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Abstract
The misuse of generative AI (genAI) has raised
significant ethical and trust issues. To mitigate
this, substantial focus has been placed on detect-
ing generated media, including fake audio. In
this paper, we examine the efficacy of state-of-
the-art fake audio detection methods under real-
world conditions. By analyzing typical audio al-
terations of transmission pipelines, we identify
several vulnerabilities: (1) minimal changes such
as sound level variations can bias detection per-
formance, (2) inevitable physical effects such as
background noise lead to classifier failures, (3)
classifiers struggle to generalize across different
datasets, and (4) network degradation affects the
overall detection performance. Our results in-
dicate that existing detectors have major issues
in differentiating between real and fake audio in
practical applications and that significant improve-
ments are still necessary for reliable detection in
real-world environments.

1. Introduction
The innovative use of generative AI (genAI) is truly astound-
ing, having shifted the spotlight from the industrial era to
the digital age, revolutionizing every facet of how we live,
work, and interact with technology. Yet, genAI came under
scrutiny once more as the world observed that the tech-
nology can also be used to delve into deceptive practices:
Generated media have been used maliciously to manipulate
voters (Seitz-Wald & Memoli, 2024) and to fraud compa-
nies (Chen & Magramo, 2024). With the power to replicate
and generate content with astonishing precision, it raises
concerns about the decline in trust, the spread of disinfor-
mation, and the ethical implications surrounding the use of
this technology (de Ruiter, 2021). While generated images,
videos, and text have garnered significant attention (Wang
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et al., 2020; Li & Lyu, 2019; Mitchell et al., 2023) over the
years, another aspect of this phenomenon has also begun to
capture the limelight: generated audio and speech. Gener-
ated audio has become a popular tool for scammers due to
its broad reach and critical role in the creation of misleading
videos.

Securing against such scamming attempts using generated
audio has been an open problem, picking up pace in recent
times. In that regard, several fake audio detectors have
been proposed (Ballesteros et al., 2021; Zhang et al., 2021;
Ge et al., 2021; Tak et al., 2021), to automatically detect
generated media. Although these detectors yield remarkable
results on unaltered generated audio, their robustness in real
world settings remains questionable.

In this paper, we investigate state-of-the-art fake audio de-
tection methods under real-world conditions. For this, we
analyze audio alterations from the perspective of the audio
transmission pipeline, such as communication channels and
transmissions. We show that (1) minimal changes, such as
sound level differences can significantly compromise their
performance with a bias, (2) physical effects (e.g., back-
ground noise) that are typically inevitable for transmission
can also cause the classifiers to fail, (3) the classifiers do not
generalize to other datasets, and (4) network degradation
impact their overall performance. In general, classifiers tend
to classify every sample as fake or real, regardless of the
origin. This effect is particularly present for changing sound
levels, where we can mostly control the classification of a
sample with it sound level. Our experiments indicate that
current detectors cannot reliably discern real and fake audio
samples in real-world settings.

In summary, we make the following key contributions:
(1) Audio Transmission Pipeline. We investigate differ-
ent alterations to the audio on amplitude level, as well as
other degradations for digital transmission, and demon-
strate their impact on recognition performance. (2) Out-
of-Distribution (OOD) Samples. We test the performance
of state-of-the-art classifiers on recent audio generation mod-
els and establish that the tested classifiers cannot robustly
distinguish real and fake audio for OOD samples.
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2. Background
Synthetically-Generated Audios. Synthetic audio gener-
ators utilize machine learning algorithms, particularly based
on deep neural networks, to generate and replicate human
voices convincingly. Traditional algorithms analyze vast
amounts of audio data to understand the intricacies of speech
patterns, vocal tone, and even specific nuances unique to
an individual’s voice (Lukose & Upadhya, 2017; Tabet &
Boughazi, 2021). Recent algorithms even surpass their
predecessors by implementing one-shot or few-shot archi-
tectures, requiring only a few seconds of voice to be able
to clone a voice (Huang et al., 2022; Wu et al., 2022; Xue
et al., 2022) while achieving real-time voice cloning (Jem-
ine, 2019). By harnessing this understanding, they can
generate entirely new audio clips that sound eerily similar
to the target speaker.

