
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STEALING USER PROMPTS FROM MIXTURE-OF-
EXPERTS MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture of Expert (MoE) models improve the efficiency and scalability of dense
language models by routing each token to a small number of experts in each layer
of the model. In this paper, we show how an adversary that can arrange for their
queries to appear in the same batch of examples as a victim’s queries can exploit
expert-choice routing to the full disclosure of a victim’s prompt. We successfully
demonstrate the effectiveness of this attack on a two-layered Mixtral model. Our
results show that we can extract the entire prompt using O(Vocabulary size ×
prompt length2) queries or a maximum of 100 queries per token in the setting we
consider. Our work is the first of its kind data reconstruction attack that originates
from in a flaw in the model architecture, as opposed to the model parameterization.

1 INTRODUCTION

In recent years, the Mixture of Experts (MoE) architecture has emerged as a powerful and efficient
approach for inference of large-scale machine learning models (Jiang et al., 2024; Shazeer et al.,
2017; Aljundi et al., 2017; Eigen et al., 2013; Jordan and Jacobs, 1994; Jacobs et al., 1991), particu-
larly in natural language processing (Shazeer et al., 2017; Fedus et al., 2022; Riquelme et al., 2021;
Du et al., 2022). This architecture distributes computational load across multiple expert modules,
each specializing in different aspects of the underlying task. In the context of language, this means
dividing the input text into smaller units called ‘tokens’ and assigning them to the expert(s) best
suited to handle them.

However, this specialization can also introduce new vulnerabilities. Prior work from Hayes et al.
(2024) identified a critical architectural flaw in MoE models prone to token dropping. Token drop-
ping refers to a phenomena that occurs when an expert, already at full capacity, gets assigned addi-
tional tokens; these additional tokens cannot be processed and, as a result, are either routed to other
experts or dropped. Hayes et al. demonstrated that if an adversary can ensure their data is processed
in the same batch as another user’s data, they can exploit token dropping to launch denial-of-service
attacks, by filling the buffers of experts that the user’s data relies on. The attack of Hayes et al.
reduced quality of the model responses to victim queries, causing denial of service.

Building on this foundation, we show that the same vulnerability has far more significant conse-
quences and can be exploited to compromise user privacy. We demonstrate that by carefully crafting
a batch of inputs, an attacker can manipulate the expert buffers within the MoE model, leading to
the full disclosure of a victim’s prompt that is included in the same batch. This represents the first
data reconstruction attack of its kind that originates in a flaw within the design of the model’s ar-
chitecture itself, rather than in its learned parameters. The core principle underpinning this attack
is that token dropping introduces a shared information channel; if one user’s data can affect the
routing pattern of another user’s data, this introduces an information channel (albeit a low entropy
one) that can be used to infer which tokens were in another user’s message. In other words, we
show that the MoE architecture that uses Expert Choice Routing (Zhou et al., 2024) is vulnerable
to Conditional Adversarial Token-Dropping attack, where an attacker can infer what data a vic-
tim submitted to the model. A high level description of Conditional Adversarial Token-Dropping
attack is given in Figure 1. Although our findings are limited to a specific choice of token to expert
routing algorithm (Zhou et al., 2024), we hypothesise that other MoE routing strategies that break
the fundamental assumption of independence across a batch of inputs may also be vulnerable.

In this paper we make the following contributions:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

User
Token 1

Attack
Target Router

User
Token 2

User
Token 3

User
Token 4

User
Token 5

User
Token 6

User
Token 7

A A A We

We Like To Play Soccer In The

User
Token 8

Field

FFN N

User query

Ba
tc

h

Blockers A A A Y Y Y Y Y

Adv
Token 1

Adv
Token 2

Adv
Token 3

Adv
Token 4

Adv
Token 5

Adv
Token 6

Adv
Token 7

Adv
Token 8

(1) Pick some expert to
target with the attack

(3) In an offline mode find the
adversarial sequence that

blocks the target expert and
leaves only a single empty

slot for user token

(2) Make a guess of what
victim token might be

(4) Online test if the adversarial
sequence behaves differently
depending on the batch order

(5) If logits are different and the
difference can be attributed to a

targeted expert dropping our
guess token that means the

guess was correct

(6) Repeat (1) and (3) with
a different guesses and

experts
Adversarial input will experience

dropping of the guess token
based on the order because of the

induced routing tie in topk(·)

Adv query We - - - - - - -

Figure 1: We show the overall flow of Conditional Adversarial Token-Dropping, following the ex-
ample Expert Choice Routing from Zhou et al. (2024) depicted in Figure 7. The adversary finds a
set of tokens that fill the buffer of a given expert such that only a single space is left empty. In the
example above, the adversary fills the expert with ‘A’, such that the only spot that is left is for token
‘We’. Now, the adversary makes a guess of what that token may be and observes what happens to
the logits. If the logits do not change when you process the batch in a different order, that means that
tie-handling has triggered for the same tokens. This allows the adversary to deduce that the guess
was correct. If it was incorrect, another guess is made and tested. Note that only two queries are
needed to test a given guess.

• We demonstrate the first data stealing attack, Conditional Adversarial Token-Dropping, that
originates in the MoE model architecture;

• We demonstrate feasibility of Conditional Adversarial Token-Dropping on a Mixtral back-
bone (Jiang et al., 2024) with the Expert Routing strategy; we show that an attacker can
verify their guess for an unknown user message in just two queries, while a general extrac-
tion attack scales byO(2L×n× |V|) local queries to a model hosted by the attacker and by
O(|V| × l2) remote queries to a target model that is being attacked for L layers, n experts,
and a sequence of length l with a vocabulary of size |V|;

• Finally, we discuss defences against Conditional Adversarial Token-Dropping.

