
MAMBA: AN EFFECTIVE WORLD MODEL APPROACH
FOR META-REINFORCEMENT LEARNING

Zohar Rimon1∗ Tom Jurgenson1∗ Orr Krupnik1 Gilad Adler2 Aviv Tamar1

1Technion - Israel Institute of Technology 2Ford Research Center Israel

ABSTRACT

Meta-reinforcement learning (meta-RL) is a promising framework for tackling
challenging domains requiring efficient exploration. Existing meta-RL algorithms
are characterized by low sample efficiency, and mostly focus on low-dimensional
task distributions. In parallel, model-based RL methods have been successful in
solving partially observable MDPs, of which meta-RL is a special case. In this
work, we leverage this success and propose a new model-based approach to meta-
RL, based on elements from existing state-of-the-art model-based and meta-RL
methods. We demonstrate the effectiveness of our approach on common meta-RL
benchmark domains, attaining greater return with better sample efficiency (up to
15×) while requiring very little hyperparameter tuning. In addition, we validate
our approach on a slate of more challenging, higher-dimensional domains, taking
a step towards real-world generalizing agents.

1 INTRODUCTION

There is a growing interest in applying reinforcement learning (RL) agents to real-world domains.
One requirement of such applications is for the agent to be able to generalize and solve scenarios
beyond its training data. Meta-reinforcement learning (meta-RL) is a line of work aiming to allow
RL agents to generalize to novel task instances, attempting to learn a general control policy over a
family of tasks. The term meta-RL covers a wide range of approaches (Duan et al., 2016; Finn et al.,
2017; Zintgraf et al., 2019) which have produced increasingly impressive results in recent years.

One line of work aiming to solve meta-RL problems is context-based meta-RL (Rakelly et al., 2019;
Zintgraf et al., 2019; 2021). These algorithms encode trajectories of training tasks in a context or
belief variable, and infer it from data at test time in order to identify the task at hand and solve it. This
approach is Bayesian in nature, attempting to balance exploration (to identify the task parameters)
and exploitation (to succeed in the current task). While state-of-the-art results have been reported on
simulated robotic domains (Zintgraf et al., 2021; Hiraoka et al., 2021), previous meta-RL methods
tend to be sample inefficient, as they rely on model-free RL algorithms. In addition, they have
mostly been shown to succeed only in low-dimensional task distributions.

Model-based RL is known to be more sample-efficient than its model-free counterpart (Janner et al.,
2019; Ye et al., 2021). By their nature, model-based RL algorithms may also be more flexible,
as they learn a model of the environment and use it to plan or learn policies, instead of learning
control policies by directly interacting with the environment. A recent line of work in model-based
RL proposed Dreamer, an approach which has shown versatility to a variety of domains (Hafner
et al., 2019a; 2020; 2023). Dreamer has delivered the sought-after sample efficiency of model-based
RL on a variety of domains, while requiring very little hyperparameter tuning. In addition, due to
its recurrent latent encoding of trajectories, it has been successful in solving partially observable
Markov decision process (POMDP) scenarios (Hafner et al., 2020; 2023). POMDPs can be viewed
as a general case of the context-based meta-RL formulation (where the context identifying the task
is unobserved by the agent). In light of its favorable properties, we believe that Dreamer is a good
fit for meta-RL. Therefore, in this work we propose to use Dreamer to solve meta-RL scenarios. To
the best of our knowledge, this is the first use of the Dreamer architecture in meta-RL.

We compare Dreamer to state-of-the-art meta-RL algorithms (Zintgraf et al., 2019; 2021), and pro-
pose MAMBA (for MetA-RL Model-Based Algorithm), an algorithm leveraging the best compo-

∗Contributed equally, correspondence to zohar.rimon@campus.technion.ac.il and tomjurgen-
son@gmail.com. Code available at: https://github.com/zoharri/mamba.

1

https://github.com/zoharri/mamba


Figure 1: Behaviors learned by MAMBA in various domains. In all of the figures, the
first, second and third episodes are shown in red, green and blue, respectively. From left to
right: Point Robot Navigation, Escape Room, Rooms-N and Reacher-N (plotted point rep-
resents the end-effector; see Sec. 4 for details). As the environments have sparse rewards,
MAMBA evidently learns near-Bayes-optimal behavior: it explores the environment in the first
episode and exploits the information in the subsequent ones. For additional visualizations see
https://sites.google.com/view/mamba-iclr2024.

nents of each. MAMBA outperforms meta-RL and model-based RL baselines on several well-
studied meta-RL benchmarks, both in terms of task success and in sample efficiency. In addition,
we propose a new class of challenging meta-RL domains with high-dimensional task distributions,
which can be decomposed into lower-dimensional sub-tasks. By bounding the number of tasks re-
quired to obtain near-Bayes-optimal behavior (based on the analysis of Rimon et al. 2022), we show
that the ability to decompose the task into sub-tasks is crucial for solving such domains efficiently.
We then empirically show that MAMBA can decompose the problem better than existing meta-RL
approaches, which leads to significantly better performance.

To summarize, our main contributions are:

1. We present a shared formulation of context-based meta-RL algorithms and the Dreamer
line of work, highlighting their similarities and differences.

2. We develop MAMBA, a sample-efficient meta-RL approach which outperforms a variety
of baselines on meta-RL benchmarks, while requiring very little hyperparameter tuning.

3. We highlight an interesting class of meta-RL environments with many degrees of freedom
that is difficult for existing meta-RL methods to solve. We analyze these domains theoreti-
cally, and demonstrate the ability of MAMBA to solve them efficiently.

2 BACKGROUND

In this section we present background on partially observable Markov decision processes (POMDP)
and meta-RL (Sec. 2.1). Next, we describe context-based algorithms and model-based RL (Sec. 2.2),
which are popular approaches for solving meta-RL and POMDPs respectively.

2.1 PROBLEM FORMULATION

Partially observable Markov decision processes (POMDP, Cassandra et al. 1994) are sequential
decision making processes defined by a tuple (S,A, ρ0, P,R, T,Ω, O), where S and A are the state
and action spaces respectively. The process is initialized at a state sampled from the initial state
distribution s ∼ ρ0 and evolves according to the Markovian state transition probability P (s′|s, a)
and reward function R(r|s, a) for T time steps. The states are unobserved by the agent, which has
access to observations from the observation space Ω, sampled at each time step from O(o|s). Let
τt = (o0, a1, r1, o1, . . . at, rt, ot) be the history up to time step t. The objective is to learn a policy
π(at+1|τt) which maximizes the expected return Jπ = Eπ,P,O

[∑T
t=1 rt

]
, where Eπ,P,O denotes

the expectation with respect to the policy, observation function and POMDP transitions.

In meta-reinforcement learning (meta-RL) we consider a distribution p(M) over a space of MDPs
M, where every MDP is a tuple (S,A, ρ0, PM , RM , T,K). Here S and A are the state and ac-
tion spaces respectively, shared among all MDPs, while PM (s′|s, a) and RM (r|s, a) are the MDP-
specific transition and reward functions. The agent plays K consecutive episodes in the same MDP,
each consisting of T time steps. The full horizon H = K · T comprises the meta-episode, with
each of its K sub-trajectories denoted sub-episodes. The objective is to learn a policy π(at+1|τt)

2

https://sites.google.com/view/mamba-iclr2024


which maximizes the expected return Jπ = EM∼p

[
Eπ,M

[∑H
t=1 rt

]]
. Meta-RL can be seen as a

special case of a POMDP, where the unobserved components are PM and RM , and the transitions
are episodic – every T time steps the state is reset.

Bayes-Adaptive MDP: Solving POMDPs is known to be intractable (Papadimitriou & Tsitsiklis,
1987). While an optimal policy is generally history-dependent, a convenient representation of the
optimal policy uses a sufficient summary of the history (also called sufficient statistic or information
state; Subramanian & Mahajan 2019) One such representation is the belief, bt = p(R,P |τt), the
posterior probability over R,P given the history of transitions up to time t. The POMDP can be
cast as an MDP over the belief space, known as a Bayes-adaptive MDPs (BAMDP, Duff 2002).
In BAMDP, the state st is augmented with the belief bt and is denoted as the augmented state
s+t = (st, bt). Formally, the BAMDP is a tuple (S+, A, ρ+0 , P

+, R+, T ), where S+ is the space
of augmented states, A is the original action space, and ρ+0 , P+, and R+ operate over augmented
states. An optimal policy πBO ∈ argmaxπ J

π is termed Bayes-optimal, and is history-dependent
in the general case.