Detecting Synthetically-Generated Audios. To curb the
misuse of generative technologies in audio, various deep
neural network (DNN)-based detection methods have been
developed. Fake audio detection is a binary classification,
and its goal is to distinguish between fake and authentic
audio recordings. The classifier is a function f : A → R
that takes an audio sample a ∈ A as input and produces a
real-valued scalar as output. A lower output value signifies
a higher probability that the input audio is fake, and a higher
value corresponds to a higher likelihood that the audio is
real.

Audio Communication Pipeline. For the detection of
generated audio, it is not enough to consider only the orig-
inal generated audios. Audio is never used in isolation
but is always transmitted via some kind of communication
pipeline. Therefore, to effectively detect generated audio,
we need to take into account the transmission pipeline.

Despite efforts to improve the performance of detectors for
generated audio, for example, by augmenting the training
data with modified versions of the original samples, these
inadvertent changes can influence the performance of auto-
matic detection methods. For instance, background noise
from the surrounding environment can affect the distribution
of the audio. Similarly, distortions in the input audio due
to factors such as codecs, lossy compression, and network
degradation provide room for additional distribution shifts.

3. Fake Audio Detectors and Datasets
In this section, we explain the fake audio detectors we ana-
lyzed and the datasets used in this study.

3.1. Fake Audio Detectors

We settle on four detection methods, based on their perfor-
mance, publication year, and code availability:

• ResNet-18: The first model is based on ResNet-
18 (Zhang et al., 2021) and uses the ASVspoof2019
dataset for training and testing (evaluation). The test
accuracy is 0.945 and its AUC score is 0.995.

• RawPC-DARTS: The detector (Ge et al., 2021) also
operates on the ASVspoof2019 dataset for training and
testing. The test accuracy is 0.963 and the AUC Score
is 0.995.

• RawNet-2: RawNet-2 (Tak et al., 2021) also utilizes
the ASVspoof2019 dataset for training and testing. The
model was trained by us since the pre-trained model
is not provided. The model yields a test accuracy of
0.926 and an AUC score of 0.984.

• Whisper Features: The detector (Kawa et al., 2023)
is trained on 125,000 samples of ASVspoof2021
dataset (Yamagishi et al., 2021) and 31,779 samples of
DeepFakes In-The-Wild dataset (Müller et al., 2022).
The MFCC joint features for MesoNet architecture was
selected among the options, which was concluded the
best performing combination in their paper. The test
accuracy was found to be 0.942 and AUC score to be
0.973.

As is evident, the fake audio detectors mentioned above
produce high accuracy (> 0.92) and AUC scores (> 0.97)
in the ASVspoof2019 dataset.

3.2. Datasets

We conduct an extensive literature review to unravel the
datasets used by fake audio detection models since 2015
and found that a staggering 84% of papers rely on one of
the ASVspoof family datasets1. In addition, we collect
an additional dataset consisting of several state-of-the-art
generative models.

ASVspoof2021. The dataset consists of 611,829 audio
samples with an average length of 2.99 seconds. The dataset
was originally compiled to serve the task of synthetic audio
detection and includes bonafide and spoofed utterances from
various speakers and synthetic sources.

TTS Dataset. We compile another dataset, sourcing audio
samples generated by current state-of-the-art TTS models

1The ASVspoof datasets have been released for the “Automatic
Speaker Verification Spoofing And Countermeasures Challenges”
since 2015. In total, there exist four different versions of the
dataset, which also have overlapping subsets.

2



Generated Audio Detectors are Not Robust in Real-World Conditions

from both commercial and academic backgrounds. Ama-
zon Polly (Amazon.com, Inc., 2023), GoogleTTS (Google,
LLC, 2023), and ElevenLabs (ElevenLabs, Inc., 2023) are
commercial TTS tools that we utilized in our data collection
process. These models are closed-source, and there is no
information available on their architecture and training data.
Among the open-source models we selected, VITS (Kim
et al., 2021), LST-TTS (Chen & Rudnicky, 2022), Fast-
Speech 2 (Ren et al., 2021), and, DiffGAN-TTS (Liu et al.,
2022). VITS integrates variational inference with normaliz-
ing flows and adversarial training to generate more natural-
sounding speech. LST-TTS is a transformer-based text-to-
speech synthesis system that achieves fine-grained style con-
trol by using local style tokens and cross-attention blocks
to fuse content and style information. In FastSpeech 2, the
authors utilize high-performance alignment and pitch ex-
traction tools for achieving high-quality and rapid speech
synthesis. DiffGAN-TTS adopts an expressive model as a
denoising function to approximate the true denoising distri-
bution with adversarial training.