2 RELATED WORK

2.1 MIXTURE OF EXPERTS

The concept of Mixture of Experts (MoE) was first introduced by Jacobs et al. (1991) and Jordan and
Jacobs (1994), but has more recently become a popular tool for efficient inference on transformer
based LLMs (Shazeer et al., 2017; Zoph et al., 2022; Renggli et al., 2022; Jiang et al., 2024), primar-
ily because it allows the model to selectively activate only a small fraction of the total parameters
for any given input. An MoE layer in a large language model (LLM) consists of n expert modules
and a gating function, which routes a token to an expert (or subset of the n experts). Each expert
module can specialize in different aspects of language tasks (e.g. coding) and the gating function
decides which experts are relevant for a particular input. Since only a subset of experts is activated
for an input, the number of parameters activated is significantly smaller than the overall number of

2

https://phrack.org/issues/49/14.html

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

parameters in the LLM, which translates to fewer floating-point operations and faster inference. This
in turn allows one to build extremely large networks without a corresponding increase in inference
costs. Some of the best performing modern LLMs utilize MoE architectures e.g. Gemini-1.5 (Team,
2024) , Mixtral (Jiang et al., 2024), and Grok-1 (xAI, 2023).

2.2 VIOLATIONS OF USER PRIVACY

Although previous work has investigated how user privacy can be compromised in
LLMs (Debenedetti et al., 2023; Shen et al., 2024), none have thus far investigated vulnerability
of user data privacy due to the underlying model architecture, specifically how input representations
can be influenced by other data within the same processing batch. Hayes et al. (2024) demonstrated
previously that batch composition can be used by adversaries to exploit MoE routing and to launch
denial-of-service attacks; we instead exploit it to leak private user supplied prompts. Note that Ex-
pert Choice Routing considered in this work is one of many different routing strategies that breaks
the implicit batch independence; we hypothesise that other routing strategies may be similarly vul-
nerable.

3 BACKGROUND

3.1 THREAT MODEL

In this paper, we make the following simplifying assumptions. First, we assume that the adversary
has white-box access to the model that uses an MoE with cross-batch Expert Choice Routing strat-
egy (Zhou et al., 2024). This can apply in a setting where a third party is using the base model that
is available publicly e.g. implementation available through t5x (Roberts et al., 2022). Second, the
adversary can control the placement of its and the user inputs in the batch. Third, the adversary can
query the model repeatedly ensuring that the the user supplied input is consistently in the same batch
as its own inputs; the adversary and user inputs are always batched together and sent to the model
for processing. At face value, this threat model is unrealistic as the second and the third assumptions
require access to the serving infrastructure to control in-batch placement. However, the ability to
mount man-in-the-middle attacks over networks is a commonplace assumption in security research.
We defer a more detailed discussion of the practicalities of the attack and potential methodological
improvements to Section 6.

3.2 PRIMER ON LANGUAGE MODELS AND MIXTURE OF EXPERTS

A transformer based large language model is a function fθ : V l → P(V) that takes as input a
sequence of tokens from a vocabulary V and outputs a probability distribution over the vocabulary,
P(V). In particular, we are interested in functions of the form fθ(z) = softmax(W · hθ(z)), where
W is an unembedding matrix and W · hθ(z) gives a set of logits over V .

We assume that the model hθ consists of multiple MoE layers. A MoE layer consists of n expert
functions {e1, e2, . . . , en} where ei : Rd → Rd is a feed forward layer that takes in d-dimensional
token representations and outputs new features of the same dimensionality. The MoE layer also
consists of a gating function g : Rd → Rn which is used to assign token representations to experts
by outputting a probability distribution over the n experts.

Large language models are commonly ran on batches of inputs to improve hardware utilization and
efficiency. This means fθ in reality operates on the domain V l×b, where l is the sequence length
of an input, and b is the batch size. For models that do not use MoE layers, the computation is
entirely parallel over a batch of inputs; the computations of one input in the batch cannot affect the
computations of another input in the batch. For models that do use MoE layers, this is no longer
true, as the gating function g can only assign a limited number of token representations from a batch
to a specific expert. There are many different choices for how to assign tokens to experts given the
output of the gating function; this is also commonly known as the routing strategy (Cai et al., 2024).

In this work, we focus on Expert Choice Routing which allows each expert to independently select
its topk assigned tokens from a batch of tokens (Zhou et al., 2024). The value k represents the
fixed capacity of each expert, signifying the number of tokens it can process; we refer to this as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the expert’s buffer capacity. This inherently ensures a balanced load across experts and introduces
flexibility in allocating computational resources. In our experimental setup, we define k as:

k =
t× c

n
(1)

Here, t represents the total number of tokens in the input batch (typically batch size b multiplied
by sequence length l), c > 0 is the capacity factor, indicating the average number of experts each
token utilizes, and n is the total number of experts. Let Z ∈ Rt×d denote a batch of input token
representations at a given layer, where d is the hidden dimension of the model. For each zi ∈ Z,
we compute g(zi) = {pi1, pi2, . . . , pin}, which outputs a probability distribution over the n experts.
This produces the matrix:

G =

p11 p12 . . . p1n
p21 p22 . . . p2n

...
...

...
...

pt1 pt2 . . . ptn

 (2)

where pij represents the probability of assigning token zi to expert ej . Expert Choice Routing
applies a column wise topk selection of tokens; token zi is routed to expert ej if pij is one of the
topk probabilities in column j. Unlike other routing strategies, where experts may handle a variable
number of tokens (Fedus et al., 2022; Lepikhin et al., 2020; Shazeer et al., 2017), in Expert Choice
Routing the expert load is perfectly balanced by design, each expert handles exactly k tokens.

