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Abstract
We study principal component analysis (PCA),
where given a dataset in Rd from a distribution,
the task is to find a unit vector v that approxi-
mately maximizes the variance of the distribution
after being projected along v. Despite being a clas-
sical task, standard estimators fail drastically if
the data contains even a small fraction of outliers,
motivating the problem of robust PCA. Recent
work has developed computationally-efficient al-
gorithms for robust PCA that either take super-
linear time or have sub-optimal error guarantees.
Our main contribution is to develop a nearly linear
time algorithm for robust PCA with near-optimal
error guarantees. We also develop a single-pass
streaming algorithm for robust PCA with memory
usage nearly-linear in the dimension.

1. Introduction
Principal component analysis (PCA) is a central subroutine
in dimension reduction and data visualization. It is used to
identify directions of large variance, which are considered
to be the most informative aspects of the data. In the classi-
cal setting, we observe a set S of n i.i.d. points in Rd from a
(subgaussian) distribution with covariance Σ. Then, classi-
cal estimators, for e.g., the leading eigenvector of the empir-
ical covariance of S, output a direction v with the property
that v⊤Σv approaches ∥Σ∥op as n increases. Importantly,
these estimators are fast and have nearly linear runtime.1

However, access to i.i.d. samples is often an unrealistic
assumption, and data may contain a small number of outliers
as formalized below:
Definition 1.1 (Strong Contamination Model). Given a
parameter 0 < ϵ < 1/2 and a class of distributions D,
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1By nearly linear time algorithms, we mean runtime scaling
linearly with (up to logarithmic factors) the size of input, nd.

the strong adversary operates as follows: The algorithm
specifies a number of samples n, then the adversary draws a
set of n i.i.d. samples from some D ∈ D and after inspecting
them, removes up to ϵn of them and replaces them with
arbitrary points. The resulting set is given as input to the
learning algorithm. We call a set ϵ-corrupted if it has been
generated by the above process.

Unfortunately, outliers can skew the results of classical es-
timators, by artificially increasing the variance along low-
variance directions, which renders the output of these esti-
mators unreliable.2 To address this, a robust algorithm must
be able to effectively remove outliers from the data, while
still being computationally efficient in high dimensions.

Recent works have developed computationally-efficient al-
gorithms for robust PCA (Jambulapati et al., 2020; Kong
et al., 2020). However, these polynomial-time algorithms
either (i) achieve near-optimal error but take super-linear
time (scaling with nd2) or (ii) run in nearly linear time but
achieve sub-optimal error and require additional assump-
tions. As modern datasets continue to expand in both sam-
ple size and dimension, there is a growing need for nearly
linear time algorithms and streaming algorithms with near-
optimal error guarantees. Our work addresses this need by
developing robust PCA algorithms that meet these demands.

1.1. Our Results

The main result of our paper is a nearly linear time algorithm
to identify a direction of large variance from a corrupted
set. We state our results below for subgaussian distributions
(Definition B.1), but these results hold for a more general
class of “stable” distributions (Definition 2.4).

Theorem 1.2. Let ϵ ∈ (0, c) for a small constant c > 0. Let
D be a subgaussian distribution with mean zero and (un-
known) covariance matrix Σ. For a sufficiently large C > 0,
let S be an ϵ-corrupted set of n ≥ Cd/ϵ2 samples from D
in the strong contamination model (Definition 1.1). There
exists an algorithm that takes as inputs S and ϵ, runs in
Õ(nd/ϵ2) time and with probability at least 0.99 outputs a
unit vector u such that u⊤Σu ≥ (1−O(ϵ log(1/ϵ)))∥Σ∥op.

We note that the error guarantee of our algorithm is near-

2Naive techniques such as naive pruning and random projection
are also susceptible to outliers.
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optimal up to logarithmic factors (cf. Appendix B.3). The
work most closely related to ours is Jambulapati et al. (2020,
Theorem 2), and our algorithm improves upon it in three
significant ways:

• (Near-optimal error) The output of Theorem 1.2 achieves
the near-optimal (1 − O(ϵ log(1/ϵ))) approximation of
∥Σ∥op, whereas their output achieves the sub-optimal
approximation of (1−O(

√
ϵ log(1/ϵ) log d)).3

• (Dependence on ϵ in runtime) Our runtime is Õ(nd/ϵ2),
in contrast to their runtime of Õ

(
nd/ϵ4.5+ndm/ϵ1.5

)
,

where m is a parameter discussed below that belongs in
[2, d]. Thus, our runtime improves upon theirs in all cases.

• (Eigenvalue separation) Their algorithm assumes that the
m-th largest eigenvalue of Σ is smaller than ∥Σ∥op by
(1 − Θ̃(ϵ)) for some m ∈ [2, d], which appears in their
runtime. Thus, they obtain a nearly linear time only if
m=polylog(d/ϵ). Theorem 1.2 has no such restriction.

We finally note that, even without corruptions, Ω̃(d/ϵ2) sam-
ples are necessary for (1−O(ϵ log(1/ϵ)))-approximation of
∥Σ∥op. Moreover, even if there are no corruptions, the stan-
dard Lanczos algorithm achieving such a guarantee runs in
time Õ( nd√

ϵ
+ 1

ϵ ) (Sachdeva & Vishnoi, 2014, Theorem 10.1).
Thus, our result considerably reduces the price of robustness
in PCA, and brings it much closer to the clean data setting.

A streaming algorithm The distributed nature of mod-
ern data science applications and large-scale datasets of-
ten impose the restriction that the complete dataset cannot
be stored in the memory. In such scenarios, the streaming
model, defined below, is a much more realistic setting:

Definition 1.3 (Single-Pass Streaming Model). Let S be
a fixed set. In the one-pass streaming model, the elements
of S are revealed one at a time to the algorithm, and the
algorithm is allowed a single pass over these points.

In the streaming model, the algorithm also needs to opti-
mize the amount of memory that it uses. We still consider
corruptions in the data. This means that the input S above
is not comprised of i.i.d. samples from a distribution, but
comes from a “corrupted” distribution, formalized below:

Definition 1.4 (TV-contamination). Given a parameter ϵ ∈
(0, 1/2) and a distribution class D, the adversary speci-
fies a distribution D′ such that there exists D ∈ D with
dTV(D,D′) ≤ ϵ. Then the algorithm draws i.i.d. samples
from D′. We say that the distribution D′ is an ϵ-corrupted
version of the distribution D in total variation distance.

All prior algorithms for robust PCA needed to store the
entire dataset in memory, leading to space usage of at least

3In particular, ϵ → 0 as d → ∞ for non-vacuous guarantees.

Ω̃(d2/ϵ2).4 Building on Theorem 1.2, we present the first
algorithm for robust PCA that uses Õϵ(d) memory.

Theorem 1.5 (A streaming algorithm for robust PCA; in-
formal version). Let ϵ ∈ (0, c) for a small constant c >
0. Let D be a subgaussian distribution with mean zero
and (unknown) covariance matrix Σ. Let P be an ϵ-
corrupted version of D in total variation distance (Def-
inition 1.4). There is a single-pass streaming algorithm
that given ϵ, it reads poly(d/ϵ) many samples from P , and
with probability 0.99, returns a unit vector u such that
u⊤Σu ≥ (1 − O(ϵ log(1/ϵ)))∥Σ∥op. Moreover, the algo-
rithm uses memory (d/ϵ) · polylog(d/ϵ) and runs in time
(nd/ϵ2)polylog(d/ϵ).

Observe that the asymptotic error of the algorithm is near-
optimal and the memory usage is nearly linear in d (the size
of the output). We refer the reader to Appendix D.3.1 for
further discussion on bit complexity.

1.2. Our Techniques

Our approach is to combine the “easy” version of the ro-
bust PCA algorithm from Jambulapati et al. (2020); Kong
et al. (2020) with the fast mean estimation algorithm of
Diakonikolas et al. (2022d) (see also Diakonikolas et al.
(2022b)). This “easy” algorithm works essentially by com-
puting the top eigenvector, v, of the empirical covariance
matrix. It then projects the samples onto the v-direction and
estimates the true covariance in the v-direction. If this is
close to the empirical covariance, then this and the fact that
errors cannot substantially decrease the empirical covari-
ance in any direction implies that v is close to a principle
eigenvector of the true covariance matrix (cf. Lemma 2.7).
Otherwise, some small number of corruptions must account
for the difference, and these can be algorithmically filtered
out. One then repeats this process of filtering out outliers
until an approximate principal eigenvector is found.

The issue with this simple algorithm is its runtime. Al-
though each filtering step can be nearly linear time, there is
no guarantee that the number of these steps will be small. It
is entirely possible that each filtering step removes only a
tiny fraction of corruptions with very large projections in
the leading eigenvector direction v. To fix this, we use ideas
from Diakonikolas et al. (2022d) and make v essentially a
random linear combination of the few largest eigenvectors
of Σt (the empirical covariance at step t), by defining it to
be Σp

tw instead of the principle eigenvector of the empirical
covariance matrix, where w is a random Gaussian vector,
and p is a suitably large integer. This prevents an adversary
from “hiding” a corruption by making it orthogonal to some
particular v. Instead, any corruption substantially contribut-

4In experiments, memory usage has been highlighted as a key
bottleneck in robust estimation; see Diakonikolas et al. (2017a).
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ing to one of the largest eigenvalues of Σt is reasonably
likely to be filtered out. Our approach is to keep track of the
potential function tr(Σ2p+1

t ) and show: (i) small value of
the potential certifies that a solution vector can be recovered
from the empirical covariance, (ii) whenever this certifica-
tion is not possible, we can reduce the potential by a multi-
plicative factor of (1− Ω(ϵ)). This approach presents two
main challenges.

The first key challenge, pertinent to the “certification” that
was mentioned before, is to obtain optimal error without
any restriction on the spectrum of Σ (as in Jambulapati et al.
(2020)). A natural stopping condition is when the current
Σt is comparable (in an appropriate sense) to Σ up to (1±ϵ)
factor. Jambulapati et al. (2020) used Schatten-p norm for
large enough p to compare Σ and Σt. However, a simple
example (Example 3.1) shows that, even then, any determin-
istic algorithm relying on Σt must take nd2 time. Our two-
pronged solution is to (i) perform a white-box analysis of
robust PCA to enforce a stronger stopping condition and (ii)
output a random leading eigenvector of Σt (cf. Section 3.1).

Second, unlike in Diakonikolas et al. (2022d), we cannot
quite achieve a runtime of Õ(nd). This is essentially be-
cause of the choice of p. Assuming that ∥Σ∥op = 1, naïve
filtering can guarantee that our initial Σt at t = 0 has eigen-
values at most poly(d).5 Thus, the starting value of our
potential is dO(p), and requires Õ(p/ϵ) rounds of filtering
(each of which takes O(pnd) time since we need to do p
many matrix-vector products with Σ), for a total runtime
of Õ(ndp2/ϵ). Now, our algorithm requires p to be at least
log(d)/ϵ to distinguish between eigenvalues that differ by a
(1 + ϵ)-factor, as opposed to p = O(log(d)) in Diakoniko-
las et al. (2022d), resulting in a runtime of Õ(nd/ϵ3).

This can be improved to Õ(nd/ϵ2) by noting that such fine
differences in the eigenvalues become relevant only at the
last stage (“certification stage”) of our algorithm. Until then,
we can use a smaller value of p. More formally, for any
p′ ≥ log d, we can still decrease the potential multiplica-
tively until our stopping condition is satisfied. Although
this no longer certifies that we have a good solution, we
can use it to upper bound the potential by poly(d). Thus,
we run multiple stages: in stage k, we take pk = 2k log d
and reduce the potential until it becomes dC , which takes
Õ(ndpk/ϵ) time. By the time we reach p = log(d)/ϵ, since
that stage also starts with potential at most dC , the algo-
rithm terminates in Õ(nd/ϵ2) time, overall.

Finally, as in Diakonikolas et al. (2022d), this algorithm
can be turned into a streaming one. Since we use a small
number of filters, where each filter removes all samples x
with |v⊤x| > T (for some carefully chosen v and T ), we can

5As all quantities scale with ∥Σ∥op, we use this normalization
for the sake of simplifying presentation.

implement this with low memory by storing just the v’s and
T ’s of the previously created filters, along with a minimal
set of temporary variables for necessary calculations.

1.3. Related Work

Our work is situated within the field of algorithmic robust
statistics, where the goal is to develop computationally-
efficient algorithms for high-dimensional estimation prob-
lems that are robust to outliers. We refer the reader to a re-
cent book (Diakonikolas & Kane, 2023) on this topic. The
most related line of works to our paper is the work on high-
dimensional robust PCA, starting from Xu et al. (2013). Sub-
sequently, polynomial-time algorithms with near-optimal
dependence on ϵ in the error guarantee were developed in
Jambulapati et al. (2020); Kong et al. (2020). We note that
these algorithms had runtime at least Ω(nd2). Jambulapati
et al. (2020) also developed a nearly linear time algorithm
for robust PCA; however, their algorithm runs in nearly
linear-time only in certain cases, and the dependence on ϵ in
the error guarantee is sub-optimal and dimension-dependent.
Finally, our streaming algorithm is inspired by Diakonikolas
et al. (2022d), who presented the first streaming algorithms
for various high-dimensional robust estimation tasks.

We remark that robust PCA is closely related to the problem
of robust covariance estimation in the operator norm, where
the algorithm is required to output an estimate Σ̂ given a
corrupted set of samples such that ∥Σ− Σ̂∥op is small. It is
easy to see that the top eigenvector of Σ̂ satisfies the guaran-
tees of robust PCA. Although the sample complexity of ro-
bust covariance estimation in operator norm is still Õ(d/ϵ2)
for Gaussian data, Diakonikolas et al. (2017b, Theorem 1.5)
has shown that the problem is computationally hard (in the
statistical query model) unless one takes Ω(d2) samples.
With Ω(d2) samples, one can use robust mean estimation
algorithm to estimate the second moment of the samples in
Frobenius norm (and thus in operator norm); see the discus-
sion in Diakonikolas et al. (2017b). Thus, robust PCA is
an easier task, both computationally and statistically, than
robust covariance estimation in operator norm, while still
being useful.

We discuss additional related work in Appendix A.

2. Preliminaries
Notation We denote [n] := {1, . . . , n}. For a vector v,
we let ∥v∥2 and ∥v∥∞ denote its ℓ2 and infinity-norm re-
spectively. We use boldface capital letters for matrices. We
use I for the identity matrix. For two matrices A and B, we
use tr(A) for the trace of A, and ⟨A,B⟩ := tr(A⊤B) for
the trace-inner product. We use ∥A∥F, ∥A∥op, ∥A∥p for
the Frobenius, operator, and Schatten p-norm of a matrix A
for p ≥ 1. In particular, if A is a d × d symmetric matrix
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with eigenvalues λ1, . . . , λd, then ∥A∥p := (
∑

i |λi|p)1/p.
We say that a square symmetric matrix A is PSD (posi-
tive semidefinite), and write A ⪰ 0, if x⊤Ax ≥ 0 for all
x ∈ Rd. We write A ⪯ B when B−A is PSD. We write
a ≲ b, when there exists an absolute universal constant
C > 0 such that a ≤ Cb.

For a distribution D over a domain X and a weight function
w : X → R+, we use Dw to denote the distribution over Rd

with pdf Dw(x) := D(x)w(x)/
∫
D(x)w(x). We denote

the second moment of D by ΣD := EX∼D[XX⊤]. We
will repeatedly use that Ex∼D[∥Ux∥22] = ⟨U⊤U,ΣD⟩.

We now collect some facts that we shall use in the paper.
Starting with Schatten norms, for a symmetric matrix A,
we have ∥A∥2 = ∥A∥F, ∥A∥∞ = ∥A∥op, and for a PSD
matrix A, ∥A∥1 = tr(A). Schatten norms satisfy Hölder
inequality for trace inner product: ⟨A,B⟩ ≤ ∥A∥p∥B∥q if
1/p+ 1/q = 1. Moreover, Schatten-p norms decrease with
p and are close to each other if p is large.

Fact 2.1. If A ∈ Rd×d is symmetric and p≥1, the Schatten
norms of A satisfy ∥A∥p+1 ≤ ∥A∥p ≤ ∥A∥p+1d

1
p(p+1) .

The following concerns the distribution of quadratic poly-
nomial of Gaussians, i.e., z⊤Az for z ∼ N (0, I).

Fact 2.2. For any symetric d × d matrix A, we have
Varz∼N (0,I)[z

⊤Az] = 2∥A∥2F. If A is a PSD matrix, then
for any β > 0, Prz∼N (0,I)[z

⊤Az ≥ βtr(A)] ≥ 1−
√
eβ.

Finally, we record the guarantee of power iteration:

Fact 2.3 (Power iteration). For any PSD matrix A ∈ Rd×d

and ϵ, δ ∈ (0, 1), if p > C
ϵ log(d/(ϵδ)) for a sufficiently

large constant C, and u := Apz for z ∼ N (0, I), then
Pr
[
u⊤Au/∥u∥22 ≥ (1− ϵ)∥A∥op

]
≥ 1− δ .

2.1. Stability Condition

Recall that in our notation we use ΣD = EX∼D[XX⊤]
for the second moment of a distribution D, and Dw(x) :=
D(x)w(x)/

∫
D(x)w(x) for the distribution D re-weighted

by w(x). Our algorithm will rely on the following condition.

Definition 2.4 (Stability Condition). Let 0 < ϵ < 1/2
and ϵ ≤ γ < 1. A distribution G on Rd is called
(ϵ, γ)-stable with respect to a PSD matrix Σ ∈ Rd×d,
if for every weight function w : Rd → [0, 1] with
EX∼G[w(X)] ≥ 1 − ϵ, the weighted second moment ma-
trix, ΣGw

:= EX∼G[w(x)XX⊤]/EX∼G[w(X)], satisfies
that (1− γ)Σ ⪯ ΣGw

⪯ (1 + γ)Σ .

In particular, the second moment matrix is stable under
deletion of ϵ-fraction. Some remarks are in order: (i)
The definition above is intended for distributions with zero
mean; This can be assumed without loss of generality since
we can always work with pairwise differences, (ii) The
uniform distribution over a set of n = Cd/(ϵ2 log(1/ϵ))

i.i.d. samples from a subgaussian distribution (cf. Defini-
tion B.1) with covariance Σ is w.h.p. (ϵ, γ)-stable with γ =
O(ϵ log(1/ϵ)) (Jambulapati et al., 2020), and (iii) As stated
in Theorem 1.2, the algorithm takes as input an ϵ-corrupted
set of samples from a subgaussian distribution. However,
for notational convenience, we will consider the input to be
a distribution P=(1−ϵ)G+ϵB where G is an (unknown)
stable distribution and B is arbitrary. P is meant to be the
uniform distribution over the ϵ-corrupted set of samples, G
will be the part from the remaining inliers, and B that of
outliers.6 We emphasize that the identity of outliers is un-
known to the algorithm.

Our algorithm will remove points iteratively, so we will use
binary weights w(x) ∈ {0, 1} to distinguish between the
points that we keep (w(x) = 1) and the ones that have been
removed (w(x) = 0). Throughout the run of our algorithm,
we will ensure that the weights satisfy the following setting:

Setting 2.5. Let 0 < 20ϵ ≤ γ < γ0 for a small constant γ0.
Let P be a mixture distribution P = (1− ϵ)G+ ϵB on Rd,
where G is (20ϵ, γ)-stable distribution with respect to a PSD
d× d matrix Σ, and B is arbitrary. Let w : Rd → {0, 1} be
a weight function with EX∼G[w(X)] ≥ 1− 3ϵ.

As we will use projections of points to filter outliers, we
need the following implication of stability, concerning the
average value of these projections (and thresholded projec-
tions), as well as their quantiles and their robust estimates.

