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Abstract
Bayesian Optimisation (BO) is a state-of-the-art global optimisation technique for black-box prob-
lems where derivative information is unavailable and sample efficiency is crucial. However, im-
proving the general scalability of BO has proved challenging. Here, we explore Latent Space
Bayesian Optimisation (LSBO), that applies dimensionality reduction to perform BO in a reduced-
dimensional subspace. While early LSBO methods used (linear) random projections (Wang et al.,
2013 [27]), we employ Variational Autoencoders (VAEs) to manage more complex data structures
and general DR tasks. Building on Grosnit et al. (2021) [12], we analyse the VAE-based LSBO
framework, focusing on VAE retraining and deep metric loss. We suggest a few key corrections in
their implementation, originally designed for tasks such as molecule generation, and reformulate
the algorithm for broader optimisation purposes. Our numerical results show that structured latent
manifolds improve BO performance. Additionally, we examine the use of the Matérn- 52 kernel for
Gaussian Processes in this LSBO context. We also integrate Sequential Domain Reduction (SDR),
a standard global optimization efficiency strategy, into BO. SDR is included in a GPU-based en-
vironment using BoTorch, both in the original and VAE-generated latent spaces, marking the first
application of SDR within LSBO.

1. Introduction

Global Optimisation (GO) aims to find the (approximate) global optimum of a smooth function f
within a region of interest, possibly without the use of derivative problem information and with
careful handling of often-costly objective evaluations. In particular, we focus on the GO problem,

f∗ = min
x∈X

f(x), (P)

where X ⊆ RD represents a feasible region, and f is a black-box, continuous function in (high)
dimensions D. Bayesian Optimisation (BO) is a state-of-the-art GO framework that constructs a
probabilistic model, typically a Gaussian Process (GP), of f , and uses an acquisition function to
guide sampling and efficiently search for the global optimum [10]. BO balances exploration and
exploitation but suffers from scalability issues in high-dimensions [15]. To mitigate this, Dimen-
sionality Reduction (DR) techniques can be used, allowing BO to operate in a lower-dimensional
subspace where it is more effective.

Contributions. We investigate scaling up BO using DR techniques, focusing on VAEs and the
Random Embedding Global Optimisation (REGO) framework [5]. Our work extends the algo-
rithm [12], incorporating the Matérn-52 kernel, which enhances the flexibility and robustness of the
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method. Moreover, we conduct a comparative analysis of these approaches with standard BO tech-
niques enhanced by Sequential Domain Reduction (SDR) [23]. The first contribution of this work
is that we propose and implement SDR with BO within the BoTorch framework [1], utilising
GPU-based computation for efficiency. Furthermore, we propose three BO-VAE algorithms, two
of which are innovatively combined with SDR in the VAE-generated latent space to boost opti-
misation performance. This marks the first instance of SDR being integrated with BO in the context
of VAEs. We also investigate the effects of VAE retraining [25] and deep metric loss [12] on the
optimisation process, emphasising the advantages of having a well-structured latent space for im-
proved performance. Finally, we compare our BO-VAE algorithms with the REMBO method
[27] on low effective dimensionality problems, evaluating VAEs versus random embeddings as two
different DR techniques in terms of optimisation performance.

2. Preliminaries

Bayesian Optimisation. BO relies on two fundamental components: a GP prior and an acquisi-
tion function. Given a dataset of size n, Dn = {xi, f(xi)}ni=1, the function values f1:n are modelled
as realisations of a Gaussian Random Vector (GRV) F1:n under the GP prior. The distribution
is characterised by a mean EF1:n and covariance KF1:nF1:n , where F1:n ∼ N (EF1:n ,KF1:nF1:n),
using the Matérn-5/2 kernel. For an arbitrary unsampled point x, the predicted function value
f(x) is inferred from the posterior distribution: F (x) ∼ N (µ(x|Dn), σ

