerate the transition
to cleaner energy sources. To avoid unfair outcomes from decisions made with CES surrogates, care
should be taken when deciding what simulation runs to use as training data and when selecting an
LLM to use for caption generation.

Future work: A future extension of this work might explore how to use language to also interface
with the timeseries simulator inputs, possibly through summary statistics. For example, to study how
the complex system behaves when the average exogenous temperature is increased by five degrees. It
is natural to expect that non-experts may benefit more from our approach if the LLM is also instructed
to simplify the simulator metadata or to provide explanations of technical concepts. Conducting
interactive evaluations with non-experts will be important to obtain feedback for further improving
the approach. Likewise, conducting a series of studies with domain scientists to evaluate the quality
of SysCaps in the context of, e.g., system design optimization is promising. We did not conduct user
studies in this work, as we first aimed to establish technical feasibility of this surrogate modeling
approach. Finally, an important question is how we might create surrogate foundation models that
generalize not only across system configurations for a single simulator, but also generalize across
different simulators.
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Bidirectional
Sequence Encoder

Hourly weather timeseries inputs
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calendar features
 

Multi-layer Perceptron (MLP)
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One-hot encoded inputs:
13 categorical building attributes

Figure 5: A visualization of the sequential surrogate model baseline with one-hot encoded system
attributes for the buildings experiment.

A ADDITIONAL EXPERIMENT DETAILS

A.1 METRICS

We use the normalized root mean square error (NRMSE) to capture the accuracy of the surrogate
model. NRMSE is also known as (CV)RMSE.

The building-hour NRMSE is where the NRMSE is normalized by building and by hour, where B
is the number of buildings in the building stock and T is the number of hours in a year:

:=
1

1
BT

∑
ybt

√√√√ 1

BT

B,T∑
b=1,t=1

(ybt − ŷbt )
2. (2)

The stock-annual NRMSE is where the NRMSE is normalized by the annual stock energy consump-
tion:

:=
1∑
ybt

√√√√(
(

B,T∑
b=1,t=1

ybt )− (

B,T∑
b=1,t=1

ŷb)

)2

. (3)

Notice that the square and square root cancel, making the stock-annual NRMSE equivalent to the
normalized mean bias error.

We use the AdamW (Loshchilov & Hutter, 2017) optimizer with β1 = 0.9, β2 = 0.98, ϵ = 1e-9, and
weight decay of 0.01 for all experiments. The early stopping patience is 50 for all experiments. All
models are trained with a single NVIDIA A100-40GB GPU. The longest training runs take 1-2 days
and the shortest 2-3 hours.

A.2 HYPERPARAMETERS

See Table 6 for hyperparameter sweep details for the buildings experiments and Table 7 for hyperpa-
rameter sweep details for the wind farm experiments.

A.2.1 BUILDINGS

There are 13 attributes after RFE, which are one-hot encoded into a 336-dimensional feature vector
that gets embedded into 128 dimensions, whereas the text embeddings are 768-dimensional. We
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Table 6: Buildings: hyperparameters.

Model Hyperparameter Grid search space Best values

LightGBM

Learning rate From 0.01 to 0.1 0.066
Number of leaves From 40 to 150 149
Subsample From 0.05 to 1.0 0.178
Feature fraction From 0.05 to 1.0 0.860
Min number of data in one leaf From 1 to 100 12

ResNet (one-hot)

Hidden layers size 256, 1024, 2048 1024
Number of layers 2, 8 2
Batch size 128, 256, 512 512
Learning rate 0.0001, 0.0003, 0.001 0.0003

ResNet (SysCaps)

Hidden layers size 256, 1024, 2048 256
Number of layers 2, 8 8
Batch size 128, 256, 512 256
Learning rate 0.0001, 0.0003, 0.001 0.0003

Bidirectional LSTM (one-hot)

[Hidden layer size, Batch size] [128, 64], [512, 32], [1024, 32] [128, 64]
Number of layers 1, 3, 4, 6, 8 4
MLP dimension 256 256
Learning rate 0.00001, 0.0003, 0.001 0.001

Bidirectional LSTM (SysCaps)

[Hidden layer size, Batch size] [128, 64], [512, 32], [1024, 32] [512, 32]
Number of layers 1, 3, 4, 6, 8 1
MLP dimension 256 256
Learning rate 0.00001, 0.0003, 0.001 0.0003

Bidirectional S4 (one-hot)

[Hidden layer size, Num. layers] [64,8] , [128,4] [128,4]
MLP dimension 256 256
Batch size 32, 64 64
Learning rate 1e-5, 3e-4, 1e-3 3e-4

Bidirectional S4 (SysCaps)

[Hidden layer size, Num. layers] [64,8] , [128,4] [128, 4]
MLP dimension 256 256
Batch size 32, 64 32
Learning rate 1e-5, 3e-4, 1e-3 3e-4

Table 7: Wind: hyperparameters.