Lemma 2.6. In Setting 2.5, define the following: (i) g(x) :=
∥Ux∥22 for some U ∈ Rm×d, (ii) L be the top 3ϵ-quantile of
g(x) under Pw (P re-weighted by w) and S := {x : x >
L}, (iii) σ̂ := EX∼P [w(X)g(X)1(g(X) ≤ L)]. Then,

1.
∣∣ E
X∼G

[w(X)g(X)]−
〈
U⊤U,Σ

〉 ∣∣ ≤ 2γ
〈
U⊤U,Σ

〉
,

2. EX∼G[w(X)g(X)1{X ∈ S}] ≤ 2.35γ
〈
U⊤U,Σ

〉
,

3. L ≤ 1.65(γ/ϵ)⟨U⊤U,Σ⟩,

4.
∣∣σ̂ − 〈U⊤U,Σ

〉∣∣ ≤ 4γ
〈
U⊤U,Σ

〉
,

5. PrX∼G

[
∥X∥22 > 2(d/ϵ)∥Σ∥op

]
≤ ϵ.

As discussed earlier, the goal is to filter out points until a
top eigenvector u of the data set’s empirical second moment
ΣPw

approximately maximizes the true variance. As in
previous work, an easy way to detect when this happens
is by comparing the empirical variance along u to the true
variance along the same direction (which although unknown,
it can be easily robustly estimated using Item 4 above). The
following is implicit in Xu et al. (2013); Jambulapati et al.
(2020); Kong et al. (2020):

6This claim mentioned in (iii) technically needs a proof (see,
e.g., Lemma 2.12 in Diakonikolas et al. (2022d)).
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Lemma 2.7 (Basic Certificate Lemma). Consider Set-
ting 2.5. Let u be a unit vector with u⊤ΣPwu ≥ (1 −
O(γ))∥ΣPw∥op. If u⊤Σu ≥ (1−O(γ))u⊤ΣPwu, then we
have that u⊤Σu/∥u∥22 ≥ (1−O(γ))∥Σ∥op.

2.2. Filtering

We now recall the standard filtering routine from algorith-
mic robust statistics literature. The filter uses a score τ(x)
for each point x, indicating how atypical the point is for the
distribution. Given a (known) upper bound T for the average
scores over only the inliers EX∼G[w(X)τ(X)], if the aver-
age score of all (corrupted) points, EX∼P [w(X)τ(X)], is
much bigger than T , then points with large scores are likely
to be outliers. Thus, Algorithm 1 removes all points with
scores greater than a (random) threshold.7 We also note:

1. Instead of storing a bit w(x) for every x, we can store
a more succinct description of the filters, i.e., just the
rℓ’s of line 4, and calculate w(x) whenever needed. This
modification is amenable to the streaming setting.

2. Since every time we remove all points with τ(x) > rℓ
and rℓ ∼ U([0, rℓ−1]), this (in expectation) halves the
range of τ(x), and thus Algorithm 1 terminates after
O(log(maxx τ(x)/minx τ(x))) steps in expectation.

The following result states that Algorithm 1 removes more
outliers than inliers in expectation.

Lemma 2.8 (Guarantees of Filtering). Let T be such that
(1−ϵ)EX∼G [w(x)τ(x)]<T and T̂ such that |T̂−T |<T/5.
Denote by F the randomness of HARDTHRESHOLD-
INGFILTER (i.e., the collection of the random thresh-
olds r1, r2 . . . used). Let w′ be the weight func-
tion returned. Then, (i) EX∼P [w

′(X)τ(X)] ≤
3T almost surely, and (ii) EF [ϵEX∼B [w(X)−w′(X)]]
>(1−ϵ)EX∼G[w(X)−w′(X)]].

Algorithm 1 HARDTHRESHOLDINGFILTER

1: Input: Distribution P = (1 − ϵ)G + ϵB, weights w,
scores τ , parameters T̂ , R.

2: w0(x)← w(x), and r0 ← R, ℓ← 1.
3: while EX∼P [w(X)τ(X)] > 5

2 T̂
4: Draw rℓ ∼ U([0, rℓ−1]).
5: wℓ+1(x)← wℓ(x) · 1(τ(x) > rℓ).
6: ℓ← ℓ+ 1.
7: return wℓ(x).

Our main algorithm will repeatedly call HARDTHRESH-
OLDINGFILTER with appropriate τ(x) and other parame-
ters. From a technical standpoint, if the second part of
Lemma 2.8 (which states that more mass is removed from
outliers than inliers) were true deterministically, we would
have that EX∼G[w(X)] ≥ 1− ϵ no matter how many times
the filter is called. This would mean that Setting 2.5 would

7Consequently, for each point x, P(x is removed) ∝ τ(x).

be maintained throughout the main algorithm. However,
part (ii) of Lemma 2.8 holds only in expectation (with re-
spect to F ), but one can still show via a martingale argu-
ment that a relaxed condition of EX∼G[w(X)] ≥ 1 − 3ϵ
will still be true throughout the main algorithm w.h.p. The
details of this can be found in the full version of the pa-
per (Lemma B.17). For the purposes of the main body, the
reader can simply think that Setting 2.5 will always hold.

3. Robust PCA in Nearly-Linear Time
For simplicity of presentation, we focus on proving a weaker
version of Theorem 1.2 with runtime Õ(nd/γ3) (where γ
is the stability parameter; recall γ = O(ϵ log(1/ϵ)) for sub-
gaussians). This still improves upon prior work in terms of
both runtime and error guarantee, while effectively showing
key aspects of our approach. In Section 3.3, we outline how
we further improve the runtime to Õ(nd/γ2).

As mentioned earlier in Sections 1.2 and 2, we run an itera-
tive algorithm, where in each iteration t, we assign a score to
each point x, and use these scores to removes points. These
scores are usually projections of points along a direction,
where outliers have much larger projections than the inliers.
Under the stability condition, we can reliably filter outliers
as long as the empirical (corrupted) variance is (1 + Cγ)
times larger than the true variance in a direction.

As each round of filtering decreases the variance, we see that
Σt should decrease with t (after appropriate normalization).
As noted in prior work, using scores that involve projections
of the samples on the top eigenvector vt of the empirical sec-
ond moment Σt does not necessarily make good progress
because the filtering removes points only in a single (fixed)
direction of the largest variance (cf. Section 1.2 for details).
Instead, one needs to filter along many of these large vari-
ance directions simultaneously (on average), which we do
by filtering along the direction vt = Mtz for z ∼ N (0, I)

and Mt = Σp
t for a large integer p = C log(d/γ)

γ .

To track progress of the algorithm, we use the potential func-
tion ϕt := tr(Σ2p+1

t ). This potential tracks the contribu-
tion from all large eigenvalues (and not just the largest one),
and has been used in prior work for robust mean estimation.
In our setting, we will show that (I) small enough ϕt (e.g.,
ϕt ≤ ∥Σ∥2p+1

op /poly(dp)) implies that Σ and Σt share the
leading eigenspace without any restriction on the spectrum
of Σ, which in turn, certifies that a good solution vector can
be produced, and (II) if the spectrum of Σ and Σt disagree,
then we can decrease ϕt multiplicatively (on average). In
particular, we will show that ϕt+1 ≤ (1−γ)ϕt on average.
Combining this with the fact that a simple pruning can al-
ways ensure ϕ0 ≤ poly(dp)∥Σ∥2p+1

op , we can obtain ϕt <
∥Σ∥2p+1

op /poly(d) after just t = O(p log(d)/γ) rounds.

We now explain the items (I) and (II) above: Section 3.1
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formalizes the notion of “shared leading eigenspaces”, and
Section 3.2 outlines the decrease of the potential function.

3.1. Advanced Certificate Lemma

We begin by summarizing the algorithmic framework of
Jambulapati et al. (2020). In particular, we highlight the
roadblocks in their framework to remove the eigenvalue sep-
aration condition, and our proposed modifications that rely
on formalizing the notion of “shared leading eigenspaces”.

Roughly speaking, their iterative algorithm stops at an itera-
tion t such that ∥Σt∥pp ≤ (1 + Cγ)p∥Σ∥pp, where γ is the
stability parameter.8 Then, their algorithm tries the top-m
eigenvectors of Σt for some m and returns the (normalized)
eigenvector v that attains the best possible v⊤Σv (which can
be estimated up to small error); see Lemma 2.7. In particu-
lar, the last step takes Õγ(ndm) time. However, as the fol-
lowing example shows (by taking r = d/2 as m = Ω(d)),
this approach cannot give a nearly-linear time algorithm.

Example 3.1 (Hard Example for Schatten p-Norm Stop-
ping Condition). Let Σ be a PSD projection matrix of
rank r, then Σt = I satisfies the condition ∥Σt∥pp ≤ (1 +
Cγ)p∥Σ∥pp as long as p ≳ log(d/r)/γ. However, any de-
terministic algorithm to identify a good direction of Σ from
the eigenvectors of Σt must take m = Ω(d− r).

Thus, Jambulapati et al. (2020) impose an additional as-
sumption that the largest eigenvalue and the m-th largest
eigenvalue of Σ are separated for some m. Consequently,
their result and their version of certificate is inherently re-
stricted to have dependence on m; see Proposition 4 therein.

We make two crucial changes in our algorithm (for techni-
cal reasons, we also make a change of variable to use 2p+1
instead of p). The first change is to strengthen the stopping
condition: instead of reducing the Schatten norm, which is
equivalent to ⟨Σt,Σ

2p
t ⟩ ≤ (1+Cγ)2p+1⟨Σ,Σ2p⟩, we stop

at a stronger condition 9 of ⟨Σt,Σ
2p
t ⟩ ≤ (1+Cγ)⟨Σ,Σ2p

t ⟩.
That is, we stop whenever the empirical variance in direc-
tions of Σp

t , ⟨Σt,Σ
2p
t ⟩, is comparable to the true variance,

⟨Σ,Σ2p
t ⟩, up to (1 + Cγ) factor (cf. Lemma 2.6 with U =

Σp
t ). Observe that this (1 + Cγ) factor is the best possible

factor that we can achieve while comparing the robust and
empirical variances. We are able to achieve this stronger
stopping condition because until this condition is satisfied,
our algorithm will remove outliers along Σp

t , which will de-
crease the potential by a multiplicative factor (this will the
topic of the next subsection).

Still, the hard example from Example 3.1 continues to sat-
isfies this stronger condition: one must take m = Θ(dγ) if
r = d/(1 + γ). Thus, any deterministic algorithm would re-

8While comparing norms under stability, (1+Cγ) is necessary.
9Please see Appendix B.4 for why this is stronger.

quire m = Ω(nd2γ) time, which is quadratic in d. Our sec-
ond main insight is to randomize the output of the algorithm.
That is, even though, a deterministic algorithm would need
to try Ω(γd) many top eigenvectors of Σt before finding
a high-variance direction of Σ, a top eigenvector sampled
randomly from the spectrum of Σt will suffice with a large
constant probability. In particular, we take a Gaussian sam-
ple and iteratively multiply it by Σt in the style of power
iteration. Formally, we prove the following:
Lemma 3.2 (Advanced Certificate Lemma). In the Set-
ting 2.5 let p>C

γ log( dγ ), M := (EX∼P [w(X)XX⊤])p,
and assume ⟨Σ,M2⟩ ≥ (1 − 250γ)⟨ΣPw

,M2⟩. If u :=
Mz for z ∼ N (0, I), then with probability at least 0.9 (over
the randomness of z) we have the following: 10

u⊤ΣPw
u/∥u∥22 ≥ (1− γ)∥ΣPw

∥op, (1)

u⊤Σu ≥ (1−O(γ))u⊤ΣPw
u . (2)

The above result states that whenever ⟨Σ,M2⟩ ≥ (1 −
250γ)⟨ΣPw ,M

2⟩ for large p, we can use Algorithm 2 to
obtain a vector u that will satisfy the “basic certificate” from
Lemma 2.7 and thus be a good solution. Our main algorithm
will thus call Algorithm 2 to output a vector.

Algorithm 2 SAMPLETOPEIGENVECTOR

1: Input: Distribution P , weights w, parameters ϵ, γ, δ.
2: y ← Σp′

Pw
g for p′ = C

γ log
(

d
γδ

)
and g ∼ N (0, I).

3: r̂ ← y⊤ΣPw
y/∥y∥22. ▶{cf. Fact 2.3}

4: Let M:=(EX∼P [w(X)XX⊤])p for p=C log(d/γ)
γ .

5: u←Mz for z ∼ N (0, I).
6: Find σ̂u such that |σ̂u − u⊤Σu| ≤ 4γu⊤Σu.

7: If σ̂u ≥ (1− Cγ)u⊤ΣPwu and u⊤ΣPwu

∥u∥2
2
≥ (1− γ)r̂t

8: return u/∥u∥2. ▶{c.f. Lemma 2.7}

Proof Sketch of Lemma 3.2 We conclude with an
overview of the proof of Lemma 3.2. Part (1) follows
directly by Fact 2.3 as it is simply the power itera-
tion step; Thus, we focus on establishing (2). Define
the random variable Y := z⊤MAMz = u⊤Au for
A := Σ − (1 − 250γ)ΣPw

. Note that the condition
⟨Σ,M2⟩ ≥ (1 − 250γ)⟨ΣPw ,M

2⟩ can be rewritten as
E[Y ] ≥ 0. Moreover, (2) is equivalent to saying Y is not
too negative with constant probability.

To show that Y is not too negative, we will show that its
variance is small. In particular, we claim that it suffices
to show Var[Y ]≲γ2∥ΣPw

∥2op∥M∥4F. To see why it is suf-
ficient, Chebyshev’s inequality implies that with constant
probability

Y ≳ −γ∥ΣPw∥op∥M∥2F (3)

10For technical reasons, we take M to be
(EX∼P [w(X)XX⊤])p = (EX∼P [w(X)])p Σp

Pw
and not Σp

Pw
.
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With (3) at hand, we use the definition of Y and to get that
with high probability,

u⊤Σu ≥ (1− 250γ)u⊤ΣPw
u−O

(
γ∥M∥2F∥ΣPw

∥op
)

≥ (1−O(γ))u⊤ΣPw
u ,

where the last step used (1) and that ∥M∥2F/∥u∥22 ≤ O(1)
holds with constant high probability (Fact 2.2).

Thus, it remains to show Var[Y ]≲γ2∥ΣPw
∥2op∥M∥4F. By

Fact 2.2: Var[Y ]=2∥MAM∥2F, and thus we need to show:
Claim 3.3 (Informal). ∥MAM∥F ≲ γ∥ΣPw

∥op∥M∥2F.
Proof sketch of Claim 3.3. Recall the definition of A. We
can decompose ΣPw into the contribution from inliers
(which is very close to Σ by stability) and the contribu-
tion due to outliers ΣB := EX∼B [w(X)XX⊤]. Roughly
speaking, we have ΣPw

≈ (1− ϵ)Σ+ ϵΣB , which implies
that A ≈ γΣ+ ϵΣB as ϵ ≤ γ.

By triangle inequality, ∥MAM∥F ≤ γ∥MΣM∥F +
ϵ∥MΣBM∥F. The first term is easy to upper bound us-
ing PSD property of Σ and M as follows: ∥MΣM∥F ≲
∥Σ∥op∥M2∥F ≲ ∥ΣPw∥op∥M∥2F by Fact 2.1 and sta-
bility. The second term is more involved. Using the
decomposition of ΣPw

in the condition ⟨Σ,M2⟩ ≥
(1 − O(γ))⟨ΣPw

,M2⟩, we obtain that ⟨ΣB ,M
2⟩ ≲

(γ/ϵ)⟨Σ,M2⟩. Finally, as ΣB is a PSD matrix, we ob-
tain ϵ∥MΣBM∥F ≲ ϵ tr(MΣBM) = ϵ⟨ΣB ,M

2⟩ ≲
γ⟨Σ,M2⟩ ≤ γ∥Σ∥op∥M∥2F, leading to the result. ■

3.2. Reducing the Potential Function Multiplicatively

We now describe Algorithm 3, the main component in
achieving Theorem 1.2. We follow the notation defined in
Algorithm 3. Recall that the distribution P given as input
is just the uniform distribution over the (corrupted) data set
and is assumed to be of the form P = (1− ϵ)G+ ϵB where
G is (Cϵ,γ)-stable (see the comment below Definition 2.4).

In this section, we will quantify the progress of our
algorithm by keeping track of the potential function
ϕt := tr(B2p+1

t ) in each round t (where Bt is scaled
version of Σt, defined in Line 8). 11 As mentioned
earlier, the correctness of Algorithm 3 is summarized
by the following arguments: (i) whenever the condition
⟨Σ,M2

t ⟩ ≥ (1−Cγ)⟨Σt,M
2
t ⟩ is true we can output a good

solution with SAMPLETOPEIGENVECTOR , (ii) if the con-
dition is false, then ϕt+1 decreases multiplicatively ϕt+1 ≤
(1− γ)ϕt on average, (iii) if ϕt ≤ ∥Σ∥2p+1

op /poly(d) then
the condition from (i) is necessarily true.

We have shown (i) in the previous subsection, (iii) is fairly
standard and omitted from the main body (see Lemma C.4).
It remains to show (ii), which we do in Claim 3.4 below.

11In previous sections, we used tr(Σ2p+1
t ) for simplicity. Since

our formal proof will need ϕt to be naturally decreasing with t, we
use the un-normalized second moment Bt for which Bt+1 ⪯ Bt.

Before proving Claim 3.4, we outline how these claims im-
ply a version of Theorem 1.2 with runtime Õ(nd/γ3) (a
detailed proof can be found in Appendix): By the prun-
ing 12 of Line 4, ϕ0 ≤ (d/ϵ)O(p)∥Σ∥2p+1

op . Thus, there ex-
ists tend = O(log2(d/ϵ)/γ2) such that after tend rounds,
ϕtend < (1− γ)tendϕ0 ≤ ∥Σ∥2p+1

op /poly(d), which would
cause SAMPLETOPEIGENVECTOR to output a good solu-
tion. Now, each iteration of the loop can be implemented in
Õ(ndp) time: The calculation of Mtz involves p multipli-
cations of z with the empirical second moment matrix, each
of which can be done in O(nd) time as Σtz =

∑
x x(x

⊤z).
Thus, the total runtime is Õ(tend · ndp) = Õ(nd/γ3).

Algorithm 3 Robust PCA in Small Number of Iterations
1: Input: P, ϵ, γ.
2: Let p=C log(d/γ)

γ , tend=
C log2(d/ϵ)

γ2 for large enough C.
3: Find estimator σ̂op ∈ (0.8∥Σ∥op, 2d∥Σ∥op). ▶{c.f.

Lemma 2.6.4 with U = I}
4: Initialize w1,1(x) = 1

(
∥x∥22 ≤ 10σ̂op(d/ϵ))

)
.

5: for t = 1, . . . , tend do
6: Call SAMPLETOPEIGENVECTOR (P,wt, ϵ, γ,

1
tend

).
7: Let Pt be the distribution of P weighted by wt:

P (x)wt(x)/EX∼P [wt(X)].
8: Let Bt := EX∼P [wt(X)XX⊤] and Mt := Bp

t .
▶{Mt does not need to be explicitly computed.}

9: Let gt(x) := ∥Mtx∥22.
10: vt ←Mtzt, where zt ∼ N (0, I).
11: Let ft(x) = (v⊤t x)

2.
12: Let Lt be the 3ϵ-quantile of ft(·) under Pt.
13: Lt ← max{Lt, (0.1/d)σ̂op∥vt∥22} 13

14: Let τt(x) = ft(x)1(ft(x) > Lt)
15: Find σ̂t such that |σ̂t − v⊤t Σvt| ≤ 4γv⊤t Σvt. (e.g.,

σ̂t := EX∼P [wt(X)ft(X)1(ft(X) ≤ Lt)]).
▶{c.f. Item 4 of Lemma 2.6 with U = v⊤t }

16: T̂t ← 2.35γσ̂t.
17: wk,t+1 ← HardThresholdingFilter(P,wt, τt, T̂t, R).
18: end for
19: return FAIL.

Claim 3.4 (Informal). In Setting 2.5, if ⟨Σ,M2
t ⟩ ≥ (1 −

Cγ)⟨Σt,M
2
t ⟩, then E[ϕt+1] ≤ (1− γ)ϕt in Algorithm 3.

Proof Sketch of Claim 3.4. For simplicity, we assume that
scores ft(x) used by the algorithm (line 11) are the same as
the scores gt(x). Observe that computing gt(x) = ∥Mtx∥22
for all n points would be computationally costly. This is
why we use the one-dimensional random projections ft(x),
which are unbiased estimates of gt(x). A complete proof
that uses the estimates ft can be found in Appendix C.2.