2(x|Dn)), with µ(x|Dn) =
EF + KT

F1:nF
K−1

F1:nF1:n
(f1:n − EF1:n), σ

2(x|Dn) = KFF − KT
F1:nF

K−1
F1:nF1:n

KF1:nF . BO uses
the posterior mean µ(·) and variance σ2(·) in an acquisition function to guide sampling. In this
work, we focus on Expected Improvement (EI): u(x|Dn) = E[max{F (x) − f∗

n, 0}|Dn], where
f∗
n = maxm≤n f(xm) is the highest observed value. To enhance BO, we incorporate SDR to refine

the search region based on the algorithm’s best-found values, updating the region every few iter-
ations to avoid missing the global optimum. To accelerate BO process, we propose to implement
SDR [23] within the traditional BO framework such that the search region can be refined to locate
the global minimiser more efficiently according to the minimum function values found so far by
the algorithm. Compared to the traditional SDR implementation that updates the search region at
each iteration, we propose updating the region after a set number of iterations to avoid premature
exclusion of the global optimum. Algorithm 2 in Appendix B.1 outlines the BO-SDR approach.

Variational Autoencoders. DR methods reduce the number of features in a dataset while preserv-
ing essential information [26]. They can often be framed as an Encoder-Decoder process, where
the encoder maps high-dimensional (HD) data to a lower-dimensional latent space, and the decoder
reconstructs the original data. We focus on VAEs [8, 19], a DR technique using Bayesian Varia-
tional Inference (VI) [13, 17]. VAEs utilise neural networks as encoders and decoders to generate
latent manifolds. The probabilistic framework of a VAE consists of the encoder qϕ(·|x) : X → Z
parameterised by ϕ which turns an input data x ∈ RD from some distribution into a distribution on
the latent variable z ∈ Rd (d ≪ D), and the decoder pθ(·|z) : Z → X parameterised by θ which
reconstructs x as x̂ given samples from the latent distribution. The VAE’s objective is to max-
imise the Evidence Lower BOund (ELBO):L(θ,ϕ;x) = ln pθ(x) − DKL[qϕ(z|x)∥pθ(z|x)] =
Eqϕ(z|x)[ln pθ(x|z)] − DKL[qϕ(z|x)∥p(z)], where ln pθ(x) is the marginal log-likelihood, and
DKL(·∥·) is the non-negative Kullback-Leibler Divergence between the true and the approximate
posteriors. The prior is usually set toN (0, I), and the posterior is parametrised as Gaussians with di-
agonal covariance matrices, making ELBO optimisation tractable via the ”reparameterisation trick”
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[19]. Given qϕ(z|x) = N (µ(x),Σ(x)), the latent variable z is sampled as z = µ(x)+Σ(x)ξ, ξ ∼
N (0, I), enabling gradient-based optimisation with Adam [18].

3. Algorithms

As mentioned above, DR techniques help reduce the optimisation problem’s dimensionality. Using
a VAE within BO allows standard BO approach to be applied to larger scale problems, as then,
we solve a GP regression sub-problem in the generated (smaller dimensional) latent space Z . The
BO-VAE approach1, instead of solving (P) directly, attempts to solve

f∗ = min
z∈Z

Epθ∗ (x|z) [f(x)] , (1)

where θ∗ is the optimal decoder network parameter. Therefore, it is implicitly assumed that the
optimal point x∗ can be obtained from the optimal decoder with some probability given some latent
data z by the associated optimal encoder qϕ∗(z|x) [12], ∃ z ∈ Z,P [x∗ ∼ pθ∗(·|z)] > 0.

When fitting the GP surrogate, we follow [12] and use Deep Metric Loss (DML) to generate
well-structured VAE-generated latent spaces. Specifically, we apply the soft triplet loss and retrain
the VAEs following [25] to adapt to new points from the GP and optimise the black-box objective
efficiently. Additionally, we implement SDR in the latent space to accelerate the BO process. Algo-
rithm 1 outlines our BO-VAE approach with SDR, consisting of the pre-training of a standard VAE
on the unlabelled dataset DU (line 1) and optional retraining with soft triplet loss to structure the
latent space by gradually adjusting the network parameters of the encoder and decoder. When the
soft triplet loss is used in retraining the VAE, the modified VAE ELBO LDML(·) is used in line 4
instead; see Appendix B.3 for details. The BO-VAE algorithm with DML is included in Appendix
B.3 as Algorithm 4. For comparison, we provide a baseline BO-VAE algorithm without retraining
or DML (Appendix B.1, Algorithm 3). Theorem 1 in [12] offers a regret analysis with a sub-linear
convergence rate, providing a valuable theoretical foundation. However, the proof relies on the as-
sumption of a Gaussian kernel, limiting its direct applicability when using the Matérn kernel, as
we do here. Despite this limitation, the theorem provides key insights supporting the BO-VAE ap-
proach. Our ongoing work addresses this gap, and a similar result specifically tailored to the Matérn
kernel is delegated to future work.