2.2 CONTEXT-BASED META-RL AND MODEL-BASED ALGORITHMS FOR POMDP

Context-based meta-RL: One popular approach to solving meta-RL is to encode the observed
history τt into a latent representation which approximates the belief at time t, bt, and learn a belief-
conditioned policy in order to maximize the return Jπ .

A recently successful context-based algorithm, VariBAD (Zintgraf et al., 2019), learns bt using
a Variational Autoencoder (VAE, Kingma & Welling 2013): a recurrent neural network (RNN)
encoder encodes τt into the latent space of the VAE which is interpreted as bt. Unlike other VAE
formulations which only reconstruct the input (namely τt), VariBAD reconstructs the full trajectory
τT from bt. Meanwhile, a policy is trained on the augmented state (st, zt) using a model-free RL
algorithm (specifically PPO, Schulman et al. 2017). For stability, the gradients do not flow from the
RL objective through zt into the encoder, i.e., the belief is shaped only by the reconstruction signal.

Recurrent latent model-based algorithms for POMDP: Model-based RL (MBRL) algorithms
model the dynamics P and rewards R given data, and then use the learned models P̂ and R̂ to imag-
ine future outcomes and optimize a policy. This approach has been shown empirically to be very
sample-efficient (Schrittwieser et al., 2020; Ye et al., 2021; Hafner et al., 2023). In particular, latent
MBRL algorithms are an appealing approach to handle partial observability by first encoding a se-
quence of previous observations τt into a latent space zt ∈ Z, and learning dynamics P̂ (zt+1|zt, at)
and rewards R̂(rt|zt, at) directly in the latent space. This approach offers two main advantages:
first, by encoding sequences of observations we allow zt to recall information from previous time
steps which might help with the partial observability aspect. Second, imagined rollouts used to
optimize the policy are defined over a much smaller space (|Z| << |Ω|), allowing more efficient
planning.

One such family of algorithms is Dreamer (Hafner et al., 2019a; 2020; 2023). In Dreamer, the world
model w is a type of RNN dubbed recurrent state space model (RSSM, Hafner et al. 2019b), which
predicts observable future outcomes from sequences of past observations. Concretely, a random
sequence of transitions of length L, τi:i+L, is encoded into a latent space zi:i+L using the RSSM.
Then, for every t ∈ [i, . . . , i + L], Dreamer predicts from zt the next reward rt+1 and observation
ot+1 and minimizes Lpred = − logw(rt+1|zt)− logw(ot+1|zt).
In parallel, Dreamer trains a policy conditioned on zt which maximizes the returns of imagined
future latent-space trajectories of length NIMG. Finally, as in VariBAD, gradients from the policy
do not propagate through to the world model w.

3 METHOD

In this section we present MAMBA. We start by motivating two main reasons for our selection of
Dreamer (Hafner et al., 2023) as the backbone of our method. First, in Sec. 3.1, we demonstrate that
model-based algorithms and Dreamer in particular are in fact structurally similar to state-of-the-art

3



meta-RL algorithms. Then, in Sec. 3.2 we explain why in some meta-RL tasks the world model
learning in Dreamer is advantageous. Finally, we present MAMBA in Sec. 3.3.

3.1 COMPARING VARIBAD AND DREAMER

VariBAD is a meta-RL algorithm, while Dreamer is a model-based RL method intended to solve
POMDPs. Despite that, they share many similar attributes. We next describe the commonalities and
differences between them.

At the core of both algorithms lie two fundamental components: a recurrent predictor for observable
outcomes and a latent-conditioned policy. The recurrent predictor is realized by the belief encoder in
VariBAD and by the world model in Dreamer. Both encode a sequence of observations into a latent
space representation zt using a RNN structure. Then, zt is used to predict observable outcomes such
as future observations and rewards. The latent-conditioned policy is trained via online RL objectives
by predicting actions given zt.

Despite their similarities, there are two crucial differences between VariBAD and Dreamer. First
and foremost, during training, VariBAD uses its recurrent predictor to encode the full history τH
starting at the very first time step of the meta-episode, while Dreamer encodes sub-trajectories that
do not necessarily start at the first time step. From a computational standpoint, this makes Dreamer
less computationally demanding. However, in meta-RL scenarios it could create unnecessary ambi-
guity as hints regarding the identity of the MDP (namely PM and RM ), collected during time steps
predating the sub-trajectory, are ignored. We refer to this as the encoding context.

A second key difference is the recurrent predictor reconstruction window. In Dreamer, the world
model performs local reconstruction (predicts a single step into the future), while VariBAD performs
global reconstruction (predicts an entire trajectory, past and future, from every zt).

The differences in encoding context and local vs. global reconstruction inspire our algorithmic
improvements in MAMBA (see Sec. 3.3). Other technical differences are described in Appendix B.

3.2 DECOMPOSABLE TASK DISTRIBUTIONS

In this section we focus on the difference in reconstruction between VariBAD and Dreamer. To this
end we consider a specific family of task distributions and explain why they are difficult for meta-RL
algorithms to solve, by extending the theoretical analysis of Rimon et al. (2022). We then show that
utilizing the decomposability of these tasks makes them amenable to a much more efficient solution.
Finally, we relate this decomposability to the local reconstruction horizon, and posit that Dreamer
should solve these tasks more effectively. We corroborate this in experiments (Sec. 4).

3.2.1 PAC BOUNDS

Meta-RL has been shown to scale badly with respect to the number of degrees of freedom (DoF) in
the task distribution (Mandi et al., 2022). Rimon et al. (2022) devised PAC (Probably Approximately
Correct) upper bounds on the Bayes-suboptimality with respect to the number of training tasks. They
showed an exponential dependency on the number of DoF of the task distribution.

Many real-world domains with a high number of DoF can be decomposed into sub-tasks, each with a
low number of DoF. For example, a robot may be required to solve several independent problems in
a sequence. In this section we analyze this family of task distributions, which we term decomposable
task distributions (DTD), and prove that they have significantly better PAC bounds than the general
case. In addition, we demonstrate that on DTD the local reconstruction approach taken by Dreamer
is advantageous compared to the global reconstruction in VariBAD.

Bounds on Bayes-suboptimality for DTD: For a task that can be decomposed to K independent
tasks (up to their initial state distribution), each with D DoF, a naive approach (such as Rimon
et al. 2022) would lead to a bound that depends exponentially on O(D × K). However, as we
demonstrate in the next theorem, a method that takes task independence into account obtains an
exponential dependency on O(D) and a linear dependency on K, equivalent to solving each task
independently (proofs and full details in Appendices A.1& A.2). We follow the formulation in
Rimon et al. (2022) and assume access to N samples from the prior task distribution f . We estimate

4



f using a density estimation approach, obtaining f̂ , and find the Bayes-optimal policy with respect
to f̂ , i.e. π∗

f̂
∈ argmaxJπ

f̂
= argmaxEM∼f̂

[
Eπ,M

[∑H
t=1 rt

]]
.

Theorem 1 (informal) Under mild assumptions, there exists a density estimator f̂ which maps N
samples from a decomposable task distribution to a distribution over the task space, such that with
probability at least 1− 1/N :

R(π∗
f̂
) ≤ K · O

((
logN

N

) α
2α+D

)

Where R is the sub-optimality with respect to the true prior distribution and α is a constant which
depends on the smoothness of the prior task distribution.

The key to proving Theorem 1 is to estimate each of the sub-task distributions individually, and not
the entire task distribution at once, as was suggested by Rimon et al. 2022 (which leads to bounds
with exponential dependency on D × K instead of D). This theoretical result is in line with our
hypothesis – concentrating on the current sub-task (or performing local reconstruction) at each time
step is crucial for DTD.

For example, in the Rooms-N environment (see Sec 4), although the total number of DoF is N
(number of rooms), the difficulty of the task does not increase, as the agent should solve each of the
rooms separately. In comparison, our theorem states that a standard N -dimensional navigation goal,
which has the same number of DoF, should be much harder since all DoF must be estimated at once.

3.2.2 DECOMPOSABILITY AND LOCAL RECONSTRUCTION

As described in Sec. 3.1, to learn a latent representation, VariBAD utilizes a global reconstruction
approach, whereas Dreamer utilizes a local one. Based on Theorem 1, we hypothesize that the latter
approach is better for DTD (as the former approach reconstructs multiple sub-tasks at once).