12Naïve pruning removes only a few inliers; see Lemma 2.6.5
13This ensures a lower bound for τ(x) whenever it is non-zero.

See second bullet in Section 2.2 for why this is needed.
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Using our definitions, we calculate the decrease in potential
at the (t+1)-th step:

ϕt+1 = tr
(
B2p+1

t+1

)
≤ tr (Bp

tBt+1B
p
t ) = tr(MtBt+1Mt)

= E
X∼P

[wt+1(X)gt(X)]

= (1−ϵ) E
X∼G

[wt+1(X)gt(X)]+ϵ E
X∼B

[wt+1(X)gt(X)]

≤ E
X∼G

[wt(X)gt(X)] + ϵ E
X∼B

[wt+1(X)gt(X)] , (4)

where the first inequality uses that Bt+1 ⪯ Bt is decreasing
in PSD order (along with Fact B.4) and the last inequality
uses wt+1 ≤ wt. We argue that the RHS above is (1 +
O(γ))⟨Σ,M2

t ⟩: The first term in (4), which corresponds to
inliers, can be upper-bounded by (1 + 2γ)⟨Σ,M2

t ⟩ using
stability (Lemma 2.6.1) For the second term in (4), we use
τt(x) ≤ gt(x) + Lt ≤ gt(x) + 1.65(γ/ϵ)⟨Σ,M2

t ⟩, where
the last inequality uses Lemma 2.6.3. Moreover, filtering
ensures that ϵEX∼B [wt+1(X)τt(X)] ≤ 2.35γ⟨Σ,M2

t ⟩,
where we use Lemma 2.8 with T = 2.35γ⟨Σ,M2

t ⟩, with
this choice of T justified by Lemma 2.6.2. Combining these
bounds, we obtain

ϕt+1 ≤ (1 +O(γ))⟨Σ,M2
t ⟩ . (5)

Now, using our assumption ⟨Σ,M2
t ⟩ < (1−Cγ)⟨Σt,M

2
t ⟩,

we complete the proof as follows:

ϕt+1 < (1+O(γ))⟨Σ,M2
t ⟩ < (1+O(γ))(1−Cγ)⟨Σt,M

2
t ⟩

≤ (1 +O(γ))(1− Cγ)

EX∼P [wt(X)]
⟨Bt,M

2
t ⟩ ≤ (1− γ)ϕt ,

using C≫1, ⟨Bt,M
2
t ⟩=ϕt, and EX∼P [wt(X)]≥1−O(ϵ),

as filtering does not delete more than O(ϵ)-mass from the
inliers (see discussion below Lemma 2.8). ■

We note that Claim 3.4 holds for all p ≥ log d; however,
Lemma 3.2 requires large p.

3.3. Improving the Dependence on ϵ in Runtime

In the simpler version of the algorithm, the main reason
for a large runtime was that (i) the initial potential was
poly((d/ϵ)p)∥Σ∥2p+1

op , (ii) the value of p was C
γ log( dγ ),

(iii) the potential decreases by only (1−γ) factor, and (iv)
the algorithm terminates when ϕt ≤ ∥Σ∥2p+1

op /poly(d).
Since (ii)-(iv) are most likely needed, we modify the al-
gorithm to ensure that the initial potential is much smaller:
poly((d/ϵ)log(d))∥Σ∥2p+1

op . If we are able to ensure this
cheaply, the algorithm would need only polylog(d/ϵ)/γ
rounds, saving one factor of 1/γ from the runtime.

The idea is that while we do need (ii), it is only necessary
when the algorithm is about to produce a final solution.14

14Lemma 3.2 (Certificate lemma) requires p > C log(d/γ)/γ.

Suppose we run Algorithm 3 with p = log d, where the ini-
tial potential is indeed poly((d/ϵ)log(d))∥Σ∥2p+1

op . In Sec-
tion 3.2, we guaranteed a (1− γ)-reduction in potential un-
til the condition ⟨Σ,M2

t ⟩ ≥ (1 − Cγ)⟨Σt,M
2
t ⟩ gets acti-

vated. However, even if this condition gets activated, we do
not know if Algorithm 2 will succeed as p≪ log(d/γ)/γ
(c.f. Lemma 3.2). However, when this condition is violated,
we see that the final potential has become much smaller:
ϕt = ⟨Bt,M

2
t ⟩ ≤ ⟨Σt,M

2
t ⟩ ≤ (1 + Cγ)⟨Σ,M2

t ⟩ ≤
(1+Cγ)∥Σ∥op∥Bt∥2p2p, where the second step uses that the
condition is violated. Using Fact 2.1 to relate ∥Bt∥2p2p and
ϕt = ∥Bt∥2p+1

2p+1, we obtain ϕt ≤ poly(d/ϵ)∥Σ∥2p+1
op .

So far, we have shown that starting with
ϕ0≤poly((d/ϵ)log(d))∥Σ∥2p+1

op , we can reduce ϕt to
ϕt ≤ poly(d)∥Σ∥2p+1

op after t ≍ log2(d/ϵ)/γ rounds. We
can then restart the counter t and double p′ = 2p. The new
potential ϕ′

0 will be upper bounded using Fact 2.1 as follows:

ϕ′
0 = ∥Bt∥2p

′+1
2p′+1 ≤ ∥Bt∥2p

′+1
2p+1 = (ϕt)

2p′+1
2p+1 = (ϕt)

4p+1
2p+1 ,

i.e., it is still poly(d)∥Σ∥2p′+1
op . We run the same pro-

cedure repetitively until p reaches its final value of
Θ(log2(d/γ)/γ), where the analysis of the previous two
sections are applicable, returning a good vector. This leads
to a nested-loop algorithm realizing Theorem 1.2.

4. A Streaming Algorithm for Robust PCA
In this section, we consider the problem of robust PCA in
the single-pass streaming model. Recall that in this model
the algorithm observes the data points one by one, and the
algorithm needs to optimize the memory usage.

Drawing inspiration from techniques in Diakonikolas et al.
(2022d), we see that the algorithm from the previous sec-
tion is partly already amenable to the streaming setting:
The filters used are of the form 1(v⊤x > L) which have
a compact representation of O(d) space (it suffices to store
the vector v and the threshold L). The potential-based anal-
ysis also showed that we create at most O(polylog(d/ϵ)/γ)
many such filters. The remaining issue is that there is
no fixed dataset to iterate over, e.g., one cannot compute
v = Mz = Bpz as in line 10 of our previous algorithm. In
particular, we can not compute B̂pz in the streaming model
for an estimate B̂ ≈ B. As in Diakonikolas et al. (2022d),
our approach is to use iterative products of sample-based
quantities that are sufficiently close to their population-
level counterparts. That is, we multiply z sequentially by
p empirical estimates of Bt, each calculated over a dif-
ferent set of samples (each multiplication can indeed be
implemented in the streaming model). Thus, we approx-
imate M with M̂ :=

∏p
ℓ=1 B̂t,ℓ, and it suffices as long as

∥M̂−Mt∥op ≤ δ∥Mt∥op for an appropriate error δ.
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The main new technical ingredient in our paper is that we
also need ∥M̂z∥22/∥z∥22 ≥ (1 − O(γ))∥Mt∥2op w.h.p. for
z ∼ N (0, I) as opposed to a constant factor approximation
in Diakonikolas et al. (2022d). Although a naïve attempt to
prove this requires the approximation δ to be too small, lead-
ing to sample complexity Ω(d3), we are able to improve the
dependence on d for this in Lemma D.8. See Appendix D
for the complete algorithm and its proof.

5. Conclusion
We gave the first nearly-linear time algorithm for robust
PCA that attains near-optimal error guarantees, without
eigenvalue gap assumptions in the spectrum of Σ. Addition-
ally, we presented the first sub-quadratic space streaming
algorithm for robust PCA.

In terms of future improvements, one potential avenue for
optimization is the calculation of Bp for a PSD matrix B
and p = Θ̃(1/ϵ). It is likely that these matrix-dot products
can be approximated faster through the use of Chebyshev
approximation (Sachdeva & Vishnoi, 2014, Chapter 10).
Additionally, it remains to be determined if the runtime of
our algorithm improves in the presence of a gap among
the large eigenvalues of the true covariance matrix. Lastly,
as highlighted by Diakonikolas et al. (2022d), designing
streaming algorithms with optimal sample complexities and
robustness to strong contamination is an open problem.
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Organization The Appendix is organized as follows: Appendix A mentions other related work. Appendix B includes the
proofs and additional standard results that were omitted from the main paper. Appendix C provides the complete algorithm,
and the associated proofs, achieving (a more general version of) Theorem 1.2. Finally, Appendix D focuses on the streaming
algorithm achieving Theorem 1.5.

A. Additional Related Work
Since the publication of Diakonikolas et al. (2016); Lai et al. (2016), computationally-efficient robust algorithms have been
developed for many tasks, including mean estimation (Kothari et al., 2018; Dong et al., 2019; Depersin & Lecué, 2022;
Diakonikolas et al., 2020; Hopkins et al., 2020; Hu & Reingold, 2021; Cherapanamjeri et al., 2022; Zhu et al., 2021), sparse
estimation (Balakrishnan et al., 2017; Diakonikolas et al., 2019b; Cheng et al., 2022; Diakonikolas et al., 2022a;c), covariance
estimation (Cheng et al., 2019), linear regression (Klivans et al., 2018; Diakonikolas et al., 2019c; Pensia et al., 2020;
Cherapanamjeri et al., 2020), clustering and list-decodable learning (Diakonikolas et al., 2018; Hopkins & Li, 2018; Kothari
et al., 2018; Karmalkar et al., 2019; Liu & Moitra, 2021; Bakshi et al., 2022), and stochastic optimization (Diakonikolas
et al., 2019a; Prasad et al., 2020). We refer the reader to the recent book (Diakonikolas & Kane, 2023) for more details.

Finally, we emphasize that the focus of our work and that of Jambulapati et al. (2020); Kong et al. (2020) is unrelated to
other works studied with similar terminology: Candès et al. (2011); Marinov et al. (2018); Bienstock et al. (2022).

B. Preliminaries: Omitted Facts
We use the following notion of subgaussianity that was also used in Jambulapati et al. (2020).

Definition B.1. For a parameter r ≥ 1, we say a distribution D on Rd with mean zero and covariance Σ is r-subgaussian
if for all unit vectors v and t > 0,

E
X∼D

[exp(tv⊤X)] ≤ exp
(
t2r(v⊤Σv)/2

)
Observe that this notion of subgaussianity is stronger than Vershynin (2018, Definition 3.4.1) because the sub-gaussian proxy
in the direction v scales with v⊤Σv. Jambulapati et al. (2020) have shown that if a distribution D is O(1)-subgaussian, then
a set of Cd/γ2 i.i.d. samples from D is (ϵ, γ) stable for γ = O(ϵ log(1/ϵ)); see Jambulapati et al. (2020, Lemma 11).

B.1. Linear Algebraic Facts

Fact B.2 (Hölder Inequality for Schatten Norms). Let A,B be two matrices with dimensions m × n Let p ≥ 1. Define
q = p

p−1 if p > 1 and ∞ otherwise, then ⟨A,B⟩ ≤ ∥A∥p∥B∥q. In particular, ⟨A,B⟩ ≤ ∥A∥F∥B∥F and ⟨A,B⟩ ≤
∥A∥op∥B∥1.

Fact B.3. If A,B,C are symmetric d× d matrices with A ⪰ 0 and B ⪯ C then tr(AB) ≤ tr(AC).

By using the previous inequality iteratively, one can show the following more general fact.

Fact B.4. Let A,B be PSD matrices with B ⪯ A and p ∈ N. Then, tr (Bp) ≤ tr
(
Ap−1B

)
.

Fact B.5. If A ∈ Rd×d is a PSD matrix, for any other B ∈ Rd×d it holds BAB⊤ ⪰ 0.

Proof. For any vector x, denoting y := B⊤x, we have that x⊤(BAB⊤)x = y⊤Ay ≥ 0. ■

Fact B.6. If A is a PSD matrix, ∥A∥2F ≤ tr(A)2.

Proof. Note that ∥A∥F = ∥A∥2 and tr(A) = ∥A∥1. The result then follows by Fact 2.1. ■

Fact B.7. Let A be a PSD matrix. Then for any unit vector x and m ∈ N, x⊤Amx ≥ (x⊤Ax)m.

Proof. By spectral decomposition, A is equal to
∑

i λiuiu
⊤
i for λi ≥ 0, and orthonormal vectors ui. Furthermore,

Am =
∑

i λ
m
i uiu

⊤
i . For any unit vector x, the orthonormality of ui’s imply that

∑
i(u

⊤
i x)

2 = 1.

We now define the non-negative random variable Z that is equal to λi with probability (u⊤
i x)

2, which is a valid probability
assignment since it is non-negative and sums up to 1. In this definition, we have that E[Z] =

∑
i λi(u

⊤
i x)

2 = x⊤Ax.
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Moreover, E[Zm] =
∑

i λ
m
i (u⊤

i x)
2 = x⊤(

∑
i λ

m
i uiu

⊤
i )x = x⊤Amx. Thus, the desired result is equivalent to saying

E[Zm] ≥ (E[Z])m for the non-negative random variable Z, which is satisfied by Jensen’s inequality. ■

B.2. Probability Facts

Fact B.8 ((Vershynin, 2010)). Consider a distribution D on Rd that is supported in an ℓ2-ball of radius R from the origin.
Let Σ be its second moment matrix and ΣN = (1/N)

∑N
i=1 XiX

⊤
i be the empirical second moment matrix using N i.i.d.

samples Xi ∼ D. There is a constant C such that for any 0 < ϵ < 1 and 0 < τ < 1, if N > Cϵ−2∥Σ∥−1
2 R2 log(d/τ), we

have that ∥Σ−ΣN∥op ≤ ϵ∥Σ∥op, with probability at least 1− τ .

B.3. Information-theoretic Error

Let us briefly outline why the best approximate guarantee for subgaussian distributions is of the order (1− Θ̃(ϵ)). We will
do so by focusing on Gaussian distributions and establishing a lower bound of (1− Ω(ϵ)). Let P be the standard Gaussian
distribution in Rd. For a unit vector v and ϵ ∈ (0, 0.1), let Q be the distribution N (0, I+ ϵvv⊤). Using simple calculations
given below, it can be seen that dTV(P,Q) ≤ ϵ/2: we obtain the following series of inequalities

dTV(Q,P ) ≤
√
dKL(Q||P ) (Using Pinsker’s inequality)

=

√
1

2
(− log |ΣQ|+ tr(ΣQ)− d) (KL divergence between two Gaussians)

=

√
1

2
(− log(1 + ϵ) + ϵ) (Using ΣQ = I+ ϵvv⊤)

≤ ϵ/2. (since log(1 + x) ≥ x− x2/2 for x ≥ 0)

Let v̂ be the output of any algorithm. The true variance along the direction v̂ under the distribution Q is 1 + ϵ(v̂⊤v)2. In
particular, the approximation factor obtained by the algorithm outputting v̂ is

v̂⊤ΣQv̂

∥ΣQ∥op
=

1 + ϵ(v̂⊤v)2

1 + ϵ
≤ (1− 0.5ϵ)(1 + ϵ(v̂⊤v)2).

Since P and Q have total variation distance at most ϵ/2, an adversary, that is allowed to corrupt an ϵ-fraction of samples,
can simulate i.i.d. samples of P given i.i.d. samples from Q, and vice versa. Now, suppose the true distribution was Q,
but the adversary gives i.i.d. samples from P . Since P contains no information about v whatsoever, no algorithm can
identify v from the set of ϵ-corrupted samples. As v could be an arbitrary unit vector, no algorithm can output a v̂ such that
|v⊤v̂| ≤ 0.01 for d larger than a constant. As a result, it is not possible to obtain an approximation better than (1− ϵ) for
Gaussians because (1− 0.5ϵ)(1 + 0.1ϵ) ≤ (1− 0.1ϵ).

B.4. Comparison Between the Two Stopping Conditions

Consider the setting in Section 3.1. Let w : Rd → {0, 1} be weights such that probability of inliers is at least 1− 3ϵ. Let
r = EX∼P [wt(X)]. Recall that M =

(
EX∼P [wt(X)XX⊤]

)
= (EX∼P [wt(X)]Σt)

p
= rpΣp

t .

Our algorithm stops when ⟨Σt,M
2⟩ ≤ (1 + Cγ)⟨Σ,M2⟩. We will now show that this stopping condition implies the

stopping condition that depends solely on the Schatten norms for large p. Using the definition of the Schatten norm, we
begin as follows:

∥Σt∥2p+1
2p+1 = ⟨Σt,Σ

2p
t ⟩ = r−2p⟨Σt,M

2⟩
≤ (1 + Cγ)r−2p⟨Σ,M2⟩ (Using stopping condition)

≤ (1 + Cγ)r−2p∥Σ∥op∥M∥2F
= (1 + Cγ)∥Σ∥op∥Σt∥2p2p (Using definition of Σt)

≤ (1 + Cγ)∥Σ∥op
(
∥Σt∥2p+1d

1
2p(2p+1)

)2p
(Using Fact 2.1)

≤ (1 + 2Cγ)∥Σ∥op∥Σt∥2p2p+1,
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where we use that p≫ log(d)/γ and thus d1/(2p+1) ≤ (1 + Cγ). Rearranging it, we obtain that

∥Σt∥2p+1 ≤ (1 + 2Cγ)∥Σ∥op,

and thus ∥Σt∥2p+1
2p+1 ≤ (1 + 2Cγ)2p+1∥Σ∥2p+1

op , which is the corresponding stopping condition that depends solely on the
Schatten norms of Σt and Σ. Thus, the stopping condition of Lemma 3.2 is stronger.

B.5. Omitted Proofs Regarding Stability: Proof of Lemma 2.6

In this section we restate and prove Lemma 2.6. We have not optimized the constants (up to the choice of constants C).
Lemma 2.6. In Setting 2.5, define the following: (i) g(x) := ∥Ux∥22 for some U ∈ Rm×d, (ii) L be the top 3ϵ-quantile of
g(x) under Pw (P re-weighted by w) and S := {x : x > L}, (iii) σ̂ := EX∼P [w(X)g(X)1(g(X) ≤ L)]. Then,

1.
∣∣ E
X∼G

[w(X)g(X)]−
〈
U⊤U,Σ

〉 ∣∣ ≤ 2γ
〈
U⊤U,Σ

〉
,

2. EX∼G[w(X)g(X)1{X ∈ S}] ≤ 2.35γ
〈
U⊤U,Σ

〉
,

3. L ≤ 1.65(γ/ϵ)⟨U⊤U,Σ⟩,

4.
∣∣σ̂ − 〈U⊤U,Σ

〉∣∣ ≤ 4γ
〈
U⊤U,Σ

〉
,

5. PrX∼G

[
∥X∥22 > 2(d/ϵ)∥Σ∥op

]
≤ ϵ.

We prove each part of the lemma separately. For the first one, we have the following, which holds under the slightly stronger
condition EX∼G[w(X)] ≥ 1− 7ϵ (this is because this version will be needed later on).
Lemma B.9. Let 0 < 20ϵ ≤ γ < 1. Let G be a (20ϵ, γ)-stable distribution with respect to Σ. Let a matrix U ∈ Rm×d and
a function w : Rd → [0, 1] with EX∼G[w(X)] ≥ 1− 7ϵ. For the function g(x) = ∥Ux∥22, we have that

(1− 1.35γ)
〈
U⊤U,Σ

〉
≤ E

X∼G
[w(X)g(X)] ≤ (1 + γ)

〈
U⊤U,Σ

〉
.