4. Numerical Study

We conduct numerical experiments with the three BO-VAE algorithms (Algorithms 1, 3, 4) within
the BoTorch framework [1]. We explore cases where d = 2, 5 for D = 10, and d = 2, 10, 50
for D = 100. The results reveal that, for a fixed ambient dimension D, larger latent dimensions,
particularly d = 50, tend to degrade performance due to the reduced VAE generalisation capacity.
In contrast, smaller latent dimensions (d = 2, 5) yield better results, as VAEs then can give more
efficient latent data representations, and the BO can solve such reduced problems more efficiently.
In this paper, we present experimental results for the case D = 100 and d = 2, which strongly high-
light the advantages of SDR in latent space optimisation and illustrate the three BO-VAE algorithms.
The encoder structure of the VAE used is [100, 30, 2]2, and the decoder structure is [2, 30, 100]. For

1. For brevity, we use BO-VAE to refer the approach of combing VAEs with BO.
2. It indicates a three-layer feedforward neural network: the input layer has 100 neurons, followed by a hidden layer

with 30 neurons, and finally an output layer with 2 neurons. Similarly for the others.
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Algorithm 1: Retraining BO-VAE Algorithm with SDR
Data: Labelled dataset Dl=1

L = {xi, f(xi)}Ni=1, unlabelled dataset DU = {xi}Mi=1, budget B, periodic
frequency q, initial bound R0 in latent space Z , EI acquisition function u(·), the encoder and
decoder models from a VAE, qϕ(z|x) : X → Z and pθ(x|z) : Z → X .

Result: Minimum function value fmin found by the algorithm.
1 Pre-train the VAE model V l=0

DL
with DU: θ∗

0,ϕ
∗
0 = argmaxθ,ϕ L(θ,ϕ;DU);

2 Set θ∗
1 ← θ∗

0, ϕ∗
1 ← ϕ∗

0, V l=1
DL
← V l=0

DL
;

3 for l = 1 to L ≡ ⌈B/q⌉ do
4 Train the VAE model V l

Dl
L

on DL: θ∗
l ,ϕ

∗
l = argmaxθ,ϕ L(θ,ϕ;Dl

L);

5 Compute the latent dataset Dl
Z = {zi, f(xi)}N+l·q

i=1 = {Eqϕ∗
l
(z|xi)[z], f(xi)}N+l·q

i=1 ;

6 Initialise Dl;k=0
L ← Dl

L and Dl;k=0
Z ← Dl

Z;
7 Initialise SDR with R0;
8 for k = 0 to q − 1 do
9 Fit a Gaussian Process (GP) model hl;k : Z → R on Dl;k

Z = {zi, f(xi)}N+l·q+k
i=0 ;

10 Solve for the next latent point: ẑl;k+1 = argmaxz u(z|D
l;k
Z );

11 Obtain the new sample x̂l;k+1: x̂l;k+1 ∼ pθ∗
l
(·|ẑl;k+1);

12 Evaluate the objective function at the new sample: f(x̂l;k+1);
13 Augment the datasets:

Dl;k+1
L ← Dl;k

L ∪ {x̂l;k+1, f(x̂l;k+1)}, Dl;k+1
Z ← Dl;k

Z ∪ {ẑl;k+1, f(x̂l;k+1)};
14 Update the search domain: Rk+1 ← Rk using SDR given Dl;k+1

Z ;
15 end
16 Augment the outer-loop datasets: Dl+1

L ← Dl;q
L ,Dl+1

Z ← Dl;q
Z ;

17 end

the REMBO comparison, the VAE used has [100, 25, 5] for the encoder and [5, 25, 100] for the de-
coder. The activation function is Soft-plus. We set the budget B = 350 and q = 50 to retrain 7
times for Algorithms 1 and 4. In practice, to improve computational costs, the input spaces of VAEs
can be normalised to a fixed range, such as a hypercube, simplifying both pre-training and retrain-
ing steps and avoiding the need to train multiple VAEs. By applying an additional scaling between
the specific problem domain and the fixed VAE input space, we leverage the VAE’s generalisation
ability to construct latent manifolds for datasets from diverse problem domains. In our experiments,
we set the fixed VAE input space to [−3, 3]D. Further details of our experiments are provided in
Appendix C.