The dataset, which we will refer to as the “OOD dataset”
for the rest of the paper, comprises 3024 validated audio
samples from Common Voice Delta Segment 15.0 (Mozilla
Foundation, and Community, 2017) classified as bonafide
samples and an additional 3024 audio samples generated
by seven TTS algorithms in total. Among these, 450 au-
dio samples were synthesized by each generator, except for
DiffGAN-TTS, ElevenLabsTTS, and GoogleTTS, which
contributed 421, 333, and 470 samples respectively. The
TTS algorithms utter the same content (text) from the
bonafide segment to avoid any bias that may arise due to
the content. The choice of TTS models was made primarily
to have a fair distribution across different state-of-the-art
architectures and publicly and commercially available tools.

4. Evaluation
In this section, we assess the effectiveness of fake audio
detectors in real-world environments.

4.1. Evaluating a Baseline

We evaluate the performance of the chosen detectors on the
ASVspoof2021 dataset, as shown in Table 1. The models
perform extremely well on the dataset in terms of accuracy
and show decent AUC scores. However, a degraded perfor-
mance can be witnessed when the false positive rate (FPR)
is fixed at 5%. The models seem to perform very well in
identifying the fake audio but struggle with the real speak-
ers.

MODEL NAME ACCURACY TPR@ 0.05 FPR AUC SCORE

RESNET-18 0.942 0.522 0.756
RAWPC-DARTS 0.973 0.623 0.798
RAWNET-2 0.955 0.633 0.854
WHISPER FEATURES 0.936 0.565 0.924

Table 1. Performance of selected detection models on the
ASVspoof2021 dataset.

MODEL NAME ACCURACY TPR@ 0.05 FPR AUC SCORE

RESNET-18 0.727 0.517 0.754
RAWPC-DARTS 0.796 0.630 0.802
RAWNET-2 0.787 0.634 0.854
WHISPER FEATURES 0.819 0.576 0.924

Table 2. Performance of selected detection models on the balanced
ASVspoof2021 dataset.

4.2. Balanced vs. Imbalanced Evaluation

We observe that the ASVspoof2021 dataset is highly un-
balanced. Out of 611,829 audio samples from the eval set,
589,212 samples are generated by spoofed sources and only
22,617 audio samples are from authentic speakers. Using
the biased dataset may misinterpret the detection model’s
performance on a real-world analysis, and hence arises the
need to use an unbiased subset of the main dataset. To obtain
such a subset, we randomly sample 20,000 audio samples
from the original dataset, comprising 10,000 files from each
class, and, in turn, term it the ‘balanced dataset.’ The perfor-
mance on the balanced dataset is recorded in Table 2. We
notice that the accuracy falls approximately by 15% due to
the balancing, but the other metrics do not change. The bal-
anced dataset thus appears to be a good subset for carrying
out the experiments.

4.3. Generalization to OOD Dataset

Our next evaluation focuses on the performance of the detec-
tors for the OOD dataset. The performance of the detectors
on this data is shown in Table 3. We observe a signifi-
cant drop for all three metrics compared to the balanced
ASVspoof2021 dataset. Whisper features appears to be the
detector that suffered the most performance degradation.
The exception is ResNet-18 which gets better in classifying
fake audios as the TPR is higher for the 0.05 FPR thresh-
olds. However, the low accuracy and high AUC score of
ResNet-18 indicate a strict imbalance in the classification
result and that most of the real audio is also classified as
fake.

Insight 1: Fake audio detectors do not generalize to
data from unseen generative models, marking a decrease
in performance if generative models are used that are not
part of the training set.
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MODEL NAME ACCURACY TPR@ 0.05 FPR AUC SCORE

RESNET-18 0.595 (0.727) 0.860 (0.517) 0.952 (0.754)
RAWPC-DARTS 0.642 (0.796) 0.320 (0.630) 0.686 (0.802)
RAWNET-2 0.598 (0.787) 0.220 (0.634) 0.813 (0.854)
WHISPER FEATURES 0.411 (0.819) 0.036 (0.576) 0.382 (0.924)

Table 3. Performance of selected detection models on the OOD
dataset (comparison to balanced ASVspoof2021 in brackets).