To test our hypothesis, we compare VariBAD with the original reconstruction loss to a variant of
VariBAD reconstructing only a small window of 10 transitions around the current time step. We
evaluate the two variants on the Rooms-N environment with 4 and 5 rooms, where the agent should
explore consecutive rooms, passing to the next room after solving the current one (see Sec. 4 for
details). We observe that using the local reconstruction is favorable in terms of total return in both
the Rooms-4 and Rooms-5 scenarios (see Sec. 4).

To further analyze this phenomenon, we visualized the reward prediction using the learned decoder
in VariBAD in each state of the state space and for every encoded belief (Fig. 2). We observe that
VariBAD (without local reconstruction) wrongfully predicts rewards in adjacent states to the agent
(Fig. 2 top (b), (f)), and thus the agent stays in the same location without a goal (as indicated by
the constant state index). In comparison, introducing local reconstruction makes the local reward
prediction much more accurate, as indicated in Fig. 2 bottom (d), (e). However, comparing top (f)
and bottom (f), local reconstruction hurts the prediction of rewards in distant states. This helps the
local reconstruction agent to better focus on the goal and follow near-optimal behavior. For further
quantitative analysis see Appendix E. This analysis shows the efficacy of local reconstruction in
comparison to a global one on DTD, which motivates our design choices in the next section.

3.3 MAMBA: META-RL MODEL-BASED ALGORITHM

In this section we describe MAMBA, our approach incorporating the model-based Dreamer into
the meta-RL settings. We base MAMBA on DreamerV3 (Hafner et al., 2023) since it was shown
to be a high-performance, sample-efficient and robust algorithm applicable out-of-the-box to many
partially observable scenarios with various input modalities. Moreover, as described in Sec. 3.1 the
RSSM (Hafner et al., 2019b) of the Dreamer architecture plays the same role as the belief encoder
in context-based meta-RL algorithms (Zintgraf et al., 2019; 2021) allowing easy application of tools
and conclusions from these algorithms in MAMBA. Finally, the world model in Dreamer learns by
reconstructing a single step into the future, a preferable property compared to algorithms which use
a long reconstruction horizon (Sec. 3.2). Next, we describe the modifications on top of Dreamer to
create MAMBA:

5



(a) (b) (c) (e)(d) (f)

(a) (b) (c) (e)(d) (f)

Figure 2: Reward prediction at current location (green),
state identifier (blue), and goal state indication (red) through
time on the Rooms-4 environment. Top: vanilla VariBAD
(global reconstruction), bottom: VariBAD with local recon-
struction. At the highlighted time steps (indicated by ar-
rows) we plot the reconstructed reward for every grid cell,
where positive reward prediction is represented as green,
and the agent trajectory is drawn in blue.

Modifying trajectories to support
model-based meta-RL algorithms:
We augment the observations ot with
the reward and the current time step
o′t = [ot, rt, t]; both are readily avail-
able in any environment and do not
require any special assumptions. In
meta-RL it is common to incorpo-
rate the rewards into the observation
(Duan et al., 2016; Rakelly et al.,
2019; Zintgraf et al., 2019) as it helps
in identifying the sampled MDP. As
for adding t, it allows to model the
reset of the environment after every
T steps (see Sec. 2).

Sampling full meta-episodes: To
avoid missing signals about the iden-
tity of the current MDP (see encod-
ing context in Sec. 3.1), we mod-
ify Dreamer to keep track of all
information from the entire meta-
episode when encoding zt using the
RSSM. The original Dreamer only
encodes zt for limited random se-
quences of actions; it samples a tra-
jectory τ (meta-episode) from the re-
play buffer, samples a random start-
ing index t, and then encodes a fixed-
length sequence of L = 64 transi-
tions obtaining zt:t+L. We emphasize
that using this approach, information gathered at steps 1, . . . , t−1 is discarded. Instead, in MAMBA,
we randomly sample the meta-episode τ , and feed it in its entirety into the RSSM, obtaining z1:H .
Although this creates a computational burden, as our experiments show, this allows MAMBA to
obtain superior performance to Dreamer (see Sec. 4).

To alleviate some of the computational load, after obtaining z1:H when optimizing the RSSM and
policy we sample L indices i1, . . . , iL ∼ Uniform(H) and optimize (maximize reconstruction
in the RSSM, and maximize the return for the policy) only according to zi1 , . . . , ziL . Formally,
let Lw(z) and Lπ(z) be the loss functions for the world model w and the policy π from a sin-
gle latent vector z. Then, in Dreamer the world-model loss is

∑i+L
t=i Lw(zt) and the policy loss

is
∑i+L

t=i Lπ(zt), while in MAMBA the world-model loss is
∑L

t=1 Lw(zit) and the policy loss is∑L
t=1 Lπ(zit). Thus, despite the difference in RSSM input sequence lengths (L in Dreamer and H

in MAMBA), during optimization Dreamer and MAMBA are updated according to the same number
of latent vectors zt.

Scheduling the world model horizon: We found that during the initial update steps, unrolling
the world model for the entire meta-episode length H is inaccurate, due to the inaccuracy of the
yet-untrained RSSM. In light of this inaccuracy, we reduce the computational load by learning only
from prefixes of meta-episodes τH′ (where H ′ is the prefix length). As the world model improves,
we can increase H ′ and roll the model out for more steps. We therefore introduce a schedule: let
NT be the total number of environment steps, and define NWM << NT . The world model horizon
H ′ increases linearly from some initial value of WMinitial at the start of training to the full meta-
episode length H when NWM environment steps are taken.

Although the three modifications from Dreamer to MAMBA may appear technical, they are mo-
tivated by the concrete differences between general POMDP and the meta-RL problem. In the
following section, we show that they also lead to dramatic performance improvement in meta-RL,
over both the original Dreamer and state-of-the-art meta-RL methods.

6



4 EXPERIMENTS

In this section we provide an investigation of the effectiveness of MAMBA. We first show that
MAMBA is a high-performing meta-RL algorithm: compared to baselines it obtains high returns
with less environment steps. Next, we focus on several meta-RL scenarios including ones with sub-
tasks, varying dynamics and visual observations, and show that MAMBA outperforms all baselines
in each. We also investigate properties of MAMBA compared to the baselines, such as robustness
to hyperparameters and the ability to utilize information from previous sub-episodes. For visualiza-
tions of our results see https://sites.google.com/view/mamba-iclr2024, and for
additional environments, experiments and details see Appendices C and H.

Environments: We use two common 2D environments in meta-RL, Point Robot Navigation
(PRN), and Escape Room (Zintgraf et al., 2019; Dorfman et al., 2021; Rakelly et al., 2019). In
both, a goal is randomly chosen on a half-circle and the agent must explore the circumference until
it reaches it. In Point Robot Navigation this point is a source of positive reward, and in Escape
Room, it is a door that leads to high rewards located outside the circle. These represent basic sce-
narios for varying rewards and varying dynamics in meta-RL.

Next, to test our DTD hypothesis (Sec. 3.2), we design two scenarios composed of sub-tasks, one
discrete (Rooms-N ), and one continuous (Reacher-N ) where N represents the number of sub-
tasks. In both tasks, a set of N goals are selected independently, and the challenge is to reach them
in the correct order and memorize them between sub-episodes. Crucially, the first N − 1 goals only
provide a positive reward once, thus encouraging the agent to find all N goals and to stay on the last
one as long as possible. In Rooms-N the minigrid agent starts in the leftmost room and the i-th goal
is in the i-th room from the left (thus the last goal is on the rightmost room). In Reacher-N , the
agent (adapted from the DeepMind Control Suite, Tunyasuvunakool et al. 2020) is a two-link robot
and goals are placed in the reachable regions around it. Full details can be found in Appendix C.
See Fig. 1 for visualizations of the scenarios and behaviors learned by MAMBA.

Baselines and evaluation protocol: To demonstrate the effectiveness of MAMBA, we compare
it with the following baselines: two state-of-the-art meta-RL algorithms, VariBad and HyperX;
an unmodified DreamerV3 which we dub Dreamer-Vanilla; and an otherwise unmodified Dream-
erV3 with hyperparameters identical to MAMBA, which we call Dreamer-Tune. Because we tried
to make MAMBA as light as possible, the hyperparameter difference between Dreamer-Tune and
Dreamer-Vanilla is in network sizes and policy imagination horizon (see Appendix D for details).

In all our experiments, we report the mean and standard deviation of four random seeds, as well as
the number of environment steps each algorithm took to converge. In every experiment we test the
best model seen during evaluation on a held-out test set of 1000 tasks.