Numerical Illustration of SDR within BO-VAE. To demonstrate the effectiveness of SDR within
VAE-generated latent subspaces, we use Algorithm 3 to generate results in Figure 1. The figure
shows that SDR leads to faster convergence and lower, potentially optimal, function values. Addi-
tionally, Figure 2 illustrates the results of the three BO-VAE algorithms, where Algorithm 4 gen-
erally outperforms the others, achieving better global optima. This improvement is due to the soft
triplet loss, which better structures the latent subspaces and enhances the GP surrogate’s efficiency.

Algorithm Comparisons. We first compare the three BO-VAE algorithms with BO-SDR on Test
Set 1 (Table 3) and then against REMBO [27] on Test Set 2 (see Appendix A.2). REMBO ad-
dresses (P) by solving a reduced problem in a low-dimensional subspace: miny∈Rd f(Ay) =
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Figure 1: Comparisons of Vanilla BO-VAE algorithm (Algorithm 3) with and without SDR on 100D Ackley
and Rosenbrock problems. The means and the standard deviations (shaded areas) of the minimum
function values found are plotted across 5 repeated runs.

Figure 2: Comparisons of Algorithm 3 (Vanilla BO-VAE), Algorithm 1 (Retrain BO-VAE), and Algorithm
4 (Retrain DML BO-VAE) in solving 100D Ackley and Rosenbrock problems. The means and
the standard deviations (shaded areas) of the minimum function values found are plotted across 5
repeated runs.

miny∈Rd g(y), subject to y ∈ Y = [−δ, δ]d. Here A is a D × d Gaussian matrix for random
embedding, with d ≪ D. Solving g(y) in the reduced subspace is equivalent to solving f(Ay).
In this context, the Gaussian matrix A serves as a (linear) encoder (for dimensionality reduction),
while AT acts as a decoder. For the REMBO comparisons, we used d = de + 1, where de is the
effective dimensionality, and set δ = 2.2

√
de based on [4]. Each (randomised) algorithm was run

twice on each problem in Test Set 1. Each (randomised) problem in Test Set 2 was run twice, yield-
ing 10 test problems. The algorithms we are comparing are denoted by BO-SDR (Algorithm 2),
V-BOVAE (Algorithm 3), R-BOVAE (Algorithm 1), and S-BOVAE (Algorithm 4).

Results with accuracy levels τ = 10−1 and τ = 10−3 are summarised in Tables 1, 2 and Figure
3. From these results, it can be seen that BO-VAE algorithms solve more problems compared to
BO-SDR and REMBO algorithms. While BO-SDR may struggle with scalability, REMBO’s low
problem-solving percentages are likely due to the over-exploration of the boundary projections [21]
and the embedding subspaces failing to accurately capture the global minimisers. To address this,
[27] recommends restarting REMBO to improve the success rate. Meanwhile, Algorithm 4 (S-
BOVAE) consistently performed best due to its structured latent spaces.
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τ = 10−1 τ = 10−3

BO-SDR 10% 0%

V-BOVAE 100% 50%

S-BOVAE 100% 50%

R-BOVAE 100% 50%

Table 1: Average percentage of problems solved
in Test Set 1 for τ = 10−1 and 10−3.

τ = 10−1 τ = 10−3

BO-SDR 20% 0%

V-BOVAE 90% 20%

S-BOVAE 100% 40%

R-BOVAE 100% 30%

REMBO 50% 10%

Table 2: Average percentage of problems solved
in Test Set 2 for τ = 10−1 and 10−3.

Figure 3: Performance Profiles on Test Sets 1 & 2 when τ = 10−1 and 10−3.