Proof. For the upper bound,

E
X∼G

[w(X)g(X)] =
〈
U⊤U, E

X∼G
[w(X)XX⊤]

〉
≤ (1 + γ) E

X∼G
[w(X)]

〈
U⊤U,Σ

〉
≤ (1 + γ)

〈
U⊤U,Σ

〉
,

where the first step rewrites it in the notation of trace inner product, the second step uses the stability condition and Fact B.3
with A = U⊤U, B = EX∼G[w(X)XX⊤], C = EX∼G[w(X)](1 + γ)Σ, and the last step uses w(x) ≤ 1. The other
direction is similar, with the only difference being that we lower bound EX∼G[w(X)] ≥ 1− 7ϵ:

E
X∼G

[w(X)g(X)] ≥ (1− γ)(1− 7ϵ)
〈
U⊤U,Σ

〉
≥ (1− γ − 7ϵ)

〈
U⊤U,Σ

〉
≥ (1− 1.35γ)

〈
U⊤U,Σ

〉
,

where we also used that ϵ ≤ γ/20. ■

We will need the following intermediate result:
Lemma B.10. Let 0 < 20ϵ ≤ γ < 1. Let G be a (20ϵ, γ)-stable distribution with respect to Σ. Let a matrix U ∈ Rm×d, a
function w : Rd → [0, 1] with EX∼G[w(X)] ≥ 1− 3ϵ, and a set S such that EX∼G[w(X)1{X ∈ S}] ≤ 4ϵ. Then, for the
function g(x) := ∥Ux∥22, we have the following:

E
X∼G

[w(X)g(X)1{X ∈ S}] ≤ 2.35γ
〈
U⊤U,Σ

〉
.

Proof. Let w′(x) := w(x)1{X ̸∈ S} = w(x) − w(x)1{X ∈ S}, and note that EX∼G[w
′(X)] = EX∼G[w(X)] −

EX∼G[w(X)1{X ∈ S}] ≥ 1− 7ϵ by our assumptions. Thus, we have that

E
X∼G

[w(X)g(X)1{X ∈ S}] = E
X∼G

[w(X)g(X)]− E
X∼G

[w′(X)g(X)]

≤ (1 + γ)
〈
U⊤U,Σ

〉
− (1− 1.35γ)

〈
U⊤U,Σ

〉
= 2.35γ

〈
U⊤U,Σ

〉
,

where the second line is the application of Lemma B.9 for w′(x). ■
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Now, Item 2 of Lemma 2.6 follows directly as shown below.

Corollary B.11. In the setting of Lemma B.10, let a mixture distribution P = (1− ϵ)G+ ϵB and S = {x : x > L}, where
L is defined to be the top 3ϵ-quantile of g(x) under Pw (the weighted by w version of P ). Then,

E
X∼G

[w(X)g(X)1{X ∈ S}] ≤ 2.35γ
〈
U⊤U,Σ

〉
.

Proof. In order to apply Lemma B.10, we only have to verify that EX∼G[w(X)1{X ∈ S}] ≤ 4ϵ. Since P = (1−ϵ)G+ϵB
and L is by definition the 3ϵ-quantile of g(x) under Pw, and ϵ < 1/10, we have that

E
X∼G

[w(X)1{g(X) > L}] ≤ 1

1− ϵ
E

X∼P
[w(X)1{g(X) > L}]

≤ 1

1− ϵ
Pr

X∼Pw

[g(X) > L]

≤ 3ϵ

1− ϵ
< 4ϵ . (6)

An application of Lemma B.10 completes the proof. ■

We show Item 3 of Lemma 2.6 below.

Lemma B.12. Let 0 < 20ϵ ≤ γ < 1. Let a mixture distribution P = (1 − ϵ)G + ϵB on Rd, where G is (20ϵ, γ)-stable
distribution with respect to a matrix Σ. Let U ∈ Rm×d and a function w : Rd → [0, 1] with EX∼G[w(X)] ≥ 1 − 3ϵ.
Define g(x) := ∥Ux∥22 and let L be the top 3ϵ-quantile of g(x) under Pw. Then, L ≤ 1.65(γ/ϵ)⟨U⊤U,Σ⟩.

Proof. Let w′(x) := w(x)1(g(x) > L). Note that

E
X∼G

[w′(X)] =
EX∼P [w(X)1(g(X) > L)]− ϵEX∼B [w(X)1(g(X) > L)]

1− ϵ

≥ EX∼P [w(X)1(g(X) > L)]− ϵ

1− ϵ

=
EX∼P [w(X)]PrX∼Pw [g(X) > L]− ϵ

1− ϵ

≥ (1− ϵ)(1− 3ϵ)3ϵ− ϵ

1− ϵ
≥ 1.43ϵ

1− ϵ
,

where the second step uses that w(x) ≤ 1, the fourth step uses that EX∼P [w(X)] ≥ (1−ϵ)EX∼G[w(X)] ≥ (1−ϵ)(1−3ϵ)
and that L is the 3ϵ-quantile of g under Pw, and the last step used that ϵ < 1/20. Using this lower bound on EX∼G[w

′(X)]
with Corollary B.11, we have that

E
X∼Gw′

[g(X)] =
EX∼G[w

′(X)g(X)]

EX∼G[w′(X)]
≤ 1− ϵ

1.43ϵ
E

X∼G
[w(X)g(X)1(g(X) > L)] ≤ 1.65γ

ϵ

〈
U⊤U,Σ

〉
.

Since the minimum is less than the average, the result above implies that there exists a point in the support of Gw′

which is smaller than 1.65(γ/ϵ)⟨U⊤U,Σ⟩. Since Gw′ is supported only on points bigger than L, it means that L ≤
1.65(γ/ϵ)⟨U⊤U,Σ⟩. ■

We now provide the proof of Item 4 of Lemma 2.6 below.

Lemma B.13 (Variance estimator). Let 0 < 20ϵ ≤ γ < 1. Let a mixture distribution P = (1 − ϵ)G + ϵB on Rd,
where G is (20ϵ, γ)-stable distribution with respect to a matrix Σ. Let U ∈ Rm×d and a function w : Rd → [0, 1] with
EX∼G[w(X)] ≥ 1 − 3ϵ. Define g(x) := ∥Ux∥22 and let L be the top 3ϵ-quantile of g(x) under Pw. For the estimator
σ̂ := EX∼P [w(X)g(X)1(g(X) ≤ L)], we have that∣∣σ̂ − 〈U⊤U,Σ

〉∣∣ ≤ 4γ
〈
U⊤U,Σ

〉
.
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Proof. We consider the contribution to σ̂ from the two components of the distribution P separately. For the component G,
we first note that EX∼G[w(X)1(g(X) ≤ L)] ≥ EX∼G[w(X)] − EX∼G[w(X)1(g(X) > L)] ≥ 1 − 3ϵ − 4ϵ = 1 − 7ϵ
(the last step can be shown as in (6)). Thus, by Lemma B.9, we have that∣∣∣ E

X∼G
[w(X)g(X)1(g(X) ≤ L)]−

〈
U⊤U,Σ

〉∣∣∣ ≤ 1.35γ
〈
U⊤U,Σ

〉
. (7)

We now consider the contribution to σ̂ from B. We first note that L ≤ 1.65(γ/ϵ)⟨U⊤U,Σ⟩ by Lemma B.12. Therefore,∣∣∣ E
X∼B

[w(X)g(X)1(g(X) ≤ L)]−
〈
U⊤U,Σ

〉∣∣∣ ≤ L+
〈
U⊤U,Σ

〉
≤
(
1.65γ

ϵ
+ 1

)〈
U⊤U,Σ

〉
. (8)

Finally, combining Equations (7) and (8) and using that ϵ ≤ γ yields:∣∣∣ E
X∼P

[w(X)g(X)1(g(X) ≤ L)]−
〈
U⊤U,Σ

〉∣∣∣ ≤ (1− ϵ)
∣∣∣ E
X∼G

[w(X)g(X)1(g(X) ≤ L)]−
〈
U⊤U,Σ

〉∣∣∣
+ ϵ
∣∣∣ E
X∼B

[w(X)g(X)1(g(X) ≤ L)]−
〈
U⊤U,Σ

〉∣∣∣
≤ 4γ

〈
U⊤U,Σ

〉
.

■

We conclude with the last part of Lemma 2.6.
Claim B.14. Let 0 < 20ϵ ≤ γ < 1. Let G be a (20ϵ, γ)-stable distribution with respect to a matrix Σ. Then,
PrX∼G

[
∥X∥22 > 2(d/ϵ)∥Σ∥op

]
≤ ϵ.

Proof. Using Markov’s inequality and Lemma B.9 with U = I

Pr
X∼G

[
∥X∥22 > 2(d/ϵ)∥Σ∥op

]
≤ EX∼G[∥X∥22]

2(d/ϵ)∥Σ∥op
≤ (1 + γ)tr(Σ)

2(d/ϵ)∥Σ∥op
≤ ϵ .

■

We finally restate and prove Lemma 2.7 from Section 2.1.
Lemma B.15. Let 0 < 20ϵ ≤ γ < γ0 for a sufficiently small absolute constant γ0. Let P = (1 − ϵ)G + ϵB, where G
is a (20ϵ, γ)-stable distribution with respect to Σ. Let w : Rd → [0, 1] with EX∼G[w(X)] ≥ 1 − 3ϵ, and recall that in
our notation ΣPw := EX∼Pw [XX⊤] = EX∼P [w(X)XX⊤]/EX∼P [w(X)]. If u is a vector such that u⊤ΣPwu/∥u∥22 ≥
(1− γ)∥ΣPw

∥op and u⊤Σu ≥ (1−O(γ))u⊤ΣPw
u, then u⊤Σu/∥u∥22 ≥ (1−O(γ))∥Σ∥op.

Proof. Since EX∼G[w(X)] ≥ 1−3ϵ, we can use the stability condition as follows: Let a be the (normalized) top eigenvector
of ΣPw

and b be the (normalized) top eigenvector of Σ. Using the definition of the operator norm and stability, we first
obtain the following lower bound on ∥ΣPw∥ in terms of ∥Σ∥op:

∥ΣPw
∥op = a⊤ΣPw

a ≥ b⊤ΣPw
b = b⊤

(
EX∼P [w(X)XX⊤]

EX∼P [w(X)]

)
b (9)

≥ (1− ϵ)b⊤
(
EX∼G[w(X)XX⊤]

EX∼P [w(X)]

)
b = (1− ϵ)b⊤

(
EX∼G[w(X)]

EX∼P [w(X)]
ΣGw

)
b (10)

≥ (1− ϵ)(1− 3ϵ)b⊤ΣGwb ≥ (1− 4ϵ)(1− γ)b⊤Σb (11)

≥ (1− 2γ) b⊤Σb = (1− 2γ)∥Σ∥op , (12)

where the penultimate step used that ϵ < γ/20. Combining this with the assumption that u⊤Σu is large compared to
u⊤ΣPwu, we obtain the following:

u⊤Σu

∥u∥22
≥ (1−O(γ))

u⊤ΣPw
u

∥u∥22
≥ (1−O(γ))(1− γ)∥ΣPw

∥op

≥ (1−O(γ))(1− γ)(1− 2γ)∥Σ∥op = (1−O(γ))∥Σ∥op .

■
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B.6. Filtering

In this subsection, we prove the filter guarantees that were described in Section 2.2. We use a slightly more general version of
the filter so that it can be employed later on when we will develop a streaming algorithm. The difference is the introduction
of an additional error parameter δ in the filter. This will be useful in Appendix D, where the quantity EX∼P [w(x)τ(x)]

as well as T̂ will have to be estimated by averaging samples, thus δ will then account for a small additive error in that
approximation. For the non-streaming algorithm, we will use δ = 0

Algorithm 4 HARDTHRESHOLDINGFILTER

1: Input: Distribution P = (1− ϵ)G+ ϵB, weights w, scores τ , parameters T̂ , R, δ.
2: w0(x)← w(x), and r0 ← R, ℓ← 1.
3: while EX∼P [w(X)τ(X)] > 5

2 (T̂ + δ)
4: Draw rℓ ∼ U([0, rℓ−1]).
5: wℓ+1(x)← wℓ(x) · 1(τ(x) > rℓ).
6: ℓ← ℓ+ 1.
7: return wℓ(x).

Lemma B.16 (Guarantees of Filtering). Consider one call of HARDTHRESHOLDINGFILTER(P,w, τ, T̂ , R, δ). Suppose
there exists T such that (1− ϵ)EX∼G [w(x)τ(x)] < T and T̂ such that |T̂ − T | < T/5 + δ. Denote by F the randomness
of the filter (i.e., the collection of the random thresholds r1, r2 . . . used). Let w′ be the weight function returned. Then,

1. EX∼P [w
′(X)τ(X)] ≤ 3T + 5d with probability 1 over the randomness of the filter F .

2. EF [ϵEX∼B [w(X)− w′(X)]] > (1− ϵ)EX∼G[w(X)− w′(X)]].

Proof. The first part of the lemma follows by the termination condition EX∼P [w
′(X)τ(X)] ≤ (5/2)(T̂ + δ) and the

assumption |T̂ − T | < T/5 + δ.

We show that the second desideratum holds for every filtering round, conditioned on the past rounds. Consider the ℓ-th round
of filtering. The probability that a point gets removed (over the random selection of rℓ) is τ(x)/rℓ−1. As a result, for any point
x that has not been filtered, the probability that a point that gets removed is equal to E[(wℓ(x)− wℓ+1(x))] = τ(x)/rℓ−1

Also, note that since the weights are binary decreasing functions, wℓ(x)− wℓ+1(x) = wℓ(x)(wℓ(x)− wℓ+1(x)). For the
inliers, we have that

E
rℓ

[
(1− ϵ) E

X∼G
[wℓ(X)− wℓ+1(X)]

]
= E

rℓ

[
(1− ϵ) E

X∼G
[wℓ(X)(wℓ(X)− wℓ+1(X))]

]
= (1− ϵ) E

X∼G

[
wℓ(X)E

rℓ
[wℓ(X)− wℓ+1(X)]

]
=

1− ϵ

rℓ−1
E

X∼G
[wℓ(X)τ(X)] <

T

rℓ−1
.

We now turn to the outliers. If the filtering hasn’t stopped, it means that the stopping condition of the while loop is still
violated and thus EX∼P [wℓ(X)τ(X)] > (5/2)(T̂ + δ) > 2T , (since we have assumed |T̂ − T | < T/5 + δ). Thus,

E
rℓ

[
ϵ E
X∼B

[wℓ(X)− wℓ+1(X)]
]
= E

rℓ

[
ϵ E
X∼B

[wℓ(X)(wℓ(X)− wℓ+1(X))]
]

= E
X∼P

[
wℓ(X)E

rℓ
[wℓ(X)− wℓ+1(X)]

]
− (1− ϵ) E

X∼G

[
wℓ(X)E

rℓ
[wℓ(X)− wℓ+1(X)]

]
=

1

rℓ−1
E

X∼P
[wℓ(X)τ(X)]− 1− ϵ

rℓ−1
E

X∼G
[wℓ(X)τ(X)]

>
2T

rℓ−1
− T

rℓ−1
=

T

rℓ−1
.

■
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We now provide the guarantees of the filtering algorithm over the course of the entire execution of ROBUSTPCA.

Lemma B.17. Let 0 < 20ϵ ≤ γ < 1/20. Let P = (1− ϵ)G+ ϵB, where G is a (20ϵ, γ)-stable distribution with respect to
Σ. Consider an execution of ROBUSTPCA. With probability at least 0.2 over the randomness of the algorithm, we have
that (1− ϵ)EX∼G[1− wk,t(X)] + ϵEX∼B [wk,t(X)] ≤ 2.9ϵ.

Proof. For notational simplicity, first define an ordering over the multi-indices {(k, t) : k ∈ {1, . . . , kend}, t ∈
{1, . . . , tend}} in the natural way: (k′, t′) ≤ (k, t) is defined to mean that either k′ ≤ k or k′ = k and t′ ≤ t. Also define a
successor operator s(·) that returns the next multi-index according to the way the two loops are structured in ROBUSTPCA,
that is, s(k, t) = (k, t+ 1) if t < tend and s(k, t) = (k + 1, 0) otherwise.

Let (k∗, t∗) be the first time that (1− ϵ)EX∼G[1− wk,t(X)] + ϵEX∼B [wk,t(X)] ≥ 2.9ϵ (if there exists one, otherwise
set (k∗, t∗) = (kend, tend)). Define the sequence

∆(k,t) = (1− ϵ) E
X∼G

[
1− wmin{(k,t),(k∗,t∗)}(X)

]
+ ϵ E

X∼B

[
wmin{(k,t),(k∗,t∗)}(X)

]
.

We note that ∆(k,t) is a supermartingale with respect to the randomness of the filter: If (k, t) < (k∗, t∗), then E[∆s(k,t) |
F(k,t)] ≤ ∆(k,t), where F(k,t) denotes the randomness of the filters applied so far. This follows by Lemma B.16,
as long as the lemma is applicable: We apply that lemma with T = 2.35γv⊤k,tΣvk,t and T̂ = 2.35γσ̂k,t. Its first
requirement that (1 − ϵ)EX∼G [wk,t(x)τk,t(x)] < T is satisfied by Item 2 of Lemma 2.6 (specifically, the special case
that uses U = v⊤k,t). For its second requirement |T̂ − T | < T/5 we have that |T̂ − T | = 2.35γ|σ̂k,t − v⊤k,tΣvk,t| ≤
2.35γ · 4γ · v⊤k,tΣvk,t ≤ (1/5) · 2.35γv⊤k,tΣvk,t = T/5, where the second step uses Item 4 of Lemma 2.6 (with U = v⊤k,t)
and the last inequality uses that γ < 1/20. All these intermediate lemmata that we just refered to are applicable when
(1− ϵ)EX∼G[1− wk,t(X)] + ϵEX∼B [wk,t(X)] ≤ 2.9ϵ.

Otherwise, if (k, t) ≥ (k∗, t∗) we still have E[∆s(k,t) | F(k,t)] ≤ ∆(k,t), since by definition the sequence ∆s(k,t) remains
unchanged.

In the beginning, we have that ∆(1,1) ≤ 2ϵ. This is because we start with ϵ-fraction of outliers and the naïve pruning of line
5 of the algorithm cannot remove more than ϵ mass from the distribution G, as shown in Item 5 of Lemma 2.6.

By Doob’s inequality for martingales, we have that

Pr

[
max

(1,1)≤(k,t)≤(kend,tend)
∆(k,t) > 2.5ϵ

]
≤

∆(1,1)

2.5ϵ
≤ 0.8 . (13)

This implies that with probability 0.2, it holds (1 − ϵ)EX∼G[1 − wk,t(X)] + ϵEX∼B [wk,t(X)] ≤ 2.5ϵ throughout the
algorithm’s iterations (which is already a bit stronger than the conclusion of the lemma that wanted to show). To see that,
assume the contrary, and define (k̃, t̃) to be the first time that (1 − ϵ)EX∼G[1 − wk,t(X)] + ϵEX∼B [wk,t(X)] > 2.5ϵ.
Combining that with the trivial observation that (k̃, t̃) ≤ (k∗, t∗) yields that ∆(k̃,t̃) > 2.5ϵ, which by (13) cannot happen
with probability more than 0.2. ■

C. Robust PCA in Nearly-Linear Time
In this section, we show Theorem C.1 below. Theorem 1.2 follows from Theorem C.1 by recalling that the uniform
distribution over a set of n≫ d/(ϵ2 log(1/ϵ)) from a subgaussian distribution is stable with parameter γ = O(ϵ log(1/ϵ)). In
contrast to the main body of the paper, where we analyzed a simplified but slower version of our algorithm, in this section we
show directly the runtime of Õ(nd/γ2). The proof of the simplified (but slower) algorithm is implicit in the arguments below.

Theorem C.1. Let γ0 be a sufficiently small positive constant. Let d > 2 be an integer, and ϵ, γ ∈ (0, 1) such that
0 < 20ϵ < γ < γ0. Let P be the uniform distribution over a set of n points in Rd, that can be decomposed as
P = (1 − ϵ)G + ϵB, where G is a (20ϵ, γ)-stable distribution (Definition 2.4) with respect to a PSD matrix Σ ∈ Rd×d.
There exists an algorithm that takes as input P, ϵ, γ, runs for O(ndγ2 log4(d/ϵ)) time, and with probability at least 0.99,
outputs a vector u such that u⊤Σu ≥ (1−O(γ))∥Σ∥op.

Organization This section is organized as follows: Appendix C.1 contains the omitted proofs regarding the “advanced
certificate lemma” of Section 3.1, Appendix C.2 proves that the potential decreases by a (1−γ) multiplicative factor in every
iteration of the algorithm. Finally, Appendix C.3 puts together the previous arguments to complete the proof of Theorem C.1.