MAMBA is an effective meta-RL algorithm: Our main results are described in Table 1. First,
we observe that both VariBAD and HyperX, state-of-the-art algorithms specifically designed for
meta-RL, perform worse than the model-based methods (both versions of Dreamer and MAMBA),
both in final return and in convergence rate. This reinforces our observation regarding the similarity
between both families of algorithms, and we attribute the performance gap to better algorithmic
design choices in the Dreamer architecture (such as RSSM instead of simple RNN, and model-based
policy optimization).

Next, we find that further fine-tuning Dreamer to meta-RL scenarios again boosts performance; fo-
cusing on Dreamer-Vanilla, Dreamer-Tune, and MAMBA, we see that it is inconclusive whether
Dreamer-Vanilla and Dreamer-Tune is the better model. However, it is clearly evident that both are
inferior to MAMBA. We note that the differences between Dreamer-Tune and MAMBA are algo-
rithmic only (see Sec. 3.3), clearly demonstrating favorable algorithmic design choices in MAMBA.

Finally, we note that for the sub-tasks scenarios in particular, MAMBA achieves much better results
than all baselines, in line with our hypothesis in Section 3.2.

Robustness of MAMBA: We evaluate robustness to hyperparameters on the Reacher-1 sceraio.
Here, we take three VariBAD and HyperX hyperparameter configurations from the original pa-
pers and we compare them to both Dreamer and MAMBA. The hyperparameter configuration of
Dreamer-Vanilla was taken from Hafner et al. (2023), which is almost identical to Dreamer-Tune

7

https://sites.google.com/view/mamba-iclr2024


Figure 3: Returns in Reacher-1: Left: sample efficiency – meta-episode returns against the number
of frames played. Since VariBAD and HyperX took 15× frames to converge we show their limit
instead of a full plot. Right: time efficiency – meta-episode returns against training time (hours).

Figure 4: Sub-episode Returns of MAMBA, VariBAD, HyperX and Dreamer-Vanilla in
Reacher-1 (the meta-episode contains three sub episodes). Return of episode 0, 1, and 2, are left,
middle, and right respectively. The gap between MAMBA and Dreamer demonstrates that MAMBA
retains information from previous sub-episodes better than Dreamer.

and MAMBA (see Appendix D). Results for their respective configurations are in Table 1. As for
VariBAD and HyperX, Table 1 contains the best configuration which was also used for the other
Reacher tasks (473.7± 27.5 for VariBAD, and 505.9± 36.0 for HyperX). The other two configura-
tions of VariBAD achieved 104.6 ± 34.3 and 20.4 ± 2.4. In HyperX, one configuration resulted in
unstable policies obtaining arbitrarily negative returns, and the last configuration obtained 14.3±0.4.
We conclude that these algorithms are highly sensitive to their hyperparameters.

This experiment hints that for new meta-RL scenarios, MAMBA and Dreamer provide good per-
formance out-of-the-box without extensive hyperparameter tuning, while VariBAD and HyperX are
more affected by hyperparameter tuning (see Figure 3, left).

Is MAMBA better at exploitation than Dreamer? In Sec. 3.3 we hypothesize that when al-
lowing the RSSM to encode the full meta-episode, information regarding the MDP identity can be
effectively retained between sub-episodes. In Fig. 4, we plot the return per sub-episode in the meta-
episode. Returns for the first episode (left) are similar (hinting that both Dreamer and MAMBA
learn to explore well), but MAMBA better utilizes the information gathered in previous episodes in
the subsequent episodes reaching higher returns (middle and right).

Visual domain: In this scenario we leverage the ability of the Dreamer architecture to handle
visual inputs. We consider two scenarios, a single goal Reacher scenario with two sub-episodes with
image observations, and Panda Reacher (Choshen & Tamar, 2023), where a 7-DoF robot searches
for goals with its end-effector. It is worth noting that VariBAD and HyperX do not support visual
inputs. We ran each variant in Reacher and Panda Reacher for 15M and 20M environment steps
respectively. Returns are 62.7±63.4 and 96.3±26.6 in Dreamer-Vanilla, 62.7±63.4 and 111.1±28.8
in Dreamer-Tune and 215.6±64.8 and 137.6±0.7 using MAMBA, correspondingly. Both scenarios
show that MAMBA maintains superior returns in visual settings as well.

Runtime limitation: One limitation of our approach is runtime – to recall information from the
start of the meta-episode, we unroll the RSSM over the entirety of the meta-episode. In some
scenarios, this requires us to sequentially encode orders of magnitude more transitions.

8



VariBAD HyperX Dreamer-Vanilla Dreamer-Tune MAMBA (Ours)
PRN: 218.0 ± 26.0 204.0 ± 19.9 241.1 ± 9.9 239.7 ± 3.1 242.2 ± 7.9

∼10M ∼15M ∼2M ∼2M ∼2M
Rooms-3: 158.7 ± 2.6 111.8 ± 20.2 137.5 ± 6.2 142.6 ± 4.1 156.2 ± 1.7
Rooms-4: 88.1 ± 39.2 14.1 ± 3.0 115.0 ± 6.7 119.8 ± 3.1 136.7 ± 1.4
Rooms-5: 0.9 ± 2.5 -15.8 ± 0.4 96.5 ± 2.5 93.9 ± 5.3 113.1 ± 5.7
Rooms-6: -11.0 ± 0.9 -15.7 ± 0.7 69.5 ± 6.3 71.0 ± 6.3 94.5 ± 1.2

∼100M ∼100M ∼6M ∼6M ∼6M
Reacher-1: 473.7 ± 27.5 505.9 ± 36.0 552.0 ± 27.8 503.4 ± 69.0 655.5 ± 12.3
Reacher-2: 46.6 ± 33.2 30.0 ± 48.5 247.4 ± 80.5 217.6 ± 64.3 285.8 ± 89.6
Reacher-3: 0.2 ± 0.2 0.5 ± 0.2 183.6 ± 100.0 76.9 ± 80.5 325.0 ± 47.0
Reacher-4: 0.0 ± 0.0 -0.5 ± 1.1 0.4 ± 0.0 0.1 ± 0.2 77.7 ± 61.1

∼150M ∼150M ∼10M ∼10M ∼10M
EscapeRoom: 70.7 ± 5.3 66.9 ± 6.5 68.2 ± 2.4 73.2 ± 7.8 73.9 ± 3.1

∼20M ∼20M ∼4M ∼4M ∼4M

Table 1: Total return comparison of VariBad, HyperX, DreamerV3, and MAMBA on different meta
environments. We report the final reward (mean ± std), and the number of time steps until conver-
gence (below dashed line).

We investigate the runtimes of each of the baselines on the Reacher scenario with a single goal.
Fig. 3 (right) shows the return of each algorithm compared to the runtime of the algorithm1. First,
we note that both Dreamer-Tune and Dreamer-Vanilla are faster than MAMBA (Dreamer-Tune is
slightly faster than Dreamer-Vanilla due to reduced NN sizes). However, MAMBA is on-par or
better than both VariBAD and HyperX. The time gap between Dreamer and MAMBA could be
further reduced, which is an interesting direction for future research. Another direction for future
research is to ”chunk” the meta-episode transitions in order to reduce the length of the RNN rollout.
This requires further investigation, as it removes contextual information which may be required.

5 RELATED WORK

Meta-Reinforcement Learning (meta-RL) has been extensively studied in recent years (Duan
et al., 2016; Wang et al., 2017; Finn et al., 2017). Of specific interest to our work are context-
based meta-RL approaches (Rakelly et al., 2019; Zintgraf et al., 2019; 2021), which attempt to learn
a Bayes-optimal policy, and are model-free, thus suffering from high sample complexity.

Model-based RL has been shown to be more sample efficient than its model-free counterparts
(Nagabandi et al., 2018; Janner et al., 2019; Schrittwieser et al., 2020; Ye et al., 2021). While there
are many different approaches to model learning, Dreamer is a prominent line of work (Hafner et al.,
2019a;b; 2020; 2023; Mendonca et al., 2021), which learns a recurrent latent space world model and
uses rollouts in latent space to train a policy. This approach has been shown to work well in POMDP
environments, owing to the inherent RNN history aggregation ability (Ni et al., 2022).

Model Based Meta-RL: Recent approaches (Nagabandi et al., 2018; Perez et al., 2020; Lin et al.,
2020; Hiraoka et al., 2021) all continuously adapt to a varied task distribution, making no distinction
of when a new task is attempted. In accordance, they all use short histories of states and actions,
limiting usability when long horizons are required for task identification. Rimon et al. (2022); Lee
& Chung (2021) learn a model of the task distribution, sampling from it to generate tasks and using
these to generate full trajectories. Conversely, in our work, imagined rollouts are history-dependent,
allowing the model to incorporate information from online data. An extended related work section
is available in Appendix F.