5. Conclusion and Future Work

In this work, we have explored dimensionality reduction techniques to enhance the scalability
of BO. The use of VAEs offers an alternative and more general approach for GP fitting in low-
dimensional latent subspaces, alleviating the curse of dimensionality. Unlike REMBO, which pri-
marily targets low-rank functions, VAE-based LSBO is effective for both high-dimensional full-
rank and low-rank functions. Although BO-VAE reduces function values effectively, the optimality
gap remains constrained by noise from the VAE loss, as seen in Figures 1 and 2. To address this,
implementations of data weights and different GP initialisation are the potential future directions.
Additionally, SDR struggles in high dimensions; adopting methods like domain refinement based
on threshold probabilities [22] may improve performance.

Acknowledgments The second author’s (CC) research was supported by the Hong Kong Inno-
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Appendix A. Test Sets

A.1. High-dimensional Full-rank Test Set

# Function Dimension(s) Domain Global Minimum
1 Ackley [9] D x ∈ [−30, 30]D 0
2 Levy [24] D x ∈ [−10, 10]D 0
3 Rosenbrock [24] D x ∈ [−5, 10]D 0
4 Styblinski-Tang [24] D x ∈ [−5, 5]D −39.16599×D

5 Rastrigin Function [24] D x ∈ [−5.12, 5.12]D 0

Table 3: Benchmark high-dimensional full-rank test problems from [6, 7].

A.2. High-dimensional Low-rank Test Set

The low-rank test set, or Test Set 2, comprises D-dimensional low-rank functions generated from
the low-rank test functions listed in Table 4. To construct these D-dimensional functions with low
effective dimensionality, we adopt the methodology proposed in [27].
Let h̄(x̄) be any function from Table 4 with dimension de and the given domain scaled to [−1, 1]de .
The first step is to append D − de fake dimensions with zero coefficients to h̄(x̄):

h(x) = h̄(x̄) + 0 · xde+1 + · · ·+ 0 · xD.

Then, we rotate the function h(x) for a non-trivial constant subspace by applying a random orthog-
onal matrix Q to x. Hence, we obtain our D-dimensional low-rank test function, which is given
by

f(x) = h(Qx).

It is noteworthy that the first de rows of Q form the basis of the effective subspace T of f , while
the last D − de rows span the constant subspace T ⊥.

# Function Effective Dimensions de Domain Global Minimum
1 low-rank Ackley [9] 4 x ∈ [−5, 5]4 0
2 low-rank Rosenbrock [24] 4 x ∈ [−5, 10]4 0
3 low-rank Shekel 5 [24] 4 x ∈ [0, 10]4 -10.1532
4 low-rank Shekel 7 [24] 4 x ∈ [0, 10]4 -10.4029
5 low-rank Styblinski-Tang [24] 4 x ∈ [−5, 5]4 -156.664

Table 4: Benchmark high-dimensional low-rank test problems from [4, 6].

Appendix B. Additional Details

B.1. Sequential Domain Reduction

To formally introduce SDR [23], let us denote x(k) ∈ RD be the current optimal position, i.e., the
centre point of the current sub-region, at iteration k with each component being bounded, xl,ki ≤

10
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xi ≤ xu,ki , i ∈ {1, . . . , D}. Initially, when k = 0, we construct the first Region of Interest (RoI)
centring at x(0) with lower and upper bounds being

xl,0i = x
(0)
i −

r
(0)
i

2
, xu,0i = x

(0)
i +

r
(0)
i

2
, i ∈ {1, . . . D}, (2)

where r
(0)
i is the initial range value computed from the upper and lower bounds of the initial search

domain. Now, suppose we are progressing from iterations k − 1 to k and that the best observations
are xk−1 and xk up to the (k − 1)-th and k-th iterations respectively. To update and contract on the
RoI, we first determine an oscillation indicator along dimension i at iteration k as

c
(k)
i = d

(k)
i d

(k−1)
i with d

(j)
i =

2(x
(j)
i − x

(j−1)
i )

r
(j−1)
i

, j = k, k − 1, (3)

where r
(k−1)
i is the RoI size along dimension i at iteration k − 1. Then, we normalise it as

ĉ
(k)
i =

√
|c(k)i | sign(c

(k)
i ), (4)

where sign(·) is the standard sign function. Then, the contraction parameter along dimension i at
iteration k is