DATASET MODEL NAME ACCURACY TPR@ 0.05 FPR AUC SCORE

BALANCED
ASVSPOOF2021

RESNET-18 0.715 (0.727) 0.503 (0.517) 0.740 (0.754)
RAWPC-DARTS 0.721 (0.796) 0.498 (0.630) 0.784 (0.802)

RAWNET-2 0.732 (0.787) 0.417 (0.634) 0.781 (0.854)
WHISPER FEATURES 0.797 (0.819) 0.417 (0.576) 0.873 (0.924)

OUT-OF-
DISTRIBUTION

RESNET-18 0.525 (0.595) 0.698 (0.860) 0.946 (0.952)
RAWPC-DARTS 0.508 (0.642) 0.334 (0.320) 0.649 (0.686)

RAWNET-2 0.536 (0.598) 0.062 (0.220) 0.483 (0.813)
WHISPER FEATURES 0.427 (0.411) 0.028 (0.036) 0.375 (0.382)

Table 4. Performance of selected detection models after 15 dB re-
duction in amplitude (Comparison to balanced ASVspoof2021 and
OOD dataset in brackets respectively).

4.4. Evaluating the Influence of the Amplitude

We proceed to analyze the impact of input amplitude/power
on fake audio detectors. It is important to note that in real-
world scenarios, the amplitude/power of an audio input
can vary due to differences in speech patterns, microphone
quality, and the distance between the speaker and the mi-
crophone. A fake detector should be invariant of this factor
and work robustly for different sound levels. In the first
experiment, we reduce the amplitude of the target audio
samples by 15 dB and evaluate the detectors on the resulting
dataset.

We compare the results in Table 4 with the results from
Table 2 and 3 in brackets. We observe a performance degra-
dation for almost all measured metrics and models and
observe a decrease in AUC score and TPR @ 0.05 FPR
to near-random true positive rate (TPR) for the balanced
ASVspoof dataset, pointing towards a shift in trend to clas-
sify every sample as real. For the OOD dataset, we also
observe lower performance, except that RawNet-2 shows an
extreme classification bias. Almost all samples are classified
as real irrespective of the ground truth, which explains the
slightly better accuracy (close to 50%) but the low AUC
value. Whisper features’ performance remains comparable
to the previous results.

For a more in-depth evaluation, we also perform experi-
ments where we modify the changing sound level between
-1 dB and -20 dB. The results are shown in Figure 1 for the
balanced ASVspoof2021 dataset. Here we plot the TPs
and TNs for RawPC-DARTS and RawNet-2, which show
the variation in the metrics regarding amplitude changes.
Interestingly, we observe that the classification of TPs and

TNs seems to be highly correlated with the amplitude level.
In other words, everything below approximately -15 dB is
more likely classified as real, while everything above this
threshold is more likely classified as fake, regardless of
whether the sample is originally real or fake, indicating that
the models have a strong bias to the sound level. We ob-
served a similar trend for the OOD dataset in Appendix A
for Figure 5.
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Figure 1. TPs and TNs for different amplitude levels over the bal-
anced ASVspoof2021 dataset for RawPC-DARTS and RawNet-2.

Insight 2: Generated audio detectors show reduced
performance when faced with amplitude changes in the
input data and have a strong bias related to the sound
level.

4.5. Evaluating the Influence of the Background Noise

We then analyze the influence of background noise on the
performance of the detectors. In reality, background noise
can be introduced into an audio input due to factors such
as wind, music, or crowded environments, and detectors
should therefore be robust to changing conditions.

We design experiments to study the performance change
induced by ambient noise. For this, we pick an ambient
noise and iterate the experiment for varying signal-to-noise
ratios (SNRs), namely 5 dB, 10 dB, 15 dB, and 20 dB, to
closely model the effects of different noisy backgrounds in
our study. The ambient noise is that of a bus with people
chatting from torchaudio.