Observe that not all tokens within the batch may be processed by an expert. For example, if c is
small (e.g. << 1) then the number of tokens processed by each expert is substantially smaller than
t, the total number of tokens in the batch. In such cases, tokens that are not assigned to any expert
are dropped – that is, not processed by any expert (Fedus et al., 2022; Hwang et al., 2023). This is
commonly assumed to be of little consequence, as it is standard for MoE models to have residual
connections between layers, meaning that the effect of dropping a token is limited. However, we will
show that token dropping can introduce a shared information side channel which can be exploited.

4 CONDITIONAL ADVERSARIAL TOKEN-DROPPING ATTACK

This section details our two exploits against models that use MoE architectures with the Expert
Choice Routing strategy. Both exploits leverage the primitives explained in Section 4.1 to compro-
mise user message privacy. The attacks are:

1. Oracle attack: The attacker guesses the victim’s prompt and verifies it with only two
queries to the model. (Described in detail below)

2. Leakage attack: The attacker sequentially executes the oracle attack to extract the victim’s
prompt without prior knowledge.

We successfully demonstrate the leakage attack on a two-layered Mixtral model (Jiang et al., 2024)
with Expert Choice Routing strategy (results are in Section 5, by two-layer we mean we only use
the first two layers of a larger model).

At a high level, the attacks are based on the ability to create dedicated adversarial inputs (Figure
2) that when included in a batch, intentionally shape what is included in an expert’s buffer in the
first MoE layer (Figure 3) in such a way that information about user prompts within the batch leaks.
In particular, the adversary finds a set of tokens, which we refer to as blocking tokens, that have
high priority of being routed to an expert. The adversary then guesses the target token that they
are trying to leak from the victim input, and uses the blocking tokens to ensure that this (guessed)
token is at the boundary of the expert buffer (i.e. has the kth priority). The reader will recall from
Section 3.1 that the adversary can control the position of the victim’s message within the batch,
and so creates an adversarial batch that consists of blocking tokens, the guessed message and the
victim’s message (the message they are trying to infer). The adversary then sends two queries: one
where the adversarial batch contains the victim’s input in a batch position before the guessed input
token, and one where the the guessed input token is before the victim’s input. If the victim and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

guessed inputs are identical, then the model output on these two queries will be different, as either
the victim or guessed message target token will be dropped depending on their order within the
batch. Importantly, the guessed message tokens that are processed will be different in each query (in
one query the guessed token is dropped and in another it is not), which causes a difference in model
outputs. By equating difference in outputs to token dropping, the adversary can infer if their guess
was correct.

We concentrate on the description of the oracle attack, as the token-by-token leakage attack is simply
a sequential execution of the oracle attack. Next, we give a more detailed overview of the attack
along with the primitives we make use of for execution.

4.1 ATTACK OVERVIEW

The goal of the attack is to force a scenario in which an attacker’s token is conditionally dropped
depending on the relative order in the same batch of an identical token belonging to the victim. We
discuss the attack in more detail in Appendix E, but at a high level the exploit is triggered by the
following steps:

1. Step 1: Guess the next Token and Position: The attacker guesses the target token and its
position in a chosen expert’s buffer, assuming the prefix is known (initially empty).

2. Step 2: Construct the Adversarial Batch: Using the primitives described in Section 4.2,
the attacker crafts an adversarial batch that:

(a) Places blocking tokens to fill the expert buffer, leaving one spot for the guessed token.
(b) Includes the probe sequence with the known prefix and guessed token, with the goal

of triggering tie-handling.
(c) Adds a padding sequence to extend the buffer size and ensure stable sorting.

3. Step 3: Send Two Queries: The attacker sends the adversarial batch twice, changing the
order of the victim’s message and the probe sequence.

4. Step 4: Map Observed Logits to Routing Paths: The attacker uses a local model to find
a mapping between observed logits to routing paths of the probe sequence.

5. Step 5: Verify the Guess: A correct guess is indicated if the guessed target token is routed
to the chosen expert in the first query (where the probe sequence comes first) but not in the
second query (where the victim’s message comes first). This difference in routing paths
arises because the input order of identical tokens influences the tie-breaking behavior. If
the guess is incorrect, the routing paths should be consistent regardless of the input order.

4.2 ATTACK PRIMITIVES

We now describe the primitives behind each of the attack steps.

4.2.1 HANDLING TOKEN PRIORITY TIES IN EXPERT ROUTING

In Expert Choice Routing, each expert buffer serves as a priority queue. As discussed in Section 3.2,
priorities are given to each token by way of the matrix G of shape (t, n), where t is the total number
of tokens in the batch and n is the total number of experts. With token dropping the topk most
prioritized tokens in each column of G will be processed by the corresponding expert and the rest
will be dropped. If two tokens have identical priority (they have the same probability of assignment
to an expert) and they have priority k, then which of the two tokens is selected and routed to the
expert is entirely down to the tie-handling behavior of the topk algorithm implementation. This is
a feature (further discussed in Appendix B) in the CUDA implementation of topk which is based
on a stable sort, with a “first come first serve” tie breaking policy. This distinguishable behavior
which is a function of the relative order to tokens within a batch is what we exploit in Conditional
Adversarial Token-Dropping.

4.3 EXTENDING AN EXPERT’S BUFFER SIZE

Extending the expert’s buffer size, k, is crucial to the attack for two reasons:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

• To make sure the victim’s token are not dropped by default.

• The expert buffer capacity needs to be > 32 for predictable behavior in CUDA topk tie
breaking (see Appendix B).

The expert buffer capacity is given in Equation (1).