γ =
γp(1 + ĉ) + γo(1− ĉ)

2
, (5)

where the indices i, k have been intentionally omitted for clarity and to avoid complex notations.
Here, the parameter γo, typically set between 0.5 and 0.7, is a shrinkage factor to dampen oscillation.
This parameter controls the reduction of the RoI, facilitating more stable and efficient convergence
towards the global optimum. Meanwhiel, γp indicates the pure panning behaviour and is typically
set as a unity. To shrink the RoI, we utilise a zooming parameter η to update the range along each
dimension, i.e,

r
(k)
i = λir

(k−1)
i , where λi = η + |d(k)i |(γ − η). (6)

λi represents the contraction rate along dimension i and η typically lies in [0.5, 1). Below, we
present the Bayesian Optimisation algorithms innovatively with SDR in the ambient and the VAE-
generated latent spaces.

B.2. Methodology for Comparing Algorithms and Solvers

To evaluate performances of different algorithms/solvers fairly, we adopt the methodology from [6],
using performance and data profiles as introduced in [20].

Performance profiles. A performance profile compares how well solvers perform on a problem
set under a budget constraint. For a solver s and problem p, the performance ratio is:

rp,s =
Mp,s

mins∈S Mp,s
,

where Mp,s is a performance metric, typically the number of function evaluations required to meet
the stopping criterion:

Np(s; τ) = # evaluations to achieve f∗
k ≤ f∗ + τ(f∗

0 − f∗),

11
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Algorithm 2: Bayesian Optimisation with Sequential Domain Reduction
Data: Initial dataset D0 = {X0, f0}, budget B, acquisition function u(·), initial search domain

X , parameters γo, γp, η, minimum region of interest size t, and step size ξ.
Result: Minimum value fmin found by the algorithm.

1 Initialise SDR by computing the initial Region of Interest (RoI) R(0) according to the bounds;
2 for k = 0, . . . , B − 1 do
3 Fit Gaussian process GPk to current data Xk and fk;
4 Find the next iterate xk+1 ← argmaxx∈X u(x|Dk);
5 Evaluate function f at xk+1, store result fk+1 ← f(xk+1);
6 Augment the data: Xk+1 ← Xk ∪ {xk+1}, fk+1 ← fk ∪ {fk+1}
7 if k mod ξ = 0 and r

(k)
i ≥ t then

8 Update RoI R(k) based on bounds using oscillation indicators;
9 Trim the updated RoI;

10 else
11 Continue to next iteration;
12 end
13 end

Algorithm 3: BO-VAE Combined with SDR
Data: Unlabelled dataset DU = {xi}Mi=1, Initial labelled dataset DL = {xi, f(xi)}Ni=1, budget

B, initial bound R0 in latent space Z , the EI acquisition function u(·), an
encoder-decoder pair of a VAE, qϕ(z|x) : X → Z and pθ(x|z) : Z → X .

Result: Minimum value fmin discovered by the algorithm.
1 Train the encoder qϕ(z|x) and decoder pθ(x|z) on DU: θ∗,ϕ∗ = argmaxθ,ϕ L(θ,ϕ;DU).

2 Compute the latent dataset D0
Z = {zi, f(xi)}Ni=1, where zi = Eqϕ∗ (z|xi)[z], on DL.

3 Initialise SDR with the initial bound R0;
4 for k = 0, . . . , B − 1 do
5 Fit GP model hk : Z → R on Dk

Z;
6 Solve for the next latent point ẑk = argmaxz u(z|Dk

Z) and reconstruct the corresponding
input, x̂k ∼ pθ∗(·|ẑk);

7 Evaluate the objective function fk = f (x̂k);
8 Augment the latent dataset Dk+1

Z ← Dk
Z ∪ {ẑk, fk};

9 Update the search domain Rk+1 ← Rk using the updated dataset Dk+1
Z ;

10 end

where τ ∈ (0, 1) is an accuracy level. If the criterion is not met, Np(s; τ) = ∞. The performance
profile πs,τ (α) is the fraction of problems where rp,s ≤ α, representing the cumulative distribution
of performance ratios.