Figures 2, 3 and 4 show the results for the four tested models
in terms of accuracy, TPR @0.05FPR and ROC AUC score
respectively. The strength of the noise affects the classifica-
tion capability of the models. However, it is particularly in-
teresting to note how RawPC-DARTS and RawNet-2 break
down completely for all three metrics at higher noise levels
(lower SNRs). The sudden shift in results from 15 dB SNR
to 10 dB SNR shows the migration of classification towards
the negative class, i.e. more audio gets classified as fake,
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Figure 2. Accuracy of selected detection models on the balanced
dataset.

Figure 3. TPR @0.05 FPR of selected detection models on the
balanced dataset.

irrespective of its nature. Whisper features doesn’t show
drastic drops and performs similar even under increased
noise levels. ResNet-18 also shows a smaller performance
drop with increasing noise. However, the overall perfor-
mance is already worse in comparison to the other models
for higher SNRs.

Insight 3: The performance of fake audio detectors
decreases in response to noisy inputs, marking their limi-
tation in handling audio in noisy environments.

4.6. Codec Losses

Codecs are special software and hardware designed to com-
press and decompress digital audio signals for transmission.
They are an integral part of the channel that ensures effi-
cient transmission because of its reduction in storage size
while maintaining acceptable levels of audio quality. We
test the effects of one of the most common codecs used
in recent times, namely Opus. Opus is an open, versatile,
and highly efficient audio codec designed for interactive
real-time applications such as VoIP, video conferencing, and

Figure 4. ROC AUC score of selected detection models on the
balanced dataset.

DATASET MODEL NAME ACCURACY TPR@ 0.05 FPR AUC SCORE

BALANCED
ASVSPOOF2021

RESNET-18 0.546 (0.727) 0.054 (0.517) 0.574 (0.754)
RAWPC-DARTS 0.808 (0.796) 0.641 (0.630) 0.806 (0.802)

RAWNET-2 0.566 (0.787) 0.190 (0.634) 0.496 (0.854)
WHISPER FEATURES 0.828 (0.819) 0.548 (0.576) 0.913 (0.924)

OUT-OF-
DISTRIBUTION

RESNET-18 0.512 (0.595) 0.408 (0.860) 0.864 (0.952)
RAWPC-DARTS 0.642 (0.642) 0.320 (0.320) 0.685 (0.686)

RAWNET-2 0.489 (0.598) 0.078 (0.220) 0.534 (0.813)
WHISPER FEATURES 0.421 (0.411) 0.038 (0.036) 0.390 (0.382)

Table 5. Performance of selected detection models after applying
Opus codec (Comparison to balanced ASVspoof2021 and OOD
dataset in brackets respectively).

online gaming, as well as for streaming and storage, making
it one of the most widely used codecs (Valin et al., 2012;
Xiph.Org, Foundation, 2012).

To formalize the experiment, we encode and decode audio
samples with Opus and evaluate the resultant audio signals
on the fake audio detection models. The results of the Opus
codec are summarized in Table 5. ResNet-18 and RawNet-2
remain poor, especially in the balanced ASVspoof2021
dataset. Although similar trends can be found on the OOD
dataset as well, RawNet-2’s performance drop is even more
pronounced and tends to classify more samples as fake.

Insight 4: Alterations caused by common codecs such
as Opus can negatively influence the performance and
bias recognizes towards one class.

4.7. Channel Losses

Channel losses are an unavoidable part of communication
channels. Audio signals transmitted over communication
channels are subject to the quality of the network and the
characteristics of the medium. Fake audio detectors must be
able to discern audio samples correctly even with channel
losses. We consider downsampling the audio to simulate
a low-bandwidth communication. For the experiment, we
downsample the audio samples to 3.4 kHz before forwarding
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DATASET MODEL NAME ACCURACY TPR@ 0.05 FPR AUC SCORE

BALANCED
ASVSPOOF2021

RESNET-18 0.602 (0.727) 0.254 (0.517) 0.669 (0.754)
RAWPC-DARTS 0.750 (0.796) 0.588 (0.630) 0.791 (0.802)

RAWNET-2 0.543 (0.787) 0.142 (0.634) 0.618 (0.854)
WHISPER FEATURES 0.501 (0.819) 0.205 (0.576) 0.748 (0.924)

OUT-OF-
DISTRIBUTION

RESNET-18 0.441 (0.595) 0.062 (0.860) 0.404 (0.952)
RAWPC-DARTS 0.642 (0.642) 0.320 (0.320) 0.686 (0.686)

RAWNET-2 0.598 (0.598) 0.220 (0.220) 0.813 (0.813)
WHISPER FEATURES 0.483 (0.411) 0.027 (0.036) 0.488 (0.382)

Table 6. Performance of selected detection models after downsam-
pling to 3.4 kHz (Comparison to balanced ASVspoof2021 and
OOD dataset in brackets respectively).

them to the detectors.