In essence, it is the expected number of tokens per expert factored by the capacity factor c, which
usually sits in the range of [0.6, 2] (Gale et al., 2023). By sending a long query the total number
of tokens will increase, the other inputs will be padded to match the sequence length l and thus the
effective size (or space) in each expert buffer will increase, as padding tokens are masked to achieve
the lowest priority possible.

4.4 CONTROLLING TARGET-TOKEN PLACEMENT WITH BLOCKER SEQUENCES

Each token is assigned a priority (distribution over experts) for each expert; tokens with lower pri-
ority are pushed towards the end of the expert buffer, or dropped altogether if their priority is larger
than k. We leverage local access to the model weights to pre-compute a sequence per expert with to-
kens that are assigned high-priority in the first MoE layer. We refer to this as a blocking sequence, as
these tokens block other tokens from being assigned to an expert because of a higher priority. Since
our goal is to place the target token at the edge of the expert buffer we need to guess its position in
an expert buffer. We will then use our pre-computed blocker sequences to precisely set the correct
number of blocker tokens needed within the adversarial batch. We further discuss the details of the
approach we took for finding blockers in Appendix C.

Notice that although target token can be positioned in any position in an expert’s buffer, the attacker
controls all of the tokens in the batch except for the victim’s. Therefore the position search-space is
bounded to the victim’s message length.

Figure 2: The adversarial batch consists of the four components: secret message of the victim;

known prefix to the adversary that includes a new adversarial guess ; blockers that are used to
shape the buffer of the target expert; and a long sequence that is used to extend the expert capacity,
and also make topk predictable.

4.5 RECOVERING TARGET TOKEN ROUTING PATH

In MoE-based models, each token can be processed by at most 2n×L different expert combinations,
where L is the number of model layers. For example if a model contains 2 MoE layers and each
layer contains n = 8 experts, then a token could be routed in 216 unique ways through the model.
If it is possible to map a model output to the routing path of the token, then we can detect whether
token-dropping in the first MoE layer took place. We discuss the approach we took in further detail
in Appendix D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: The buffer of the experts chosen to be exploited is filled with specially chosen blocking
tokens that leave only a single position for the guessed target token. If the guessed token is correct,
model outputs for the adversarial batch should be identical even if we permute the order of inputs.
This is because the token that ends up in the buffer is the same if and only if tie-handing between
tokens has been triggered and the guessed token has priority identical to victim’s target token.

4.5.1 DO WE REALLY NEED TOKEN ROUTING PATH MAPS?

Initially, one may question if computing token routing paths is necessary. We now discuss why this
is crucial to the attack for models with more than one MoE layer.

In a single layer transformer model that utilizes MoE, the layers of the model are: (1) embedding,
(2) attention, (3) MoE, (4) unembedding. Importantly, the attention layer does not affect the repre-
sentation of the target token after token collisions due to priority ties in the MoE layer. A collision
would have an immediate impact on the model output (logits). The attack is performed sequentially,
token-by-token, the attacker needs to correctly guess the target token, and its position in a chosen
expert. Any change to the logit output will then indicate this token was affected by token dropping.

For a two layer model, the layers are: (1) embedding, (2) attention, (3) MoE, (4) attention, (5) MoE,
(6) unembedding. The second attention layer does affect the representation of the target token after
the token collisions due to priority ties in the MoE layer. We therefore present an attack that handles
the effect of attention that may interfere with our ability to understand how and when tokens are
dropped. The second layer of attention is impacted by MoE token dropping, and that means that the
prefix could also be dropped due to the impact of the adversarial batch and the unknown suffix of
the victim message. Prefix tokens will also change the representation of the target token and thus
its routing path through the second MoE layer, and therefore a method to recover the target token
routing path given the model output is necessary.

5 EVALUATION

Setting We evaluate our attack on the first two transformer blocks of Mixtral-8x7B (Jiang
et al., 2024), using PyTorch 2.2.0+cu118. We then change the model to use the Expert Choice
Router as is described by Zhou et al. (2024). This ensures that experts behave in an realis-
tic manner, although used in a setting that they were not originally developed for. We restrict
the vocab for guesses to lowercase letters with space of size 27, and limit our extraction mes-
sages to [hello, world, admin, words, message, leakage, attacks, prompts, top
secret, a password, vulnerable, token leak, side channel, exploitation,
confidential, an adversary, buffer overflow, privacy attacks, ssn aaa
bb cccc, secret messages]. We use a restricted vocab to only 9,218 out of 32,000 tokens for
finding blockers, which we discuss in detail in Appendix C. Finally, we quantise the router weights
to 5 digits to induce ties.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1.21.00.80.60.40.3
Capacity Factor

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Su

cc
es

s R
at

e

Secret Message Length: 5
Secret Message Length: 7
Secret Message Length: 10
Secret Message Length: 12
Secret Message Length: 15

Figure 4: Extraction performance of user queries for messages of different sizes. Individual scores
are presented in Figure 10–Figure 14. Performance of the Conditional Adversarial Token-Dropping
improves together with the capacity factor, at the same time extracting longer messages is harder.

.

0 1 2 3 4 5 6 7
Target Expert

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
In

de
x

58 1 12 5 17 6 1
6 2 8 8 7 21 13
2 19 7 5 8 18 9 6
2 8 6 14 14 15 8 11
5 4 8 9 8 20 10 6
4 9 4 4 10 5 7 4
7 12 0 5 14 9 2 7

11 3 2 6 8 8 7
0 7 5 4 4 10 2 4
6 9 4 5 1 6 2 7
5 3 4 1 10 6 2
6 3 3 2 1 3 4 3
3 1 0 0 2 1 3
2 2 8 2 3 0 1
2 6 2 0 2 2 2

Successful Extraction of Char at Index vs. Target Expert

0

10

20

30

40

50

Figure 5: Heatmap showing the correlation between the expert and the index of the input token where
the attack succeeds. Here, the attack progresses to the next token when any expert is successfully
exploited to leak the token of the victim.