Model Hyperparameter Grid search space Best values

LightGBM

Learning rate From 0.01 to 0.1 0.039
Number of leaves From 40 to 120 108
Subsample From 0.6 to 1.0 0.963
Feature fraction From 0.6 to 1.0 0.997
Min number of data in one leaf From 20 to 100 96

ResNet (one-hot)

Hidden layers size [256,1024] 256
Number of layers [2,8] 2
Batch size [128,256] 128
Learning rate [1e-5, 3e-4, 1e-3] 1e-5

ResNet (SysCaps-kv)

Hidden layers size [256,1024] 1024
Number of layers [2,8] 8
Batch size [128,256] 256
Learning rate [1e-5,3e-4,1e-3] 3e-4

ResNet (SysCaps-nl)

Hidden layers size [256,1024] 1024
Number of layers [2,8] 8
Batch size [128,256] 256
Learning rate [1e-5,3e-4,1e-3] 1e-5

concatenate cyclically encoded calendar features to 7 weather variables, creating a 103-dimensional
vector (Emami et al., 2023b). For the one-hot models (Figure 5), this creates a 128 + 103 = 231
dimensional input for the bidirectional sequence encoder, and for the text models, it is a 768 + 103 =
871 dimensional input.
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Complex Energy System: Commercial Building

SysCap: Natural language
The retail standalone building is a single-story structure with a total area of approximately 7,500
square feet. The building is equipped with a PSZ-AC system with a gas coil, which provides
heating and cooling for the space. The building is open from 12:15 PM on weekdays and 10:30
AM on weekends, with closing times of 21:30 PM on weekdays and 16:15 PM on weekends.
The temperature set points for both heating and cooling are set at 67°F and 72°F, respectively,
when the space is occupied. However, there is no difference in the temperature set points when
the space is unoccupied.

Instruction: <CES>, <STYLE>, <NUM>
[System] You are a building expert who provides building descriptions with an objective tone.
[User] Write a building description based on the following attributes. Your answer should be 4-6
sentences. Please note that your response should NOT be a list of attributes and should be
entirely based on the information provided.

System Knowledge: Tabular attributes
building_type: RetailStandalone, number_of_stories: 1.0, sqft: 7500.0, hvac_system_type: PSZ-
AC with gas coil, weekday_opening_time: 12:15 PM, weekend_opening_time: 10:30 AM,
unoccupied cooling temperature set point difference from occupied state: 0.0, occupied cooling
temperature set point: 72.0, unoccupied heating temperature set point difference from occupied
state: 0.0, occupied heating temperature set point: 67.0, weekday_closing_time: 21:30 PM,
weekend_closing_time: 16:15 PM

Figure 6: Natural language building SysCap. The instruction and list of key-value attributes (first two
paragraphs) are provided to the LLM as the prompt. We observe that the LLM automatically converts
numbers to more human-interpretable descriptions (e.g., the number of stories is changed from 1.0
in the prompt to “single-story”). The LLM also succinctly (and correctly) states that “there is no
difference in the temperature set points when the space is unoccupied” in the output by summarizing
the “unoccupied heating/cooling temperature set point difference from occupied state: 0.0” attributes.

LightGBM: As LightGBM does not support batch training out of the box, the entire training data
needs to be loaded into the memory to train a LightGBM model. With the train dataset containing
340k buildings, each with 8759 hours and 347 features, we randomly extract 438 hours per building
(which is about 5% of total hours) to limit memory usage. This results in 340, 000 × 438 hours
in total for the train dataset, which consumes about 380 GB of memory when being loaded into a
NumPy object. For the validation and test splits, we retain the full number of hours per building. The
LightGBM model is tuned with Optuna (Akiba et al., 2019) across 30 trials and achieves the best
validation NRMSE of 0.667.