18
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C.1. Advanced Certificate Lemma: Omitted Proofs from Section 3.1

We restate and prove the formal version of certificate lemma (Lemma 3.2) below:

Lemma C.2. Let a sufficiently large constant C. Let 0 < 20ϵ ≤ γ < γ0 for a sufficiently small absolute constant γ0. Let
P = (1− ϵ)G+ ϵB, where G is a (20ϵ, γ)-stable distribution with respect to Σ. Let w : Rd → [0, 1] with EX∼G[w(X)] ≥
1 − 3ϵ, p > C log(d/γ)/γ, M := (EX∼P [w(X)XX⊤])p, and assume ⟨Σ,M2⟩ ≥ (1 − 250γ)⟨ΣPw

,M2⟩. If u := Mz
for a random z ∼ N (0, I), then with probability at least 0.9 (over the random selection of z) we have that:

1. u⊤ΣPwu/∥u∥22 ≥ (1− γ)∥ΣPw∥op,

2. u⊤Σu > (1−O(γ))u⊤ΣPwu.

Proof. The part of the conclusion that u⊤ΣPw
u/∥u∥22 ≥ (1 − γ)∥ΣPw

∥op, follows directly by the guarantee of power
iteration (Fact 2.3 with probability of failure being less than 0.001).

We now focus on showing that u⊤Σu > (1−O(γ))u⊤ΣPw
u. Let A := Σ− (1− 250γ)ΣPw

with high probability. We
analyze the random variable Y := z⊤MAMz for z ∼ N (0, I). The assumption ⟨Σ,M2⟩ ≥ (1− 250γ)⟨ΣPw

,M2⟩ means
that ⟨M2,Σ− (1− 250γ)ΣPw

⟩ = ⟨M2,A⟩ ≥ 0. Noting that E[Y ] = tr(MAM) = ⟨M2,A⟩, we have E[Y ] ≥ 0. Thus,
if variance of Y is not too large, we will have that Y is not too negative with large probability.

We show the following technical result on the variance of Y in Appendix C.1.1.

Claim C.3 (Variance of Y ). Var(Y ) ≲ γ2∥ΣPw
∥2op∥M∥4F.

Using Claim C.3 along with Chebyshev’s inequality, we get that with probability at least 0.999, Y satisfies the following
lower bound:

Y ≥ E[Y ]−
√
1000 Var

z∼N (0,I)
[Y ] = −O

(
γ∥M∥2F∥ΣPw

∥op
)
. (14)

We need one more intermediate result. For the vector u := Mz for z ∼ N (0, I), an application of Fact 2.2 with A = M2

and β = 10−4/e yields

Pr
[
∥M∥2F/∥u∥22 ≤ 1/β

]
= Pr

z∼N (0,I)

[
z⊤M2z ≥ βtr(M2)

]
≥ 1−

√
eβ = 0.99 . (15)

We can now complete the proof of Lemma C.2. In what follows, we condition on the following events: (i) ∥M∥2F/∥u∥22 ≤
1/β ≤ 105, (ii) the inequality of (14) holds, and (iii) the conclusion from part one of the lemma. Since all of these events
happen individually with probability 0.99 at least, we have that the intersection of the three events has probability at least
0.97 by a union bound. Recalling that Y = z⊤MAMz = u⊤Σu− (1− 250γ)u⊤ΣPwu and dividing by ∥u∥22 both sides
of (14), we have the following:

u⊤Σu

∥u∥22
≥ (1− 250γ)

u⊤ΣPw
u

∥u∥22
−O

(
γ
∥M∥2F
∥u∥22

∥ΣPw
∥op
)

≥ (1− 250γ)
u⊤ΣPw

u

∥u∥22
−O (γ∥ΣPw∥op) (using that the event from (15) holds)

≥ (1− 250γ)
u⊤ΣPwu

∥u∥22
−O

(
γ

1− γ

u⊤ΣPwu

∥u∥22

)
(u⊤ΣPw

u/∥u∥22 ≥ (1− γ)∥ΣPw
∥op)

= (1−O(γ))
u⊤ΣPw

u

∥u∥22
. (γ < 1/20)

Thus, we have shown that the second bullet of Lemma C.2 holds with probability 0.97. The first bullet holds with probability
0.99 when C is appropriately large constant. Thus, by a union bound, both bullets hold with probability at least 0.90. This
completes the proof of Lemma C.2. ■
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Finally, we formally show the result that whenever the potential function ϕ is smaller than ∥Σ∥2p+1
op /poly(d/ϵ), then the

condition of the previous lemma gets satisfied. Note that the factor (1− 2γ)2p mentioned in the conclusion of the following
lemma is indeed bigger than 1/poly(d/ϵ) since p = O(log(d/γ)/γ).
Lemma C.4. Let 0 < 20ϵ ≤ γ < 1/20, and a positive integer p. Let P = (1 − ϵ)G + ϵB, where G is a (20ϵ, γ)-stable
distribution with respect to Σ, and let w : Rd → [0, 1] with EX∼G[w(X)] ≥ 1 − 3ϵ. Define B := EX∼P [w(X)XX⊤],
M := Bp, and ϕ := tr(B2p+1). If ϕ ≤ EX∼P [w(X)] (1−2γ)2p

1−250γ ∥Σ∥
2p+1
op , then ⟨Σ,M2⟩ ≥ (1− 250γ)⟨ΣPw

,M2⟩.

Proof. We claim that for the statement to be true, it suffices to show that

⟨M2,Σ⟩ ≥ (1− 2γ)2p∥Σ∥2p+1
op . (16)

This is indeed sufficient, because if we had (16) at hand, then whenever ϕ ≤ EX∼P [w(X)] (1−2γ)2p

1−250γ ∥Σ∥
2p+1
op , we have that

⟨M2,ΣPw
⟩ = ϕ

EX∼P [w(X)]
≤ (1− 2γ)2p

1− 250γ
∥Σ∥2p+1

op ≤ 1

1− 250γ
⟨M2,Σ⟩ ,

where the first step uses the definitions ϕ = tr(B2p+1) = ⟨M2,B⟩ = EX∼P [w(X)]⟨M2,ΣPw
⟩ , the second step uses

ϕ ≤ EX∼P [w(X)] (1−2γ)2p

1−250γ ∥Σ∥
2p+1
op , and the last step uses (16).

In the reminder, we establish (16). Consider the spectral decomposition Σ =
∑d

i=1 λiuiu
⊤
i . We have that:

⟨M2,Σ⟩ =

〈
M2,

d∑
i=1

λiuiu
⊤
i

〉
=

d∑
i=1

λiu
⊤
i M

2ui ≥ λ1u
⊤
1 M

2u1 = ∥Σ∥opu⊤
1 M

2u1 ≥ (1− 2γ)2p∥Σ∥2p+1
op , (17)

where the last inequality is shown in the reminder of this proof: First, we have that

ΣPw
=

EX∼P [w(X)XX⊤]

EX∼P [w(X)]
⪰ (1− ϵ)EX∼G[w(X)]

EX∼P [w(X)]

EX∼G[w(X)XX⊤]

EX∼G[w(X)]

⪰ (1− ϵ)(1− 3ϵ)(1− γ)Σ ⪰ (1− 2γ)Σ , (18)

where the first line uses that P = (1− ϵ)G+ ϵB, and the last line uses EX∼G[w(X)] ≥ 1− 3ϵ, w(x) ≤ 1, and stability
condition for the second moment of the normalized distribution G, and the last step uses that ϵ < γ/20. We now complete
the proof of the last step of (17) as follows: Let u1 be the top eigenvector of Σ. We have that

u⊤
1 Σ

2p
Pw

u1 ≥ (u⊤
1 ΣPw

u1)
2p ≥ ((1− 2γ)u⊤

1 Σu1)
2p = (1− 2γ)2p∥Σ∥2pop ,

where the first inequality uses Fact B.7, and the second inequality uses (18).

■

C.1.1. BOUND ON THE VARIANCE OF Y

We now prove the following result on the bound of the variance that was omitted from the proof of Lemma C.2 above.
Claim C.3 (Variance of Y ). Var(Y ) ≲ γ2∥ΣPw

∥2op∥M∥4F.

Proof. As Y = z⊤MAMz, Fact 2.2 implies that Var[Y ] = 2∥MAM∥2F. We will, thus, upper bound ∥MAM∥F in the
remainder of the proof.

Since P = (1− ϵ)G+ ϵB, we have that ΣPw
= (1− ϵ)ΣG

Pw
+ ϵΣB

Pw
, where ΣG

Pw
:= EX∼G[w(X)XX⊤]/EX∼P [w(X)],

and ΣB
Pw

:= EX∼B [w(X)XX⊤]/EX∼P [w(X)]. Using this decomposition, we obtain the following expression for A:

A = Σ− (1− 250γ)
(
(1− ϵ)ΣG

Pw
+ ϵΣB

Pw

)
=
(
Σ−ΣG

Pw
(1− 250γ − ϵ+ 250γϵ)

)
− ϵ(1− 250γ)ΣB

Pw
.

In order to simplify notation, let us define ∆ := Σ − ΣG
Pw

(1 − 250γ − ϵ + 250γϵ), and ϵ̃ := ϵ(1 − 250γ). We thus
have A = ∆ − ϵ̃ΣB

Pw
. Our approach will be to upper bound ∥M∆M∥F and ∥MΣB

Pw
M∥F separately. The following

intermediate result, that easily follows from the stability the of distribution G, will be useful:
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Claim C.5. 0 ⪯∆ ⪯ 270γΣPw
, Σ− (1− ϵ)ΣG

Pw
⪯ 1.2γΣ, and Σ ⪯ (1/(1− 1.2γ))ΣPw

.

Proof. We start with the PSD property. We first note that

(1− 4ϵ)ΣG
Pw
⪯ (1− ϵ)(1− 3ϵ)ΣG

Pw
⪯ EX∼P [w(X)]

EX∼G[w(X)]
ΣG

Pw
= E

X∼Gw

[XX⊤] ⪯ (1 + γ)Σ , (19)

where the second inequality uses w(x) ≤ 1 for the denominator and the assumption that EX∼P [w(X)] ≥ (1 −
ϵ)EX∼G[w(X)] ≥ (1− ϵ)(1− 3ϵ) for the numerator, and the last inequality uses the stability of G. Finally,

ΣG
Pw
⪯ 1 + γ

1− 4ϵ
Σ ⪯ 1

1− ϵ− 250γ + 250ϵγ
Σ ,

where the first step uses (19) and the second is true for ϵ < γ/20. The above implies that ∆ ⪰ 0.

We now show that ∆ ⪯ 270γΣPw
. First, we note that

ΣPw ⪰ (1− ϵ)ΣG
Pw

= (1− ϵ)
EX∼G[w(X)]

EX∼P [w(X)]
E

X∼Gw

[XX⊤]

⪰ (1− ϵ)(1− 3ϵ)(1− γ)Σ ⪰ (1− 1.2γ)Σ , (20)

where the first inequality uses the decomposition ΣPw
= (1 − ϵ)ΣG

Pw
+ ϵΣB

Pw
, the second is a rewriting, the third uses

stability of G along with EX∼G[w(X)] ≥ 1− 3ϵ, and the last one uses that ϵ < γ/20. We can now complete our proof:

∆ = Σ− (1− ϵ− 250γ + 250γϵ)ΣG
Pw

⪯ Σ− (1− ϵ− 250γ + 250γϵ)(1− 3ϵ)(1− γ)Σ (using middle part of (20))
⪯ Σ− (1− ϵ− 250γ + 250γϵ)(1− 1.15γ)Σ (ϵ ≤ γ/20)
⪯ 252γΣ (using ϵ ≤ γ/20 and γ ≤ 1/20)

⪯ 252γ

1− 1.2γ
ΣPw

⪯ 270γΣPw
. (using (20) and γ ≤ 1/20)

The claim that Σ− (1− ϵ)ΣG
Pw
⪯ 1.2γΣ can be extracted from the middle part of (20) after some rearranging.

■

We are now ready to upper bound the variance of Y :

Var[Y ] = 2∥MAM∥2F ≤ 4∥M∆M∥2F + 4ϵ̃2
∥∥MΣB

Pw
M
∥∥2
F

, (21)

where the last inequality is triangle inequality and (a + b)2 ≤ 2a + 2b. We upper bound each term separately. Using
Claim C.5, we bound the first variance term as follows:

∥M∆M∥2F = tr(M2∆M2∆) (using ∥A∥2F = ⟨A,A⟩ for symmetric A and cyclic property of trace)

≲ γtr(M2∆M2ΣPw
) (using Claim C.5 and Fact B.3)

= γtr(M2ΣPw
M2∆) (cyclic property of trace)

≲ γ2tr(ΣPwM
2ΣPwM

2) (using Claim C.5 and Fact B.3)

≤ γ2∥ΣPw
∥2optr(M4) (using Fact B.3)

= γ2∥ΣPw
∥2op∥M∥44

≤ γ2∥ΣPw∥2op∥M∥42 (using ∥A∥q+1 ≤ ∥A∥q)

= γ2∥ΣPw∥2op∥M∥4F , (22)

where the first application of Fact B.3 above required that M2∆M2 ⪰ 0 which is indeed satisfied because we have shown
that ∆ ⪰ 0 in Claim C.5 and thus Fact B.5 implies M2∆M2 ⪰ 0. A similar argument was used in the second application
of Fact B.3.
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It remains to bound the second term of (21). To this end, we have that

ϵ
〈
ΣB

Pw
,M2

〉
=
〈
ΣPw

− (1− ϵ)ΣG
Pw

,M2
〉

≤
(
(1 +O(γ))

〈
Σ,M2

〉
− (1− ϵ)

〈
ΣG

Pw
,M2

〉)
=
(〈
Σ− (1− ϵ)ΣG

Pw
,M2

〉
+O(γ)

〈
Σ,M2

〉)
≲ γ

〈
Σ,M2

〉
, (23)

where the first line uses the decomposition ΣPw
= (1− ϵ)ΣG

Pw
+ ϵΣB

Pw
, the second line uses our assumption ⟨ΣPw

,M2⟩ ≤
⟨Σ,M2⟩/(1− 250γ) ≤ (1 + O(γ))⟨Σ,M2⟩, and the fourth line uses Σ− (1− ϵ)ΣG

Pw
⪯ 1.2γΣ ⪯ 2γΣ by Claim C.5.

Using (23), we can finally upper bound the second term of (21):

ϵ̃2
∥∥MΣB

Pw
M
∥∥2
F
≤ ϵ̃2tr

(
MΣB

Pw
M
)2

(using Fact B.6)

= ϵ̃2
〈
ΣB

Pw
,M2

〉2
≤ ϵ2

〈
ΣB

Pw
,M2

〉2
(ϵ̃ ≤ ϵ)

≲ γ2
〈
Σ,M2

〉2
(by (23))

≤ γ2

1− 1.2γ
·
〈
ΣPw ,M

2
〉2

(Claim C.5 and Fact B.3)

≲ γ2∥ΣPw∥2optr(M2)2 (24)

≲ γ2∥ΣPw
∥2op∥M∥4F , (25)

where the first step uses that ΣB
Pw

is a PSD matrix, and thus MΣB
Pw

M is also PSD. Putting everything together, we have
shown that Var[Y ] ≲ γ2∥ΣPw

∥2op∥M∥4F. ■

C.2. Reduction of Potential Function

This subsection contains the formal version of the arguments made in Sections 3.2 and 3.3. We directly give the proof of
Theorem C.1, i.e., the improved runtime of Õ(nd/γ2) . The algorithm realizing Theorem C.1 is given in Algorithm 5.

We start by analyzing the potential ϕk,t := tr(B2pk+1
k,t ) along one iteration of the inner loop of Algorithm 5. That is, we fix

a k of the outer loop and show that, on average, we will have ϕk,t+1 ≤ (1− Ω(γ))ϕt for every step of the inner loop.

Our analysis will use that the scores fk,t(x) are a constant factor approximation of the scores gk,t(x) with constant
probability. This follows from Fact 2.2. However, to make our analysis of this section more flexible and easier to adapt to
the streaming setting of the next section, we will assume a weaker approximation on ft(·), which includes also an additive
error term (this additive error will account for approximation of M).

Assumption C.6. The random selection of the vector vk,t in Line 13 of Algorithm 5 is such that for every point x,

Pr
vk,t

[
fk,t(x) >

gk,t(x)

10
− 0.01

γ

ϵ
∥Mk,t∥2F∥Σ∥op

]
≥ 0.4 .

We emphasize again that Fact 2.2 implies that Assumption C.6 holds for Algorithm 5.

Lemma C.7. Consider the notation of Algorithm 5, where the input distribution is the mixture P = (1− ϵ)G+ ϵB, with G
being a (20ϵ, γ)-stable distribution with respect to Σ for 0 < 20ϵ ≤ γ < γ0 for a sufficiently small positive constant γ0.
Make Assumption C.6. Let Ek,t = E(1)k,t ∩ E

(2)
k,t denote the intersection of the following two events:

1. E(1)k,t : (1−ϵ)EX∼G[1−wk′,t′(X)]+ϵEX∼B [wk′,t′(X)] ≤ 3ϵ, for every iteration (k′, t′) prior to (and including) (k, t).

2. E(2)k,t : ⟨Σ,M2
k′,t′⟩ < (1− 250γ)⟨Σk′,t′ ,M

2
k′,t′⟩ for every iteration (k′, t′) from (k, 1) up to (and including) (k, t).

Define the potential function ϕk,t := tr(B2pk+1
k,t ). Let Fk,t be the randomness used by HARDTHRESHOLDINGFILTER during

the (k, t)-th loop of ROBUSTPCA (i.e., Fk,t is the collection of the random variables r1, r2, . . . used by the filter), and let vk,t
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Algorithm 5 ROBUSTPCA with improved runtime
1: Input: P, ϵ, γ.
2: Let C,C ′ be sufficiently large absolute constants with their ratio C/C ′ being sufficiently large.
3: Let kend := log((log(d/γ)/ log(d))/γ), and tend := C log2(d/ϵ)

γ .
4: Find estimator σ̂op ∈ (0.8∥Σ∥op, 2d∥Σ∥op). ▶{c.f. Item 4 of Lemma 2.6 with U = I.}
5: Initialize w1,1(x) = 1

(
∥x∥22 ≤ 10σ̂op(d/ϵ)

)
.

6: for k = 1, . . . , kend do
7: Let pk = 2k−1p, where p = C ′ log(d). ▶{pk ranges from C ′ log(d) to C ′ log(d/γ)/γ.}
8: for t = 1, . . . , tend do
9: Call SAMPLETOPEIGENVECTOR (P,wk,t, ϵ, γ, 1/(kend · tend)). ▶{c.f. Algorithm 2.}

10: Let Pk,t be the distribution of P weighted by wk,t: P (x)wk,t(x)/EX∼P [wk,t(X)].
11: Let Bk,t := EX∼P [wk,t(X)XX⊤] and Mk,t := Bpk

k,t. ▶{Mk,t does not need to be explicitly computed.}
12: Let gk,t(x) := ∥Mk,tx∥22.
13: vk,t ←Mk,tzk,t, where zk,t ∼ N (0, I).
14: Let fk,t(x) = (v⊤k,tx)

2.
15: Let Lk,t be the 3ϵ-quantile of fk,t(·) under Pk,t.
16: Lk,t ← max{Lk,t, (0.1/d)σ̂op∥vk,t∥22}
17: Let τk,t(x) = fk,t(x)1(fk,t(x) > Lk,t)
18: Find σ̂k,t such that |σ̂k,t− v⊤k,tΣvk,t| ≤ 4γv⊤k,tΣvk,t (e.g., σ̂k,t := EX∼P [wk,t(X)fk,t(X)1(fk,t(X) ≤ Lk,t)]).

▶{c.f. Item 4 of Lemma 2.6 with U = v⊤k,t}
19: T̂k,t ← 2.35γσ̂k,t.
20: wk,t+1 ← HardThresholdingFilter(P,wk,t, τk,t, T̂k,t, R, 0). ▶{c.f. Algorithm 5.}
21: end for
22: Set wk+1,0 ← wk,t+1.
23: end for
24: return FAIL.

be the random vectors used in Line 13 of ROBUSTPCA (Algorithm 5). Also, define Fk,t = {Fk′,t′ : k
′ ≤ k−1, t′ ≤ tend}∪

{Fk,t′ : t
′ ≤ t}, i.e., the entire history of filters up to (and including) the iteration (k, t). Define Vk,t similarly for vk,t’s.