Data profiles. The data profile shows solver performance across different budgets. For a solver
s, accuracy level τ , and problem set P , it is defined as:

ds,τ (α) =
|{p ∈ P : Np(s; τ) ≤ α(np + 1)}|

|P|
, α ∈ [0, Ng],

12
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where np is the problem dimension and Ng is the maximum budget. The data profile tracks the
percentage of problems solved as a function of the budget.

B.3. Soft and Hard Triplet Losses

In this subsection, we briefly present how [12] integrates the triplet loss with VAEs. We refer
the reader to [14, 28] for background knowlegde for triplet deep metric loss. [12] introduces a
parameter η to create sets of positive Dp(x

(b); η) = {x ∈ D : |f(x(b)) − f(x)| < η} and negative
points Dn(x

(b); η) = {x ∈ D : |f(x(b)) − f(x)| ≥ η} for a base point x(b) in a dataset D, based
on differences in function values. However, the classical triplet loss is discontinuous, which hinders
GP models. To resolve this, a smooth version, the soft triplet loss, is proposed. Suppose we have a
latent triplet zijk = ⟨zi, zj , zk⟩ associated with the triplet xijk = ⟨xi,xj ,xk⟩ in the ambient space.
Here, zi is the latent base point. The complete expression of the soft triplet loss is [12]

Ls−trip(zijk) = ln
(
1 + exp(d+z − d−z )

)
ωijωik × I{|f(xi)−f(xj)|<η & |f(xi)−f(xk)|≥η},

where

d+z = ∥zi − zj∥p, d−z = ∥zi − zk∥p,

ωij =
fν (η − |f(xi)− f(xj)|)

fν(η)
, ωik =

fν (|f(xi)− f(xk)| − η)

fν(1− η)
,

for any zj ∼ qϕ(·|xj),∀xj ∈ Dp(xi; η) and zk ∼ qϕ(·|xk),∀xk ∈ Dn(xi; η). Here, fν(x) =
tanh (a/(2ν)) is a smoothing function with ν being a hyperparameter such that Ls−trip(zijk) ap-
proaches the hard triplet loss since limν→0 fν(a) = 1. The function I{·} is a indicator function.
The penalisation weights ωij and ωik are introduced to smooth out the discontinuities. Thus, the
modified ELBO of a VAE trained with soft triplet loss is [12, 16]

LDML(θ,ϕ; {xi, f(xi)}Ni=1) = L(θ,ϕ; {xi}Ni=1)− Lmetric

=
N∑

n=1

[
Eqϕ(zn|xn) [ln pθ(xn|zn)]−DKL (qϕ(zn|xn)∥p(zn))

]

−
N,N,N∑
i,j,k=1

Eqϕ(zijk|xijk)

[
Ls−trip(zijk)

]
,

where qϕ(zijk|xijk) = qϕ(zi|xi)qϕ(zj |xj)qϕ(zk|xk).
The BO-VAE algorithm with the soft triplet loss as the chosen deep metric loss is outlined 4. We

note that Algorithm 4 is not implemented with SDR in the latent space, as experiments have shown
that SDR and DML methods conflict with each other in excluding the global optimum. Addressing
this conflict when implementing SDR in DML-structured latent spaces is left as future work.

Appendix C. Additional Details for Section 4 Numerical Experiments

To train VAEs more robustly, we introduce an additional weight β to the VAE ELBO, known as
beta-annealing approach [2, 3]. The modified ELBO becomes

L(θ,ϕ;x) = ln pθ(x)− βDKL[qϕ(z|x)∥pθ(z|x)]
= Eqϕ(z|x)[ln pθ(x|z)]− βDKL[qϕ(z|x)∥p(z)],

13
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Algorithm 4: Retraining BO-VAE Algorithm with DML

Data: Labelled dataset Dl=1
L = {xi, f(xi)}Ni=1, unlabelled dataset DU = {xi}Mi=1, budget B,

periodic frequency q, EI acquisition function u(·), the encoder and decoder models from
a VAE, qϕ(z|x) : X → Z and pθ(x|z) : Z → X .

