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Abstract
Recent advances in adversarial attacks uncover the intrinsic
vulnerability of modern deep neural networks (DNNs). To
address this issue, various methods have been proposed to
design network architectures that are robust to one particular
type of adversarial attack. Recent research leverages the con-
cept of dynamic defense framework (DDF) based on stochas-
tic ensemble model for boosting the robustness of a DNN en-
semble against such adversarial attacks. There is a need to
enhance the diversity and gradient variations of the ensemble
but stuck with the lack of efficient networks. In this paper, we
propose a heterogeneous architecture searching method based
on NAS. Our method encourages heterogeneous networks,
such that networks further improve diversity for ensemble,
and thus, boost the adversarial robustness of DDF. Experi-
mental results suggest that the diversity existing among the
family of heterogeneous networks does restrain the transfer-
ability of the adversarial sample, and achieve superior per-
formance when evaluating the robustness on the ASR-vs-
distortion benchmark in different attack environments.

Introduction
Deep neural network shows excellent performance in the
application on standard classification tasks. Nevertheless,
(Szegedy et al. 2013) proposed that even minor disturbances
can mistakenly lead to the wrong prediction of state-of-the-
art (SOTA) classifiers. With the sustainable development of
adversarial attack, the defenders have proposed many strate-
gies to enhance effect against the treat, most notably ad-
versarial training (Goodfellow, Shlens, and Szegedy 2014;
Madry et al. 2017). Adversarial training minimizes the loss
of a DNN model on online-generated adversarial examples
against the sample itself at each training step. However, ad-
versarial training leads to the degenerative generalization
ability of DNN (Bai et al. 2021). Thus, adversarially trained
models can be conquered easily by newer or different types
of attacks (Kang et al. 2019). Such terrible generalization to
other attacks prominently degrades the reliability of adver-
sarial training.

Adversarial training, which are robust to a specific at-
tack, are particularly passive in the arm race. On the con-
trary, model ensemble is an effective defense strategy in
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practice to construct an ensemble of individual models (Ku-
rakin et al. 2018). Researchers build upon the dynamic de-
fense framework (DDF) based on the stochastic model en-
semble method (Qin et al. 2021). The DDF method employs
network architecture and smoothing parameters as ensem-
ble attributes, and dynamically change attribute-based en-
semble model before every inference prediction request. To
ensure an extensive range of gradient directions and meet
the diverse needs of the stochastic ensemble, each model in
the ensemble needs to have widely varied gradient informa-
tion. Other studies also pointed out the crucial role of this
diversity in ensemble defense methods (Pang et al. 2019)
and proposed methods (D’Angelo and Fortuin 2021; Wang
et al. 2019) to maintain diversity among the members and
transform the maximum a posteriori inference into proper
Bayesian inference.

Neural architecture search (NAS) (Baker et al. 2016;
Zoph and Le 2016) affords the opportunity to discover di-
versified networks to produce an improved ensemble re-
sult. As the goal of NAS is to find various network archi-
tectures, the searched networks can replace the design im-
plemented by human experts. In this paper, we use NAS
method to discover a family of heterogeneous networks,
which improve the diversity needed for dynamic defense
framework to achieve better performance on ensemble ro-
bustness. Through this method, we discover heterogeneous
networks that introduce model size and quantity as variable
attributes for diversity, which achieves unpredictable gradi-
ent of ensemble. The unpredictability of gradient makes it
impossible for attackers to directly implement white-box at-
tacks, and the inefficient universality of the adversarial sam-
ples make the attacker helpless.

Method
Dynamic defense framework
To begin with, we need to understand the concept of
dynamic defense framework to capture the following
idea of problem-solving. The dynamic defense framework
combines heterogeneous redundant model collection and
stochastic ensemble strategy.

Heterogeneous redundant model collection. According
to the moving target defense (MTD) method (Jajodia et al.
2011), the basic requirements of the robust-control model



are randomness, diversity, and dynamics. As we can see, the
heterogeneous redundant model collection is a good demon-
stration of dynamic defense framework. The heterogeneity
of the model structure leads to a large range of gradient di-
rections for the ensemble. Furthermore, the redundancy of
the model library not only performs well in classification
but also makes the model structure diverse.

Stochastic ensemble method. The stochastic ensemble
method(SEM) randomness is reflected in the randomization
of the model attributes θ. The ensemble model fens contain-
ing K numbers of models is defined as follows:

fens(x, θ) =

K∑
k=1

f(x, θk). (1)

Specifically, when the SEM is queried multiple times for
gradient or output information, the ensemble is achieved
through an utterly stochastic choice of the ensemble at-
tributes θ in each query, which can effectively shield model
gradient. Before each rational prediction request, the adver-
sarial samples generated by the white-box attack will be con-
fused by the ensemble model based on the dynamic defense
of variable attributes—the attack results in different update
directions of gradients.

In short, dynamic defense framework is instrumental in
confusing the attacker’s strategy. It is achieved by randomly
selecting ensemble attributes and reflecting the unconfirmed
probabilistic gradient information during each iteration of
the ensemble.

