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Abstract

Relation Extraction (RE) from tables is the001
task of identifying relations between pairs of002
columns of a table. Generally, RE models for003
this task require labelled tables for training.004
These labelled tables can also be generated arti-005
ficially from a Knowledge Graph (KG), which006
makes the cost to acquire them much lower in007
comparison to manual annotations. However,008
unlike real tables, these synthetic tables lack009
associated metadata, such as, column-headers,010
captions, etc; this is because synthetic tables are011
created out of KGs that do not store such meta-012
data. Meanwhile, previous works have shown013
that metadata is important for accurate RE from014
tables. To address this issue, we propose meth-015
ods to artificially create some of this metadata016
for synthetic tables. Afterward, we experiment017
with a BERT-based model, in line with recently018
published works, that takes as input a combi-019
nation of proposed artificial metadata and table020
content. Our empirical results show that this021
leads to improvements of 9%-45% in F1 score,022
in absolute terms, over 2 tabular datasets.023

1 Introduction024

Tables are a very useful tool in information repre-025

sentation because information can be stored and026

presented more concisely in a table compared to027

free text. Due to their ease and usefulness, a large028

number of tables are being produced and made029

available on the web (Zhang and Balog, 2020) ev-030

eryday. But tables are not just restricted to web,031

in fact, a lot of data across numerous domains is032

stored in tabular format. Not surprisingly then ta-033

bles are a very large source of knowledge (Lehm-034

berg et al., 2016) for many real-world tasks.035

Luckily, information contained in a table already036

has some implicit structure; there is a leading en-037

tity in every row, called the subject entity, and all038

other cells in the row are connected to this lead-039

ing entity via some relation. However, despite this040

implicit structure, the information can not be eas-041

Figure 1: An example of relation extraction from tables.
Here dbo:distribution is the dbpedia relation between
Title and Distributor columns.

ily converted to knowledge, since we do not know 042

relations between columns w.r.t. a specific ontol- 043

ogy. Therefore, to ingest this knowledge into KG, 044

we need to map relations between columns to rela- 045

tions defined in the KG ontology (Ritze et al., 2015; 046

Ritze and Bizer, 2017), classify the entity-type and 047

perform entity-linking. In this work we focus on 048

one of these tasks i.e. Relation Extraction. 049

In order to train a model for mapping relations 050

between columns to KG relations, we require a 051

dataset of tables labelled with KG relations. But, it 052

would be very expensive to manually annotate ta- 053

bles for training such a model, and therefore, most 054

current RE models are trained on labelled tables 055

generated artificially from the KG (Jiménez-Ruiz 056

et al., 2020; Cutrona et al., 2020). To generate 057

such a synthetic table, a fixed number (say, 10) of 058

facts triples corresponding to a specific relation are 059

repetitively sampled from the KG, and these are 060

then used to generate 2-column tables, such that the 061

entities on the left of relation form the left-column, 062

and entities on right form the right-column. 063

However, these synthetic tables usually lack two 064

crucial pieces of information that can provide use- 065

ful signals for RE, namely: 1) context; 2) column- 066

headers. First is a piece of text connecting different 067

entities in the table. More specifically, an unstruc- 068
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tured piece of text that implicitly or explicitly de-069

scribes how two values in the same row are related.070

For instance, the sentence: "Paris is the capital city071

of France", connects Paris and France by the rela-072

tion capital. In real tables this information might073

be contained in the text present before or after the074

table, or in the captions, but since this context is not075

contained in KGs, it is also absent from synthetic076

tables created from KGs. Second is the headers for077

the columns of these synthetic tables. Most KGs078

do not contain information about possible column-079

headers for entities, and therefore, synthetic tables080

created from KGs do not contain column-headers081

as well. We should mention that KGs do contain082

information about entity-types, but these are con-083

ceptually different from column-headers, and can084

not be used as their replacement.085

Previously, there have been attempts (Deng et al.,086

2020; Yin et al., 2020) to resolve these issues by087

using real tables with metadata, whose entities are088

already linked to some public KG, such as DB-089

pedia, as the training set. Unfortunately, such an090

approach does not work when the predictions are091

required w.r.t. a private or specific KG, as it would092

require extensive annotations. Another approach093

(Wang et al., 2021) creates one-to-one mappings094

between relations of DBpedia and the target KG,095

and uses that mapping to convert relation predic-096

tions over DBpedia to target KG. However, such097

mappings require manual effort from trained an-098

notators, and consequently, they are expensive to099

create. Also, they are often impractical due to sig-100

nificant ontological differences between the two101

KGs.102

To address these issues, we propose two tech-103

niques to artificially create context and column-104

headers for synthetic tables generated from an arbi-105

trary KG. Afterward, we experiment with a neural106

model that takes as input the table and artificially107

created metadata for relation prediction. Our model108

is in line with recently published works (Yin et al.,109

2020; Deng et al., 2020) on modelling tabular data110

structures. We perform experiments over 2 tabular111

datasets, consisting of 1 public benchmark dataset112

and 1 private dataset. Our empirical results show113

that the proposed method leads to very large im-114

provements in RE performance over both datasets.115

Our contributions can be summarized as follows:116

• Propose methods to generate context &117

column-headers for synthetic tables118

• Show that proposed artificial metadata leads119

Figure 2: An illustration of a sub-graph that represents
the equivalent of the table in Fig 1