Multi-class attribute classifier: We implement the classifier on top of the text encoder by adding a
linear layer for each attribute type, where this layer predicts logits for each attribute’s classes. We use
AdamW with a learning rate of 3e-4, early stopping with patience 5, batch size 128, and max epochs
100. We do not freeze the text encoder weights.

A.2.2 WIND FARM

LightGBM: The training, validation, and test split for the wind dataset gives us datasets of size
148,650, 49,600, and 49,250 respectively with 190 features after one-hot encoding. The training
dataset is loaded into memory to train the LightGBM model. We use Optuna (Akiba et al., 2019) to
tune the hyperparameters and the best validation NMRSE achieved is 0.189.

B SYSCAPS PROMPTS

In this section we visualize examples of prompts and the corresponding SysCaps LLM outputs for
the buildings simulator (Figures 6, 7, and 8) and the wind farm simulator (Figures 9, 10, and 11).
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Complex Energy System: Commercial Building

SysCap: Natural language
This strip mall restaurant is a two-story building with a total floor area of 37,500 square feet. The
building is equipped with a PSZ-AC system with a gas coil, which provides heating and cooling
to the space. The restaurant is open Monday through Friday from 8:15 AM to 23:30 PM, and
Saturday and Sunday from 9:00 AM to 20:45 PM. During unoccupied periods, the cooling
temperature set point is set 3 degrees higher than the occupied state, while the heating
temperature set point is set 10 degrees higher than the occupied state. The occupied cooling
temperature set point is 73 degrees Fahrenheit, while the occupied heating temperature set
point is 67 degrees Fahrenheit.

Instruction: <CES>, <STYLE>, <NUM>
[System] You are a building expert who provides building descriptions with an objective tone.
[User] Write a building description based on the following attributes. Your answer should be 4-6
sentences. Please note that your response should NOT be a list of attributes and should be
entirely based on the information provided.

System Knowledge: Tabular attributes
building_subtype: strip_mall_restaurant10, building_type: RetailStripmall, number_of_stories:
2.0, sqft: 37500.0, hvac_system_type: PSZ-AC with gas coil, weekday_opening_time: 8:15 AM,
weekend_opening_time: 9:00 AM, unoccupied cooling temperature set point difference from
occupied state: 3.0, occupied cooling temperature set point: 73.0, unoccupied heating
temperature set point difference from occupied state: 10.0, occupied heating temperature set
point: 67.0, weekday_closing_time: 23:30 PM, weekend_closing_time: 20:45 PM

Figure 7: Natural language building SysCap. The LLM makes a subtle logical error here—the
unoccupied heating temperature set point difference from occupied state suggests the set point
should be lower by 10 degrees, not higher (highlighted in blue). Logical errors such as this may
have contributed to the slightly worse accuracy of natural language SysCaps compared to key-value
SysCaps. Collaborating with domain experts able to validate the LLM’s outputs is important for
catching these errors. We expect that using more powerful LLMs will help reduce logical errors.

C QUALITATIVE EXAMPLES OF TEST PREDICTIONS

We visualize in Figure 12 the predicted energy timeseries for one test building by the SysCaps-nl
and SysCaps-kv models alongside the weather timeseries and each SysCaps type (key-value, short,
medium, and long). We also show test predictions for a wind farm (Figure 13) alongside the key-value
SysCaps and each style-augmented natural language SysCaps.
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Complex Energy System: Commercial Building

SysCap: Natural language
The strip mall restaurant is a two-story building with a total floor area of 17,500 square feet. The
building is equipped with a PSZ-AC system with a gas coil, which provides heating and cooling.
The building is open from 8:15 AM to 11:00 AM on weekdays and 11:00 AM to 22:30 PM on
weekends. During unoccupied periods, the cooling temperature set point is 6.0 degrees lower
than the occupied state, while the heating temperature set point is 7.0 degrees lower. The
building is well-insulated and energy-efficient, with a weekday opening time of 8:15 AM and
a weekend opening time of 11:00 AM.

Instruction: <CES>, <STYLE>, <NUM>
[System] You are a building expert who provides building descriptions with an objective tone.
[User] Write a building description based on the following attributes. Your answer should be 4-6
sentences. Please note that your response should NOT be a list of attributes and should be
entirely based on the information provided.