Searching heterogeneous model based on NAS
The research of DDF generates diversity by the designed
networks, which is still preliminary work. Broader diversity
is needed, we have been explored a wider range of model
diversity to make it more relevant.

Define proper search space. For our complex task, we
employ the cell-based search spaces to remains a solid
searching capability while reducing the burden of compu-
tation. Cell-based NAS aims to search for cells as the fun-
damental part of the whole architecture(Bender et al. 2018).
The architecture of each cell is an association of operations
chosen from a predefined operation space. We have reduced
the number of candidate operations to 3*3 separable convo-
lution, identity, and zero, which can still maintain the diver-
sity and possibility of solid search space (Xie et al. 2019).
It still maintains 414 − 1 ≈ 108 viable cells. Moreover, the
diverse hyperparameters of the network architecture plays
crucial role in the searching progress. Hyperparameters, like
connection method, the number of convolutional layer and
channels used for feature extraction, define which network
architectures can be searched by the NAS. Such a scale of
search space can improve the dynamic property of the en-
semble. It effectively expands the diversity of the model col-
lection.

Set diversity metrics of ensemble. We choose diverse
hyperparameters of the network architecture and quantity of
ensemble networks as variable attributes of DDF. These hy-
perparameters plays crucial role in the searching progress.

For example, architectural template, the number of convo-
lutional layer and channels used for feature extraction, sep-
arate searched networks by NAS to disparate architectures.
Specially, we set connection mode as a variate of ensem-
ble. For cell-based settings, the possibilities we can choose
from the convolution operations is 14. As the dense connec-
tion mode benefits the robustness of the network(Guo et al.
2020), we choose two types of connections. On one hand,
we limit the number of connections greater than 11 to main-
tain the robustness of network, part of the free-connection
models show in Table1. On the other hand, we release the
cell-based constraint to further improve the diversity of the
model, we put some of the dense-connection models in Ta-
ble2.

Table 1: Portion of free-connection models from heteroge-
neous model library

Channels Layers Connect Clean PGD-20

36 20 free 82.7 52.6
36 21 free 79.5 48
36 22 free 79 48.2
64 10 free 81.2 49.1
64 14 free 82.9 50.3
64 15 free 76.7 48.9
64 18 free 79 48.5

Table 2: Portion of dense-connection models from heteroge-
neous model library

Channels Layers Connect Clean PGD-20

36 10 11-14 78.3 48.2
36 14 11-14 78.9 47.7
36 18 11-14 77.5 49.5
36 20 11-14 78.5 49.1
36 20 11-14 83.5 52.2
36 28 11-14 76.8 46.7
36 36 11-14 83.9 53.5
64 18 11-14 78 50.2
64 20 11-14 80 50.7
64 22 11-14 80.2 50.6
64 26 11-14 80 47.2
64 33 11-14 85.7 49.6
64 36 11-14 80.7 49.1

Combine heterogeneity and robustness. We implement
the idea about searching for heterogeneous and robust ar-
chitectures simultaneously in NAS search process with-
out changing the weights of networks. According to (Guo
et al. 2020; Tang et al. 2021), network architecture, es-
pecially model size and families, has a significant impact
on model robustness. Our proposed method applies gener-
ated adversarial sample of each sub-network by PGD attack
(Madry et al. 2017) to evaluate the sub-network itself during
NAS searching progress. The problem of defending against
bounded adversarial perturbations can be formulated as fol-



lows:

min
θ
E(x,y)∼D

[
max
x′∈S
L (y,M (x′; θ))

]
(2)

Where S = ‖x− x′‖ p < ε , which defines the set of per-
missible disturbance inputs within the Lp distance, where
M denotes the candidate network and D represents the data.
In our study, we mainly use PGD adversarial samples within
the L2 norm to obtain robust networks with different archi-
tectures.

Selecting variable attributes Dynamically for
robust ensemble
For model ensemble, the gradient change is determined by
the variation of dynamic attributes and gradient of each
model. We ultimately select four properties of the model
as variable attributes, which are the number of models, the
depth of models, the width of models, and the density of con-
nections. In each prediction, we randomly choose variable
attributes when predicts output information multiple times.

As we contain the model diversity into the ensemble at-
tributes, each iteration of the ensemble causes transforma-
tion for the direction of gradient. Our experiments show that
the randomness has a specific effect to confuse the attackers.
And the heterogeneous models further improves the robust-
ness performance and solves the vulnerability of the ensem-
ble under attack. We provide the pseudo code of our hetero-
geneous architecture search algorithm for DDF as Algorithm
1.

Algorithm 1: Heterogeneous architecture search algorithm
for DDF
Input: Model library capacity M, model variable attributes
θ(l, c, d), network parameter α, NAS total iterations I,
ensemble total iterations J.

1: for m=0...M do
2: Set θ(l, c, d)).
3: Search Super-net G in accordance with θ(l, c, d)).
4: for i=0...I do
5: Train the randomly sampled sub-model S with

PGD adversarial sample.
6: Update αi by SGD.
7: end for
8: end for
9: for j=0...J do

10: Randomly select the number of ensemble models N.
11: Perform ensemble and inference prediction.
12: end for

Experiment and Results
In this section, we evaluate our proposed method for its ad-
versarial robustness by ASR-vs-distortion curve (Dong et al.
2020). Unlike the traditional point estimation method, ASR-
vs-distortion curve is different from the validation of the ro-
bust radius, but the experiment of evaluating the robustness
of the actual attack environment.