Then, the following is true for every conditioning on Fk,t,Vk,t−1:

E
vk,t

[ϕk,t+11(Ek,t) | Fk,t,Vk,t−1] ≤ (1− γ)ϕk,t1(Ek,t−1) . (26)

Proof. We analyze the (k, t)-th iteration of ROBUSTPCA, that is, the outer loop with index k and the inner loop with
index t. We condition on everything that has happened previously, and we are only interested in analyzing what happens
in the current round of the inner loop with respect to randomness coming from vk,t. In particular, the expectation will be
conditional on the past history Fk,t,Vk,t−1 as in (26) but we omit explicitly writing them for notational convenience.

In the case that 1(Ek,t) = 0, the conclusion of our lemma holds trivially. Thus, in the reminder of the proof, we analyze the
case 1(Ek,t) = 1.

We will call a point x full if ft,k(x) > gk,t(x)/10− 0.01(γ/ϵ)∥Mk,t∥2F∥Σ∥op, otherwise we will call it empty. Note that x
being full implies that

τk,t(x) ≥ fk,t(x)− Lk,t ≥
gk,t(x)

10
− Lk,t − 0.01

γ

ϵ
∥Mk,t∥2F∥Σ∥op

≥ gk,t(x)

10
− 1.65

γ

ϵ
∥vk,t∥22∥Σ∥op − 0.01

γ

ϵ
∥Mk,t∥2F∥Σ∥op , (27)

where the first inequality uses the definition of τk,t, and the last inequality uses Item 3 of Lemma 2.6.

We now use Lemma B.16 to analyze the effect of filtering via HARDTHRESHOLDINGFILTER (Algorithm 4): We apply
that lemma with T = 2.35γv⊤k,tΣvk,t, T̂ = 2.35γσ̂k,t, and δ = 0; we will now justify the choice of these parameters. The
first requirement of Lemma B.16 is that (1− ϵ)EX∼G [wk,t(x)τk,t(x)] < T , which is satisfied by Item 2 of Lemma 2.6
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(specifically, the special case that uses U = v⊤k,t). For its second requirement of T̂ > T/5, we have that |T̂ − T | =
2.35γ|σ̂k,t − v⊤k,tΣvk,t| ≤ 2.35γ · 4γ · v⊤k,tΣvk,t ≤ (1/5) · 2.35γv⊤k,tΣvk,t = T/5, where the second step uses Item 4 of
Lemma 2.6 (with U = v⊤k,t) and the last inequality uses that γ < 1/20. Thus, the lemma is applicable, and it yields that

E
X∼P

[wk,t+1(X)τk,t(X)] ≤ 3T ≤ 7.1γ∥vk,t∥22∥Σ∥op , (28)

with probability one. Therefore, for the bad points that are full, we get that their updated weights after the filter in the current
iteration satisfy the following:

ϵ E
X∼B

[wk,t+1(X)gk,t(X)1(X full)] ≤ 10ϵ E
X∼B

[wk,t+1(X)τk,t(X)] + 16.5γ∥vk,t∥22∥Σ∥op + 0.1γ ∥Mk,t∥2F

< 88γ∥vk,t∥22∥Σ∥op + 0.1γ ∥Mk,t∥2F ∥Σ∥op . (29)

where the first step uses (27) and the second uses (28).

By Assumption C.6, every point is full with probability 0.4. We will now take expectation with respect to vk,t (we again
remind the reader that the expectation is conditioned on the past history Fk,t,Vk,t−1 as in (26) but we omit explicitly writing
them for notational convenience)).

E
vk,t

[
ϵ E
X∼B

[wk,t+1(X)gk,t(X)]
]

= E
vk,t

[
ϵ E
X∼B

[wk,t+1(X)gk,t(X)1(X full)]
]
+ E

vk,t

[
ϵ E
X∼B

[wk,t+1(X)gk,t(X)1(X empty)]
]

≤ E
vk,t

[
ϵ E
X∼B

[wk,t+1(X)gk,t(X)1(X full)]
]
+ ϵ E

X∼B

[
wk,t(X)gk,t(X) E

vk,t

[1(X empty)]
]

≤ E
vk,t

[(
88γ∥vk,t∥22∥Σ∥op + 0.1γ ∥Mk,t∥2F ∥Σ∥op

)]
+ ϵ E

X∼B
[wk,t(X)gk,t(X)(0.6)]

= 88.1γ∥Mk,t∥2F∥Σ∥op + 0.6ϵ E
X∼B

[wk,t(X)gk,t(X)] , (30)

where the second step uses wk,t+1 ≤ wk,t for the second term, the third step uses (29) and the fact that the probability of
a point being empty is at most 0.6,and the last step uses that Evk,t

[
∥vk,t∥22

]
= Ezk,t∼N (0,I)[z

⊤
k,tM

2
k,tzk,t] = tr(M2

k,t) =

∥Mk,t∥2F.

We now upper bound the expectation of the potential function using following series of inequalities, which are explained
below:15

E
vk,t

[
tr
(
B2pk+1

k,t+1

)]
≤ E

vk,t

[
tr
(
Bpk

k,tBk,t+1B
pk

k,t

)]
(31)

= E
vk,t

[tr (Mk,tBk,t+1Mk,t)]

= E
vk,t

[
E

X∼P
[wk,t+1(X)gk,t(X)]

]
(32)

= E
vk,t

[
(1− ϵ) E

X∼G
[wk,t+1(X)gk,t(X)] + ϵ E

X∼B
[wk,t+1(X)gk,t(X)]

]
(33)

≤ (1− ϵ) E
X∼G

[wk,t(X)gk,t(X)] + E
vk,t

[
ϵ E
X∼B

[wk,t+1(X)gk,t(X)]
]

(34)

≤ (1 + 2γ) ⟨Σ,M2
k,t⟩+ 89γ∥Mk,t∥2F∥Σ∥op + 0.6ϵ E

X∼B
[wk,t(X)gk,t(X)] (35)

= (1 + 2γ) ⟨Σ,M2
k,t⟩+ 89γ∥Mk,t∥2F∥Σ∥op

+ 0.6
(

E
X∼P

[wk,t(X)gk,t(X)]− (1− ϵ) E
X∼G

[wk,t(X)gk,t(X)]
)

(36)

= (1 + 2γ) ⟨Σ,M2
k,t⟩+ 89γ∥Mk,t∥2F∥Σ∥op + 0.6

(
ϕk,t − (1− ϵ) E

X∼G
[wk,t(X)gk,t(X)]

)
(37)

≤ (1 + 2γ) ⟨Σ,M2
k,t⟩+ 89γ∥Mk,t∥2F∥Σ∥op + 0.6ϕk,t − 0.6 (1− 3γ) ⟨Σ,M2

k,t⟩ (38)

15Recall that we are in the setting when 1(Ek,t−1)=1 , and thus we omit writing the indicator inside the expectations explicitly.
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= 0.4⟨Σ,M2
k,t⟩+ 3.8γ⟨Σ,M2

k,t⟩+ 89γ∥Mk,t∥2F∥Σ∥op + 0.6ϕk,t

≤ 0.4⟨Σ,M2
k,t⟩+ 93γ∥Mk,t∥2F∥Σ∥op + 0.6ϕk,t , (39)

where (31) uses that Bk,t+1 ⪯ Bk,t along with Fact B.4 and the cyclic property of trace operator, (32) uses the definition
Bk,t = EX∼P [wk,t(X)]Σk,t = EX∼P [wk,t(X)XX⊤], (33) uses that P = (1−ϵ)G+ϵB, (34) uses wk,t+1(x) ≤ wk,t(x)
for the first term, (35) uses 1− ϵ ≤ 1 and Item 1 of Lemma 2.6 for the first term and (30) for the second term, (36) uses that
P = (1− ϵ)G+ ϵB, (37) uses the definition of Bk,t to get EX∼P [wk,t(X)gk,t(X)] = EX∼P [wk,t(X)tr(M2

k,tXX⊤)] =

tr(M2
k,t EX∼P [wk,t(X)XX⊤]) = tr(B2pk+1

k,t ) = ϕk,t. We now explain the last three steps. Staring with (38), recall that
we have conditioned on the event that (1− ϵ)EX∼G[1− wk,t(X)] + ϵEX∼B [wk,t(X)] ≤ 2.9ϵ. Thus, we use Item 1 of
Lemma 2.6 to get (1 − ϵ)EX∼G[wk,t(X)gk,t(X)] ≥ (1 − ϵ)(1 − 2γ)⟨Σ,M2

k,t⟩ ≥ (1 − 3γ)⟨Σ,M2
k,t⟩ (where the last

inequality uses ϵ < γ/20). Finally, (39) upper bounds the terms γ⟨Σ,M2
k,t⟩ by γ∥Σ∥op∥M∥2F. We will now relate both

⟨Σ,M2
k,t⟩ and ∥Σ∥op∥M∥2F with ϕk,t.

We begin with the term ⟨Σ,M2
k,t⟩: Since the event E(2)k,t holds, we have that

⟨Σ,M2
k,t⟩ < (1− 250γ)⟨Σk,t,M

2
k,t⟩ =

1− 250γ

EX∼P [wk,t(X)]
⟨Bk,t,M

2
k,t⟩ ≤

1− 250γ

(1− ϵ)(1− 3ϵ)
ϕk,t ≤ (1− 240γ)ϕk,t ,

(40)

where the first inequality uses the definition of the event E(2)k,t , the next steps use that EX∼P [wk,t(X)] ≥ (1 −
ϵ)EX∼G[wk,t(X)] ≥ (1− ϵ)(1− 3ϵ) (where the last inequality here used the definition of the event E(1)k,t ).

We now state the following result relating ϕk,t with ∥Σ∥op∥Mk,t∥2F for pk large enough:

Claim C.8. If pk ≥ C log(d) for a sufficiently large constant C and the event Ek,t holds, then

tr
(
B2pk

k,t

)
∥Σ∥op ≤ 1.01 · tr

(
B2pk+1

k,t

)
.

Proof. We have that

tr
(
B2pk

k,t

)
∥Σ∥op < (1 + 3γ)tr

(
B2pk

k,t

)
∥Bk,t∥op (using stability as in (18))

= (1 + 3γ)∥Bk,t∥2pk

2pk
∥Bk,t∥∞

≤ (1 + 3γ)∥Bk,t∥2pk+1
2pk

(∥A∥∞ ≤ ∥A∥q ∀q)

≤ (1 + 3γ)
(
d

1
2pk(2pk+1) ∥Bk,t∥2pk+1

)2pk+1

(by Fact 2.1)

= (1 + 3γ)d1/2pk∥Bk,t∥2pk+1
2pk+1

≤ (1 + 3γ) · 1.001 · tr
(
B2pk+1

k,t

)
(pk ≥ C log(d) for C large enough)

≤ 1.01 · tr
(
B2pk+1

k,t

)
. (γ < γ0 for a sufficiently small γ0)

This completes the proof of Claim C.8. ■

We can now upper bound the RHS of (39) using (40) and Claim C.8:

0.4⟨Σ,M2
k,t⟩+ 93γ∥Mk,t∥2F∥Σ∥op + 0.6ϕk,t ≤ 0.4(1− 240γ)ϕk,t + 93 · 1.01 · γϕk,t + 0.6ϕk,t

≤ (1− γ)ϕk,t .

This completes the proof.

■
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Corollary C.9. In the context of Lemma C.7, assume that EVk−1,tend
[ϕk,1 | Fk−1,tend ] ≤ R. Then, under every conditioning

Fk,t−1 of the form Fk−1,tend
∪ {Fk,t′ : t

′ ≤ t− 1} (i.e., every conditioning for the filter up to the (k, t− 1)-th iteration
that agrees with Fk−1,tend

on the first iterations up to the (k − 1, tend)-th), we have that

E
Vk,t−1

[ϕk,t1(Ek,t−1) | Fk,t−1] ≤ (1− γ)t−1R .

Proof. We prove this by induction on t. The base case t = 1 holds trivially by assumption. Now, we assume that the
claim holds for the index (k, t) and we will show that it will continue to hold for the index (k, t+ 1). That is, suppose that
EVk,t−1

[ϕk,t1(Ek,t−1) | Fk,t−1] ≤ (1− γ)t−1R. Then, we know by Lemma C.7 that

E
vk,t

[ϕk,t+11(Ek,t) | Fk,t,Vk,t−1] ≤ (1− γ)ϕk,t1(Ek,t−1) .

Taking expectation over Vk,t−1 of both sides yields

E
Vk,t

[ϕk,t+11(Ek,t) | Fk,t] ≤ (1− γ) E
Vk,t−1

[ϕk,t1(Ek,t−1) | Fk,t−1] ≤ (1− γ)tR .

■

C.3. Proof of Main Theorem

We now put together the ingredients of the previous subsections to complete the proof of Theorem C.1. It suffices to show
that the conclusion of the theorem holds with a small constant probability, as this probability can be boosted arbitrarily by
repeating the algorithm and selecting the output u that maximizes u⊤Σu (more precisely, an estimate of this variance that
can be obtained by Item 4 of Lemma 2.6). For completeness, we give the bounds on runtime in Appendix C.3.1.

First of all, observe that if the algorithm returns a vector using SAMPLETOPEIGENVECTOR , then the resulting vector
satisfies the desired guarantees with high probability. We use the same notation as in the statement of Lemma C.7.
We will show that at the start of any iteration of the outer loop (i.e., for every k ≤ kend and t = 1) we have that
EVk−1,tend

[ϕk,11(E(1)k−1,tend
)] ≤ (d/ϵ)C2 log d∥Σ∥2pk+1

op for a large enough positive constant C2. We do this by induction on
k. At the start of the algorithm (k = 1), because of Line 5, every point has norm ∥x∥22 ≤ 10(d/ϵ)σ̂op ≤ (20(d2/ϵ))∥Σ∥op,
the potential is bounded as follows

ϕ1,1 ≤ d∥Σk,t∥2p+1
op ≤

(
20(d2/ϵ)∥Σ∥op

)2p+1 ≤ (d/ϵ)10p∥Σ∥2p+1
op = (d/ϵ)10C

′ log d∥Σ∥2p1+1
op ≤ (d/ϵ)C2 log d∥Σ∥2p1+1

op .

Under the induction hypothesis, suppose the desired conclusion holds up to (and including) some k ≥ 1. Let us first relate
ϕk,tend+1 and ϕk+1,1 as follows:

ϕk+1,1 = tr
(
B

2pk+1+1
k,tend+1

)
= ∥Bk,tend+1∥

2pk+1+1
2pk+1+1 ≤ ∥Bk,tend+1∥

2pk+1+1
2pk+1

= tr
(
B2pk+1

k,tend+1

)(2pk+1+1)/(2pk+1)

= ϕ
(2pk+1+1)/(2pk+1)
k,tend+1

. (41)

By induction hypothesis, at the beginning of the k-th iteration of the outer loop, it holds that EVk−1,tend
[ϕk,11(E(1)k−1,tend

)] ≤
(d/ϵ)C2 log d∥Σ∥2pk+1

op . In the k-th iteration of the outerloop, we will show that the end of the inner loop (i.e., at

t = tend + 1), the potential will be much smaller. In particular, we will show that EVk,tend

[
ϕk,tend+11(E(1)k,tend

)
]
≤

(d/ϵ)0.1C2 log d∥Σ∥2pk−1+1
op below. Note that in the k-th iteration of the algorithm, two cases might happen: (i) either the

condition ⟨Σt,M
2
k,t⟩ < (1 − 250γ)⟨Σk,t,M

2
k,t⟩ holds for all tend iterations of the inner loop, which would lead to a

(1− γ)tend decrease in potential, or this condition fails to hold for some t, which itself implies that the potential is small.
Recall that E(2)k,t corresponds to these two cases. Thus, we have the following decomposition:

E
Vk,tend

[
ϕk,tend+11(E(1)k,tend

)
]
= E

Vk,tend

[
ϕk,tend+11(E(1)k,tend

)1(E(2)k,tend
)
]
+ E

Vk,tend

[
ϕk,tend+11(E(1)k,tend

)1
(
E(2)k,tend

)]
(42)
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The first term in (42) van be bounded using Corollary C.9 as follows:

E
Vk,tend

[
ϕk,tend+11(E(1)k,tend

)1(E(2)k,tend
)
]
≤ (1− γ)tend+1(d/ϵ)C2 log d∥Σ∥2pk+1

op ≤ e−0.1·tend·γ(d/ϵ)C2 log d∥Σ∥2pk+1
op ,

(43)

which is less than (d/ϵ)0.05C2 log d after tend := C log2(d/ϵ)/γ for sufficiently large C (note that we have picked C to be
much larger than C2).

We now turn our attention to the second term in (42), where we show that if E(2)k,tend
does not hold, then the potential will be

poly(d/ϵ)∥Σ∥2pk+1
op . More formally, if for some (k, t) we have that ⟨Σ,M2

k,t⟩ ≥ (1− 250γ)⟨Σk,t,M
2
k,t⟩, there exists c

such that

ϕk,t = ∥Bk,t∥2pk+1
2pk+1 = ⟨Bk,t,M

2
k,t⟩ ≤ ⟨Σk,t,M

2
k,t⟩ ≤

1

1− 250γ
⟨Σ,M2

k,t⟩

≤ ecγ∥Σ∥op∥Bk,t∥2pk

2pk
(using γ ≪ 1)

≤ ecγ∥Σ∥op∥Bk,t∥2pk

2pk+1d
1

2pk+1 . (using Fact 2.1)

Rearranging the inequality above implies that ∥Bk,t∥2pk+1
2pk+1 ≤ ecγpkd∥Σ∥2pk+1

op ≤ (d/γ)O(1)∥Σ∥2pk+1
op , where

the last inequality used that pk = O(log(d/γ)/γ) for all k. Combining this with (42) and (43), we obtain
that EVk,tend

[
ϕk,tend+11(E(1)k,tend

)
]
≤ (d/ϵ)0.1C2 log d∥Σ∥2pk+1

op . Combining this with (41) and the observation that
(2pk+1 + 1)/(2pk + 1) ≤ 2 by definition of pk (Line 8 in Algorithm 5), we conclude that

E
Vk,tend

[
ϕk+1,11(E(1)k,tend

)
]
≤ ∥Σ∥2pk+1+1

op (d/ϵ)C2 log d .

Thus far, we have shown that EVk−1,tend
[ϕk,11(E(1)k−1,tend

)] ≤ ∥Σ∥2pk+1
op (d/ϵ)C2 log d for k = 1, . . . , kend.

It remains to analyze the last iteration k = kend. For that, we again use Corollary C.9 to obtain the following:

E
Vkend,tend

[ϕkend,tend+11(Ekend,tend)] ≤ (1− γ)tend+1(d/ϵ)C2 log d∥Σ∥1+2pkend
op

≤ (d/ϵ)−100C′
∥Σ∥1+2pkend

op , (44)

where the last step uses that tend := C log2(d/ϵ)/γ for sufficiently large C and recalling that the constant C is large relative
to the constant C ′ (c.f. Line 2).

Recall the definition of the event Ek,t given in the statement of Lemma C.7 as intersection of the two events:

1. E(1)k,t : (1−ϵ)EX∼G[1−wk′,t′(X)]+ϵEX∼B [wk′,t′(X)] ≤ 3ϵ, for every iteration (k′, t′) prior to (and including) (k, t).

2. E(2)k,t : ⟨Σ,M2
k′,t′⟩ < (1− 250γ)⟨Σk′,t′ ,M

2
k′,t′⟩ for every iteration (k′, t′) from (k, 1) up to (and including) (k, t).

