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Abstract
The policy trained via reinforcement learning
(RL) makes decisions based on sensor-derived
state features. It is common for state features to
evolve for reasons such as periodic sensor main-
tenance or the addition of new sensors for perfor-
mance improvement. The deployed policy fails in
new state space when state features are unseen dur-
ing training. Previous work tackles this challenge
by training a sensor-invariant policy or generat-
ing multiple policies and selecting the appropriate
one with limited samples. However, both direc-
tions struggle to guarantee the performance when
faced with unpredictable evolutions. In this pa-
per, we formalize this problem as state evolvable
reinforcement learning (SERL), where the agent
is required to mitigate policy degradation after
state evolutions without costly exploration. We
propose Lapse by reusing policies learned from
the old state space in two distinct aspects. On one
hand, Lapse directly reuses the robust old policy
by composing it with a learned state reconstruc-
tion model to handle vanishing sensors. On the
other hand, the behavioral experience from the old
policy is reused by Lapse to train a newly adap-
tive policy through offline learning, better utiliz-
ing new sensors. To leverage advantages of both
policies in different scenarios, we further propose
automatic ensemble weight adjustment to effec-
tively aggregate them. Theoretically, we justify
that robust policy reuse helps mitigate uncertainty
and error from both evolution and reconstruction.
Empirically, Lapse achieves a significant perfor-
mance improvement, outperforming the strongest
baseline by about 2× in benchmark environments.
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1. Introduction
Deep reinforcement learning (RL) has shown tremendous
potential in various applications (Wang et al., 2022), such as
sequential recommendation systems (Lin et al., 2023) and
robotic control (Singh et al., 2022). However, deploying RL
agents in the real world faces a major challenge: policies
trained under a fixed state feature space often fail to gen-
eralize to new, unseen ones in open environments (Zhou,
2022; Yuan et al., 2023). For instance, autonomous driving
agents utilize heterogeneous sensor sources for information
gathering (Kiran et al., 2021). However, the sensors might
wear out due to limited lifespan or require maintenance, and
new sensors with different camera views may be deployed
to improve performance from richer informatioin (Shukla
et al., 2023). Such common scenarios lead to continuous
changes (evolutions) in the state space during deployment,
requiring agents to adapt to the state evolvale environments.

This presents a critical challenge: adapting to new state
spaces demands extensive interactions to learn a policy,
which is costly in online deployment. Existing methods
learn a sensor-invariant policy that is robust to changes in
the state space (Chen et al., 2021; Li et al., 2022; Hansen
et al., 2021), or generate multiple source policies beforehand
and select the appropriate one using hierarchical high-level
policies or value function estimation (Cheng et al., 2020;
Yang et al., 2020; Zhang et al., 2022; Chen et al., 2023).
However, learning a sensor-invariant policy requires deter-
mining which aspects of state features are task-specific and
which are shared. This is complex and previous methods of-
ten assume prior knowledge about new state spaces (Laskin
et al., 2020a; Zhou et al., 2023). Meanwhile, enumerating
all possible state spaces is a daunting task, making it im-
practical to generate sufficiently diverse source policies for
reuse (Cheng et al., 2020; Barekatain et al., 2021). Conse-
quently, both directions fail to guarantee the performance
when faced with unpredictable state evolutions.

To tackle the challenges posed by evolvable state features,
we formalize the problem as state evolvable reinforcement
learning (SERL), where unknown evolutions map the old
state space to a new one, leading to changes in transition and
reward functions as well. To mitigate performance degra-
dation resulted from state space evolutions, we propose
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Learning to reuse policies in state evolvable environments
(Lapse) by reusing the old policy in two different directions.
On one hand, by assuming the prior knowledge of sensors
designated for maintenance, agents can simultaneously ob-
serve features from old and new state spaces for a short
period. Using a state reconstruction model trained with Con-
ditional Generative Adversarial Networks (GANs) (Isola
et al., 2017), the old policy can be directly reused by recon-
structing the old state features from the new ones, thereby
handling issues like vanishing sensors. However, uncer-
tainty in state evolution and reconstruction errors may cause
unbounded performance gaps, we minimize discrepancies
in action distributions under perturbations, thereby bound-
ing performance degradation. From another perspective, an
adaptive policy is trained using the behavioral knowledge
carried out by its experience via offline RL, so as to better
utilize new sensors. Finally, to benefit from the advantages
of two policies in different scenarios, we aggregate them
with automatic adjustment of ensemble weights, ensuring
better performance as the state space evolves.

Our theoretical study discloses the gap caused by the un-
certainty of state evolution and justifies the use of policy
robustness. Extensive experiments are performed both in
MuJoCo control tasks (Todorov et al., 2012) with vec-
torial state features and Atari games (Bellemare et al.,
2013) with pixel-based images. To evaluate the adapta-
tion capability, we test the policy in environments with
multiple unknown state space evolutions. The empiri-
cal results showcase a remarkable improvement in our
method compared to existing adaptation and transfer ap-
proaches, achieving about 2× performance enhancement
for state evolvable environments. Our code is available at
https://github.com/zzq-bot/Lapse

2. Problem Formulation
The standard reinforcement learning (RL) problem (Sut-
ton & Barto, 2018) is formally defined by a Markov deci-
sion process (MDP), denoted as M = {S,A,P, R, γ}.
Here S and A represent state and action space, respec-
tively. P : S × A × S → [0, 1] is the transition func-
tion, R : S × A → [0, Rmax] is the reward function, and
γ ∈ [0, 1) signifies the discount factor. At each time step
t, the agent perceives the state st and decides an action
based on its policy at ∼ π(·|st). This leads to the next state
st+1 ∼ P(·|st, at) and a reward R(st, at). The primary
objective is to find a policy that maximizes the expected
discounted return J(π) = E[

∑∞
t=0 γ

tR(st, at)|s0, π,P].

In this work, we consider an environment where the state
space evolves over time. This scenario is formulated as
a state evolvable reinforcement learning (SERL) problem:
{(Mn, fn, Dn)}Nn=0. Each evolving MDP is denoted by
Mn = {Sn,A,Pn, Rn, γ}, and the unknown multivalued

mapping fn : Sn → ∆(Sn+1) governs how the state space
evolves from Sn to Sn+1, where ∆(·) is the probability sim-
plex. N ∈ Z+ ∪ {+∞} is the number of evolutions. The
goal of SERL is to maximize the adaptation performance of
policy πn during deployment, without the need for costly
trial-and-error. Given that the evolution of the state space is
driven by changes in sensors, we can collect limited experi-
ences Dn = {(sn, sn+1, a, r, s

′
n, s

′
n+1)} via the policy πn.

We make a mild assumption that prior knowledge of which
sensors will undergo maintenance and which new sensors
will be deployed is available. This allows agents to perceive
paired states (st, st+1) in a short period by simply masking
the corresponding state features.

As our focus is on the evolution of the state space, the reward
and transition functions remain consistent. However, due
to unpredictable noise, fn may be stochastic, non-bijective,
and multivalued. To manage this uncertainty, we define
a Bayesian-style inverse f−1

n : Sn+1 → ∆(Sn), where
f−1
n (sn|sn+1) = fn(sn+1|sn)∑

s̃n
fn(sn+1|s̃n) and quantify the uncer-

tainty by defining ϵR − ϵP consistency in Section 3.4.

Definition 2.1. Let Mn = {Sn,A,Pn, Rn, γ} be an
evolving MDP, with evolution fn : Sn → ∆(Sn+1)
and inverse f−1

n : Sn+1 → ∆(Sn). We define
Mn+1 = {Sn+1,A,Pn+1, Rn+1, γ}, where Sn+1 =
{sn+1 : sn+1 ∼ f(·|sn), sn ∈ Sn}, Rn+1(sn+1, a) =
Esn∼f−1

n (·|sn+1)
[Rn(sn, a)], and Pn+1(s

′
n+1|sn+1, a) =

Esn,s′n∼f−1
n (·|sn+1),f

−1
n (·|s′n+1)

[Pn(s
′
n|sn, a)].

3. Method
In this section, we will describe our proposed Learning to
reuse policies in state evolvable environments (Lapse). As
shown in Figure 1, Lapse learns to reuse the old policy in
two directions. On one hand, we learn a state reconstruction
model and directly reuse the old robust policy. On the other
hand, behavior knowledge contained in limited experience
is reused to learn a new policy with robustness regulariza-
tion. Moreover, we aggregate them with automatic adjusted
ensemble weight. Finally, we give a theoretical analysis
of how uncertainty of evolution brings about performance
degradation and a bound of the performance gap.

3.1. Robust Policy Reuse with State Reconstruction

When a policy πn, effective inMn, encountersMn+1, it
fails due to the evolution of the state space. However, if old
state features sn can be reconstructed from new sn+1, we
can reuse πn by composing it with the learned reconstruc-
tion model. Leveraging paired state features (sn, sn+1), we
can utilize supervised paired GANs (Isola et al., 2017) to
learn a state reconstruction model gn : Sn+1 → ∆(Sn),
alongside a discriminator dn : Sn+1 × Sn → [0, 1]. The
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Figure 1. The overall framework of SERL and Lapse

objective of the conditional GAN can be expressed as:

Ln+1
GAN = E[log dn(sn+1, sn) + log(1− dn(sn+1, ŝn))],

(1)
where ŝn ∼ gn(sn+1). gn aims to minimize this objec-
tive against dn which seeks to maximize it, i.e., g∗n =
argmingn maxdn Ln+1

GAN. Additionally, we impose an lp-
based reconstruction loss to ensure the generated ŝn closely
matches sn:

Ln+1
Lp = Esn,sn+1,ŝn∼gn(·|sn+1)[∥sn − ŝn∥p], (2)

where p is a predefined parameter. Concretely, we set p = 1
to encourage less blurring in pixel-based environment and
p = 2 in vectorial environments. The overall reconstruction
objective is thus defined as follows:

Ln+1
recon = Ln+1

GAN + λLn+1
Lp , (3)

where λ is a tuneable hyper-parameter. It is also feasible to
instantiate the reconstruction model by diffusion networks,
but we here select GAN for its faster inference time consid-
ering time-delay during deployment.