Experimental setup
In this subsection, we would demonstrate implementation
details of our experiments. As described in Sec. 2, we choose
the number of models, the depth of models, the width of
models, and the density of connections as the variable at-
tributes of ensemble. The evaluation is only on CIFAR-10.

We can find the minimum perturbations of attacks by
counting the number of the adversarial examples. Not just
single perturbation, but we calculate the accuracy or attack
success rate for all possible values of ε, which represent the
perturbation budget. Then we perform a binary search on
ε to find its accurate minimum value that enables the gener-
ated adversarial example to fulfill the adversary’s goal. We’ll
show the accuracy (attack success rate) vs. perturbation bud-
get curve, which can reveal a global understanding of the
robustness of a classifier. To assess full-scale robustness, we
set the search step to 10, and binary search step to 20 with
L2 norm adversarial attacks.

In this paper, the DNN model under attack is used as
the baseline model A for contrast. Model B presents DNN
models within DDF, model C presents SOTA architecture
method Robnet(Guo et al. 2020) concerning the impact of
architecture to robustness, model D presents single NAS
model, E presents NAS models within DDF that ensemble
the same quantity of sub-models as B. Specially, F presents
the same model with E, but we sample the results of 10 dis-
parate models on all distortion value under evaluation. These
sampled models cope with adversarial samples generated by
diverse ensemble model. Through observation for the attack
success rate, we can have a explicit judgement whether the
ensemble model could cutoff transferability of adversarial
samples.In order to control the potential empirical model
risk, the abstention threshold α is set to 0.3 for bounding the
acceptable probability of returning an incorrect prediction.

Robustness analysis
The result on ensemble models can be observed with PGD
attack, which is commonly employed for evaluation because
of its attack effectiveness in white-box settings. Adversarial
examples are crafted by untargeted method.

As shown in Figure 1, the ensemble model of the DNN
is extremely vulnerable under white-box attacks, against
which the attack success rate is higher when the perturbation
stays low. For the DNN ensemble method B and NAS en-
semble method E, F, we can see NAS ensemble model,with
the same quantity of sub-models, outperforms each case of
the other methods with higher demand of perturbation bud-
get. On the observation of C and F, attacker overcome Rob-
net under lower perturbation values. Heterogeneous archi-
tecture search method improves the robust performance of
ensemble model by enhancing the diversity of sub-models,
and solves the vulnerability of ensemble under white-box at-
tacks. Compare the performance of D with F, the DDF does
improve the randomness of the gradient, which has a certain
effect on the confusion of the gradient direction.

Transferability analysis
In this sub-section, we show that our method can ease the
transferability of adversarial examples for the ensemble. As
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Figure 1: Adversarial transferability among individual models on CIFAR-10. We take the classification accuracy of the models
on adversarial examples for untargeted mode, and success rate of mislead the models to specific target label for targeted mode.

(a) untargeted

Figure 2: The ASR-vs-distortion curves for PGD transfer-
based untargeted white-box attacks. A: single DNN model
under attack. B: the ensemble DNN model under attack. C:
Robnet under attack. D: single NAS model under attack. E:
the NAS ensemble model without sampling. F: the NAS en-
semble model with sampling.

shown in Figure 1, F has a better robust performances than E,
this reveals that adversarial sample crafted by one of our het-
erogeneous models have poor performance on the rest mod-
els.

In addition,for another transferability evaluation, we use
random network as the substitute model to craft adversar-
ial examples and feed to another two networks as the origi-
nal model. We apply PGD as the attack method, which are
the most commonly used attacks in the black-box setting
(Kurakin et al. 2018). The perturbation parameters for both
attacks are set to be 20/255. We test untargeted mode and
targeted mode. The evaluation standard is different for two

modes. We take the classification accuracy of the models
on adversarial examples for untargeted mode, and success
rate of fooling the models to predict specific target label for
targeted mode. The Figure 2 presents the pair-wise trans-
ferability with three models of NAS method and DNNs.
the adversarial samples effect on the model crafting them,
but the disparate model can greatly hinder the transferabil-
ity among heterogeneous models in both modes. This phe-
nomenon demonstrates the heterogeneity of our model li-
brary, which can further enhance ensemble robustness.

Conclusion
This study set out to improve the heterogeneity and diversity
of dynamic defense framework generalized by DNNs. In this
paper, we take advantage of the diversity of network struc-
tures discovered by NAS, due to the complexity of ample
search space and the maneuverability, which drives a hetero-
geneous model library. Experimental results show that the
diversity of searched models does enhance the performance
of ensemble model and prevent the transferability of adver-
sarial samples under different attack environments. To fur-
ther improve the robustness of dynamic defense framework
and effectively prevent the transfer of adversarial sample on
different models, the evaluation process of NAS needs a bet-
ter expression of model diversity.
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