By Lemma B.17 we have that Pr[E(1)kend,tend
] > 0.2. Thus

E
Vk,tend

[
ϕkend,tend+11(E(2)kend,tend

) | E(1)kend,tend

]
=

EVk,tend
[ϕkend,tend+11(Ekend,tend)]

Pr[E(1)kend,tend
]

≤ 5(d/ϵ)−100C′
∥Σ∥1+2pkend

op

Therefore, we have that

Pr
[
ϕkend,tend+11(E(2)kend,tend

) > 500(d/ϵ)−100C′
∥Σ∥1+2pkend

op or 1(E(1)kend,tend
) = 0

]
≤ Pr[1(E(1)kend,tend

) = 0] +Pr
[
ϕkend,tend+11(E(2)kend,tend

) > 500(d/ϵ)−100C′
∥Σ∥1+2pkend

op | E(1)kend,tend

]
≤ 0.2 + 1/100 , (45)
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where the last step uses Markov’s inequality.

Let t∗ be the first time during the kend-th outer loop iteration of Algorithm 5 such that ⟨Σ,M2
kend,t

⟩ ≥ (1 −
250γ)⟨Σkend,t,M

2
kend,t

⟩ (or equivalently 1(E(2)kend,t
) = 0). In the following, we argue that t∗ ≤ tend. We prove this by con-

tradiction. Assume that 1(E(2)kend,tend
) = 1.

In the event that ϕkend,tend+11(E(2)kend,tend
) < 500(d/ϵ)−100C′

and 1(E(1)kend,tend
) = 1 simultaneously (by (45) the two events

will hold simultaneously with probability at least 0.79), we have that

ϕkend,tend+1 = ϕkend,tend+11(E(2)kend,tend
)

< 500(d/ϵ)−100C′
∥Σ∥2pkend

+1
op

< 0.5(1− 2γ)2pkend ∥Σ∥2pkend
+1

op

≤ E
X∼P

[wk,t(X)](1− 2γ)2pkend
1

1− 250γ
∥Σ∥2pkend

+1
op , (46)

where the first line uses the assumption 1(E(2)kend,tend
) = 1, the third line uses pkend

= C ′ log(d/γ)/γ, and the fourth line

uses that EX∼P [wk,t(X)] ≥ 1/2 because the event E(1)kend,tend
holds.

Lemma C.4 and (46) imply that ⟨Σ,M2
kend,t

⟩ ≥ (1 − 250γ)⟨Σkend,t,M
2
kend,t

⟩, which yields a contradiction. Therefore,
t∗ ≤ tend.

To complete the proof it remains to show that, if the algorithm hasn’t terminated earlier with a good solution, then, during
the (kend, t∗)-th iteration, the algorithm will return a good approximation of the top eigenvalue of Σ and terminate. We
use Lemma C.2 for that (the lemma is applicable since its requirement EX∼G[wk,t(X)] ≥ 1− 3ϵ follows by the fact that
we have conditioned on the event Ekend,tend

, which as we saw earlier happens with constant probability). The conclusion
of the lemma implies that there is probability 0.9 that when t = t∗, the output of SAMPLETOPEIGENVECTOR satisfies
u⊤Σu > (1−O(γ))u⊤Σk,tu and u⊤Σk,tu

∥u∥2
2
≥ (1−γ)∥Σk,t∥op. Conditioning on this event and by noting that the estimator

r̂t of Line 3 will satisfy r̂t ≥ (1−γ)∥Σ∥op with high probability over all the iterations, the check of Line 7 will be activated,
and by Lemma B.15, the algorithm will return a vector u such that u⊤Σu/∥u∥22 ≥ (1−O(γ))∥Σ∥op.

C.3.1. RUNTIME ANALYSIS

Let the input distribution P be the uniform distribution over n points in Rd. The outer loop is repeated kend times and the
inner loop is repeated tend times, where kend = O(log(1/γ)), and tend = O(log2(d/ϵ)/γ).

Inside each loop, the runtime is determined by the following: Calculating vk,t in 13 can be implemented in time O(ndpk)
by starting with zk,t and repeatedly multiplying it by Bk,t (multiplication of a vector z with a second moment matrix∑

x xx
⊤ can be implemented in O(nd) time by first calculating the inner product inside the parenthesis

∑
x x(x

⊤z), and
then calculating the average of the resulting vectors). The power iteration estimator of Line 3 in Algorithm 2 runs in time
O(ndγ log(d · kend · tend/γ)) (and is being called at most kend · tend many times). It remains to analyze the runtime of
HARDTHRESHOLDINGFILTER (Algorithm 4): We have that the scores τk,t(x) that are not zeroed out by the thresholding
satisfy the following upper and lower bound: poly(ϵ/d)∥Σ∥op∥vk,t∥22 ≤ 0.1(σ̂op/d)∥vk,t∥22 ≤ τk,t(x) ≤ ∥x∥22∥vk,t∥22 ≤
2σ̂op(d

4/ϵ)∥vk,t∥22 ≤ poly(d/ϵ)∥Σ∥op∥vk,t∥22, where we used the pruning of Line 5, the definition of Line 16, and the
naïve estimator of Line 6. Since the HARDTHRESHOLDINGFILTER in expectation halves the maximum value of τ(x),
the number of filtering steps it performs before terminating will be in expectation O(log(d/ϵ)), and thus by Markov’s
inequality, the contribution to the runtime from all the kend · tend executions of HARDTHRESHOLDINGFILTER will be
O(nd · kendtend log(d/ϵ)) with high constant probability.

Therefore, the total runtime is

T = O

(
nd

γ
kendtend log(d · kend · tend/γ)

)
+O(nd · kendtend log(d/ϵ)) +O

(
nd · tend

kend∑
k=1

pk

)

= O

(
nd

γ2
log(1/γ) log2(d/ϵ) log

(
d

γ
log(d/ϵ)

)
+

nd

γ
log(1/γ) log3(d/ϵ) +

nd

γ2
log2(d/ϵ) log(d/γ)

)
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= O

(
nd

γ2
log4(d/ϵ)

)
.

D. Robust PCA in Streaming Setting
We now switch to the streaming setting. We use the standard single-pass streaming model, where instead of having a fixed
dataset, the algorithm draws samples from the distribution in an online manner. Let G be an (20ϵ, γ)-stable distribution,
which will be the underlying distribution of inliers. Let the “contaminated” distribution be P , which is assumed to be an ϵ-
corrupted version of G in total variation (c.f. Definition 1.4). Note that up to some small change in the constant in front of ϵ,
we can equivalently use a mixture representation P = (1− ϵ)G+ ϵB (see discussion below Definition 2.4). In contrast to the
previous section, where the input dataset was stored in essentially “free” memory, now the data access model is the following:

Definition D.1 (Single-Pass Streaming Model). Let P be a distribution on Rd. First, the algorithm specifies a number n,
then a set S of n samples are drawn i.i.d. from the distribution P . Finally, the elements of S are revealed one at a time to
the algorithm, and the algorithm is allowed a single pass over these points.

The algorithm is still allowed to maintain a local memory, but anything stored in the local memory will be counted against
its space complexity. The goal is again to find a unit vector u such that u⊤Σu ≥ (1−O(γ))∥Σ∥op.

Theorem D.2. Let an integer d > 2, and reals 0 < 20ϵ < γ < γ0, for a sufficiently small γ0. Let G be (20ϵ, γ)-stable
distribution (Definition 2.4) with respect to a PSD matrix Σ ∈ Rd×d, and r be a radius such that PrX∼G[∥X∥2 >
r
√
d∥Σ∥op] ≤ ϵ. Let P be a distribution with dTV(P,G) ≤ ϵ. There exists an algorithm takes ϵ, γ, r as input, uses a

stream of

n ≲

(
r2d2

γ5
+

1

ϵγ

)
polylog(d/ϵ) .

i.i.d samples from P (cf. Definition D.1), uses additional memory of storing O ((d/γ + 1/ϵ)polylog(d/ϵ)) many real
numbers (or a bit complexity of (d/γ2)polylog(d/ϵ) in the word RAM Model), runs for O(ndγ2 polylog(d/ϵ)) time, and with
probability at least 0.99 outputs a vector u such that u⊤Σu ≥ (1−O(γ))∥Σ∥op.

The specialization of the above theorem for subgaussians, where γ = O(ϵ log(1/ϵ)) and r = O(
√
log(1/ϵ)) yields sample

complexity O((d2/ϵ5)polylog(d/ϵ)). Moreover, the memory usage stated in Theorem D.2 is in terms of the number
of real numbers that need to be stored in the algorithm’s memory. See Appendix D.3.1 for how our algorithm can be
implemented with bounded precision (i.e., in the standard word RAM model) using (d/γ)polylog(d/ϵ) registers of size
(1/γ)polylog(d/ϵ) bits each (for a total bit complexity of (d/γ2)polylog(d/ϵ).

Key Differences in Streaming Setting The algorithm from the previous section is partly already amenable to the streaming
setting: The filters used are of the form 1(v⊤x > L) which have a compact representation of O(d) space (it suffices to
store the vector v and the threshold L). The potential-based analysis also showed that we create at most O(polylog(d/ϵ)/γ)
many such filters. The remaining adaptation that needs to be done is to deal with the fact that there is no fixed dataset to
iterate over. The new algorithm is given in Algorithm 7. Regarding notation, the quantities Pk,t,Σk,t,Bk,t,Mk,t as well as
the score functions gk,t(x) = ∥Mk,tx∥22, fk,t(x) = (v⊤k,tx)

2, τk,t(x) = fk,t(x)1(fk,t(x) > Lk,t) are all population-level
quantities, i.e., they are unknown to the algorithm. However, the algorithm can approximate them by drawing samples and
forming estimators (where the exact form of the estimators will have to be easily computable in the streaming setting and
will be discussed later on). We will use “hat” to denote the relevant sample-based approximations, i.e., Σ̂k,t, B̂k,t, M̂k,t

and the induced scores ĝk,t(x) = ∥M̂k,tx∥22, f̂k,t(x) = (v̂⊤k,tx)
2, τ̂k,t(x) = f̂k,t(x)1(f̂k,t(x) > L̂k,t). The approach that

we follow is that if the sample-based quantities are sufficiently close to their population-level counterparts, then the proof
of correctness from the previous section (which involves the population-level quantities) still applies. One can easily go
through the proofs of the previous section and verify that there is enough slack in all bounds to allow for converting between
population-level quantities and their sample-based approximations. In this section, we avoid repeating all the correctness
proofs since the only changes will be in the constants used in some inequalities, instead we mostly focus on deriving the
sample complexity needed for obtaining fine enough approximations.

Sample-based estimators Many steps of the algorithm of the previous section involved multiplying a vector x by
Mk,t := Bpk

k,t, for example the scores gk,t(x) involve the norm of Mk,tx. This was done by starting with x and repeatedly
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multiplying by Bk,t. Instead of Bk,t the new algorithm will now use an empirical moment matrix B̂k,t. As we have seen in
the previous section, the multiplication of an empirical second moment matrix with a vector can be performed with O(d)
memory usage in a single pass over the samples and in linear time. However, since the algorithm cannot store this matrix, it
will repeatedly multiply x by fresh estimators B̂k,t,1, . . . , B̂k,t,pk

each time. Thus, the result will be of the form M̂k,tz

where M̂k,t =
∏pk

ℓ=1 B̂k,t,ℓ (also see Algorithm 6 for more detail).

Algorithm 6 Estimator of Bp
k,t from minibatches.

1: Draw a batch S0 of ñ samples from P and let the estimate Ŵk,t = EX∼U(S0)[wk,t(X)].
2: Draw p batches S1, . . . , Sp of ñ samples, each from Pk,t.
3: for ℓ ∈ [p] do
4: Let Σ̂k,t,ℓ =

1
ñ

∑
x∈Sℓ

xxT .

5: Let B̂k,t,ℓ = Ŵ 2
k,tΣ̂k,t,ℓ.

6: end for
7: return M̂k,t,ℓ =

∏p
ℓ=1 B̂k,t,ℓ.

Another kind of estimator that is needed in this section is an estimator for the quantiles of the underlying distribution to
replace Line 15 of the old algorithm. These will be computed by empirical quantiles. Finally, another approximation needs
to take place when evaluating the stopping condition inside the HARDTHRESHOLDINGFILTER (Algorithm 4) since the
EX∼P [w(x)τ(x)] used earlier is a population-level quantity. A similar estimator needs to be used when adapting line 18 of
our old algorithm. This completes the short informal overview.

Formally, we aggregate all the guarantees needed regarding the estimators in Condition D.3. As a small technical note, the
conditions in Condition D.3 are only needed to hold whenever EX∼P [wk,t(X)] ≥ 1− 3ϵ and ∥Bk,t∥op ≥ 0.5∥Σ∥op. The
first is because as we filter out mostly outliers, we have already seen that EX∼P [wk,t(X)] ≥ 1− 3ϵ with high probability
throughout the algorithm. The second is because, we also know that if ∥Bk,t∥op ≥ 0.5∥Σ∥op is violated then the potential
function is small enough so that the algorithm must had already terminated (c.f. Lemma C.4) holds with high probability
thought the algorithm and dedicate Appendix D.1 to establishing it.

Condition D.3 (Conditions for Algorithm 7). In the context of Algorithm 7, assume that the following are true. For every
k ∈ [kend] and t ∈ [tend], if EX∼P [wk,t(X)] ≥ 1− 3ϵ and ∥Bk,t∥op ≥ 0.5∥Σ∥op, then:

1. ĝk,t(x) ≥ 0.5gk,t(x)− 0.01(γ/ϵ)∥Mk,t∥2F∥Σ∥op.

2.
∣∣∣∥M̂k,t∥2F − ∥Mk,t∥2F

∣∣∣ ≤ 0.01∥Mk,t∥2F.

3. The estimator L̂k,t of Line 16 satisfies PrX∼Pk,t
[ĝk,t(X) > L̂k,t] ∈ (3.99ϵ, 4.01ϵ).

4. Recall the parameter r as the radius such that PrX∼G[∥X∥2 > r
√
d∥Σ∥op] ≤ ϵ. For any weight function w : Rd →

[0, 1], the algorithm has access to an estimator F̂ for the quantity Fk,t := EX∼P [w(X)f̂k,t(X)] that has accuracy
|F̂ − Fk,t| ≤ 0.01γFk,t +

0.01γ
dr2 ∥v̂k,t∥

2
2∥Σk,t∥op across a total of tendkend · log5(d/ϵ) calls.

5. The estimator r̂t of Line 7 of Algorithm 8 satisfies r̂t ≥ (1− γ)∥Σk,t∥op.

6. Every time Line 10 of of Algorithm 8 is executed, there is probability 0.9 that u⊤Σk,tu/∥u∥22 ≥ (1− γ)∥Σk,t∥op.

In particular, Item 1 of Condition D.3 shows that Assumption C.6 that we used in proving the main theorem of the previous
section is satisfied for Algorithm 7 in our current setting. Item 2 is relevant to equation (27) in our previous analysis. To
adapt that in our current setting, vk,t will be replaced by v̂k,t and after we take expectation over v̂k,t it’s norm will become
∥M̂k,t∥2F that we can relate to ∥Mk,t∥2F. Item 3 takes care of the quantile estimation. Item 4 is the estimator that we will use
to evalueate the stopping condition inside HARDTHRESHOLDINGFILTER as well as adapting line 18 of the old algorithm.
Items 5 and 6 are the adaptation of the power iteration guarantee when we do not have access to the target matrix Σk,t but
instead we start with a random Gaussian vector and multiply it repetitively with fresh estimates Σ̂k,t.
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Algorithm 7 ROBUSTPCA in streaming model
1: Input: P, ϵ, γ.
2: Let C,C ′ be sufficiently large absolute constants with their ratio C/C ′ being sufficiently large.
3: Let an estimation R be such that |PrX∼G[∥X∥2 ≥ R]− ϵ| ≤ 2ϵ (note that R ≤ r

√
d∥Σ∥op)

4: Initialize w1,1(x) = 1 (∥x∥2 ≤ R).
5: Let kend := log((log(d/γ)/ log(d))/γ), and tend := C log2(d/ϵ)

γ .
6: Find estimator σ̂op ∈ (0.8∥Σ∥op, 2d∥Σ∥op). ▶{c.f. Item 4 of Lemma 2.6 with U = I.}
7: for k = 1, . . . , kend do
8: Let pk = 2k−1p, where p = C ′ log(d). ▶{pk ranges from C ′ log(d) to C ′ log(d/γ)/γ.}
9: for t = 1, . . . , tend do

10: Let Pk,t be the distribution of P weighted by wk,t: P (x)wk,t(x)/EX∼P [wk,t(X)].
11: Let Bk,t := EX∼P [wk,t(X)XX⊤] and Mk,t := Bpk

k,t.
12: Let gk,t(x) := ∥Mk,tx∥22.
13: Let M̂k,t be a sample-based version of Mk,t as defined in Algorithm 6.
14: v̂k,t ← M̂k,tzk,t, where zk,t ∼ N (0, I).
15: Let f̂k,t(x) = (v̂⊤k,tx)

2.
16: Let L̂k,t be estimator for the 3ϵ-quantile of f̂k,t(·) under Pk,t such that |PrX∼Pk,t

[f̂k,t(X) > L̂k,t]−3ϵ| ≤ 0.01ϵ,
and then do L̂k,t ← max{L̂k,t,

0.1
d σ̂op∥vk,t∥22}.

17: Let τ̂k,t(x) = f̂k,t(x)1(f̂k,t(x) > L̂k,t).
18: Call SAMPLETOPEIGENVECTOR (P,wk,t, ϵ, γ, 1/(kend · tend)). ▶{c.f. Algorithm 8.}
19: Let σ̂k,t such that |σ̂k,t − v̂⊤k,tΣv̂k,t| ≤ 4γv̂⊤k,tΣv̂k,t.
20: (e.g., σ̂k,t := EX∼P [wk,t(X)f̂k,t(X)1(f̂k,t(X) ≤ L̂k,t)]). ▶{c.f. Item 4 of Lemma 2.6.}
21: Find an estimator σ̂′

k,t such that |σ̂′
k,t − σ̂k,t| ≤ 0.01σ̂k,t +

0.01γ
r2d ∥v̂k,t∥

2
2∥Σk,t∥op.

22: Let T̂k,t = 2.35γσ̂′
k,t.

23: wk,t+1 ← HardThresholdingFilter(P,wk,t, τk,t, T̂k,t, R, 0.1γ
r2d ∥v̂k,t∥

2
2∥Σk,t), where Σ̂k,t is a sample-based ver-

sion of Σk,t. ▶{c.f. Algorithm 4.}
24: end for
25: Set wk+1,0 ← wk,t+1.
26: end for
27: return FAIL.

D.1. Establishing Condition D.3

In this section, we provide the estimators for Condition D.3, and prove the relevant guarantees.

D.1.1. ITEMS 1 AND 2

Items 1 and 2 of Condition D.3 rely on the fact that the empirical covariances used in the estimator
∏pk

ℓ=1 B̂k,t,ℓ are close
enough to Bk,t, as in Lemma D.4 below. We first prove the lemma and then show how the two conditions follow.

Lemma D.4. Let δ < 1. Consider Algorithm 6 and assume that Pk,t is supported on an ℓ2-ball of radius r
√
d∥Σ∥op. If

Ŵk,t and every B̂k,t,ℓ in Algorithm 6 are calculated using

ñ > C
r2dp2

δ2
log

(
d

τ

)
samples, where C is a sufficiently large constant, then∥∥∥M̂k,t −Mk,t

∥∥∥
2
≤ δ ∥Mk,t∥op ,

with probability at least 1− τ .

Proof. Let ∥B̂k,t,ℓ−Bk,t∥op ≤ δ1∥Bk,t∥op and |Ŵk,t−EX∼P [wk,t(X)]| ≤ δ2, for δ1, δ2 to be determined. The accuracy
of the estimators B̂k,t,ℓ and that of M̂k,t are related as follows:
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Algorithm 8 SAMPLETOPEIGENVECTOR 2
1: Input: Distribution P , weights w, parameters ϵ, γ, δ.
2: Let M := (EX∼P [w(X)XX⊤])p for p = C log(d/γ)

γ .
3: r̂ ← 0.
4: for j ∈ [log(1/δ)] do
5: Let M̂ be a sample based estimator for Σp

Pw
calculated using Algorithm 6.

6: y ← M̂′ · g for g ∼ N (0, I).
7: r̂ ← max(r̂ ←, y⊤Σ̂Pw

y/∥y∥22).
8: end for ▶{cf. Lemma D.8}
9: Let M̂ be a sample based estimator for Σp

Pw
calculated using Algorithm 6.