By composing the reconstruction model with the old pol-
icy, we obtain the policy with a ∼ πrecon

n+1 (·|sn+1) :=
(πn◦gn)(·|sn+1) = πn(·|ŝn), where ŝn ∼ g(·|sn+1). Since
g is trained to approximate f−1

n , we show in Section 3.4
that this reconstruction-based policy can transfer effectively
toMn+1. In practice, however, limited data coverage dur-
ing the short period and reliance on a fixed behavior pol-
icy can hinder gn’s ability to generalize to unseen states.
Additionally, standard RL policies tend to be sensitive to
perturbations of their inputs (Zhang et al., 2020a), so the re-
construction error may lead to erroneous actions, that drive
the agent into unobserved states, further compounding the
reconstruction error.

We mitigate these issues by learning a robust policy that
reduces the impact of small input perturbations on action

distributions. Concretely, we incorporate a robustness regu-
larization when training πn underMn:

Ln
robust = E

[
max

ŝn∈T ϵ
n(sn)

DTV(πn(·|sn), πn(·|ŝn))
]
, (4)

where T ϵ
n(sn) = {s′n|∥s′n − sn∥2 ≤ ϵ, s′n ∈ Sn} is a ϵ-

neighborhood of sn. With the reconstruction model only, we
could define πn = π0◦g0◦...◦gn−1. Because π0 is trained in
M0 before deployment, when trial-and-error is acceptable,
we can use any robust RL algorithm by optimizing:

L0 = LRL + αrobustL0
robust. (5)

Here, LRL is the standard RL objective (e.g., TD-target for
DQN (Mnih et al., 2013)), and αrobust weights the robust-
ness term L0

robust. Any robust RL method (e.g., RADIAL-
DQN (Oikarinen et al., 2021), Wocar-PPO (Liang et al.,
2022)) can be employed for this step. We defer the theoreti-
cal performance-gap analysis under robustness guarantees
to Section 3.4. When extending Lapse to environments with
different state or action spaces, we simply adapt the method
to each environment’s standard RL backbone. Further im-
plementation details can be found in Appendix B.

3.2. Offline Policy Learning with Knowledge Reuse

Despite the effectiveness of robust policy reuse when old
sensors vanish for maintenance or power failure, it fails
to take advantage of the information provided by newly
added sensors. Meanwhile, the reconstruction error from
the composite function ĝn := g0 ◦g1...◦gn will accumulate
as the state evolution continues. Relying solely on direct
policy reuse will lead to an increasing discrepancy in the
action distribution E[DTV(π0(·|s0), π0 ◦ ĝn(·|sn+1))], and
the compounding error from the composition of policy and
reconstruction function becomes problematic again.

To mitigate the issues, we propose to complement policy
reuse with the reuse of behavioral knowledge to further
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promote adaptation in the new MDP. Although the recon-
struction policy may deteriorate over time, its performance
is stable for the earlier stages, suggesting a decent qual-
ity of offline dataset Dn = {(sn, sn+1, a, r, s

′
n, s

′
n+1)}. A

straightforward method is to apply behavior cloning which
attempts to simply clone the actions observed in the dataset,
but it also fails to leverage the additional information gained
from the newly added sensors. Therefore, we turn to offline
RL for policy learning, as suggested by Kumar et al. (2022).

For environments with vectorial state features and con-
tinuous action space such as Mujoco, we employ the
TD3+BC (Fujimoto & Gu, 2021) to learn the offline policy
πoff
n+1. The loss function is optimized as follows:

L̂n+1
off = −E(sn+1,a)∼Dn

[− (πoff
n+1(sn+1)− a)2+

βn+1Qn+1(sn+1, π
off
n+1(sn+1))],

(6)

where Qn+1 is learned via the TD3, and βn+1 is a coef-
ficient controlling conservatism. We schedule the coef-
ficient dynamically with state feature evolution, setting
βn+1 = βmax(1 − exp (−τ · n)), where τ is a decay co-
efficient. Intuitively, when reconstruction error is small (in
early stages), we rely more on imitating the behavior pol-
icy. As uncertainty grows, we tilt toward more optimistic
updates. To further enhance robustness, we incorporate a
robust regularization term:

Ln+1
off = L̂n+1

off + αn+1
robustL

n+1
robust, (7)

where αn+1
robust balances the regularization, and Ln+1

robust is given
in Equation (4). Different from online training, we imple-
ment the robust regularization via function smoothing based
on robust offline RL proposed by RORL (Yang et al., 2022).
For environments with pixel-based image inputs and dis-
crete action space, we adopt suitable offline RL backbones
tailored to such settings. Detailed architectural and algorith-
mic choices are provided in Appendix C.

3.3. Policy Aggregation with Automatic Adjustment of
the Ensemble Weight

The two distinct ways of policy reuse are proficient in dif-
ferent scenarios. Finally, to leverage their advantages, we
combine them via an ensemble whose weight is adjusted
automatically (Lee et al., 2021). Specifically, forMn+1,
the policy πn+1 is recurrently defined as:

πn+1 = κn+1π
recon
n+1 + (1− κn+1)π

off
n+1, n ≥ 0, (8)

where πrecon
n+1 = πn ◦ gn, π0, gn and πoff

n+1 are learned via
Equations (5), (3), and (7), respectively. We set

κn+1 =
Jn(πn)

J0(π0)
·

D(πn, π
off
n+1)

D(πn, π
recon
n+1 ) +D(πn, π

off
n+1)

, (9)

where Jn(πn) is the expected return of policy πn underMn,
and D(p, q) is a divergence metric (e.g., KL divergence).
If πn performs comparably to π0, then κn+1 emphasizes
whichever policy is closest to πn. Otherwise, the newly
adaptive policy, which is expected to exceed the behavior
policy via offline RL, takes precedence.

To summarize the overall training and testing processes un-
der the SERL framework, Lapse first learns a robust initial
policy π0 via Equation. (5). During deployment, πn makes
decisions inMn. Prior to evolving intoMn+1, πn could
perceive both state feature from Sn and Sn+1 for a short
period and collects limited amount of experience. The re-
construction model and the offline adaptive policy are then
trained to obtain πrecon

n+1 = πn ◦ gn and πoff
n+1, respectively.

Our aggregation method automatically adjusts the ensem-
ble weight κn+1 of πn+1, facilitating transfer to Mn+1.
For memory efficiency, one may also prune past policies
with negligible performance loss. Detailed pseudocode is
provided in Appendix C.

3.4. Theoretical Analysis

We now analyze how a robust policy, combined with a
learned state reconstruction model, can limit performance
degradation under evolvable state space. To characterize
the uncertainty introduced by evolution fn, we first define
ϵR − ϵP consistency:

Definition 3.1. GivenMn and fn, we say fn is ϵR − ϵP
consistent, if for any sn ∈ Sn, sn+1 ∈ Sn+1, a ∈ A, with
fn(sn+1|sn) > 0, the following holds:

|Rn(sn, a)−
∑
s̃n

f−1
n (s̃n|sn+1)Rn(s̃n, a)| ≤ ϵR,

||Pn(sn, a)−F−1
n Pn+1(sn+1, a)||1 ≤ ϵP .

Here, Pn(sn, a) ∈ R|Sn| is the transition distribu-
tion for (sn, a), and F−1

n is a |Sn| × |Sn+1| ma-
trix with F−1

n (sn, sn+1) = f−1
n (sn|sn+1). Thus,

F−1
n Pn+1(sn+1, a) collapses the transition distribution

over Sn+1 to one over Sn.

Intuitively, ϵR − ϵP consistency controls the discrepancy of
reward and transition functions inMn andMn+1, thereby
bounding the uncertainty of the evolution fn and f−1

n .

Our starting point is the theoretical effectiveness of the state
reconstruction model. If we have direct access to the inverse
f−1
n of the evolution fn, we can immediately reuse πn by

composing it with the f−1
n to get πn ◦ f−1

n . The following
proposition shows that the performance loss in this scenario
only results from the ϵR − ϵP consistency of fn.

Proposition 3.2. Let fn be ϵR − ϵP consistent, and f−1
n

be its inverse. Suppose f−1
n (sn,0|sn+1,0) = 1 for the ini-

tial state sn,0 and sn+1,0 inMn andMn+1, respectively.
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Jn(πn) := E[
∑∞

t=0 γ
trn,t|πn, sn,0,Pn]. When applying

πn ◦ f−1
n inMn+1, the performance gap is bounded by

|Jn+1(πn ◦ f−1
n )− Jn(πn)| ≤

ϵR
1− γ

+
γϵPRmax

2(1− γ)2
.

The full proof can be found in Appendix A. We disclose
the policy performance gap when encapsulating πn with
the oracle inverse of evolution f−1

n . This quantifies how
the uncertainty in the evolution, as captured by ϵR and ϵP ,
affects the performance under a infinite-horizon setting.

In practice, we only have access to a learned reconstruc-
tion function gn that approximates f−1

n . Because the
data Dn come from trajectories with specific distributions,
compounding errors may occur if gn is inaccurate in off-
distribution states. The next proposition shows that a robust
policy πn and help mitigate such errors.