Result: Minimum function value fmin found by the algorithm.
1 Pre-train the VAE model V l=0

DL
with DU: θ∗

0,ϕ
∗
0 = argmaxθ,ϕ L(θ,ϕ;DU)

2 Set θ∗
1 ← θ∗

0, ϕ∗
1 ← ϕ∗

0, V l=1
DL
← V l=0

DL
;

3 for l = 1 to L ≡ ⌈B/q⌉ do
4 Train the VAE model V l

Dl
L

on DL: θ∗
l ,ϕ

∗
l = argmaxθ,ϕ LDML(θ,ϕ;Dl

L)

5 Compute the latent dataset Dl
Z = {zi, f(xi)}N+l·q

i=1 = {Eqϕ∗
l
(z|xi)[z], f(xi)}N+l·q

i=1

6 Initialise Dl;k=0
L ← Dl

L and Dl;k=0
Z ← Dl

Z;
7 for k = 0 to q − 1 do
8 Fit a Gaussian Process (GP) model hl;k : Z → R on Dl;k

Z = {zi, f(xi)}N+l·q+k
i=0

9 Solve for the next latent point: ẑl;k+1 = argmaxz u(z|D
l;k
Z )

10 Obtain the new sample x̂l;k+1: x̂l;k+1 ∼ pθ∗
l
(·|ẑl;k+1)

11 Evaluate the objective function at the new sample: f(x̂l;k+1);
12 Augment the datasets:

Dl;k+1
L ← Dl;k

L ∪ {x̂l;k+1, f(x̂l;k+1)},Dl;k+1
Z ← Dl;k

Z ∪ {ẑl;k+1, f(x̂l;k+1)}

13 end
14 Augment the outer-loop datasets: Dl+1

L ← Dl;q
L ,Dl+1

Z ← Dl;q
Z

15 end

where β ≥ 0. The use of β is a trade-off between reconstruction accuracy and the regularity of the
latent space and to avoid the case of the vanishing KLD term, where no useful information is learned
[2, 11]. A common approach to implementing the beta-annealing technique [2] involves initialising
β at 0 and gradually increasing it in uniform increments over equal intervals until β reaches 1.

Experimental Configurations for Test Set 1 The basic training details of the VAE used in the
experiments are given in Table 5.

Epochs Optimiser Learning Rate Batch Size (βi, βf , βs, βa) M

300 Adam 1× 10−3 1024 (0, 1, 10, 0.1) 50000

Table 5: The (pre-)training details of the VAE used for Test Set 1. βi and βf are the initial and final values
of β for β−VAEs respectively. The annealing approach is to increase the weight β by βa every βs

epochs. M is the size of DU.

We highlight two ingredients in the implementation of the algorithms.

1. The first thing involves the VAE pre-training. The models are pre-trained according to the
details in Table 5. It is crucial that training samples are drawn with high correlations to

14
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construct the VAE training dataset. For instance, samples can be generated from a multivariate
normal distribution with a large covariance matrix. This approach facilitates the VAE in
learning a meaningful low-dimensional data representation.

2. The second one involves constructing the latent datasets for a sample-efficient BO procedure,
as it would be computationally inefficient to use the entire VAE training dataset. Therefore,
instead of using the entire DL, we utilise only 1% of it by uniformly and randomly selecting
N points, where N represents 1% of the size of DU at the current retraining stage l.

The SDR setting is: γo = 0.7, γp = 1.0, η = 0.9, t = 0.5, ξ = 1. The initial search domain R0

for Algorithms 1 and 3 is [−5, 5]d. For Algorithm 4, the hyperparameters η and ν are set to be 0.01
and 0.2 respectively. For the retraining stage, we use Table 6 as the common setup.

Epochs Optimiser Learning Rate Batch Size Beta-annealing
2 Adam 1× 10−3 256 No

Table 6: The retraining details of the VAE used for Test Set 1.

Experiment Configurations for Test Set 2 The pre-training and retraining details for this VAE
are consistent with as before, as shown in Table 5 and Table 6, respectively. In addition to the two
key implementation details for BO-VAE algorithms listed in Appendix C, it is important to note
that the test problem domains must be scaled to [−1, 1]D for a fair comparison with REMBO. This
adjustment is due to the domain scaling used in constructing Test Set 2. The specific experimental
configurations for each BO-VAE algorithm are consistent with as before.
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