6 CONCLUSION

We present MAMBA, a high-performing and versatile meta-RL algorithm based on the Dreamer
architecture. We show that MAMBA significantly outperforms existing meta-RL approaches in cu-
mulative returns, sample efficiency and runtime. We find this result to be consistent in common
meta-RL benchmarks, in tasks with visual inputs and in a class of decomposable task distributions,
for which we also provide PAC bounds. In addition, MAMBA requires little to no hyperparame-
ter tuning. Finally, we believe that MAMBA can be used as a stepping stone for future meta-RL
research, generalizing to more challenging domains and real-world applications.

1All experiments were conducted using an Nvidia T4 GPU, with 32 CPU cores and 120GB RAM.

9



REPRODUCIBILITY

Our implementation of MAMBA can be found in https://github.com/zoharri/mamba
and is based on an open-source implementation of DreamerV3 (Hafner et al., 2023)
found at https://github.com/NM512/dreamerv3-torch, borrowing el-
ements from the open-source implementations of Zintgraf et al. (2019; 2021) at
https://github.com/lmzintgraf/hyperx. All hyperparameters and details modi-
fied from the original implementation are described in the Experiments section (Sec. 4), as well as
in Appendix D.

7 ACKNOWLEDGEMENTS

This work received funding from the European Union (ERC, Bayes-RL, Project Number
101041250). Views and opinions expressed are however those of the authors only and do not nec-
essarily reflect those of the European Union or the European Research Council Executive Agency.
Neither the European Union nor the granting authority can be held responsible for them.

REFERENCES

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shi-
mon Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028,
2023.

Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. Acting optimally in partially
observable stochastic domains. In Aaai, volume 94, pp. 1023–1028, 1994.

Era Choshen and Aviv Tamar. Contrabar: Contrastive bayes-adaptive deep rl. arXiv preprint
arXiv:2306.02418, 2023.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-based reinforcement learning via meta-policy optimization. In Conference on Robot
Learning, pp. 617–629. PMLR, 2018.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–identifiability
challenges and effective data collection strategies. Advances in Neural Information Processing
Systems, 34:4607–4618, 2021.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning, 2016.

Michael O’Gordon Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes. University of Massachusetts Amherst, 2002.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. In International Conference on Learning Representations,
2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

10

https://github.com/zoharri/mamba
https://github.com/NM512/dreamerv3-torch
https://github.com/lmzintgraf/hyperx


Takuya Hiraoka, Takahisa Imagawa, Voot Tangkaratt, Takayuki Osa, Takashi Onishi, and Yoshi-
masa Tsuruoka. Meta-model-based meta-policy optimization. In Asian Conference on Machine
Learning, pp. 129–144. PMLR, 2021.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424,
2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Heinrich Jiang. Uniform convergence rates for kernel density estimation. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 1694–1703. PMLR, 06–11 Aug
2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware dynam-
ics model for generalization in model-based reinforcement learning. In International Conference
on Machine Learning, pp. 5757–5766. PMLR, 2020.

Suyoung Lee and Sae-Young Chung. Improving generalization in meta-rl with imaginary tasks from
latent dynamics mixture. Advances in Neural Information Processing Systems, 34:27222–27235,
2021.

Zichuan Lin, Garrett Thomas, Guangwen Yang, and Tengyu Ma. Model-based adversarial meta-
reinforcement learning. Advances in Neural Information Processing Systems, 33:10161–10173,
2020.

Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration and ex-
ploitation for meta-reinforcement learning without sacrifices. In International conference on ma-
chine learning, pp. 6925–6935. PMLR, 2021.

Zhao Mandi, Pieter Abbeel, and Stephen James. On the effectiveness of fine-tuning versus meta-
reinforcement learning, 2022.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discover-
ing and achieving goals via world models. Advances in Neural Information Processing Systems,
34:24379–24391, 2021.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. arXiv preprint arXiv:1803.11347, 2018.

Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free rl can be a
strong baseline for many pomdps. In International Conference on Machine Learning, pp. 16691–
16723. PMLR, 2022.

Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision processes.
Mathematics of operations research, 12(3):441–450, 1987.

Jurgis Pasukonis, Timothy Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3d mazes.
arXiv preprint arXiv:2210.13383, 2022.

Christian Perez, Felipe Petroski Such, and Theofanis Karaletsos. Generalized hidden parameter
mdps: Transferable model-based rl in a handful of trials. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 5403–5411, 2020.

Brieuc Pinon, Jean-Charles Delvenne, and Raphaël Jungers. A model-based approach to meta-
reinforcement learning: Transformers and tree search. arXiv preprint arXiv:2208.11535, 2022.

11



Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Zohar Rimon, Aviv Tamar, and Gilad Adler. Meta reinforcement learning with finite training tasks-a
density estimation approach. Advances in Neural Information Processing Systems, 35:13640–
13653, 2022.

Murray Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function. The Annals
of Mathematical Statistics, 27(3):832 – 837, 1956. doi: 10.1214/aoms/1177728190.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jayakumar Subramanian and Aditya Mahajan. Approximate information state for partially observed
systems. In 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 1629–1636. IEEE,
2019.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn,
2017.

Qi Wang and Herke Van Hoof. Model-based meta reinforcement learning using graph structured
surrogate models and amortized policy search. In International Conference on Machine Learning,
pp. 23055–23077. PMLR, 2022.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
learning. In International Conference on Learning Representations, 2019.

Luisa M Zintgraf, Leo Feng, Cong Lu, Maximilian Igl, Kristian Hartikainen, Katja Hofmann, and
Shimon Whiteson. Exploration in approximate hyper-state space for meta reinforcement learning.
In International Conference on Machine Learning, pp. 12991–13001. PMLR, 2021.

12



A APPENDIX

In Section A.1 we define the term Decomposable Task Distribution and in Section A.2 we show (un-
der some mild assumptions) that much more favorable bounds can be obtained for these distributions
compared to the general case.

A.1 DECOMPOSABLE TASK DISTRIBUTIONS

We follow the notation from Rimon et al. (2022) and assume that a task distribution is defined by
a parametric space Θ, a prior distribution over this space f ∈ P(Θ) and a mapping function from
the parametric space to the MDP space g : Θ → M. To sample an MDP from the distribution, a
parameter is sampled from f and is passed through g. Essentially, we assumes that the distribution
over MDPs can be defined as a parametric variation. This formulation is very broad and can be used
to formalize all the environments considered in this paper; we refer the reader to Rimon et al. (2022)
for examples and motivation. Using this formulation we can write the expected return from Section
2.1 as:

Jπ = Eθ∼f

[
Eπ,M=g(θ)

[
H∑

k=1

rt,k

]]

We now formally define a Decomposable Task Distribution, which as its name suggests, is a task
distribution where each task can be decomposed to subtasks.

Definition 1 Decomposable Task Distribution. Given {ti, fi,Θi, gi}NT

i=1 where ti ∈ N,Θi ⊂
Rdi , di ∈ N, fi ∈ P(Θi), gi : Θi → M and M is the MDPs space. To sample an MDP from this
distribution the parameters are sampled from the priors and subtasks are being generated θi ∼ fi,
Mi = gi(θi), ∀i ∈ [1, NT ]. The resulting full MDP is defined by playing in Mi between time steps
ti and ti+1 ∀i ∈ [1, NT ], without resampling from the initial state distribution when passing from
one MDP to another.

A.2 PAC BOUNDS USING SUB-TASK DECOMPOSITION

General Regret Bounds We first define the regret – the difference in the return of policy π to the
return of the Bayes-optimal policy – as follows:

R(π) = JπBO − Jπ = Eθ∼f

[
EπBO,M=g(θ)

[
H∑
t=1

rt

]
− Eπ,M=g(θ)

[
H∑
t=1

rt

]]
Where πBO is the Bayes-optimal policy, i.e πBO ∈ argmaxπ J

π . Note that the regret is 0 iff π is
Bayes-optimal. Since the regret is taken with respect to the unkown prior distribution, it is a measure
of the generalization of π.

In their work, Rimon et al. (2022) suggest a density estimation approach to achieve regret bounds.
Given a set of N training samples, they first estimate the parametric distribution of tasks f (θ) with
Gaussain Kernel Density Estimation (KDE, Rosenblatt 1956) f̂G (θ). By using KDE error bounds
(Jiang, 2017) they achieved probably almost correct (PAC) bounds on the regret:

Theorem 2 (Theorem 6 in Rimon et al. 2022) For a prior f(θ) over a bounded parametric space
Θ that satisfies ∥f∥∞ < ∞ and is α-Hölder continuous, and a Gaussian KDE, we have that with
probability at least 1− 1/N :

R(π∗
f̂G

) ≤ 2RmaxH |Θ|Cd ·
(
logN

N

) α
2α+d

.