Proposition 3.3. Let f−1
n be the inverse of evolution fn

that transformsMn intoMn+1. Suppose we have both the
policy πn and the reconstruction model gn. If

E
[
DTV(πn ◦ f−1

n (·|sn+1), πn ◦ gn(·|sn+1))
]
≤ η, (10)

where DTV(p, q) =
1
2

∑
x |p(x)− q(x)| ∈ [0, 1] denotes to-

tal variation divergence for discrete probability distribution
p, q, then:

|Jn+1(πn ◦ f−1
n )− Jn+1(πn ◦ gn)| ≤

2Rmax

(1− γ)2
η.

Moreover, if fn is ϵR − ϵP consistent, it follows that

|Jn(πn)− Jn+1(πn ◦ gn)| ≤
ϵR

1− γ
+

(γϵP + 4η)Rmax

2(1− γ)2
.

The intuition behind Proposition 3.3 is that if the old pol-
icy πn is robust enough to restrict the differences in action
distributions under perturbations, then composition with a
slightly inaccurate gn causes limited performance degra-
dation. The detailed proofs are available in Appendix A.
We also validate theoretical results through experiments
in Section 4.3. Accordingly, when learning πn using
dataset Dn−1, or π0 underM0, we could focus on minimiz-
ing E[DTV(πn(·|sn), πn(·|ŝn))], where ŝn ∼ gn(·|sn+1).
While we fail to obtain gn beforehand, we can assume
that the reconstructed state ŝn is bounded by T ϵ

n(sn) =
{s′n|∥s′n − sn∥2 ≤ ϵ, s′n ∈ Sn}, as gn is optimized to
minimize reconstruction errors. This motivates the robust
regularization in Equation (4), as discussed in Section 3.1.

4. Experiments
In this section, we present our experimental analysis con-
ducted across eight diverse tasks, including continuous con-
trol tasks from Mujoco, featuring vectorial state features,

and Atari games with pixel-based image inputs and discrete
action spaces. Our experiments are designed to address
three critical questions: (1) Whether Lapse achieves supe-
rior adaptation capabilities in state evolvable environments
compared to existing methods (Section 4.2)? (2) How does
the learning process of Lapse proceed in evolving stages,
assessing its adaptability (Section 4.3)? (3) What contribu-
tions do the different components and hyper-parameters of
Lapse make to its overall performance (Section 4.4)?

For a comprehensive evaluation, Lapse is compared against
multiple baselines. All results are averaged over five random
seeds and are presented with their corresponding standard
deviations. Detailed descriptions of the experimental setups,
including environmental conditions and network architec-
ture parameters, are provided in the Appendix C.

4.1. Baselines and Environments

To thoroughly assess the performance of Lapse, we com-
pare it against the following adaptation baselines: (1) RL-
GAN (Gamrian & Goldberg, 2019) simply employs a fea-
ture reconstruction model to reuse the old policy, but with-
out robust training. (2) LUSR (Xing et al., 2021) focuses
on extracting disentangled state representations and trains
agents in the latent space. (3) PAD (Hansen et al., 2021)
optimizes RL and self-supervised objectives in the initial
MDP (M0) and adapts by fine-tuning the representation
using self-supervised signals. (4) Offline learns a new pol-
icy for eachMn+1 using data Dn, employing offline RL.
(5) Few-shot Policy Transfer (FPT) (Shukla et al., 2023)
reuses old policies to guide the transfer of policies under
new environments. (6) CUP (Zhang et al., 2022) generates
multiple source policies in the initial MDP (using random-
ized domains) and selects the appropriate one based on critic
value, which then guides the learning of the new policy.

For evaluation, we select four tasks from the Gym Mu-
JoCo suite (Todorov et al., 2012): Ant, HalfCheetah,
Hopper, and Walker. In these tasks, agents receive vecto-
rial state features and output continuous actions. We utilize
PPO (Schulman et al., 2017) as the backbone and train the
initial policy (π0) via Wocar (Liang et al., 2022). In the
context of Atari games (Bellemare et al., 2013), which in-
volve pixel-based image inputs and discrete action spaces,
we employ DQN (Mnih et al., 2013) as the backbone to
train the robust RADIAL agent (Oikarinen et al., 2021) π0

for games including BankHeist, Freeway, Pong, and
RoadRunner, following the setup outlined in Oikarinen
et al. (2021). The specifics of the state space evolution
process in these environments are detailed and illustrated
in Appendix B. To simulate the addition and removal of
sensors, we split pixel-based images into multiple patches.
The addition or reduction of patches or dimensions is then
applied. Furthermore, we introduce more complex evolu-
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tions including the replacement of physical units, rotation
of view, introduction of distracting objects and arbitrary
linear mapping. Noise is added to simulate the uncertainty
of the evolution. We restrict the number of trajectories in the
dataset Dn to 10 and 15 in Mujoco and Atari, respectively.

4.2. Competitive Results

Overall Adaptation Performance For a fair evaluation
of adaptation performance, we analyze all methods across
five evolving stages with various orders of evolutions. The
performance is normalized against the initial stage return:
100 · 15

∑5
n=1

Jn(πn)
J0(π0)

, with 10 episodes per stage to estimate
Jn(πn). This metric reflects how well each method retains
performance relative to its initial stage, demostrating the
agent’s adaptability.

Table 1 reveals that all algorithms experience performance
degradation as the state space evolves, underscoring the
need for specialized strategies. Domain adaptation methods
like RL-GAN and LUSR, which rely on substantial train-
ing data to generalize or translate states, struggle because
limited samples of Dn, exhibiting low adaptability. FPT
shows only marginal gains compared to RL-GAN, indicat-
ing that few-shot fine-tuning is not always sufficient. PAD,
despite learning dynamic-informed intermediate representa-
tions through self-supervision, fails to cope with state space
evolution. It learns latent features fromM0 alone and it
will inevitably be affected by domain specificity, verifying
the difficulty to learn a sensor-invariant policy. In addition,
PAD fine-tunes the features via limited data with a shallow
distribution collected during a short period, this leads to
ineffective adaptation. Offline demonstrates decent adapt-
ability in tasks like Ant and Hopper and is on par with Lapse
in these scenarios. However, its capability diminishes in
Atari games with high-dimensional inputs and complex evo-
lution mappings. CUP shows promise by guiding source
policy selection through critic value estimation. However, it
is prone to performance degradation when the divergence
in state space between the source and target environments
becomes too large. This highlights the limitation of previ-
ous policy reuse approaches: they are primarily suited for
transfer learning and rely on costly trial-and-error to handle
significant state space changes. In contrast, Lapse stands
out, consistently delivering the best adaptation performance
across all tasks. It nearly doubles the effectiveness com-
pared to the strongest baseline in average, evidencing the
superiority and efficiency of our proposed method.

Continuous Adaptation Capability Figure 2 illustrates
the continuous adaptation of various methods to the evolv-
able state space by comparing the performance over 5 differ-
ent stages. Although all methods exhibit increased perfor-
mance degradation over successive stages, Lapse maintains

control over this decline. While RL-GAN’s performance de-
teriorates gradually or breaks down at the first stage, Lapse
effectively reuses the old policy, due to the application of
the enhanced robustness. LUSR, PAD, and FPT are con-
strained by the performance of the last stage’s policy, yet
Lapse transcends these limitations, especially notable in
the final stage of HalfCheetah, where it even gains perfor-
mance improvement in the last stage. This is attributed to
the potential of offline adaptive policy learning. Offline and
CUP, despite observing similar trends, cannot match Lapse’s
performance, largely due to their absence of a policy aggre-
gation mechanism with dynamically adjustable ensemble
weights. The complete result is provided in Appendix D

4.3. Analysis of Policy Reuse

Validation of Theoretical Analysis Section 3.4 provides
a theoretical discussion on the robustness of policy reuse
through state reconstruction. To further validate the the-
oretical results, we demonstrate the detailed learning pro-
cess for a single evolving stage in Figure 3. We compare
a robust policy and a vanilla policy, each coupled with a
reconstruction model trained in the same way. Both the
reconstruction models’ training losses, depicted by the dot-
ted lines, decrease and stabilize rapidly, indicating mini-
mal reconstruction errors of the old states. This allows
the robust policy to be effectively reused in the new state
space, delivering satisfactory performance as shown by
the red solid line. In contrast, the vanilla policy without
prior robust training breaks down, even with a well-trained
state reconstruction model. To quantify the total variation
divergence E[DTV(πn(·|f−1

n (sn+1)), πn(·|gn(sn+1)))], we
measure the action differences produced by the policy when
perceiving real and reconstructed states under the testing
environment. The blue dash-dotted line that represents the
action difference of the vanilla policy has illustrated that
the performance gap is mainly caused by the distribution
shift and compounding errors. Conversely, a robust policy
is capable of mitigating these issues by restricting action
distribution discrepancies under perturbations beforehand,
thus being reused effectively.

Analysis of the Learning Process We further analyze the
learning process of Lapse in HalfCheetah, where the recon-
struction model and the policy are updated for 10K steps
in each evolving stage, as depicted in Figure 4. First, the
reconstruction policy πrecon

n+1 exhibits high efficacy in early
stages, but declines over repeated evolutions. The com-
pounding reconstruction error inevitably accumulates and
erodes the initial policy’s robustness with the increase of
the evolving stages, widening the performance gap. Further-
more, even with an optimal state reconstruction model, the
reconstruction policy πrecon

n+1 fails to surpass the old policy
πn. The offline adaptive policy, πoff

n+1 shows better long-
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Table 1. Average test return ± std across various tasks. The highest performance in each row is emphasized in bold. Results are averaged
over 5 evolving stages, 10 episodes per stage, and 5 distinct seeds for robustness. Values are normalized against the initial stage return,
indicating the performance retained relative to the initial stage.