Conditional Adversarial Token-Dropping We find that it is possible to extract secret user data for
all of the possible inputs we considered. As illustrated in Figure 4, the success rate of data extraction
varies with both the expert capacity factor and the message size. Specifically, increasing the capacity
factor improves the ability to extract victim tokens. Conversely, longer secret messages exhibit
higher error rates, likely due to the increased complexity of shaping expert buffers and the heightened
potential for cross-interference and unintended token drops in the later stages of extraction.

What experts leak the victim tokens? Figure 5 shows the expert and the index where the attack
succeeds. Note that Conditional Adversarial Token-Dropping moves to the next token when a suc-
cessful attack is found on any of the experts, meaning that the plot shows the index and the target
expert that tend to work first for extraction. In theory, we could have used any expert, yet in practice
we find that expert one and five are often exploited to leak the victim tokens. Figure 8 and Figure 9
show the relationship between the expert–position and the expert–token respectively for successful
victim token leakage.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.4 0.6 0.8 1.0 1.2
Capacity Factor

101

102

103

M
ea

n
Nu

m
be

r o
f C

al
ls

Mean Number of Calls
Per Token Guess with Standard Deviation

online calls
offline calls

Figure 6: Number of queries required to leak a token of the victim. The majority of queries are
performed locally by the adversary on the local (offline) copy of the model, with only a fraction of
online queries (to target model) required to execute the attack. Across all capacity factors, leaking a
single token requires up to 100 online queries.

What is the cost of leaking the tokens? Figure 6 shows the required number of queries to leak a
given token. We find that majority of the cost is carried by the adversary locally on their own copy
of the model, while online calls to the model with victim data present are not as significant. We find
that for all of the capacity factors per token leakage requires up to a hundred queries to the target
(online) model with victim data.

6 DISCUSSION

Methodological improvements In this paper we show that it is possible to exploit Expert Choice
Routing to extract private victim data placed in the same batch as an adversary’s data. Conditional
Adversarial Token-Dropping currently requires 2 queries per guess for verification, and 2n×L per
token queries for general extraction. This makes it infeasible at present to use our attack against
real world systems. Yet, we believe that performance of the attack could be significantly improved.
Firstly, we hypothesize that refining the buffer shaping process could enable the selection of blockers
that prevent inter-batch token interference. We discuss this further in Appendix C. Secondly, we
suspect that an alternative approach exists to determine the processed token without exhaustively
constructing all possible 2n×L expert combinations, potentially by learning a mapping between
outputs and routing paths. We discuss this further in Appendix D. Thirdly, targeting the final MoE
layer instead of the first may eliminate the need for routing path tracking altogether. Fourth, the
current attack requires precise matching in its exploitation for tie-handling. We hypothesise that
relative placement of tokens can similarly be used to signal what victim token is used. Finally, we
believe that a black-box variant of this attack is feasible – a local clone of the model at present is
only used to find blocking sequences and for inverting token routing paths. We hypothesise that both
of the tasks could inefficiently be deduced from black-box access.

Optimisation–Security trade-off Within the domain of computer security, it is well-established that
prioritizing performance optimization often inadvertently introduces vulnerabilities to side-channel
attacks (Anderson, 2010). In the case of MoE models, the Expert Choice Routing strategy, which
optimizes for efficiency, inadvertently creates a side channel that allows the attacker to exploit the
model. Our work highlights the importance of rigorous adversarial testing of any optimization
introduced into machine learning pipelines to safeguard user privacy. While we focus on a specific
routing strategy, we anticipate that similar vulnerabilities may exist in other strategies that violate
implicit batch independence.

Defences Having established general vulnerability of MoE-based models with Expert Choice Rout-
ing, we now shift our focus to potential defense strategies. A crucial first step in mitigating these
vulnerabilities is to preserve in-batch data independence, particularly across different users. This en-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

sures that adversaries cannot exploit the routing strategy. Second, the current attack design requires
precise shaping of the expert buffer, therefore, introducing any form of non-determinism into the
system can effectively disrupt the attacker’s ability to exploit this vulnerability. This could involve
incorporating randomness into various aspects of the model, such as the expert capacity factor, the
batch order, the input itself, or the routing strategy.

7 CONCLUSION

In classical dense LLMs, it is essentially impossible for one user’s data to impact another user’s
output. But MoE models introduce a side-channel: one user’s queries can impact a different user’s
outputs. The magntidue of this leak is minuscule challenging to detect. But by carefully crafting
adversarial input batches, we show how to manipulate the expert buffers within the MoE model
with Expert Choice Routing, leading to the full disclosure of a victim’s prompt included in the same
batch. At present, Conditional Adversarial Token-Dropping is only possible when Expert Choice
Routing is used, yet we hypothesise that other routing strategies can be similarly vulnerable. While
the current threat model assumes unrealistic attacker capabilities, we believe that future research can
extend the practicality of these attacks.

More broadly, attacks such as this highlight the importance of system-level security analysis at all
stages of model deployment, starting as the design of the architecture, and extending towards as late
as the actual deployment of the model and how different user queries are batched together. Studying
any one component in isolation may give the appearance of safety, but only when the system as a
whole is analyzed is it possible to understand vulnerabilities such as this. We hope that future work
will perform other analysis of this type on future advances.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a comprehensive outline of our attack methodology in Sec-
tion 4. We include all of the details about the attack and provide a detailed algorithmic description in
Appendix E. Our evaluation in Section 5 relies on the base model that is openly available (Mixtral-
8x7B). A number of supplementary figures in the appendix illustrate all of the details required to
replicate the work.