to large improvements in RE performance 120

2 Methods 121

2.1 Generating Synthetic Tables 122

Tables can be viewed as sub-graphs of a KG, with 123

nodes as the denotations of entities or literals. For 124

example, the table from Fig 1 can be viewed as the 125

sub-graph in Fig 2. To generate synthetic tables, we 126

retrieve all sub-graphs with target relations. After- 127

ward, we convert these sub-graphs to fact triples of 128

the form: (entity1, relation, entity2) and group 129

them by relations. Thereafter, we first randomly 130

draw the number of rows R from the interval [5, 10] 131

to simulate variable size of real web-tables. We 132

then select R triples without replacement from the 133

set of triples for that relation. Finally, we create 134

2-column R-row tables using these R triples, such 135

that the left-entities from the first column, and the 136

right-entities form the second column. 137

To generate tables marked with the negative re- 138

lation i.e. a special relation that denotes no rela- 139

tion or unknown relation, we pick left-column of 140

a randomly chosen table, and combine it with the 141

right-column of another randomly chosen table, to 142

form a synthetic table. 143

Unlike multi-column real tables, we create 2- 144

column synthetic table for 2 reasons: 1) relation be- 145

tween two columns is largely independent of other 146

columns, 2) non-trivial to generate multi-column 147

synthetic tables. 148

2.2 Generating Metadata 149

Context We download the entire corpus of full- 150

text articles from English language Wikipedia and 151

cleanup the text files of any HTML tags and blank 152

spaces. Afterward, we index all the paragraphs in 153

the corpus using an Elastic-Search (ES) cluster. 154

To retrieve context for a given pair of entities 155

(e1, e2), we first perform a logical AND query on 156

the ES cluster to retrieve all the paragraphs that 157

contain a mention of the two entities. If more than 158

10 such paragraphs are retrieved then we select the 159

top-10 based on the score from ES cluster. We filter 160

out all the returned paragraphs that have a length 161
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Figure 3: A schematic representation of the model architecture. The model takes as input column-pair, context, and
headers to predict relation-type.