System Knowledge: Tabular attributes
building_subtype: strip_mall_restaurant30, building_type: RetailStripmall, number_of_stories:
2.0, sqft: 17500.0, hvac_system_type: PSZ-AC with gas coil, weekday_opening_time:
8:15 AM, weekend_opening_time: 11:00 AM, unoccupied cooling temperature set point
difference from occupied state: 6.0, occupied cooling temperature set point: 72.0, unoccupied
heating temperature set point difference from occupied state: 7.0, occupied heating temperature
set point: 68.0, weekday_closing_time: 17:45 PM, weekend_closing_time: 22:30 PM

Figure 8: Natural language building SysCap. The LLM confuses the weekday closing time with the
weekend open time (highlighted in blue).

Complex Energy System: Wind Farm

SysCap: Natural language
The wind plant is laid out in a cluster configuration, with 123 turbines positioned at a spacing of
approximately 5 times the rotor diameter. Each turbine features a rotor diameter of 130 meters
and is rated to produce 3.4 megawatts of power. The plant's layout and turbine design work
together to optimize energy production and minimize visual impact.

Instruction: <CES>, <STYLE>, <NUM>
[System] You are a wind energy expert describing a wind plant to a colleague.
[User] Write a wind plant description based on the following attributes. Your answer should be 4-
6 sentences. Please note that your response should NOT be a list of attributes and should be
entirely based on the information provided.

System Knowledge: Tabular attributes
Plant Layout: cluster, Number of Turbines: 123, Mean Turbine Spacing: 5, Rotor Diameter: 130.0
meters, Turbine Rated Power: 3.4 MW

Figure 9: Natural language wind farm SysCap.
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Complex Energy System: Wind Farm

SysCap: Natural language

Instruction: <CES>, <STYLE>, <NUM>
[System] You are a wind energy expert describing a wind plant to a colleague.
[User] Write a wind plant description based on the following attributes. Your answer should be 4-
6 sentences. Please note that your response should NOT be a list of attributes and should be
entirely based on the information provided.

System Knowledge: Tabular attributes
Plant Layout: multiple strings, Number of Turbines: 159, Mean Turbine Spacing: 7, Rotor
Diameter: 130.0 meters, Turbine Rated Power: 3.4 MW

The wind plant consists of multiple strings of turbines, with a total of 159 turbines spread across
the landscape. Each turbine has a rotor diameter of 130 meters and is spaced at a distance of
approximately 7 times the rotor diameter apart, creating a sprawling landscape of towering
structures. With a rated power of 3.4 megawatts each, the turbines are capable of generating a
significant amount of electricity, making the plant a major contributor to the local energy mix.

Figure 10: Natural language wind farm SysCap.

Complex Energy System: Wind Farm

SysCap: Natural language
The wind plant consists of 127 turbines arranged in parallel strings, each with a rotor diameter of
130 meters. The turbines are spaced at an average distance of 7 times the rotor diameter,
resulting in a total installed capacity of 3.4 MW. With this layout, the plant is capable of
generating a significant amount of electricity from the wind, making it a valuable source of
renewable energy.

Instruction: <CES>, <STYLE>, <NUM>
[System] You are a wind energy expert describing a wind plant to a colleague.
[User] Write a wind plant description based on the following attributes. Your answer should be 4-
6 sentences. Please note that your response should NOT be a list of attributes and should be
entirely based on the information provided.

System Knowledge: Tabular attributes
Plant Layout: parallel strings, Number of Turbines: 127, Mean Turbine Spacing: 7, Rotor
Diameter: 130.0 meters, Turbine Rated Power: 3.4 MW

Figure 11: Natural language wind farm SysCap with a logical error where it says "total installed
capacity", but it just states the capacity of a single turbine (highlighted in blue). The correct total
installed capacity is number of turbines times 3.4, or 431.8 MW.
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Medium: The strip mall restaurant is a single-story retail building with a total floor area
of 17,500 square feet. The building is equipped with a PSZ-AC system with a gas coil, which provides
heating and cooling to the space. The building is open from 9:15 AM to 10:45 AM on weekdays and

10:45 AM to 19:15 PM on weekends. During unoccupied periods, the cooling temperature set point is
set at 73 degrees Fahrenheit, while the heating temperature set point is set at 68 degrees

Fahrenheit. The building has a moderate temperature difference between occupied and unoccupied
states, with a cooling temperature difference of 3 degrees Fahrenheit and a heating temperature

difference of 0 degrees Fahrenheit.