Task RL-GAN LUSR PAD Offline FPT CUP Lapse

Ant 28.10± 3.29 39.57± 1.90 24.47± 1.45 82.63± 4.95 38.39± 5.31 69.83± 9.57 84.02± 2.69

HalfCheetah 12.26± 3.06 14.55± 3.35 28.31± 1.07 15.01± 2.71 13.13± 4.36 12.01± 2.02 82.56± 4.48

Hopper 16.43± 5.96 15.42± 6.40 34.02± 3.73 74.16± 9.33 78.94± 23.18 66.62± 20.39 98.89± 3.09

Walker 3.03± 1.29 4.38± 1.75 10.58± 6.61 18.91± 6.27 19.94± 2.10 13.42± 4.59 83.85± 7.49

BankHeist 25.38± 10.58 0.00± 0.00 41.05± 10.43 61.07± 37.43 20.79± 14.78 0.00± 0.00 95.34± 0.89

Freeway 43.86± 16.26 61.64± 1.22 78.86± 3.46 71.85± 4.47 78.10± 5.77 48.82± 24.74 98.32± 1.34

Pong 37.41± 9.68 0.06± 0.08 6.54± 4.55 33.56± 18.06 33.56± 8.33 0.11± 0.23 100.0± 0.00

RoadRunner 14.66± 4.82 2.33± 0.08 28.67± 11.28 6.92± 4.3.0 24.46± 9.00 1.25± 1.04 85.65± 9.33

Overall 22.64 17.24 31.56 45.51 38.41 26.51 91.09
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Figure 2. The adaptation performance of the learned policy as the state space evolves
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Figure 3. Comparison of training loss, test return, and test action
difference when reusing robust policies versus reusing vanilla poli-
cies through state reconstruction. The type of policy (robust and
vanilla) is indicated by color, and different metrics (performance,
loss and action difference) are represented by line styles.

term stability and can potentially exceed the performance
of a sub-optimal old policy and better utilize new sensors.
To benefit from both policies, we aggregate them via an au-
tomatically adjusting ensemble weight κn+1, which reflects
the dependency on the reconstruction policy. As is shown by
the dash-dotted line, κn+1 initially favors the reconstruction
policy due to its closeness to the well-performed old policy.
As the state space evolves, κn+1 is reduced to harness the

strengths of offline RL based on Equation (9), even without
prior knowledge of the individual test performances of the
two policies. Incorporating these mechanisms, Lapse real-
izes superior adaptation performance, outpacing standard
approaches. Meanwhile, we illustrate how the two aspects
of policy reuse contribute effectively in different scenarios.
When the sensor on the backward shin of the HalfCheetah
robot wears out, our method learns to reconstruct the miss-
ing information from available features, enabling the reuse
of the robust policy network. As the reconstruction loss
converges, the robust policy can be effectively deployed.
Moreover, we visualize the saliency map of offline adaptive
policy πoff

n ’s state features via SmoothGrad (Smilkov et al.,
2017). The added sensor on the forward shin provides ad-
ditional state features. The offline policy not only reuses
behavior knowledge from the old policy but also leverages
the information for improved decision-making.

4.4. Ablation and Parameter Sensitivity Studies

Ablation Study To dissect the impact of each component
within Lapse, we execute ablation studies on the Pong task,
as depicted in Figure 5(a). This analysis uncovers their con-
tributions to Lapse in evolvable state space. First, W/o recon
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Figure 4. The learning process of Lapse in HalfCheetah environ-
ment. Displayed are the test returns for the reconstruction policy,
the offline adaptive policy, and the combined Lapse policy. Also
plotted the ensemble weight (κn+1), illustrating its dynamic adjust-
ment throughout evolution. When sensor placed on the backward
shin wears out, the model is optimized to reconstruct the missing
feature. When a new sensor is added to the forward shin, the policy
can utilize new feature, as shown in saliency map.
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Figure 5. Ablation and parameter sensitivity studies on Pong and
Ant, respectively.

and W/o offline relies solely on πoff
n+1 and πrecon

n+1 , respectively.
Both of their adaptation performance declines in later stages,
especially W/o offline, emphasizing the necessity of the pol-
icy aggregation mechanism. Moreover, W/o robust learns
policies without robustness regularization and this results in
unbounded performance gap for the reconstruction policy.
Its inferior performance compared to W/o recon also sug-
gests that robust training aids in offline learning. W/o kappa
ensembles two policies with a static weight κn+1 = 0.5. It
suffers the least performance degradation among all abla-
tions but still performs worse than Lapse, manifesting the
robustness of the policy aggregation and the benefit of the
automatic ensemble weight adjustment.

Parameter Sensitivity Study We probe the influence of
hyperparameters on adaptation efficacy in the Ant. Here we
examine variations in λ, which balances the GAN objective
and the fidelity of state reconstruction. An excessively low
λ leads to a misalignment between state spaces, while an
overly high λ could hinder the ability to fool the discrimi-
nator. We find that λ = 10 is the best choice in Figure 5(b).
Additional experimens are detailed in the Appendix D.

5. Related Work
Domain Randomization and Domain Adaptation Do-
main randomization is a widely used technique for enhanc-
ing policy generalization (Laskin et al., 2020a; Peng et al.,
2018; Zhou et al., 2023). It generates diverse training scenar-
ios by introducing visual or dynamic changes in simulators,
with the hope that the unknown test environments can be
covered. However, this approach has limitations: the train-
ing complexity scales with the number of variations, and in-
sufficient randomization may lead to inadequate coverage of
target domains. In contrast, target domain data is assumed
to be accessible in domain adaptation (Zhu et al., 2023).
RL-GAN employs unaligned GANs to translate target do-
mains into familiar states in the source domain (Gamrian &
Goldberg, 2019). CURL extracts high-level features from
raw pixels using contrastive learning (Laskin et al., 2020b),
and LUSR adopts Cycle-Consistent VAEs for unified state
representation learning (Xing et al., 2021). Unlike these
approaches, Lapse does not presume access to unknown
target domains during deployment. We focus on adapting to
evolvable state space via policy reuse.

Policy Reuse Policy reuse learns multiple policies each
specialised to their own subset of tasks so as to improve
transfer to a new unseen task Fernández & Veloso (2006);
Rosman et al. (2016); Li et al. (2019). One branch of meth-
ods train hierarchical high-level policies over source poli-
cies. Another branch of works aggregate source policies
with the guidance of value functions on the target task Bar-
reto et al. (2018); Cheng et al. (2020); Barekatain et al.
(2021). (Barreto et al., 2018) focus on the situation where
source tasks and target tasks share the same dynamics, and
aggregate source policies by choosing the policy that has
the largest Q value at each state based on successor features.
CUP (Zhang et al., 2022) chooses a guidance policy that has
the largest one-step improvement by querying the critic, and
guides learning by regularizing the target policy to imitate
the guidance policy. Bossens & Sobey (2024) adaptively
assigns policies to tasks based on ϵ-greedy bandit learning
over lifetime reinforcement learning. Continual Reinforce-
ment Learning (CRL) (Kessler et al., 2022; Li et al., 2024)
focuses on adapting to new tasks quickly by reusing pol-
icy knowledge learned from old tasks, but they still require
costly trial-and-error. All these approaches focus on effi-
ciency on transfer to tasks with dynamics or reward gaps.
We emphasize the evolution of state space and do not allow
costly trial-and-error.

Novelty Detection and Adaptation Focusing on the open-
world decision making problem, a line of research works
refer to abrupt changes in environments as novelty (Peng
et al., 2021; Balloch et al., 2023). They propose to detect
the novelty via knowledge graph or neuro-symbolic world
model and achieve policy adaptation with imagination tra-
jectories generated from the updated world model. These
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methods fail to be directly applied to high-dimensional, con-
tinuous and complex environments, where dynamics and
rewards are difficult to be depicted with simple rules. Zolli-
coffer et al. (2023) addresses this problem by extending it to
latent-based novelty detection via DreamerV2 (Hafner et al.,
2020) but does not study how to achieve policy adaptation
in complex environments, mainly because the accuracy of
imagination trajectories cannot be guaranteed. Our method
takes a further step for the high-dimensional, continuous
and complex environments via a novel solution.

Learning with Evolvable Features The concept of Fea-
ture Evolvable Streaming Learning (FESL) was introduced
by Hou et al. (2017), focusing on an overlapping pe-
riod where features from different stages are observable.
OLVF (Beyazit et al., 2019) learns to classify the feature
space and the instances simultaneously to handle arbitrarily
varying spaces. FDESL (Zhang et al., 2020b) further ex-
tends the setting by assuming that the data distribution also
changes. Our work is related to FESL paradigm, but they
focus on online learning with data streams. We first consider
the problem in RL and formulate it into SERL problem.

6. Conclusion
In this work, we present the Learning to reuse policies in
state evolvable environments (Lapse) approach, address-
ing the challenge of evolvable state space in reinforcement
learning (RL) with the formulation of state evolvable re-
inforcement learning (SERL). Lapse reuses policies from
two aspects by combining a robust policy and an adaptive
policy through state reconstruction and offline learning, thus
avoiding the need for extensive and costly trial-and-error
during deployment. Theoretical and empirical results on
adaptation capability underscores Lapse ’s potential in ef-
ficiently handling dynamic real-world scenarios. However,
the requirement of Dn can restrict the application scenarios
in real world, and Lapse may be less effective in environ-
ments with drastic state space evolutions. Future work could
focus on enhancing Lapse to handle more rapid state evolu-
tions and exploring its applicability to more complex tasks.
Another appealing direction is extending Lapse to multi-
agent embodied intelligence settings (Feng et al., 2025),
where multiple physically situated agents must coordinate
and adapt in a jointly evolving state space. Furthermore,
relaxing the need of behavioral experiences through Large
Language Models (LLMs) (Kim et al., 2024) and human
instructions is also a promising and valuable direction for
future research.
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A. Proofs for Theoretical Analysis
A.1. Proof for Proposition 3.2

We first introduce the following lemma for the proof of Proposition 3.2.