10: u← M̂z for z ∼ N (0, I).
11: Let σ̂u be any approximation such that |σ̂u − u⊤Σu| ≤ 4γu⊤Σu, for example σ̂u :=

EX∼P [w(X)(u⊤X)21((u⊤X)2 ≤ Q)], where Q is within 0.01ϵ from the 3ϵ-quantile of (u⊤X)2 under Pw.
12: Find estimator σ̂′

u such that |σ̂′
u − σ̂u| ≤ 0.01γσ̂u + 0.01γ∥u∥22∥Σ∥op.

13: Let Σ̂Pw
be a sample-based version of ΣPw

.

14: if σ̂′
u ≥ (1− Cγ)u⊤Σ̂Pw

u and u⊤Σ̂k,tu

∥u∥2
2
≥ (1− γ)r̂t then

15: return u/∥u∥2. ▶{c.f. Lemma 2.7}
16: end if

Lemma D.5 (Lemma 4.14 in (Diakonikolas et al., 2022d)). Let A,B,B1, . . . ,Bp be symmetric d× d matrices and define
M = Bp,MS =

∏p
i=1 Bi. If ∥Bi −B∥2 ≤ δ1∥B∥2, then ∥MS −Bp∥op ≤ pδ1(1 + δ1)

p∥B∥pop.

By Lemma D.5, it suffices to ensure pδ1e
pδ1 < δ. For that, it suffices to use δ1 := δ/(3p). In the reminder we focus on

ensuring ∥B̂k,t,ℓ −Bk,t∥op ≤ δ1∥Bk,t∥op for that choice of δ1.

Let ∥Σ̂k,t,ℓ −Σk,t∥op ≤ δ3∥Σk,t∥op for δ3 to be specified. We have that∥∥∥B̂k,t,ℓ −Bk,t

∥∥∥
op

=
∥∥∥Ŵ Σ̂k,t,ℓ − E

X∼P
[wk,t(X)]Σk,t

∥∥∥
op

≤ E
X∼P

[wk,t(X)]
∥∥∥Σ̂k,t,ℓ −Σk,t

∥∥∥
op

+
∣∣∣Ŵk,t − E

X∼P
[wk,t(X)]

∣∣∣ · ∥∥∥Σ̂k,t,ℓ

∥∥∥
op

≤
∥∥∥Σ̂k,t,ℓ −Σk,t

∥∥∥
op

+ δ2

∥∥∥Σ̂k,t,ℓ

∥∥∥
op

≤ (1 + δ2)
∥∥∥Σ̂k,t,ℓ −Σk,t,ℓ

∥∥∥
op

+ δ2 ∥Σk,t,ℓ∥op

≤ (1 + δ2)δ3 ∥Σk,t,ℓ∥op + δ2 ∥Σk,t,ℓ∥op
≤ 2δ3 ∥Σk,t,ℓ∥op + δ2 ∥Σk,t,ℓ∥op .

To make the RHS upper bounded by δ1∥Σk,t,ℓ∥op, we choose δ3 = 0.1δ1 and δ2 =: 0.1δ1. The sample complexity of
achieving |Ŵk,t −EX∼P [wk,t(X)]| ≤ δ2 = δ/(30p) is O(p

2

δ2 log(1/τ)) by Hoeffding bounds. The sample complexity for
achieving ∥Σ̂k,t −Σk,t∥op ≤ δ3∥Σk,t∥op is by Fact B.8:

ñ ≲
r2d∥Σ∥op
δ23∥Σk,t∥op

log

(
d

τ

)
≲

r2dp2∥Σ∥op
δ2∥Σk,t∥op

log

(
d

τ

)
≲

r2dp2

δ2
log

(
d

τ

)
,

where the last inequality uses that because of our assumptions EX∼P [wk,t(X)] ≥ 1−O(ϵ) and ∥Bk,t∥op ≥ 0.5∥Σ∥op, we
have that ∥Σk,t∥op = ∥Bk,t∥op/EX∼P [wk,t(X)] ≳ ∥Σ∥op.

■

Proof of Items 1 and 2 of Condition D.3. The two conditions follow directly from Lemma D.4 using δ =

0.01√
d
min

(√
γ/ϵ

r , 1

)
. For the first one: Since ∥M̂k,t −Mk,t∥op ≤ 0.1

r
√
d

√
γ/ϵ∥Mk,t∥op ≤ 0.1

r
√
d

√
γ/ϵ∥Mk,t∥F and we are
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interested only for points with ∥x∥2 ≤ r
√

d∥Σ∥op, we have that

g(x) ≤ ∥Mk,tx∥22 ≤ 2
∥∥∥M̂k,tx

∥∥∥2
2
+ 2

∥∥∥(Mk,t − M̂k,t

)
x
∥∥∥2
2

≤ 2
∥∥∥M̂k,tx

∥∥∥2
2
+ 2∥x∥22

∥∥∥Mk,t − M̂k,t

∥∥∥2
op
≤ 2ĝ(x) + 0.02(γ/ϵ)∥Mk,t∥2F∥Σ∥op .

Equivalently, ĝ(x) ≥ 0.5g(x) − 0.01(γ/ϵ)∥Mk,t∥2F∥Σ∥op. The proof of Item 2 can be found in (Diakonikolas et al.,
2022d). ■

D.1.2. ITEM 3

Lemma D.6. For any distribution P over R and any ϵ, δ ∈ (0, 1), there is an estimator L̂ that uses O
(
1
ϵ log

(
1
τ

))
samples

from D and satisfies ∣∣∣ Pr
X∼P

[X > L̂]− ϵ
∣∣∣ ≤ ϵ

100
,

with probability at least 1− τ . The memory usage and runtime of the estimator are also O
(
1
ϵ log

(
1
τ

))
.

Proof. The estimator L̂(X1, . . . , Xm) from m samples X1, . . . , Xm ∼ P is defined to be the (m · ϵ)-greatest sample.
Let L denote the target threshold, that is, the real for which PrX∼P [X > L] = ϵ. Additionally, let L−ϵ, L+ϵ such that
PrX∼P [L− ≤ X ≤ L] = PrX∼P [L ≤ X ≤ L+] = ϵ/100. Then, the probability that L̂ is not accurate is

Pr
X1,...,Xm∼P

[∣∣∣ Pr
X∼P

[X > L̂]− ϵ
∣∣∣ > ϵ

100

]
≤ Pr[L̂ > L+] +Pr[L̂ < L−] .

Each term is bounded by an application of the multiplicative version of Chernoff bounds. Regarding first one, L̂ > L+

implies that we had at least m · ϵ samples in the interval (L+,+∞). But this is a low probability event because each sample
belongs in this region with probability only ϵ(1− 1/100):

Pr[L̂ > L+] ≤ Pr
X1,...,Xm∼P

 1

m

m∑
j=1

1(Xj > L+)− Pr
X∼P

[X > L+] >
ϵ

100

 ≤ e−Ω(ϵm) .

Choosing m to be a sufficiently large multiple of ϵ−1 log
(
1
τ

)
makes that probability of failure less than τ/2. The other term

Pr[L̂ < L−] < τ/2 can be shown similarly.

This algorithm stores O(ϵ−1 log(1/τ)) one dimensional samples. If the algorithm selects the top ϵ ·m element by sorting
the data first, its runtime is O(ϵ−1 log(1/τ) log(ϵ−1 log(1/τ))). However, O(ϵ−1 log(1/τ)) is also possible for selection
using a probabilistic divide and conquer algorithm. ■

D.2. Item 4

We prove Item 4 in the lemma below, which is a simple adaptation of Lemma 4.16 from Diakonikolas et al. (2022d). For the
sake of completeness we include a proof.

Item 4 is used for estimating EX∼P [w(x)τ(x)] in Line 3 of HARDTHRESHOLDINGFILTER as well as in lines 12 of
Algorithm 8 and 21 of Algorithm 7. We briefly clarify how exactly it is used before giving the proof. We do this for Line 12 of
Algorithm 8 since the other ones can be checked similarly: For that, we apply Lemma D.7 with w(x) = wk,t(x)1((u

⊤X)2 ≤
Q). Then, the guarantee of the lemma is that (using the notation of Line 12) |σ̂′

u − σ̂u| ≤ 0.01γσ̂u + 0.01γ
r2d ∥u∥

2
2∥Σk,t∥op ≤

0.01γσ̂u + 0.01γ∥u∥22∥Σ∥op, where the last inequality follows from the fact that ∥Σk,t∥op ≤ r2d∥Σ∥op as the support of
Pk,t is in a ball of radius r

√
d∥Σ∥op (c.f. Line 4 of Algorithm 7).

Lemma D.7. In the setting of Algorithm 7, let r be a radius such that PrX∼G[∥X∥2 > r
√

d∥Σ∥op] ≤ ϵ and assume that
∥Bk,t∥op ≥ 0.5∥Σ∥op. For any τ and any weight function w : Rd → [0, 1] and any vector u, there is an estimator F̂ for

the quantity Fk,t := EX∼P [w(X)(u⊤X)2] that uses n = O
(

r4d2

γ2 log(1/τ)
)

samples from P , runs in O(nd) time, uses

memory O(log(1/τ)), and, with probability 1− τ it satisfies |F̂ − Fk,t| ≤ 0.01γFk,t +
0.01γ
r2d ∥u∥

2
2∥Σk,t∥op.
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Proof. We show the lemma for constant probability of success as then one can boost that to 1− τ by repeating log(1/τ)
times and keeping the median. The estimator is just sample average. By Chebysev’s inequality, with constant probability,
we have that ∣∣∣∣∣ 1n

n∑
i=1

w(xi)(u
⊤xi)

2 − E
X∼P

[w(X)(u⊤X)2]

∣∣∣∣∣ ≲
√
VarX∼P [w(X)(u⊤X)2]

n
.

We want to upper bound the RHS by 0.01γEX∼P [w(X)(u⊤X)2] + 0.01γ
r2d ∥u∥

2
2∥Σk,t∥op. A sufficient number of samples

for that is big enough multiple of the following:

VarX∼P [w(X)(u⊤X)2](
γEX∼P [w(X)(u⊤X)2] + γ

r2d∥u∥
2
2∥Σk,t∥op

)2 ≤ r2dVarX∼P [w(X)(u⊤X)2]

γ2 EX∼P [w(X)(u⊤X)2]∥u∥22∥Σk,t∥op

≤ r2dEX∼P [w
2(X)(u⊤X)4]

γ2 EX∼P [w(X)(u⊤X)2]∥u∥22∥Σk,t∥op

≤ r2d∥u∥22r2d∥Σ∥op EX∼P [w(X)(u⊤X)2]

γ2 EX∼P [w(X)(u⊤X)2]∥u∥22∥Σk,t∥op

=
r4d2∥Σ∥op
γ2∥Σk,t∥op

≲
r4d2

γ2
.

where the third line from the end used w2(x) ≤ w(x), (u⊤x)2 ≤ ∥u∥22∥x∥22, and ∥x∥22 ≤ r2d∥Σ∥op (by the pruning of
Lines 3 and 4 in Algorithm 7) and the fourth line uses our assumption ∥Bk,t∥op ≥ 0.5∥Σ∥op. ■

D.2.1. ITEMS 5 AND 6 (POWER ITERATION)

Regarding Item 6 we use the lemma below with A = Bk,t and Â = M̂k,t, for which it is guaranteed by Lemma D.4 that
∥Â−Ap∥op ≤ δ∥Ap∥op ≤ δ∥Ap∥F.

Item 5 of Condition D.3 follows as a corollary of the same lemma, since we can boost the probability of success from 0.9 to
arbitrarily close to 1 by repeating the procedure and returning the vector y maximizing y⊤Ay/∥y∥22.

Lemma D.8. Let δ > 0, γ ∈ (0, 1/2), p ∈ N and d × d PSD matrices A, Â, such that ∥Â −Ap∥op ≤ δ∥Ap∥F. Let
z ∼ N (0, I) and y = Âz. Then, if p > C log(d/γ)/γ for a sufficiently large constant, and δ < cγ/

√
d for sufficiently

small positive constant, the following holds with probability at least 0.9:

y⊤Ay

∥y∥22
≥ (1−O(γ))∥A∥op .

Proof. Denote ∆ := Â − Ap, which has operator norm at most δ∥Ap∥F. We first analyze the random variable X =
z⊤ (Ap∆+∆Ap) z. Then

E[X] = tr (Ap∆+∆Ap) = 2⟨Ap,∆⟩ ≤ 2∥Ap∥F∥∆∥F ≤ 2
√
d∥Ap∥F∥∆∥op ≤ 2δ

√
d∥Ap∥2F,

since ∥∆∥op ≤ δ∥A∥F. And since Ap∆ + ∆Ap is symmetric, by Fact 2.2, the variance of X satisfies Var(X) ≲
∥Ap∆+∆Ap∥2F ≲ ∥∆∥2op∥Ap∥2F ≤ δ2∥Ap∥4F. Therefore, w.h.p,

|z⊤ (Ap∆+∆Ap) z| ≲ δ
√
d∥Ap∥2F.

By a similar argument, we obtain that with high probability,

|z⊤
(
Ap+1∆+∆Ap+1

)
z| ≲ δ

√
d∥A∥op∥Ap∥2F.

Now let X ′ = z⊤A2pz. Then E[X ′] = tr(A2p) = ∥Ap∥2F. By Gaussian anticoncentration (Fact 2.2), with high probability:

z⊤A2pz ≍ ∥Ap∥2F . (47)
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Also, ∥z∥22 ≲ d. We now have the following:

∥y∥22 = z⊤Â2z

= z⊤ (Ap +∆)
2
z

= z⊤A2pz + z⊤ (Ap∆+∆Ap) z + z⊤∆2z

≤ z⊤A2pz + Cδ
√
d∥Ap∥2F + Cd∥∆∥2op

≤ z⊤A2pz + C∥Ap∥2F
(
δ
√
d+ dδ2

)
≤ z⊤A2pz + 2Cδ

√
d∥Ap∥2F . (48)

Similarly,

∥y∥22 ≥ z⊤A2pz − Cδ
√
d∥Ap∥2F . (49)

By Fact 2.3, we also know that with probability 0.99 we have that

z⊤A2p+1z

z⊤A2pz
≥ (1− γ)∥A∥op . (50)

Conditioned on this event, we have that:

y⊤Ay = z⊤ÂAÂz

= z⊤ (Ap +∆)A (Ap +∆) z

= z⊤A2p+1z + z⊤(Ap+1∆+∆Ap+1)z + z⊤(∆A∆)z

≥ z⊤A2p+1z − Cδ
√
d∥A∥op∥Ap∥2F

≥ (1− γ)∥A∥opz⊤A2pz − Cδ
√
d∥A∥op∥Ap∥2F (using (50))

≥ (1− γ)∥A∥op
(
z⊤A2pz − 3Cδ

√
d∥Ap∥2F

)
(γ < 2/3)

≥ (1− γ)∥A∥op
(
∥y∥2 − 5Cδ

√
d∥Ap∥2F

)
. (using (48))

Finally, dividing by ∥y∥22 both sides yields

y⊤Ay

∥y∥22
≥ (1− γ)∥A∥op

(
1− 5Cδ

√
d∥Ap∥2F

1

∥y∥22

)
.

We will now show that

5Cδ
√
d∥Ap∥2F

1

∥y∥22
≲ γ,

which will complete the result.

δ
√
d∥Ap∥2F

1

∥y∥22
≤ δ

√
d∥Ap∥2F

z⊤A2pz − 2Cδ
√
d∥Ap∥2F

(using (49))

≲
δ
√
d∥Ap∥2F

∥Ap∥2F − C ′δ
√
d∥Ap∥2F

(using (47))

=
δ
√
d

1− C ′δ
√
d

≲ δ
√
d ≲ γ. (using δ < cγ/

√
d)

■
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D.3. Proof sketch of Theorem D.2

The proof of correctness of Algorithm 7 is the same as in Appendix C modulo small changes in the constants of the bounds
to account for the usage of our sample-based estimators. Thus, here we only derive the sample complexity, memory, and
runtime bounds.

Sample complexity: Consider the (k, t)-th iteration of Algorithm 7 (that is, the k-th iteration of the outer loop and t-th itera-

tion of the inner loop). In order to ensure all parts of Condition D.3 we use Lemma D.4 with δ = 0.01√
d
min

(√
γ/ϵ

r , γ

)
and

probability of failure τ a sufficiently large polynomial of d/ϵ so that with high probability the estimators are accurate across
all iterations simultaneously. Thus, each estimator B̂k,t,ℓ uses (r2p2kd/δ

2)polylog(d/ϵ) samples. We use pk of these estima-
tors in Line 13 resulting in (r2p3kd/δ

2)polylog(d/ϵ) samples. Moreoever, for the estimator of Line 16 we use Lemma D.6
(again with τ = poly(d/ϵ)) which contributes another (1/ϵ)polylog(d/ϵ) to the sample complexity. We also call the esti-
mator of Lemma D.7 which uses O((r4d2/γ2)polylog(d/ϵ)) many samples. Thus, the number of samples used during the
(k, t)-th iteration of Algorithm 7 is nk,t := O

(
r2p3kd/δ

2polylog(d/ϵ) + (1/ϵ)polylog(d/ϵ) + (r4d2/γ2)polylog(d/ϵ)
)
,

and the total sample complexity is

n =

kend∑
k=1

tend∑
t=1

nk,t ≲ tend

(
kend∑
k=1

p3k

)
r2d

δ2
polylog(d/ϵ) +

tendkend
ϵ

polylog(d/ϵ) + tendkend
r4d2

γ2
polylog(d/ϵ)

≲
r2d2 max(r2ϵ, 1)

γ5
polylog(d/ϵ) +

1

ϵγ
polylog(d/ϵ) +

r4d2

γ3
polylog(d/ϵ)

Memory Usage: The estimator of Line 16 in Algorithm 7 uses memory O((1/ϵ)polylog(d/ϵ)), and that memory can be
freed and reused the next time Line 16 is executed. The filters created by HARDTHRESHOLDINGFILTER are of the form of a
vector and a one dimensional threshold, meaning that they can be stored in O(d) memory. The number of the filters created
in each one of the tend ·kend calls of HARDTHRESHOLDINGFILTER is at most O(log(d/ϵ)). Thus, the memory used to store
all of them is O(tend · kend · d log(d/ϵ)) = O((d/γ)polylog(d/ϵ)). Every other operation done in Algorithm 7 is either a
multiplication of an empirical second moment matrix with a vector (that as we have noted earlier can be implemented in
O(d) memory) or even more basic operation.

Runtime: The same runtime analysis from Appendix C.3.1 applies.

D.3.1. BIT COMPLEXITY

Bit Complexity We briefly discuss how our algorithm can be implemented with bounded precision (i.e., in the standard
word RAM model) using (d/γ)polylog(d/ϵ) registers of size (1/γ)polylog(d/ϵ) bits each. We assume that all but ϵ mass of
the inlier distribution is supported in a ball of radius R = (d/ϵ)polylog(d/ϵ) and we also assume that Σ ⪰ (ϵ/d)polylog(d/ϵ)I.
Our algorithm ignores all points x outside of the ball and rounds the remaining ones to x′ such that ∥x− x′∥2 ≤ η. We want
η to be small enough so that it does not affect the correctness of our algorithm. Picking η = (ϵ/d)polylog(d/ϵ) means that the
rounded distribution has covariance matrix close enough to the original one so that is satisfies the same stability condition
(modulo a difference in the constants), thus our algorithm will be correct. So far, by the aforementioned rounding, every
point can be stored in d words of size O(log(Rd/η)) = polylog(d/ϵ) bits). Regarding the bit complexity of intermediate
calculations of our algorithm, the most expensive one is the computation of Mz for M being the empirical covariance raised
to the power p = γ−1polylog(d/ϵ) and z a random Gaussian vector. Since the power p includes a 1/γ factor, the final result
may have bit complexity increased by 1/γ factor, thus we need d registers of size (1/γ)polylog(d/ϵ) to store the resulting
vector Mz. The filters that we create are (1/γ)polylog(d/ϵ) in number and the representation of each is a vector of the
previous form (and a one-dimensional threshold). Thus, overall, we have to use (d/γ)polylog(d/ϵ) many registers of size
(1/γ)polylog(d/ϵ) bits each.
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