Short : The strip mall restaurant is a single-story building with a total area of 17,500 square
feet. The HVAC system is a PSZ-AC with gas coil, and the temperature set points for both heating and

cooling are set at 68°F and 73°F, respectively, during unoccupied periods. The building opens at
9:15 AM on weekdays and 10:45 AM on weekends, and closes at 5:30 PM on weekdays and 7:15 PM on

weekends.

Long : The strip mall restaurant is a single-story retail building with a total floor area of
approximately 17,500 square feet. The building is equipped with a PSZ-AC with gas coil HVAC system,
which provides heating and cooling to the space. During weekdays, the restaurant opens at 9:15 AM
and closes at 5:30 PM, while on weekends, it opens at 10:45 AM and closes at 6:00 PM. The building

is unoccupied during the night, from 17:30 PM to 10:45 AM on weekdays and from 19:15 PM on weekends.
The cooling temperature set point during occupancy is set at 73 degrees Fahrenheit, while the

heating temperature set point is set at 68 degrees Fahrenheit. The building has a moderate
temperature difference between occupancy and unoccupancy, with a difference of 3 degrees Fahrenheit

in cooling and 0 degrees Fahrenheit in heating.

Keyvalue : building_subtype:strip_mall_restaurant20|building_type:RetailStripmall|number_of_sto
ries:1.0|sqft:17500.0|hvac_system_type:PSZ-AC with gas coil|weekday_operating_hours:8.25|weekday_ope
ning_time:9.25|weekend_operating_hours:8.5|weekend_opening_time:10.75|tstat_clg_delta_f:3.0|tstat_cl

g_sp_f:73.0|tstat_htg_delta_f:0.0|tstat_htg_sp_f:68.0

Figure 12: (Top) Predicted hourly energy consumption for a randomly selected week. (Second from
top) We visualize 1 out of 7 input weather timeseries, Dry Bulb Temperature. The text boxes show
the medium, short, long, and key-value SysCaps created for this particular test building.
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< STYLE > : with an objective tone. Creative paraphrasing is acceptable
The wind plant features a layout of multiple strings, with 94 turbines positioned across the site.
Each turbine stands at a height of 130 meters, with a rotor diameter that is four times that size.
The turbines are spaced at a distance of approximately 400 meters from each other, allowing for
optimal wind flow and energy production. With a rated power of 3.4 megawatts, each turbine is

capable of generating a significant amount of electricity, making the plant a significant
contributor to the local energy grid.

< STYLE > : with an objective tone
The wind plant features a layout of multiple strings, with 94 turbines installed across the site.

Each turbine has a rotor diameter of 130 meters, and the turbines are spaced at an average distance
of four times the rotor diameter apart. The turbines are rated to produce 3.4 megawatts of power,

making this a significant contributor to the local renewable energy mix.

< STYLE > : to a colleague
The wind plant consists of multiple strings of turbines, with 94 turbines in total. Each turbine has

a rotor diameter of 130 meters and is spaced approximately 4 times that distance apart, resulting in
a total installed capacity of 3.4 megawatts. The plant takes advantage of the consistent wind

patterns in the area to generate clean and renewable energy.

< STYLE > : to a classroom
The wind plant consists of multiple strings of turbines stretched across the landscape, with a total
of 94 turbines standing tall and proud. Each turbine has a rotor diameter of 130 meters, giving it a

massive presence on the horizon. The turbines are spaced at a distance of approximately four times
the rotor diameter from each other, creating a uniform and efficient layout. With each turbine

capable of generating 3.4 megawatts of power, the plant has a total capacity of over 300 megawatts,
enough to power thousands of homes and businesses. As the wind blows, the turbines spin
effortlessly, harnessing the natural energy of the wind to generate clean and sustainable

electricity.

keyvalue
Plant Layout:multiple strings|Number of Turbines:94|Mean Turbine Spacing:4|Rotor Diameter:130.0

meters|Turbine Rated Power:3.4 MW

Layout214, True: 318.93 MW, SysCaps-nl: 319.50 MW, SysCaps-kv: 315.75 MW

Figure 13: We show the LLM-generated SysCaps using four different styles as a prompt augmentation
strategy for test wind farm layout # 214. The key-value SysCaps is shown at the bottom. Model
predictions are shown at the top next to the true ground truth value.
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