Lemma A.1. Let fn be an ϵR − ϵP evolution of Mn, which leads to Mn+1. f−1
n is the inverse of the evolu-

tion. As is defined in Definition 2.1, Rn+1(sn+1, a) = Esn∼f−1
n (·|sn+1)

[Rn(sn, a)], and Pn+1(s
′
n+1|sn+1, a) =

Esn,s′n∼f−1
n (·|sn+1),f

−1
n (·|s′n+1)

[Pn(s
′
n|sn, a)]. Then for any sn+1 ∈ Sn+1, a ∈ A,

|Esn∼f−1
n (·|sn+1)

[Rn(sn, a)]−Rn+1(sn+1, a)| ≤ ϵR.

Proof.

|Esn∼f−1
n (·|sn+1)

[Rn(sn, a)]−Rn+1(sn+1, a)| = |
∑
sn

f−1
n (sn|sn+1)[Rn(sn, a)]−Rn+1(sn+1, a)|

≤
∑
sn

f−1
n (sn|sn+1)|Rn(sn, a)−Rn+1(sn+1, a)|

=
∑
sn

f−1
n (sn|sn+1)|Rn(sn, a)−

∑
s̃n

f−1
n (s̃n|sn+1)Rn(s̃n, a)|

=
∑
sn

I(fn(sn+1|sn) > 0)f−1
n (sn|sn+1)|Rn(sn, a)−

∑
s̃n

f−1
n (s̃n|sn+1)Rn(s̃n, a)|

≤
∑
sn

I(fn(sn+1|sn) > 0)f−1
n (sn|sn+1)ϵR

= ϵR

(11)

According to the bayesian inverse f−1
n (sn|sn+1) =

fn(sn+1|sn)∑
s̃n

fn(sn+1|s̃n) , fn(sn+1|sn) > 0 only if f−1
n (sn|sn+1) > 0. This

allows for the application of Definition 3.1, which bounds the discrepancy of reward function when fn(sn+1|sn) > 0.

It is also noticeable that we define f−1
n (sn|sn+1) =

fn(sn+1|sn)∑
s̃n

fn(sn+1|s̃n) by assuming a uniform prior distribution pn(·) over
Sn. We can also introduce occupancy measurement induced by uniform policy as prior, but it will not change the conclusion
of the proposition.

Based on the above conclusion, we show that the performance gap between πn and πn ◦ f−1
n withinMn andMn+1 can be

bounded by ϵR and ϵP .

Proof. First of all, state value function V π
M : S → R is defined as V π

M(s) := E[
∑∞

t=0 γ
trt|π, s0 = s]. Notice that, since

rt ∈ [0, Rmax], we have

0 ≤ V π
M(s) ≤

∞∑
t=0

γtRmax =
Rmax

1− γ
. (12)

Furthermore, Bellman policy operator T π
M is defined as follows, when applied to some vector f ∈ R|S|,

(T π
Mf)(s) :=Ea∼π(·|s)[R(s, a) + γEs′∼P(·|s,a)[f(s

′)]]

=Ea∼π(·|s)[R(s, a) + γ⟨P(s, a), f⟩].
(13)

Here ⟨·, ·⟩ is dot product. The Bellman policy operator is a γ-contraction under l∞ norm (Puterman, 2014): for any
f, f ′ ∈ R|S|:

||T π
Mf − T π

Mf ′||∞ ≤ γ||f − f ′||∞. (14)

V π
M is the fixed point of T π

M, meaning T π
MV π

M = V π
M.
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Inspired by Jiang et al. (2015), we first prove that

||V πn◦f−1
n

Mn+1
− V πn

Mn
◦ f−1

n ||∞ ≤
ϵR

1− γ
+

γϵPRmax

2(1− γ)2
. (15)

Here, (V πn

Mn
◦ f−1

n )(sn+1) = Esn∼f−1
n (·|sn+1)

[V πn

Mn
(sn)] is defined over Sn+1. To prove this, we first apply γ-contraction

and fixed-point property of Bellman policy operator. For simplicity, let T π
n := T π

Mn
.

||V πn◦f−1
n

Mn+1
− V πn

Mn
◦ f−1

n ||∞

= ||(T πn◦f−1
n

n+1 )V
πn◦f−1

n

Mn+1
− (T πn◦f−1

n
n+1 )(V πn

Mn
◦ f−1

n ) + (T πn◦f−1
n

n+1 )(V πn

Mn
◦ f−1

n )− V πn

Mn
◦ f−1

n ||∞

≤ ||(T πn◦f−1
n

n+1 )V
πn◦f−1

n

Mn+1
− (T πn◦f−1

n
n+1 )(V πn

Mn
◦ f−1

n )||∞ + ||(T πn◦f−1
n

n+1 )(V πn

Mn
◦ f−1

n )− V πn

Mn
◦ f−1

n ||∞

≤ γ||V πn◦f−1
n

Mn+1
− V πn

Mn
◦ f−1

n ||∞ + ||(T πn◦f−1
n

n+1 )(V πn

Mn
◦ f−1

n )− V πn

Mn
◦ f−1

n ||∞.

(16)

This implies that

||V πn◦f−1
n

Mn+1
− V πn

Mn
◦ f−1

n ||∞ ≤
1

1− γ
||(T πn◦f−1

n
n+1 )(V πn

Mn
◦ f−1

n )− V πn

Mn
◦ f−1

n ||∞

=
1

1− γ
||(T πn◦f−1

n
n+1 )(V πn

Mn
◦ f−1

n )− (T πn
n V πn

Mn
) ◦ f−1

n ||∞.

(17)

For notation simplicity, let Rπ
n(s) := Ea∼π(·|s)R(s, a), Pπ

n (s) := Ea∼π(·|s)Pn(s, a), a ∼ π and sn ∼ f−1
n are abbreviation

for a ∼ π(·|s) and sn ∼ f−1
n (·|sn+1). Then, for any sn+1 ∈ Sn+1,

|(T πn◦f−1
n

n+1 )(V πn

Mn
◦ f−1

n )(sn+1)− (T πn
n V πn

Mn
) ◦ f−1

n (sn+1)|

= |(T πn◦f−1
n

n+1 )(V πn

Mn
◦ f−1

n )(sn+1)− (T πn
n V πn

Mn
) ◦ (f−1

n )(sn+1)|

= |Rπn◦f−1
n

n+1 (sn+1) + γ⟨Pπn◦f−1
n

n+1 (sn+1), V
πn

Mn
◦ f−1

n ⟩ − Esn∼f−1
n

[Rπn
n (sn)]− γ⟨Esn∼f−1

n
[Pπn

n (sn)], V
πn

Mn
⟩|

≤ Ea∼πn+1
|Rn+1(sn+1, a)− Esn∼f−1

n
[Rn(sn, a)]|+ γ|⟨Pπn◦f−1

n
n+1 (sn+1), (F−1

n )⊺V πn

Mn
⟩ − ⟨Esn∼f−1

n
[Pπn

n (sn)], V
πn

Mn
⟩|

≤ ϵR + γ|⟨F−1
n P

πn◦f−1
n

n+1 (sn+1), V
πn

Mn
⟩ − ⟨Esn∼f−1

n
[Pπn

n (sn)], V
πn

Mn
⟩|

= ϵR + γ|⟨F−1
n P

πn◦f−1
n

n+1 − ⟨Esn∼f−1
n

[Pπn
n (sn)], V

πn

Mn
⟩|

= ϵR + γ|⟨F−1
n P

πn◦f−1
n

n+1 − ⟨Esn∼f−1
n

[Pπn
n (sn)], V

πn

Mn
− Rmax

2(1− γ)
1⟩|

≤ ϵR + γEa,sn∼f−1
n
||F−1

n Pn+1(sn+1, a)− Pn(sn, a)||1||V πn

Mn
− Rmax

2(1− γ)
1||∞

≤ ϵR + γϵP
Rmax

2(1− γ)
.

(18)

In the steps above, we expand bellman update by definition and use cauchy-schwarz inequality to split dot-product with
∆P and value function. Lemma A.1 and ϵP consistency is applied to derive upper bound of the discrepancy of reward and
transition functions.

Finally, according to the definition of the policy performance Jn(πn) := E[
∑∞

t=0 γ
trn,t|πn, sn,0,Pn], Jn(πn) =

V πn

Mn
(sn,0).

|Jn+1(πn ◦ f−1
n )− Jn(πn)| =|V

πn◦f−1
n

Mn+1
(sn+1,0)− V πn

Mn
(sn,0)|

=|V πn◦f−1
n

Mn+1
(sn+1,0)− (V πn

Mn
◦ f−1

n )(sn+1,0)|

≤||V πn◦f−1
n

Mn+1
− V πn

Mn
◦ f−1

n ||∞

≤ ϵR
1− γ

+
γϵPRmax

2(1− γ)2
.