REFERENCES

R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate: Lifelong learning with a network of
experts. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3366–3375, 2017.

R. J. Anderson. Security engineering: a guide to building dependable distributed systems. John
Wiley & Sons, 2010.

W. Cai, J. Jiang, F. Wang, J. Tang, S. Kim, and J. Huang. A survey on mixture of experts, 2024.
URL https://arxiv.org/abs/2407.06204.

E. Debenedetti, G. Severi, N. Carlini, C. A. Choquette-Choo, M. Jagielski, M. Nasr, E. Wallace, and
F. Tramèr. Privacy side channels in machine learning systems, 2023.

N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou, A. W. Yu, O. Firat,
B. Zoph, L. Fedus, M. Bosma, Z. Zhou, T. Wang, Y. E. Wang, K. Webster, M. Pellat, K. Robinson,
K. Meier-Hellstern, T. Duke, L. Dixon, K. Zhang, Q. V. Le, Y. Wu, Z. Chen, and C. Cui. Glam:
Efficient scaling of language models with mixture-of-experts, 2022.

D. Eigen, M. Ranzato, and I. Sutskever. Learning factored representations in a deep mixture of
experts. arXiv preprint arXiv:1312.4314, 2013.

W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity, 2022.

10

https://arxiv.org/abs/2407.06204

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

T. Gale, D. Narayanan, C. Young, and M. Zaharia. Megablocks: Efficient sparse training with
mixture-of-experts. Proceedings of Machine Learning and Systems, 5, 2023.

J. Hayes, I. Shumailov, and I. Yona. Buffer overflow in mixture of experts, 2024.

C. Hwang, W. Cui, Y. Xiong, Z. Yang, Z. Liu, H. Hu, Z. Wang, R. Salas, J. Jose, P. Ram, et al. Tutel:
Adaptive mixture-of-experts at scale. Proceedings of Machine Learning and Systems, 5:269–287,
2023.

Issues. Make topk sort stable, 2019. URL https://github.com/pytorch/pytorch/
issues/27542.

Issues. Indices returned by torch.topk is of wrong order, 2020. URL https://discuss.
pytorch.org/t/indices-returned-by-torch-topk-is-of-wrong-order/
74305/12.

Issues. torch.topk returning unexpected output, 2024. URL https://github.com/pytorch/
pytorch/issues/133542.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. de las
Casas, E. B. Hanna, F. Bressand, G. Lengyel, G. Bour, G. Lample, L. R. Lavaud, L. Saulnier,
M.-A. Lachaux, P. Stock, S. Subramanian, S. Yang, S. Antoniak, T. L. Scao, T. Gervet, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mixtral of experts, 2024. URL https://arxiv.org/
abs/2401.04088.

M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen.
Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv
preprint arXiv:2006.16668, 2020.

C. Renggli, A. S. Pinto, N. Houlsby, B. Mustafa, J. Puigcerver, and C. Riquelme. Learning to merge
tokens in vision transformers, 2022. URL https://arxiv.org/abs/2202.12015.

C. Riquelme, J. Puigcerver, B. Mustafa, M. Neumann, R. Jenatton, A. S. Pinto, D. Keysers, and
N. Houlsby. Scaling vision with sparse mixture of experts, 2021.

A. Roberts, H. W. Chung, A. Levskaya, G. Mishra, J. Bradbury, D. Andor, S. Narang, B. Lester,
C. Gaffney, A. Mohiuddin, C. Hawthorne, A. Lewkowycz, A. Salcianu, M. van Zee, J. Austin,
S. Goodman, L. B. Soares, H. Hu, S. Tsvyashchenko, A. Chowdhery, J. Bastings, J. Bulian,
X. Garcia, J. Ni, A. Chen, K. Kenealy, J. H. Clark, S. Lee, D. Garrette, J. Lee-Thorp, C. Raffel,
N. Shazeer, M. Ritter, M. Bosma, A. Passos, J. Maitin-Shepard, N. Fiedel, M. Omernick, B. Saeta,
R. Sepassi, A. Spiridonov, J. Newlan, and A. Gesmundo. Scaling up models and data with t5x
and seqio. arXiv preprint arXiv:2203.17189, 2022. URL https://arxiv.org/abs/
2203.17189.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously large
neural networks: The sparsely-gated mixture-of-experts layer, 2017.

X. Shen, Y. Qu, M. Backes, and Y. Zhang. Prompt stealing attacks against text-to-image generation
models, 2024.

G. Team. Gemini: A family of highly capable multimodal models, 2024. URL https://arxiv.
org/abs/2312.11805.

xAI. Grok-1, 2023. URL https://github.com/xai-org/grok-1.

Y. Zhou, T. Lei, H. Liu, N. Du, Y. Huang, V. Y. Zhao, A. Dai, Z. Chen, Q. Le, and J. Laudon.
Mixture-of-experts with expert choice routing. In Proceedings of the 36th International Confer-
ence on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran
Associates Inc. ISBN 9781713871088.

11

https://github.com/pytorch/pytorch/issues/27542
https://github.com/pytorch/pytorch/issues/27542
https://discuss.pytorch.org/t/indices-returned-by-torch-topk-is-of-wrong-order/74305/12
https://discuss.pytorch.org/t/indices-returned-by-torch-topk-is-of-wrong-order/74305/12
https://discuss.pytorch.org/t/indices-returned-by-torch-topk-is-of-wrong-order/74305/12
https://github.com/pytorch/pytorch/issues/133542
https://github.com/pytorch/pytorch/issues/133542
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2202.12015
https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://github.com/xai-org/grok-1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

B. Zoph, I. Bello, S. Kumar, N. Du, Y. Huang, J. Dean, N. Shazeer, and W. Fedus. St-moe: Designing
stable and transferable sparse expert models, 2022. URL https://arxiv.org/abs/2202.
08906.