less than the added lengths of the two entities plus162

a constant i.e. len(e1) + len(e2) + 3; this is to163

remove short noisy contexts that do not establish164

relation between e1 and e2. Thereafter, we select165

the top scoring paragraph and search for the top-166

most sentence within it that mentions both e1 and167

e2. If we find such a sentence then we select it as168

the final context; otherwise, we select the topmost169

sentence that mentions e1 and similarly, topmost170

sentence that mentions e2, and concatenate the two171

sentences to form the final context.172

Column-headers We randomly sample 10% of173

English relational tables in the WDC dataset174

(Lehmberg et al., 2016) i.e. 5 million tables. We175

use this sampled set to create an entity-to-header176

mapping between each entity and the header of177

the column in which that entity appears using a178

NoSQL database. To generate header of a column,179

we extract the most frequent headers for that entity180

in the entity-to-header table. We repeat this for all181

entities in that column, and collect one potential182

header candidate for each row. Afterward, we se-183

lect the most frequent header across all rows in that184

column, and in case of a tie for the top place, we185

randomly select one of the top headers.186

2.3 Model Architecture187

Our proposed model (See Fig 3) takes as input: 1) a188

column-pair; 2) wikipedia context for entity-pairs;189

3) column-headers, and outputs: 1) relation-type.190

We linearize each row by joining the two cells191

and corresponding context using the [SEP] token.192

We prepend a [CLS] token to the linearized row, to-193

kenize it using BERT subword tokenizer, and then194

pass it to a pretrained BERT (Devlin et al., 2019)195

model. We take the vector representation of the196

[CLS] token as the representation of the row. We 197

then pass the representation for all rows through a 198

Transformer encoder to get a vector representation 199

for the entire table. The transformer encoder layer 200

performs attention induced averaging over rows to 201

reduce noise in the entities and retrieved contexts. 202

Afterward, we pass this through a fully-connected 203

layer to get prediction scores over all relations. 204

In parallel, we linearize column headers by join- 205

ing the two headers using the [SEP] token. We 206

prepend the [CLS] token to the linearized header 207

row. Afterward, we pass this through a pretrained 208

BERT encoder to obtain a vector representation 209

for the combined headers. We then pass this rep- 210

resentation through a fully-connected layer to get 211

prediction scores over all relations. 212

Finally, we add the scores obtained from rows 213

and headers to get prediction scores. 214

3 Experimentation 215

3.1 Dataset 216

Public dataset We evaluate our model on the 217

public benchmark T2Dv2 (Chen et al., 2019) 218

dataset. It contains manually annotated mappings 219

between column-pairs in Web-tables and relations 220

in DBpedia KG. It consists of 779 tables, 89 re- 221

lations, and 618 columns-to-relations annotations. 222

Our train set consists of 2.2MM synthetic tables 223

generated from the DBpedia KG using the method 224

mentioned in Section 2.1. It consists of 659 rela- 225

tions in total, including a special "negative" relation 226

to denote no-or-unknown relations. 227

Private Dataset This is a test set of internal cat- 228

alog (IC) tables. This dataset consists of 5 tables, 229

65 annotated columns, and covers a set of 30 re- 230

lations, including a special "negative" relation de- 231
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Method Pr Re F1
T2K 0.77 0.65 0.70
A2P 0.70 0.84 0.77
Our 0.65 0.78 0.71

Table 1: Performance of different methods on T2Dv2
dataset. Results for T2K (Ritze et al., 2015) and A2P
(Ritze and Bizer, 2017) were copied from the papers.
Note, results for T2K are on an older version of the
dataset called T2D. All the metrics are micro in nature.

Dataset Input Pr Re F1

T2Dv2
T 0.65 0.60 0.62
T + C 0.57 0.80 0.67
T + H 0.60 0.73 0.66
T + C + H 0.65 0.78 0.71

IC
T 0.03 0.03 0.03
T + C 0.26 0.88 0.40
T + H 0.17 0.54 0.26
T + C + H 0.33 0.88 0.48

Table 2: Precision, recall and F1 score for our model
after adding metadata. Here, T, C and H stand for Table,
Context and Headers respectively. All metrics are micro
in nature.

noting no-or-unknown relations. For training set,232

we randomly sample a subset of facts belonging233

to these 30 relations from our internal knowledge234

graph (IKG), and use these to generate a set of235

220K synthetic tables with ≈ 5-10 rows per table.236

3.2 Experimental Settings237

We use pretrained uncased BERT (12-layer, 768-238

hidden, 12-heads, 110 MM params), from hugging-239

face1 library. We include a dropout layer with a240

value of 0.5 before classification layer, and Adam241

optimizer with a learning rate of 3e− 5, β1 = 0.9,242

β2 = 0.999 and ϵ = 1e − 8. We use a batch243

size of 16 and max sequence length of 256 to244

train the model. Hyper-parameters, i.e. epochs245

(values: [1, 5]) and input sequence length (values:246

[128, 256, 512]), were tuned on a validation set.247

3.3 Results248

Our performance is better than T2K (Ritze et al.,249

2015) in terms of F1 score (see Table 1). We should250

mention that T2K is based on entity lookup in DB-251

pedia, and therefore, by design can only work on252

tables that contain overlapping facts with DBpe-253

dia KG. In comparison, our method can work with254

1https://github.com/huggingface

tables that do not overlap with the target KG. 255

Similarly, A2P (Ritze and Bizer, 2017) relies on 256

building an attribute-to-property dictionary using 257

T2K, and using it to match columns with prop- 258

erty labels in the DBpedia KG. Consequently, it 259

suffers from the same limitations as T2K. But it 260

also makes a few additional assumptions that are 261

not valid for all KGs and tables, such as, presence 262

of natural language labels for relations in KG and 263

column-headers in tables. It also relies on ad-hoc 264

methods to reduce noise in the attribute-to-property 265

dictionary, which may not easily generalize to other 266

KGs, tables and domains. Our method does not 267

make any of these assumptions; therefore, it can be 268

generalized to various KGs and tables. 269

3.4 Ablation Study 270

To understand the effects of proposed metadata on 271

model performance, we perform experiments on 272

both datasets by progressively including different 273

metadata as model input (see Table 2). We observe 274

that separate inclusion of context and header leads 275

to a significant improvement in F1 score over both 276

datasets. We also observe that combined inclusion 277

of context and header leads to the best performance. 278

These results demonstrate the usefulness of pro- 279

posed synthetic metadata in model performance. 280

To directly evaluate the quality of retrieved meta- 281

data, we performed manual analysis on a randomly 282

sampled set of 100 synthetic tables. We observed 283

that roughly 30% of retrieved contexts in a table 284

either, implicitly or explicitly, encode the correct 285

relation between two columns. We also observed 286

that roughly 60% of retrieved column-headers were 287

correct, while the rest were incorrect or blank. 288

4 Conclusion and Future Work 289

We propose general techniques to artificially gen- 290

erate useful metadata, specifically context and 291

column-headers, for synthetic tables. By design, 292

our proposed techniques can be applied on syn- 293

thetic tables generated from any arbitrary KG. Our 294

experiments on 2 tabular datasets show that such 295

synthetic metadata leads to significant improve- 296

ments in RE performance. 297

In the future, we will explore following 3 re- 298

search directions: 1) encode tables using pretrained 299

table encoders; 2) develop new methods to extract 300

additional metadata; 3) use natural language labels 301

for relations in KG as input. 302
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