(19)
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Proof for Proposition 3.3 We first introduce the following lemmas for the proof of Proposition 3.3

Lemma A.2. With the definition of state occupancy dπ(s) = (1− γ)
∑∞

t=0 γ
tPr(st = s|π), for any two different policies

πA, πB under the MDPM, we have:

DTV(dπA , dπB ) ≤ γ

1− γ
Es∼dπA

[DTV(π
A(·|s), πB(·|s))]. (20)

Proof. We prove the lemma based on permutation theory presented in Schulman et al. (2015) and Xu et al. (2020). With
Pπ(s

′|s) :=
∑

a∈A P(s′|s, a)π(a|s) and d0 specifies the initial state distribution, we have:

dπ =(1− γ)

∞∑
t=0

γtPr(st = s|π)

=(1− γ)(I− γPπ)
−1d0.

(21)

Let GA = (I− γPπA)−1, GB = (I− γPπB )−1, then we obtain:

GA −GB =GA(G
−1
B −G−1

A )GB

=GA(γPπA − γPπB )GB

=γGA(PπA − PπB )GB .

(22)

With the equation, we have:

DTV(dπA , dπB ) =
1

2
∥dπA − dπB∥1

=
1

2
∥(1− γ)(GA −GB)d0∥1

=
1

2
∥(1− γ)γGA(PπA − PπB )GBd0∥1

=
1

2
∥γGA(PπA − PπB )dπB∥1

≤ γ

2
∥GB∥1∥PπA − PπB )dπA∥1.

(23)

Here GB is bounded as:
∥GB∥1 =∥(I− γPπB )−1∥1

=

∥∥∥∥∥
∞∑
t=0

γtP t
πB

∥∥∥∥∥
1

≤
∞∑
t=0

γt∥PπB∥t1

=

∞∑
t=0

γt =
1

1− γ
.

(24)

We can also show that:
∥(PπA − PπB )dπA∥1 ≤

∑
s,s′

|PπA(s′|s)− PπB (s′|s)|dπA(s)

=
∑
s,s′

∣∣∣∣∣∑
a

P(s′|s, a)(πA(a|s)− πB(a|s))

∣∣∣∣∣ dπA(s)

≤
∑
s,a,s′

P(s′|s, a)|πA(a|s)− πB(a|s)|dπA(s)

=
∑
s

dπA(s)

∑
a

|πA(a|s)− πB(a|s)|

= 2Es∼dπA
[DTV(π

A(·|s), πB(·|s))].

(25)

We complete the proof by substituting Equation (24) and Equation (25) into Equation (23).
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Lemma A.3. With the definition of state-action occupancy ρπ(s, a) = π(a|s)dπ(s), for any two different policies πA, πB

under the MDPM, we have:

DTV(ρπA , ρπB ) ≤ 1

1− γ
Es∼dπA

[DTV(π
A(·|s), πB(·|s))]. (26)

Proof.

DTV(ρπA , ρπB ) =
1

2

∑
(s,a)

|ρπA(s, a)− ρπB (s, a)|

=
1

2

∑
s,a

|πA(a|s)dπA(s)− πB(a|s)dπB (s)|

=
1

2

∑
s,a

|(πB(a|s)− πA(a|s))dπA(s) + (dπB (s)− dπA(s))πB(a|s)|

≤ 1

2

∑
s,a

|πB(a|s)− πA(a|s)|dπA(s) +
1

2

∑
s

|(dπB (s)− dπA(s))|
∑
a

πB(a|s)

= Es∼dπA
[DTV(π

A(·|s), πB(·|s))] +DTV(dπA , dπB )

≤ 1

1− γ
Es∼dπA

[DTV(π
A(·|s), πB(·|s))].

(27)

We complete the proof with the last inequality following Lemma A.2.

Based on the above conclusions, we show that the performance gap can be bounded by divergence of two policies. For
simplicity, we assume f−1

n and gn are deterministic and the conclusion holds by expanding it to the case of expectation.

Proof. Following Schulman et al. (2015), we can rewrite the expected return as:

J(π) =E

[ ∞∑
t=0

R(st, at)

]

=

∞∑
t=0

γt
∑
s

Pr(st = s|π)
∑
a

π(a|s)R(st, at)

=

∞∑
t=0

∑
s,a

ρπ(s, a)R(st, at)

=
1

1− γ
Eρπ(s,a)[R(st, at)].

(28)

Combining Prop. 3.2, Lemma A.3 and the condition, we have that:

|Jn+1(πn ◦ f−1
n )− Jn+1(πn ◦ gn)|

≤ 1

1− γ

∑
sn+1,a

|(ρπn◦f−1
n

(sn+1, a)− ρπn◦gn(s
n+1, a))Rn+1(sn+1, a)|

≤ 2Rmax

1− γ
DTV(ρπn◦f−1

n
, ρπn◦gn)

≤ 2Rmax

(1− γ)2
E[DTV((πn ◦ f−1

n )(·|sn+1), (πn ◦ gn)(·|sn+1))]

=
2Rmax

(1− γ)2
E[DTV(πn(·|f−1

n (sn+1)), πn(·|gn(sn+1)))]

≤ 2Rmax

(1− γ)2
η.

(29)
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Finally, combining Equation (29) and Proposition 3.2, we have

|Jn(πn)− Jn+1(πn ◦ gn)| =|Jn(πn)− Jn+1(πn ◦ f−1
n ) + Jn+1(πn ◦ f−1

n )− Jn+1(πn ◦ gn)|
≤|Jn(πn)− Jn+1(πn ◦ f−1

n )|+ |Jn+1(πn ◦ f−1
n )− Jn+1(πn ◦ gn)|

≤ ϵR
1− γ

+
γϵPRmax

2(1− γ)2
+

2Rmax

(1− γ)2
η

=
ϵR

1− γ
+

(γϵP + 4η)Rmax

2(1− γ)2
.

(30)

This completes the proof.

B. Detailed Description of the Environments and Baselines
B.1. Environments

Ant HalfCheetah Hopper Walker

Figure 6. Mujoco environments used in this paper

Gym Mujoco suite: MuJoCo (Todorov et al., 2012) (Figure 6) is a high-fidelity physics engine designed for detailed
and efficient rigid body simulations with contacts. It is widely used for benchmarking RL algorithms. Agents in MuJoCo
environments receive vectorial state inputs and output continuous actions. For a comprehensive evaluation in our study, we
have selected four tasks from the Gym MuJoCo suite:

• Ant: The Ant is a 3D robot consisting of one torso with four articulated legs, each with two links. The objective is to
coordinate the movements of the legs to navigate towards a specified direction.

• HalfCheetah: The HalfCheetah is a 2-dimensional robot consisting of 9 links forming a spine, with 8 joints allowing
articulation. The challenge is to exert torques on the joints to propel the cheetah forward as swiftly as possible.

• Hopper: The Hopper is a two-dimensional one-legged figure that consists of four main body parts - the torso at the
top, the thigh in the middle, the leg in the bottom, and a single foot on which the entire body rests. The goal is to make
hops that move in the forward direction.

• Walker: The Walker is a two-dimensional two-legged figure that consists of four main body parts - a single torso at
the top, two thighs in the middle, two legs in the bottom, and two feet attached to the legs. The goal is to coordinate
both sets of feet, legs, and thighs to move in the forward direction.

Ant HalfCheetah Hopper Walker

BankHeist Freeway Pong RoadRunner

Figure 7. Atari environments used in this paper
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Figure 8. The state space evolution of experimental environments

Atari games: The Atari 2600 emulator (Figure 7) was introduced as an RL platform by Bellemare et al. (2013), offering a
high-dimensional, pixel-based image input across a varied and complex set of tasks originally designed to challenge human
players. We have selected four Atari games for comprehensive evaluation:

• BankHeist: A bank robber wants to rob as many banks as possible. The police chases him and will appear whenever
he robs a bank. The robber controls a getaway car and must navigate maze-like cities while avoiding the caught of
police. er the dynamite you have previously dropped.

• Freeway: The agent’s objective is to guide the chicken across lane after lane of busy rush hour traffic.

• Pong: The agent controls the right paddle, and competes against the left paddle controlled by the computer. The agent
each tries to keep deflecting the ball away from the right goal and into the left goal.

• RoadRunner: The road runner can walk in any direction and jump to outrun the opponent while avoiding the hazards
of the desert.

B.2. Evolutions

Table 2. Evolving functions applied in state space of Mujoco and Atari environments, respectively

f0 f1 f2 f3 f4
Mujoco remove sensors rotate (30± 5)◦ add sensors rotate −(30± 5)◦ linear mapping w/ noise

Atari remove sensors add moving objects rotate (30± 5)◦ add sensors linear mapping w/ noise

We here present the detailed evolutions applied in our experiments. The process is illustrated in Figure B.2 and specific
setting of the evolutions are presented in Table 2. We evaluate the continual adaptation performance of different methods
under various orders of evolutions.

B.3. Baselines

• RL-GAN proposes the analogy-based zero-shot transfer via image-to-image translation. Specifically, it assumes access
to unpaired data from the source and target domain beforehand, and achieves unaligned image-to-image translation
using the Cycle-Consistency GANs. For our experiments, given access to paired data in dataset Dn, we implement
RL-GAN using the Pix2Pix framework, which has shown better results than the original CycleGAN in our context.