12

https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A EXPERT CHOICE ROUTING

User
Token 1

Router

User
Token 2

User
Token 3

User
Token 4

User
Token 5

User
Token 6

User
Token 7

Router

We Like To Play We Like Soccer Field

We Like To Play Soccer In The

User
Token 8

Field

FFN 1 FFN 2

Top-K Top-K

Figure 7: Figure is adopted from Zhou et al. (2024) and describes the vanilla Expert Choice Routing
strategy. Here, tokens are routed to a pair of experts, where the experts choose topk tokens to
process themselves. In the example above, for a topkwith k = 4, the first four tokens are processed
by the first expert, whereas the last 4 are processed by the second expert.

B EXPLOITING TIE-HANDLING IN TOPK IMPLEMENTATIONS

Our attack leverages consistent behaviour in tie-handling in topk sorting algorithms in a
2.2.0+cu118 PyTorch with CUDA environment. It is generally known in the community that the
topk function is unstable on CPUs due to underlying parallelism (Issues, 2019; 2020; 2024). To
best understand the impact of topk stability consider the code listing below. Here, we find that the
returned indices from topk for CUDA tensors are in order (see outputs highlighted in green), while
for CPU tensors it is not (see outputs highlighted in red). Suggesting that our method to verify token
placement correctness in expert buffers is not going to work on CPUs.

import torch
for device in [' cuda ' , ' cpu ']:
for size in [32, 33]:
for is sorted in [True, False]:
print(size, is sorted , device)
print(torch.topk(
torch.Tensor([1]*size).to(device),

k=size, sorted = is sorted).indices
)

32 True cuda

tensor([31, 30, 28, 29, 25, 24, 26, 27, 19, 18, 16,

17, 21, 20, 22, 23,7, 6, 4, 5, 1, 0, 2, 3, 11, 10, 8, 9, 13, 12, 14, 15], device=’cuda:0’)

32 False cuda

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], device=’cuda:0’)

33 True cuda

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], device=’cuda:0’)

33 False cuda

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], device=’cuda:0’)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

32 True cpu

tensor([17, 0, 9, 10, 13, 14, 15, 12, 7, 6, 5, 4, 3, 2, 1, 8,

16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 11])

32 False cpu

tensor([16, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,

8, 1, 2, 3, 4, 5, 6, 7, 12, 15, 14, 13, 10, 9, 0, 11])

33 True cpu

tensor([17, 0, 9, 10, 13, 14, 15, 12, 7, 6, 5, 4, 3, 2, 1, 8,

16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 11])

33 False cpu

tensor([16, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,

18, 17, 8, 1, 2, 3, 4, 5, 6, 7, 12, 15, 14, 13, 10, 9, 0, 11])

C FIND BLOCKING SEQUENCES

To construct adversarial batches efficiently, the attacker has to be able to generate
blocking sequences tailored to specific attack parameters:

• ei, Target expert;
• p, Priority / probability threshold;
• nb, Number of blockers.

Each expert is assigned a pre-computed sequence comprised of highly prioritized blocking tokens.
This sequence can be truncated to accommodate attacks with lower priority targets or requiring
fewer blocking tokens.

We search the highly prioritized blocking sequences per expert:

1. First we restrict the vocabulary to a set of prefix free tokens. With that we can freely append
tokens without changing previous ones and avoid affecting the blocking;

2. We set a high maximum priority threshold and expect all p to satisfy p ≤ P = 0.85;
3. We bound nb ≤ NB = k−1

b−3 . As the total number of blockers needed in a batch is at most
k − 1 and there are b− 3 blocking sequences in a batch;

4. We search for a sequence of length SL ≤ |long sequence| with NB tokens satisfying
pei < T .

To find this blocker sequence we

1. Set blocking sequence = init empty sequence with < bos >;
2. Randomly generate a candidate chunk of length SL

NB ;
3. If it has at least one token satisfying pei ≥ P we append it to blocking sequence;
4. We trim unnecessary tokens at the end and repeat this loop until N chunks are appended.

D RECOVERING THE TOKEN ROUTING PATH

To get a useful signal from the conditional token dropping we induced on the first MoE layer of the
model we expect to observe a deviation in the model outputs of our probe sequence, depending on
its position in the adversarial batch. However a change in model output can be attributed to a wide
set of factors:

• Floating point errors;
• Dropping of prefix tokens due to unknown suffix tokens in the victim’s message;
• Dropping of tokens in other MoE layers of the model;
• Double dropout in which two tokens are placed simultaneously at the edge of different

experts buffers with an identical token.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

It is therefore important to devise a method that can trace the deviations in model outputs to the
expected token-dropping the attacker is aiming to induce. Our approach is robust but conservative;
it is computationally slow and is the main bottleneck of our attack and the reason we didn’t scale
the attack to more than two layer models. We first estimate the routing path of the prefix tokens
and store their attention activations using KV-caching by sending our adversarial batch without the
guessed token.

Then for each of the 2n×L possible expert allocations of the target token we query a local model
with our target token and the previously computed KV-cache. Our local model supports disabling
experts based on a given routing path B, a binary matrix of shape n× L. We then store an expert
allocation routing path table mapping each model output to its corresponding routing path bitmap,
where each bij ∈ B is equal to one if token j is routed to expert ei, and zero otherwise.

Then when querying the target model with our adversarial batch we compare the model output logits
to our stored table and recover the token routing path. We expect to see a special distinguishable
behavior in which the routing path of the probe sequence of the first adversarial batch query is not
dropped. Instead of using exact matches in the routing path table, our approach looks for the nearest
keys up to some Lp distance to account for some of the floating point errors.