Where N are the number of sampled tasks, Rmax is the maximum possible reward, |Θ| and d are
the volume and dimension of the space Θ, respectively, Cd is polynomial of order d and π∗

f̂G
∈

argmaxπ J
π
f̂G

= argmaxπ Eθ∼f̂G

[
Eπ,M=g(θ)

[∑H
t=1 rt

]]
, i.e the Bayes-optimal policy under the

assumption that the estimator f̂G is correct.

13



This theorem shows that, given a general parametric space, the number of task samples needed to
guarantee a constant regret scales exponentially with the dimension of the parametric space. This
observations shows an inherit limitation of meta-RL.

Bounds for Decomposable Distributions The obvious approach to achieve regret PAC bounds
for decomposable task distributions, is to take a similar approach as done in Theorem 2. We can
handle the decomposable distributions as normal distributions where Θfull = Θ0×Θ1×· · ·×ΘNT

and the prior distribution over the parametric space is ffull (θ = (θ1, . . . , θNT
)) =

∏NT

i=1 fi(θi). In
that case we can approximate ffull directly using a KDE f̂full

G over the samples {θi}Ni=1 and using
Theorem 2 get regret bounds of:

R(π∗
f̂full
G

) ≤ 2RmaxH
∣∣Θfull

∣∣Cdfull ·
(
log n

n

) α

2α+dfull

.

Where dfull =
∑NT

i=1 di, with di being the dimensionality of Θi. This means that if we approach
decomposable task distributions as regular distributions, to guarantee a constant regret we’ll need
exponentially growing number of samples with respect to dfull, i.e depend on both the number of
sub-tasks and the number of DoF in each sub-task distribution.

We suggest a different approach: estimate each distribution fi by a KDE f̂i separately, i.e f̂ =

{f̂i}NT
i=1. For a policy π and a decomposable task distribution defined by {ti, fi,Θi, gi}NT

i=1, we
define {gπi }

NT

i=1, where gπi (θ) = gi (θ), except for the initial state distribution, which is set to be the
induced initial distribution of the i’th MDP, as defined in Definition 1 ∀θ ∈ Θi and ∀i ∈ [1, NT ].
Next we follow the derivation of Theorem 6 in Rimon et al. (2022):

Jπ
f =

NT∑
i=1

Eθ∼fi

Eπ,M=gπi (θ)

 ti∑
t=ti−1

rt

 =

NT∑
i=1

∫
Eπ,M=gπi (θ)

 ti∑
t=ti−1

rt

 fi(θ)dθ

Jπ
f − Jπ

f̂Sub
=

NT∑
i=1

∫
Eπ,M=gπ

i (θ)

 ti∑
t=ti−1

rt

(fi(θ)− f̂i(θ)
)
dθ

And: ∣∣∣Jπ
f − Jπ

f̂Sub

∣∣∣ ≤ NT∑
i=1

∫
Eπ,M=gπ

i (θ)

 ti∑
t=ti−1

rt

 ∣∣∣fi(θ)− f̂i(θ)
∣∣∣ dθ

≤
NT∑
i=1

Rmax,i · (ti − ti−1)

∫ ∣∣∣fi(θ)− f̂i(θ)
∣∣∣ dθ

And following the same lines as the proof of Lemma 3 of Rimon et al. (2022) we get:

R(π∗
f̂Sub

) ≤ 2 ·
NT∑
i=1

Rmax,i · (ti − ti−1)

∫ ∣∣∣fi(θ)− f̂i(θ)
∣∣∣ dθ

Using the PAC bounds for the KDE error of Jiang (2017), as was done in Rimon et al. (2022), we
receive the final regret PAC bounds:

Theorem 3 For a decomposable prior distribution {ti, fi,Θi, gi}NT

i=1 where every parametric space
is bounded, ∥fi∥∞ < ∞ and fi is α-Hölder continuous and for a set of Gaussian KDEs as defined
above, we have that with probability at least 1− 1/N :

R(π∗
f̂Sub

) ≤ 2RmaxH |Θmax|Cdmax ·
(
logN

N

) α
2α+dmax

.

14



Where N are the number of sampled tasks, Rmax is the maximum possible reward (over
all the subtasks), |Θmax| and dmax are the maximal volume and dimensions of the spaces
{Θi}NT

i=1, respectively, Cdmax is polynomial of order dmax and π∗
f̂Sub

∈ argmaxπ J
π
f̂Sub

=

Eθ∼f̂Sub

[
Eπ,M=g(θ)

[∑H
t=1 rt

]]
, i.e the Bayes-optimal policy under the assumption that the es-

timator f̂Sub is correct.

As we can see, using the fact that the distribution can be decomposed into sub-distributions and ap-
proximating each one individually, results in much more favourable bounds. With the new approach,
to guarantee a constant regret we need exponentially growing number of samples with respect to
dmax instead of dfull. This essentially means that if we approach this kind of tasks by solving each
sub-task individually, the difficulty of the task will be determined by the sub-task with the highest
number of DoF, and not by the number of sub-tasks.

For example, looking at the multi-goal Rooms-N environment from our experiments, although the
total number of degrees of freedom is N , i.e grows as we increase the number of rooms, the difficulty
of the task does not change, as the agent should solve each of the rooms separately. In comparison,
our theorem states that a standard navigation goal in N dimensions, which has the same number of
DoF will be much harder since we must estimate all the DoF at once.

Therorem 3 also sheds light on our findings from Section 3.2 which show that VariBAD works better
once the reconstruction window is smaller, which helps the belief (estimated by the latent vector)
focus on the current sub-task.

B DIFFERENCES BETWEEN VARIBAD AND DREAMER

For simplicity, we denote VariBAD as VB, and Dreamer as D.

• History of optimization at timestep t: In VB, when executing the optimization at time t,
the entire meta-episode gets encoded into bt. Conversely, in D, short (L = 64) sequences of
transitions are sampled from the replay buffer and encoded into latent vectors zt:t+L using
the RSSM world model. This is problematic in the meta-RL context, since it does not allow
components (policy, model, value) to depend on the full history of the meta-episode and
may lead to ambiguity that should have already been resolved.

• World model prediction horizon: In D, the world model predicts a single step, but forces
the latent states of subsequent transitions to be consistent. In VB, the decoder directly
predicts outcomes (next states and rewards) for every possible observation by feeding the
belief, current observation and action as inputs to the decoder 2.

• Horizon differences: In VB, episodes were short (about 100 time steps), while in D,
POMDPs with hundreds of time steps were considered. This technical consideration is
probably one of the factors why D samples sub-trajectories of length L, and why VB were
able to run on a GPU without out-of-memory exceptions. However, it is a limiting factor
for many meta-RL tasks that are characterized with a long horizon due to the combination
of several sub-episodes in every meta-episode.

• Policy optimization: In VB an online model-free algorithm PPO (Schulman et al., 2017)
was used while D use a combination of the REINFORCE (Sutton et al., 1999) algorithm
and backpropogation through trajectories imagined by the world model.

• Policy input: In VB, the policy is conditioned on both the latent zt and the current state
st. However, in D the policy is conditioned only on zt.

• Hidden sizes in RNN: D has much larger hidden layer sizes than VB.

C FULL ENVIRONMENTS TECHNICAL DETAILS

Here we provide the full details regarding the environments we used in our experiments (Section 4).

2In VariBAD, observations were not used, so an observation in this context is equal to state.

15



Point Robot Navigation A commonly used 2D continuous control benchmark for meta-RL (Zint-
graf et al., 2019; Rimon et al., 2022; Dorfman et al., 2021; Choshen & Tamar, 2023), where a goal is
sampled on a semi-circle with radius of 1.0. The reward is sparse and defined as 1−∥pagent−pgoal∥2
when the agent is inside the goal radius (0.2) and 0 otherwise3 (where pagent, pgoal are the agent
and goal positions, respectively). Here, a meta-episode consists of two sub-episodes of K = 100
steps each. The Bayes-optimal behavior is to explore the semicircle on the first episode and exploit
the information acquired by going directly to the goal on the second.

Point Robot Navigation - Wind This is an extension of the Point Robot Navigation environment,
where a stochastic wind force is added at each step. More explicitly, at each step, a 2D Gaussian
random vector with controllable std (e.g. 0.3) is sampled and added to the selected action. Other
than that, the environment details and Bayes-optimal behavior are the same as the in the Point Robot
Navigation environment.