• LUSR learns a latent unified state representation that is consistent across multiple domains. It applies Cycle-Consistent
VAE ito disentangle the original state s into a latent state representation composed of s̄ and ŝ, which are domain-general
and domain-specific, respectively. The policy will focus on the domain-general embeddings to make decisions. In the
SERL problem, we learn disentangled latent representations and the offline policy using the collected datatset Dn.
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• PAD makes the use of self-supervision to allow the policy to continue training after deployment. We decompose the
policy into π = (πe, πa, πs), where we first have intermediate embedding et = πe(st) and makes decision based on
at ∼ πa(et). πs(·, ·) takes et and et+1 as input to predict the resulting action at. During the training stage, we optimize
the RL and self-supervised objectives jointly to learn the policy. During the deployment stage, states are collected to
optimize the self-supervised objective alone. In SERL problem, we learn the original policy via optimizing:

L(π) = LSS(πe, πs) + LRL(πe, πa),

LSS(πe, πs) = l(at, πs(πe(st), πe(st+1))),
(31)

where l is the mean squared error between the ground truth and the model output in Mujoco and cross entropy in Atari.
Then in evolving stage, we optimize the policy with the self-supervised objective LSS alone.

• Offline learns a new policy for eachMn+1 using data Dn collected from the old policy. We choose sota offline RL
methods: TD3+BC and CQL for Mujoco and Atari, respectively.

• FPT proposes a framework for Few-Shot Policy Transfer between two domains through State Mapping and Behavior
Cloning. It uses the Cycle-Consistency GANs which aims at a map to clone the successful source task behavior policy
to the target domain. We extend it to SERL problem by replacing Cycle-Consistency GANs with Pix2Pix for better
alignment.

• CUP applies a critic-guided mechanism to reuse prior policies. It dynamically selects the policy with maximal one-step
improvement at each state, forming a theoretically guaranteed guidance policy. The target policy is then regularized to
imitate this guidance while preserving exploration. In our implementation, pretrained source policies guide the target
policy before state evolution. The target policy is subsequently added to the source policy pool for future reuse.

C. Algorithm and Experimental Details
In this section, we describe the detailed designs and techniques used for different modules of Lapse. We also provide the
hyperparameters used in Lapse for consistency.

C.1. Robust Training

Lapse requires a robust initial policy π0 for efficient reuse and offline adaptive learning. We aim to improve the robustness
by minimizing:

Ln
robust = E

[
max

ŝn∈T ϵ
n(s

n)
DTV(πn(·|sn), πn(·|ŝn))

]
. (32)

To deal with the intractable objective, we apply Wocar-PPO (Liang et al., 2022) and RADIAL-DQN (Oikarinen et al., 2021)
for Mujoco and Atari, respectively.

Wocar-PPO is built on PPO (Schulman et al., 2017) which aims to optimize the policy with:

LRL = E[−min (ρtA(st, at), gtA(st, at))] (33)

where ρt :=
π(at|st)
πold(at|st) is importance sampling ratio, gt := clip(ρt, 1− η, 1 + η), η is a hyperparameter, and A(st, at) is an

estimate of the advantage function A(st, at) := Q(st, at)− V (st). It also includes a term that minimizes the loss of the
value function and rewards the entropy of the policy. Wocar-PPO introduces a worst-attack Bellman operator to estimate the
lower bound of the policy value under the worst-case attack by minimizing the following estimation loss:

Lest = E[(Q(st, at)− (rt + γ min
â∈Aadv(st+1,π)

Q(st+1, â)))
2], (34)

where Aadv(s, π) := {a ∈ A|∃s̃ ∈ Bϵ(s) s.t.π(ŝ) = a}. The worst action is selected through Interval Bound Propagation
(IBP) (Wong & Kolter, 2018). With the worst-case value, it optimizes the policy to select actions that not only achieve high
natural future reward, but also achieve high worst-case reward under adversarial attacks:

Lwst = −E[−min (ρtQt
(st, at), gtQt

(st, at))]. (35)
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Algorithm 1 recon train(n,Dn, πn)

1: Input: current stage n, πn

2: Initialize gn and dn which are parameterized by θgn and θdn
, respectively .

3: for iter = 1 to Tmax do
4: Sample a batch {(snt , sn+1

t )} from Dn.
5: ŝnt ← gn(s

n+1
t ).

6: Compute Ln+1
GAN according to Equation (1).

7: Optimize dn with θdn
← θdn

+∇θdn
Ln+1

GAN.
8: Compute Ln+1

Lp and Ln+1
recon via Equations (2) and (3).

9: Optimize gn with θgn ← θgn −∇θgn
Ln+1

recon.
10: end for
11: Return πrecon

n+1 = πn ◦ gn.

Furthermore, it regularizes the policy network with a carefully designed state importance weight:

Lreg = E[w(st) · max
s̃t∈Bϵ(st)

MSE(π(st), π(s̃t))], (36)

where w(s) is state importance weight defined as w(s) := maxa1∈A Q(s, a1)−mina2∈A Q(s, a2), which is approximated
by V (st)−Q(st, at). Combining the above objectives together, we have the overall Wocar-PPO objective:

LWocar = LRL + κwstLwst + κregLreg, (37)

where κwst and κreg are hyperparameters balancing between natural performance and robustness.

RADIAL-DQN is built upon Dueling-DQN, which splits Q-values into: Q(st, at) = VQ(s) +AQ(s, a), and optimizes the
Q network with the objective:

LRL = E[(Q(st, at)− (rt +max
a′

Qtgt(st+1, a
′)))2], (38)

where Qtgt is a periodically updated target network. RADIAL-DQN designs a regularizer to minimize overlap between
output bounds of actions with large difference in outcome. If there is no overlap, the original action’s Q-value is guaranteed
to be higher than others even under perturbation, so the agent won’t change its behavior under perturbation. Meanwhile, it
focuses on actions with different Q-values since taking a different but equally good action under perturbation is acceptable.
RADIAL addresses it by adding a weight Qdiff(s, a1, a2) := max{0, Q(s, a2)−Q(s, a1)}. Then, it defines Q̄(s, a, ϵ) :=
maxs̃∈Bϵ(s) Q(s̃, a) and Q(s, a, ϵ) := mins̃∈Bϵ(s) Q(s̃, a), and the overlap between two actions: Ovl(s, a1, a2, ϵ) :=

max (0, Q̄(s, a2, ϵ))−Q(s, a1, ϵ) + η, where η := 0.5 ·Qdiff(s, a1, a2). The final loss function is as follows:

Ladv = E

[ ∑
ât∈A

Qdiff(st, ât, at)Ovl(s, ât, at)

]
. (39)

Incorporating it with the original DQN loss, we have the overall RADIAL-DQN training objective:

LRADIAL = κLRL + (1− κ)Ladv, (40)

where κ is a hyperparameter controlling the trade-off between standard performance and robust performance with value
between 0 and 1.

C.2. State Reconstruction Model

During the nth state evolution, we learn a reconstruction model mapping the new state space Sn+1 back to Sn using collected
paired data, so as to reuse the old policy πn. We propose to use conditional GANs to achieve the state reconstruction as
described in Alg. 1.

C.3. Offline Adaptive Policy Learning

To learn a new policy which takes actions with new state spaceMn+1 during state space evolution, we choose TD3+BC
for Mujoco and CQL for Atari. Considering that the policy is vulnerable to perturbations of inputs, we make use of a
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conservative smoothing technique introduced by Yang et al. (2022) to make the policy network smoother. The policy will
therefore be more robust and facilitate future reuse with the state reconstruction model. Specifically, we generate a bounded
neighbouring area Bϵ

n+1(s
n+1) = {s|∥s− sn+1∥2 ≤ ϵ, s ∈ Sn} around sn+1. We simply denote it as Bϵ in the following.

Then compute the upper bound of the variation distance between πoff
n+1(sn+1) and πoff

n+1(ŝn+1), ŝn+1 ∈ Bϵ according to
Equation (5). We use mean square error as the variation distance metric so that the loss function is as follows:

Ln+1
robust = E

[
max

ŝn+1∈Bϵ
∥πoff

n+1(·|sn+1), πoff
n+1(·|ŝn+1)∥22

]
. (41)

Algorithm 2 off train(n,Dn, πn, βn+1)

1: Initialize a new policy πoff
n+1 and Q network Qn+1, parameterized by ϕπ and ϕQ, respectively.

2: Set target parameters equal to ϕπ and ϕQ.
3: Compute the neighbouring area bound ϵ according to the scale of states in Dn.
4: for iter = 1 to Tmax do
5: Sample a batch {(sn+1

t , an+1
t , rt, s

n+1
t+1 )} from Dn.

6: Learn Qn+1 and optimize ϕQ via the TD3 algorithm.
7: Compute L̂n+1

off via Equation (6).
8: if iter mod policy delay = 0 then
9: Generate a bounded neighbouring area Bϵ(sn+1).

10: Compute Ln+1
robust via Equation (41).

11: Compute Ln+1
off via Equation (7).

12: Optimize ϕπ with ϕπ ← ϕπ −∇ϕπ
Ln+1

off .
13: Update target network with:

ϕtarg,π ← τTD3ϕtarg,π + (1− τTD3)ϕπ

ϕtarg,Q ← τTD3ϕtarg,Q + (1− τTD3)ϕQ.

14: end if
15: end for
16: Return πoff

n+1.

As for CQL applied in Atari games, the loss function is optimized as follows:

L̂n+1
off = βn+1LRL + E

[
log

∑
a

expQ(st, a)−Q(st, at)

]
(42)

where LRL is the standard DQN objective as is defined in Equation (38). We also implement it on Quantile Regression-
DQN (Bellemare et al., 2017) for effectiveness. We schedule βn+1 = βmax(1 − exp{−τ · n}) as is defined in Section
4.2.