The results in Table 6 show the reduction in performance
for the ResNet-18 model for both datasets. However,
RawNet-2 and Whisper features particularly fail for the bal-
anced dataset, resulting in a significantly lower TPR @ 0.05
FPR. Again, it has a shift toward classifying all audio as
fake.

Insight 5: Most models show difficulties for downsam-
pled audio and detect input more likely as fake.

5. Discussion and Conclusion
We conducted a comprehensive analysis of the performance
of four generated audio detectors in real settings in which the
audio input to these detectors is noisy, suffers from channel
loss (downsampling), and alterations of their power/volume.
In general, we observed that all tested classifers struggle
for OOD samples such as new generative models but also
alterations caused by typical communication channels. An
overview of all the results for different alterations is shown
in Appendix B in Table 7. The models tend to classify
all samples as more likely to be fake or real, showing an
insufficient generalization of the model. This is particularly
evident for the sound level modifications, where we have
shown that we can control the output of the classifier to be
fake or real by just adjusting the sound level, independent
of its input. This might be a result of the dataset from the
ASVSpoof family which is, based on our literature review,
the predominantly used dataset for training and testing of
fake audio classifiers. Although the overall performance
is low, we could also observe that models like the RawPC-
Darts are less susceptible to channel effects.

We concluded that current detectors cannot reliably distin-
guish real and fake audio samples in realistic settings and
that detectors for fake audio need to be improved for being
used in detection in real-world environments.
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Generated Audio Detectors are Not Robust in Real-World Conditions

A. Evaluating the Influence of the Amplitude
To properly observe the pattern traced by the reducing amplitude of the audio samples on the detection models, we perform
an incremental decrease in amplitude/power, 1dB at a time. The resultant graph is shown in Figure 5.

Figure 5. TPs and TNs for different amplitude levels over the OOD dataset for RawPC-DARTS and RawNet-2.

B. Comparison of Audio Alterations
Comparison of audio alterations caused by channel transmissions and transmissions over the air (Table 7).

Dataset Manipulation
ResNet-18 RawPC-DARTS RawNet-2 Whisper features Average Accuracy

Accuracy TPR@5%FPR AUC Accuracy TPR@5%FPR AUC Accuracy TPR@5%FPR AUC Accuracy TPR@5%FPR AUC

Balanced ASVspoof2021

Baseline 0.727 0.517 0.754 0.796 0.630 0.802 0.787 0.634 0.854 0.819 0.576 0.928 0.782

Amplitude Reduction 0.715 0.503 0.740 0.721 0.498 0.784 0.732 0.417 0.781 0.797 0.417 0.873 0.741

Opus codec 0.546 0.054 0.574 0.808 0.641 0.806 0.566 0.190 0.496 0.828 0.548 0.913 0.687

Downsampling 0.602 0.254 0.669 0.750 0.588 0.791 0.543 0.142 0.618 0.501 0.205 0.748 0.599

Out-of-Distribution

Baseline 0.595 0.860 0.952 0.642 0.320 0.686 0.598 0.220 0.813 0.411 0.036 0.382 0.562

Amplitude Reduction 0.525 0.698 0.946 0.508 0.334 0.649 0.536 0.062 0.483 0.427 0.028 0.375 0.499

Opus codec 0.512 0.408 0.864 0.642 0.320 0.685 0.489 0.078 0.534 0.421 0.038 0.390 0.516

Downsampling 0.441 0.062 0.404 0.642 0.320 0.686 0.598 0.220 0.813 0.483 0.027 0.488 0.541

Table 7. Performance of selected detection models after separately applying: 1) a 15 dB reduction in amplitude, 2) the Opus codec, and
3) downsampling to 3.4 kHz, compared to the baseline.

8