Escape Room In this environment, taken from Dorfman et al. (2021), a 2D point robot is ini-
tialized in a circular room of radius 1.0. An arched door of length π

8 is randomly sampled on the
upper half of the room, providing the only exit from the room. The reward is 0 inside the room
and 1 outside of it. Here, a meta-episode consists of two sub-episodes of K = 60 steps each. A
Bayes-optimal agent should explore the upper half circle, pushing against the wall until successfully
exiting.

Humanoid-Dir First proposed in Rakelly et al. (2019), in this environment the Humanoid MuJoCo
(a high dimensional humanoid agent) task is initialized with a random target walking direction θ ∈
[0, 2π] on the 2D plane. The agent receives a reward proportional to the projection of its speed on the
unknown goal direction. Since in meta-RL we observe the environment rewards, the Bayes-optimal
behavior should be able to detect the correct direction after a few steps (theoretically one step) and
consequently walk as fast as possible towards this direction.

Reacher This environment, available in the DeepMind Control Suit (DMC, Tunyasuvunakool
et al. 2020), is a planar two-link robot tasked to reach various goals on the plane with the tip of
its second link. A goal is sampled on the 2D plane within a ball around the agent, which when
reached (to a certain small distance), provides a reward proportional to the distance from the goal.
For this environment we use 3 sub-episodes of length K = 300 in every meta-episode. In contrast
to the point robot navigation task, since the goal can be sampled anywhere within the circle, the
Bayes-optimal policy should explore in a spiral form to cover the entire goal space.

We also consider a multi-goal variant of this task, Reacher-N , with observation and action spaces
identical to the original Reacher task. Here, N goals are sampled i.i.d. (according to the distribution
above) which the robot must reach in a predetermined order. The reward for each goal [1, . . . , N ]
may be obtained only after all the previous goals were reached. For the first N − 1 goals, the
agent receives positive reward only once when the agent first penetrates the goal radius. In the N -th
goal, the positive reward is given every step, until the sub-episode terminates. The Bayes-optimal
behavior in this case is to explore until the last goal is found, and then stop moving. Once a goal
was identified, in subsequent sub-episodes the policy should head to that identified goal directly.
This serves as a high-dimensional environment decomposable into independent sub-tasks (up to the
initial distribution), matching our analysis in Sec. 3.2. We note that for 3 and 4 goals we increased
the number of steps per sub-episode to 400 instead of 300.

Panda Reacher Proposed by Choshen & Tamar (2023), Panda Reacher is a dynamically complex
system with visual inputs and sparse rewards which requires a non-trivial Bayes-optimal behavior.
In this environment, a 7-degree-of-freedom (DoF) robotic arm is required to reach goals with the
robot end-effector (i.e. the tip of the robot). The goals are hidden and must be discovered through

3Inside the goal radius the rewards are positive.

16



Hyper-parameter Dreamer-Vanilla Dreamer-Tune Description
dyn discrete 32 16 Number of discrete latent vectors in the world model.
dyn hidden 512 64 MLP size in the world model.
dyn stoch 32 16 Size of each latent vector in the world model.
imag horizon 15 10 Length of the imagination horizon (NIMG cf. Sec.2.2).
units 512 128 Size of hidden MLP layers.

Table 2: Hyper parameters differences between Dreamer-Vanilla and Dreamer-Tune.

Rooms-4 Rooms-5
VariBAD Vanilla 14.1 +- 3.0 0.9+-2.5
VariBAD Local 88.1+-39.2 15.1+-13.1

MAMBA 136.7±1.4 113.1±5.7

Table 3: VariBAD reconstruction ablation study. Using local reconstruction helped in the Rooms-N
environment, which contains sub-tasks.

exploration. The rewards are sparse, meaning only when the end-effector is within a short distance
from the goal, a reward of 1 is obtained (otherwise the reward is 0). The observation is an image of
size 84×84×4, and the action space is the direction towards which the end-effector is moved.

Rooms-N : As an additional multi-goal task, we consider a discrete grid-world environment con-
sisting of a sequence of N rooms of size 3 × 3 separated by a 1 × 3 corridor. At each location the
agent observes its (x, y) location and can choose to go right/left/up/down (will stay in place if the
resulting state is out of the map). A goal is sampled in the corner of each room and the agent starts
in the left-most room. The goals in rooms [2, . . . , N ] are obtainable if all the previous goals were
visited. The agent receives a reward of 1 when a goal is visited, and −0.1 otherwise. For the first
N − 1 rooms, once a goal is visited in a sub-episode, it no longer emits a positive reward. On the
first sub-episode, a Bayes-optimal policy should explore each of the rooms, continuing to the next
room upon finding the goal. In the second sub-episode, it should go directly to the goal in each
room. This environment serves as an additional sub-task decomposable environment (see Sec. 3.2).

D HYPERPARAMETERS OF DREAMER-TUNE

Our parameters of Dreamer-Vanilla are identical to DreamerV3 (Hafner et al., 2023). In Table 2 we
list the differences between Dreamer-Vanilla and Dreamer-Tune.

E EMPIRICAL RESULTS FOR VARIBAD WITH LOCAL RECONSTRUCTION

In Sec. 3.2, we introduced a variant of VariBAD that uses a local reconstruction (reconstructing a
window of adjacent transitions instead of the full trajectory). In this section we evaluate it against
the original VariBAD on two sub-task decomposable environments: Rooms-4 and Rooms-5. Results
can be found in Table 3. We also provide the results of MAMBA from Sec. 4 as reference.

As we can see in Table 3 local reconstruction helped VariBAD in these scenarios, which is in line
with our theoretical findings (cf. Sec. 3.2).

F EXTENDED RELATED WORK

Meta-Reinforcement Learning (meta-RL) has been extensively studied in recent years (Duan
et al., 2016; Wang et al., 2017; Finn et al., 2017; Beck et al., 2023). Of specific interest to our
work are context-based meta-RL approaches (Rakelly et al., 2019; Humplik et al., 2019; Zintgraf
et al., 2019; 2021; Wang & Van Hoof, 2022), which attempt to learn a Bayes-optimal policy. Most
of these are model-free, thus suffering from high sample complexity.

Others, such as Humplik et al. (2019), utilize access to privileged information during the meta-
training phase and thus do not apply to the general setting of meta-RL.

17



Model-based RL has been shown to be more sample efficient than its model-free counterparts
(Nagabandi et al., 2018; Clavera et al., 2018; Janner et al., 2019; Schrittwieser et al., 2020; Ye et al.,
2021). While there are many different approaches to model learning and usage, a prominent line
of work is the Dreamer framework (Hafner et al., 2019a;b; 2020; 2023; Mendonca et al., 2021),
which learns a recurrent latent space world model and uses rollouts in latent space to train a policy.
This approach has been shown to work well in POMDP environments, owing to the inherent history
aggregation ability of the RNN (Ni et al., 2022).

Model Based Meta-RL: Recent approaches (Nagabandi et al., 2018; Perez et al., 2020; Lin et al.,
2020; Lee et al., 2020; Hiraoka et al., 2021; Wang & Van Hoof, 2022; Pinon et al., 2022) propose
model-based meta-RL methods. Nagabandi et al. (2018) use a dynamics model and adapt it online
to varying dynamics in robotic scenarios. Perez et al. (2020) propose to encode the parameters
controlling the reward and transition functions into latent variables of a learned model. To tackle the
problem of task distribution shift, Lin et al. (2020) train a shared dynamics model on a distribution
of tasks, but train a policy at test-time given a new reward function, preventing fast adaptation
to new tasks. Lee et al. (2020) trains a context vector to be consistent with forward and backward
dynamics, conditioning on this context to enable a dynamics model to generalize quickly. The above
approaches all continuously adapt to a varied task distribution, making no distinction of when a new
task instance is attempted. In accordance, they all use short histories of states and actions, limiting
usability when long horizons are required for task identification.

An approach that does focus on long horizons and is designed specifically to test model memory is a
baseline proposed in Pasukonis et al. (2022), where a variation of Dreamer-v2 (Hafner et al., 2020) is
used to benchmark a new environment. While this baseline bears some similarities to our approach,
Pasukonis et al. (2022) aims to establish a baseline for testing memory capabilities of agents, rather
than proposing an algorithmic solution to meta-RL in general. In accordance, the modifications
they propose for Dreamer are only geared at extending its memory capabilities, disregarding other
modifications we found important in this work.