C.4. Overall Training Algorithm

In SERL problem, we split it into the training phase and deployment phase. During the training phase, π0 is allowed to
be learned underM0 in an online manner. To improve the robustness, we apply Wocar-PPO and RADIAL-DQN into
Mujoco and Atari environments, respectively, where the objective is described in Equation (37) and Equation (40). Before
evolving intoMn+1, we will learn the adaptive policy πn+1 following the paradigm of Lapse as is introduced in Alg. 3.
Meanwhile, for Atari games that only instantiate Q-function, we do not distinguish π and Q here and make decisions
through argmaxa πn+1(a|s). Furthermore, to calculate the distance between two policies π1, π2, we approximate it through
E[DKL(π1(·|s), π2(·|s))].
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Algorithm 3 Lapse
1: Input: Environment Env, current stage n ≥ 0, old policy πn, size of dataset Bn

2: Schedule the coefficient for offline adaptive policy learning: βn+1 ← βmax(1− exp (−τ · n)).
3: Collect Dn = {(snt , sn+1

t , at, rt, s
n
t+1, s

n+1
t+1 )} from Env within Bn episodes using πn.

4: πrecon
n+1 ← recon train(n,Dn, πn).

5: πoff
n+1 ← off train(n,Dn, πn, βn+1).

6: Compute the distance D(πn, π
recon
n+1 ) and D(πn, π

off
n+1).

7: Compute κn+1 according to Equation (9).
8: πn+1 ← κn+1π

recon
n+1 + (1− κn+1)π

off
n+1.

9: πn+1 ← Pruning(πn+1). {(Optional)}
10: Return πn+1.

C.5. The Hyperparameter Choice of Lapse

As π0 is trained following the paradigm of Wocar-PPO and RADIAL-DQN, default parameters in the frameworks are used.
We introduce the hyperparameter choices of the left parts in Table 3 and omit the subscript n+ 1 for simplicity.

Table 3. Hyperparameter choices of Lapse

Env Hyperparameter Value

Mujoco

p value in LLp 2
λ in Lrecon 10
βmax in L̂off 2.5
τ in L̂off 0.5

αrobust in L̂off 0.1

ϵ in Bϵ 0.001

policy update interval 2
T recon
max 10000

T off
max 10000

learning rate 3e− 4

target update τTD3 0.005

γ 0.99

Atari

p value in LLp 1
λ in Lrecon 10
βmax in L̂off 0.1
τ in L̂off ∞

αrobust in L̂off 0.1

ϵ in Bϵ 3/255

ema coefficient 0.995

ema interval 100

T recon
max 20000

T off
max 40000

learning rate 3e− 4

number of quantiles in QRDQN 200

target update interval 400
γ 0.99
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D. Additional Experimental Results
D.1. Complete Adaptation Performance

Figure 10 illustrates the compelete continuous adaptation of various methods to the evolvable state space by comparing the
performance over 5 different stages. The result is consistent with the conclusion in the main text. Despite the increased
performance degradation over successive evolving stages, Lapse maintains superior performance compared with all other
baseline methods.

D.2. Complete Training Curves of Lapse

We present the complete training curves in Figure 11, where blue dashed lines represent the performance during new paired
data collection. Note that the policy is deployed to the environment only after training for the current stage is complete,
thereby preventing costly trial-and-error during adaptation.

D.3. Pruning Strategies

We define πn+1 = κnπ
recon
n+1 + (1− κn)π

off
n+1 in a recursive way due to the reuse of old policies in πrecon

n+1 . To demonstrate the
contribution of each model, we introduce occupancy weights c0:n+1 defined as:

ci =


∏n

i=1 κi, i = 0

(1− κi)
∏n+1

j=i+1 κj , i = 1, 2, ..., n

1− κn+1, i = n+ 1

(43)

Then we can expand the expression as:

πn+1 = c0π0 ◦ ĝ0 +
n∑

i=1

ciπ
off
i ◦ ĝi + cnπ

off
n+1, (44)

where ĝi = gi+1 ◦ gi+2 ◦ · · · ◦ gn+1. This requires us to store all the learned reconstruction models and the offline adaptive
policies, which is unbearable in memory storage and inference delay with the increase of the evolving stages. Take Mujoco
environments Ant and Walker as examples, not all components of Lapse π5 are important as depicted in Figure 9. This way
we can just use πoff

4,5, π
recon
5 in Ant and πoff

0,4,5, π
recon
1:5 in Walker. The occupancy weight of one model will not grow in the

future by definition, so that we can only store the models that contribute a lot. To mitigate the problem, we propose to prune
the heavy compound policies based on the decomposed non-recursive expression of πn+1 as shown in Equation (44).

off
4

off
5

Ant

0

off
4

off
5

Walker

Figure 9. The occupancy weights of Lapse policy in Mujoco

Algorithm 4 Pruning(πn+1)

1: Decompose and compute the occupancy weights {(ci)} via Equation (43).
2: for i = 0 to n+ 1 do
3: if ci < pruning threshold then
4: ci ← 0. {Ignore the model that contributes few}
5: end if
6: end for
7: Normalize the occupancy weights:

c′i ←
ci∑n+1

j=0 cj
, i = 0, 1, ..., n+ 1.

8: Return the pruned Lapse policy with {(c′i)} via Equation (44).
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Figure 10. The adaptation performance of the learned policy as the state space evolves
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Figure 11. Complete training curves of Lapse
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D.4. Ablation Studies

Ablation on Different Components We dissect the impact of each component within Lapse as depicted in Figure 12.
W/o offline and W/o recon break down on different tasks, illustrating that neither of them can handle continuous adaptation
problems alone. W/o robust’s poor performance on 3 out 4 tasks again emphasizes the necessity of the robustness. W/o
kappa shows inferior adaptation capability compared to Lapse, manifesting the benefit of the automatic ensemble weight
adjustment. To analyze the contribution of each component, we conducted a series of experiments in which components
were incrementally added, culminating in the complete version of Lapse. Figure 13 shows this ablation study, demonstrating
the impact of each added component and verifying their necessity.
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Figure 12. The overall ablation studies
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Figure 13. Demonstration of each component’s contribution

Ablation on Ensemble Methods We employ linear mixing because determining weights via Equation (9) and performing
linear mixing are cost-free and highly efficient. We evaluated how various ensemble methods affect the performance of
Lapse. The results appear in Figure14. We do not plot the learning curve for stacking ensembles, as their returns never
exceeded 1000 even after more than one million training steps. Alternative methods, such as hypernetworks, also showed no
significant improvement.
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Figure 14. Test performance of dynamic ensemble weighting based on a hyper-network. The dashed line represents the performance
achieved by linear mixing using the kappa from Lapse, while the solid curve demonstrates performance when dynamically learning
ensemble weights via online RL using a hyper-network, which takes the state as input and outputs a weight vector used to weight each
action dimension for ensemble aggregation.
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Table 4. Comparison of average performance R, storage N and inference delay T between vanilla Lapse and pruning strategies across 2
tasks. Results are averaged over 5 distinct seeds. The storage metrics are measured by thousands of parameters of πi and the inference
delay metrics are measured by the number of seconds it takes for πi to perform 103 inferences in our experimental environment.

M0 M1 M2 M3 M4 M5

Ant

R
vanilla 100.00 101.70 93.63 86.51 80.62 69.27
pruning 100.00 92.38 94.94 90.97 83.52 77.91

N
vanilla 40.98 156.04 271.10 386.17 501.23 616.29
pruning 40.98 156.04 133.61 133.61 133.61 133.61

T
vanilla 0.36 0.68 1.01 1.33 1.66 1.98
pruning 0.36 0.68 0.54 0.54 0.54 0.54

Walker

R
vanilla 100.00 98.70 102.17 69.33 75.36 70.74
pruning 100.00 95.62 87.90 86.71 76.41 78.32

N
vanilla 5.71 84.07 162.43 240.78 319.14 397.50
pruning 5.71 12.12 18.54 24.96 31.38 61.77

T
vanilla 0.14 0.46 0.78 1.10 1.43 1.75
pruning 0.14 0.28 0.43 0.57 0.71 0.91

Ablation on Pruning Strategies We compare average performance, storage and inference delay metrics between vanilla
Lapse and pruning strategies with pruning threshold = 0.2 across 2 tasks. As shown in Table 4, we find that our pruning
strategies save a lot of storage space and inference delay while ensuring excellent performance. In Ant, the pruning strategy
only retains πoff

i of the latest stage i when i > 1, which means that storage and inference delay remain lightweight and fast.
In Walker, the pruning strategy only retains π0 and all πrecon

i , which saves most of the storage and nearly half inference delay.
The above experiments show our pruning strategies maintain SERL scalability and performance.

D.5. Sensitivity Studies

We further conduct more experiments in Mujoco to investigate how hyperparameters influence the performance of Lapse.
The results can be seen in Figure 15. We selected a set of hyperparameters that performed well across tasks.

Additionally, in order to explore the impact of the size of Dn on our method, we conduct experiments with size ranging
from 6 to 18 trajectories. As shown in Figure 16, our method is robust to the various size, which is beneficial to obtain stable
and good performance during the deployment stage.

D.6. More evolving stages

To provide a more comprehensive evaluation of Lapse’s adaptation performance over an extended number of evolving stages,
we expanded the experiment to include 15 stages—three times the number in our initial tests. These additional stages were
simulated using scalar multiplication, with pruning strategies employed to maintain scalability.

Figure 17 showcases the results of this extended evaluation. Lapse demonstrates commendable adaptation performance in
three of the four tested environments. However, in the Walker task, Lapse’s performance declines after the 7th stage. This
drop in performance may be related to the inherent offline learning inefficiencies of TD3+BC within the Walker environment,
as noted by Fujimoto & Gu (2021). It is anticipated that substituting TD3+BC with a more efficient algorithm could preserve
Lapse’s adaptability in this scenario.
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Figure 15. The overall parameter sensitity studies
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Figure 16. Sensitity studies of the size of datatset Dn
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Figure 17. Continual adaptation under more evolving stages
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