Wang & Van Hoof (2022) propose a GNN-based model learned for each task of the training distribu-
tion, along with an amortized policy selection method to quickly find the correct model at meta-test
time. In contrast, our method learns a single model and a single policy for the entire task distribu-
tion. Pinon et al. (2022) propose a Transformer-based world model, using tree search to plan with
the model at test time. While general, this approach may be limited to discrete-action domains; in
addition, tree search is a time consuming process. Our method, on the other hand, can operate on
discrete and continuous domains (as it is based on the Dreamer architecture), and learns a policy so
that it can act quickly at test time without additional planning.

Rimon et al. (2022) and Lee & Chung (2021) learn a model of the task distribution, sampling from
it to generate tasks and using these to generate full trajectories. Conversely, in our work, imagined
rollouts are history-dependent, allowing the model to incorporate information from online data.

G ABLATION STUDY OF MAMBA

In this appendix we ablate the three different modifications proposed in Section 3.3 to identify the
contribution of each.

First, we note that it is infeasible to run experiments without adding the reward into the observation
as it prevents any possibility of the agent distinguishing between tasks; to validate this, we removed
the reward observation and tested on the Rooms-3 environment. Results are as expected: com-
pared to MAMBA, which obtained a return of 156.2± 1.7, MAMBA w/o reward in the observation
obtained only 11.5± 1.4.

Next, MAMBA with the original batch sampling (i.e. batches do not start from the start of the meta-
episode) is in fact Dreamer-Tune; therefore, we did not run a separate ablation test for this design
choice.

Finally, we tested the effects of removing the horizon scheduling in the Point Robot Navigation
scenario, and indeed found that the results obtained are on-par but runtime is slower (on the same
hardware), see Table 4.

18



MAMBA MAMBA w/o Horizon Scheduling
Average Total Return: 156.2 ± 1.7 156.8 ± 1.2
Total Time [H]: 34.1 44.0

Table 4: Ablating the horizon schedule in the Point Robot Navigation environment.

RL2 VariBAD HyperX Dreamer-Vanilla Dreamer-Tune MAMBA (Ours)
PRN: 239.4±3.1 218.0 ± 26.0 204.0 ± 19.9 241.1 ± 9.9 239.7 ± 3.1 242.2 ± 7.9

∼10M ∼10M ∼15M ∼2M ∼2M ∼2M
Rooms-3: 108.0±31.7 158.7 ± 2.6 111.8 ± 20.2 137.5 ± 6.2 142.6 ± 4.1 156.2 ± 1.7
Rooms-4: 85.1±19.0 88.1 ± 39.2 14.1 ± 3.0 115.0 ± 6.7 119.8 ± 3.1 136.7 ± 1.4
Rooms-5: 72.4±36.8 0.9 ± 2.5 -15.8 ± 0.4 96.5 ± 2.5 93.9 ± 5.3 113.1 ± 5.7
Rooms-6: 64.9±15.9 -11.0 ± 0.9 -15.7 ± 0.7 69.5 ± 6.3 71.0 ± 6.3 94.5 ± 1.2
Rooms-7: 42.9±22.9 - - - 50.2±4.4 73.2±2.9
Rooms-8: 29.0±17.0 - - - 29.1±8.3 55.6±3.0

∼100M ∼100M ∼100M ∼6M ∼6M ∼6M
Reacher-1: 595.8 ± 21.4 473.7 ± 27.5 505.9 ± 36.0 552.0 ± 27.8 503.4 ± 69.0 655.5 ± 12.3
Reacher-2: 404.0±35.9 46.6 ± 33.2 30.0 ± 48.5 247.4 ± 80.5 217.6 ± 64.3 285.8 ± 89.6
Reacher-3: 390.6 ± 49.1 0.2 ± 0.2 0.5 ± 0.2 183.6 ± 100.0 76.9 ± 80.5 325.0 ± 47.0
Reacher-4: 0.0 ± 0.0 0.0 ± 0.0 -0.5 ± 1.1 0.4 ± 0.0 0.1 ± 0.2 77.7 ± 61.1

- ∼150M ∼150M ∼10M ∼10M ∼10M
EscapeRoom: 79.9±4.4 70.7 ± 5.3 66.9 ± 6.5 68.2 ± 2.4 73.2 ± 7.8 73.9 ± 3.1

∼20M ∼20M ∼20M ∼4M ∼4M ∼4M

Table 5: Total return comparison of RL2, VariBad, HyperX, Dreamer-Vanilla, Dreamer-Tune, and
MAMBA on different meta environments. We report the final reward (mean ± std), and the number
of time steps until convergence (below dashed line).

H ADDITIONAL EXPERIMENTS

H.1 ADDITIONAL META-RL BASELINES

H.1.1 RL2

RL2 (Duan et al., 2016) is a common meta-RL baseline; our additional experiments (Table 5) show
that MAMBA is superior to RL2 in all environments except EscapeRoom, where the difference is
slightly in favor of RL2 (although RL2 used 5× more data than MAMBA).

H.1.2 DREAM

DREAM (Liu et al., 2021) is a meta-RL algorithm with a more sophisticated out-of-the-box explo-
ration mechanism. Since the experiments in DREAM deal with goal conditioned meta-RL tasks in
grid-world environments, we tested it in our Rooms environment.

Our experiments in Rooms-3 show that DREAM fails to obtain any meaningful policy, and the
meta-episode rewards remain negative (MAMBA, Dreamer, VariBAD and HyperX all managed to
obtain returns greater than 100). Results from experiments with more rooms behave similarly. This
may result from bad hyper-parameter adaptation between the scenarios in the DREAM paper and
Rooms; however, this is another advantage of using a Dreamer-based architecture as in MAMBA
(same hyperparameters fit different scenarios out-of-the-box).

H.2 ADDITIONAL ENVIRONMENTS

H.2.1 ROOMS-7 AND ROOMS-8

We added more rooms to challenge MAMBA. We observe that MAMBA still manages to find a
Bayes-optimal behavior and the drop in return is attributed to the exploration required to find the
additional goals. VariBAD or HyperX were not tested as they already failed to solve scenarios with
less rooms. See Table 5.

19



VariBAD HyperX Dreamer-Vanilla Dreamer-Tune MAMBA
Return: 1369.3 ± 75.3 - 2068.3 ± 156.7 2096.3 ± 79.8 2405.9 ± 119.0
Steps: 100M - 30M 30M 30M

Table 6: Comparison of VariBad, HyperX, Dreamer-Vanilla, Dreamer-Tune, and MAMBA in the
Humanoid-Dir environment.

VariBAD HyperX Dreamer-Vanilla Dreamer-Tune MAMBA
Return: 194.5± 44.7 177± 118.5 226.1±3.5 224.5±4.4 224.1±5.2
Steps: 20M 20M 2M 2M 2M

Table 7: Comparison of VariBad, HyperX, Dreamer-Vanilla, Dreamer-Tune, and MAMBA on the
Point Robot Navigation - Wind environment.

H.2.2 HUMANOID-DIR

First proposed in Rakelly et al. (2019), in this environment the Humanoid MuJoCo task is initialized
with a random target walking direction θ ∈ [0, 2π] on the 2D plane. Table 6 summarizes the results
of this experiment. As in the results described in Sec. 4, using less environment steps (30M vs.
100M) the algorithms based on the Dreamer architecture perform better than VariBAD and HyperX.
Among these, MAMBA is substantially better, reaching the highest return.

H.2.3 POINT ROBOT NAVIGATION - WIND

This is a modification of the Point Robot Navigation (PRN) environment, where a stochastic wind
force is added at each step. Results in Table 7 show that the conclusions from Point Robot Navigation
also extend to this stochastic version.

20


	Introduction
	Background
	Problem Formulation
	Context-Based Meta-RL and Model-Based Algorithms for POMDP

	Method
	Comparing VariBAD and Dreamer
	Decomposable Task Distributions
	PAC Bounds
	Decomposability and Local Reconstruction

	MAMBA: MetA-RL Model-Based Algorithm

	Experiments
	Related Work
	Conclusion
	Acknowledgements
	Appendix
	Decomposable Task Distributions
	PAC Bounds Using Sub-Task Decomposition

	Differences Between VariBAD and Dreamer
	Full Environments Technical Details
	Hyperparameters of Dreamer-Tune
	Empirical Results for VariBAD with Local Reconstruction
	Extended Related Work
	Ablation Study of MAMBA
	Additional Experiments
	Additional Meta-RL Baselines
	RL2
	DREAM

	Additional Environments
	Rooms-7 and Rooms-8
	Humanoid-Dir
	Point Robot Navigation - Wind