E CONDITIONAL ADVERSARIAL TOKEN-DROPPING

Algorithm 1: HIGH-LEVEL CONDITIONAL ADVERSARIAL TOKEN-DROPPING ALGORITHM

Input: Tokens Vocabulary V , Number of experts N , Number of layers L, Capacity factor C,
M is the maximum sequence length, batch size B

Output: Secret user message M
1 prefix← ”” // this is the prefix known to the attacker
2

3 params← (V, N, L,C,M,B)
// making a guess about the next token

4 for guess in V do
5 probe sequence← prefix+ guess
6 min position← get minimal position(message, params)

// check all of the possible experts
7 for expert in experts do

// iterate over all possible positions for the token
8 for position in [min position, min position + M] do

// collect all possible logits for different tokens dropped
9 routing paths = logits to routing paths(local model, probe sequence)

10

11 adv batch← construct adv batch(local model, probe sequence, position, expert,
params)

12 out1 = target model (adv batch, victim message, probe sequence pos=0)
13 out2 = target model (adv batch, victim message, probe sequence pos=1)
14

// not dropped = 1, dropped = 0 <--> guess is correct
15 if routing paths[out1][expert] > routing paths[out2][expert] then
16 prefix← prefix+ guess

// break out of positions and experts
17 break

In Algorithm 1, we give an algorithmic description of Conditional Adversarial Token-Dropping.
This works as follows:

1. We guess the user input, token by token in order left to right;
2. We exploit tie-handling that happens in the first MoE layer of the topk implementation

of the token to expert router;

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

3. Each expert has a limited buffer size of exactly k, these buffers are priority queues for the
tokens, where the priority is assigned by the router;

4. Importantly, there exists a corner case where the router needs to decide how to deal with
the tokens with exactly the same priority i.e. how to handle ties.

5. Internally this is not handled explicitly, but rather using a topk function e.g.
torch.topk implemented in CUDA. Under the hood, topk uses a “first comes first
serves” policy, in other words, for a pair of tokens with the same priority topk chooses
the one that appears in the sequence earlier. We discuss this further in Appendix B.

6. This means, that we can shape the expert buffer precisely to induce tie-handing. From
tie-handing we can infer the victims tokens by permuting the order of items in the batch
i.e. checking model behaviour when the user input is appended before and after our probe
sequence.

7. The two logits for the probe sequence will be different if we guessed the token correctly,
and with that we can start attacking the next token.

The main idea is to target a specific expert, say ei, then for a given guess for the next token, we
could locally compute the priority pj of the guess appearing in this expert’s buffer. With that we
can look for sequences of tokens that are assigned to the same buffer with higher probability than
pj . These tokens will ”block” our guess token, basically pushing its placement closer to the end of
the buffer. By correctly guessing the placement of the token in the buffer excluding our blockers,
we could precisely place the guess token on the edge of the buffer, and if the guess is correct it
would compete with the real target token. This competition would yield different logits results as a
function of the order of the inputs in the batch. We can then map the different logits to a routing path
of expert assignment, and with that infer whether a dropout from the correct expert has occurred.
We know shape the buffer in the first MoE layer and use the token-routing path-tracking to infer
from the logits what has happened in this layer.

However, a number of things explicitly should be taken into account.

First, topk based tie handing relies on a bitonic sort () that is unstable for short sequences
and a stable sort for long (32+) sequences. Hence, the attacker batch should be comprised of three
different inputs: (1) probe sequence: prefix + guess; (2) blockers that are used to block K positions
on some target expert; finally, (3) padding sequence – some long sequence that forces the expert
capacity to be ≥ 32 to ensure sorting stability.

Second, careful management is required given that token placement needs to be precise. In paratic-
ular, the adversary needs to take into account the expert capacity, the blockage from the prefix,
blockage from the the blockers we get from the probe sequence. We launch the attack by the adver-
sary searching for the blockers using a local copy of the model, recursively assuming some random
user input.

Third, when dealing with more than one layer, we should take into account the possibility that the
prefix tokens were dropped in previous layers, and thus even if we know the routing path of the
guessed token, its’ logits can change as a function of the prefix droppings in prior layers. Since we
know the prefix, we can use our local model known upfront the prefix path. We need to send our
adversarial batch to a local model, assume it is not drastically affected by the user input, and store
the key-values cache for this execution. Then we send our guess tokens assuming different possible
further expert token dropping combinations. With L >> 3-layers it seems completely infeasible
– each layer out of L layers has n experts, and with Expert Choice Routing all 2n assignments are
possible. Thus each token ∈ V would have at most 2Ln routing paths. By mapping our guessed
tokens logits to the experts-path it went through, we can later observe the logits and infer if this
logits comes from a routing path that include the target expert or not. We look for a change in inputs
order, that would affect the guessed token routing path. We use a hooked local model, that allows
us to disable experts given some token dropping routing path, we then bruteforce for all possible
routing paths and store aside the logits to expert assignment mapping.

F ATTACK & POSITION PERFORMANCE

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7
Target Expert

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
20

21
22

23
24

26
27

28
29

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
51

52
53

54
55

56
57

58
59

60
61

62
63

64
65

66
67

68
69

70
71

72
73

74
75

76
77

78
83

Po
sit

io
n

14 0 3 10 8 10 16
2 3 3 2 6 0

17 0 2 3 3
2 1 1 11
4 6 3 1
2 5 4
1 1

0 1
3 5
1 5
5
1 0

2
1 1

3 1
2

3
4 2
4 3

1
1

5
2

2
3
1
6

2 5
3 7

5 33 3
6 1
6 2 1

4 2
14 1

4 8 2
0 4 7 3

1 5 4
2 4 5 2

4 6 1 1
2 1 8
6
1 2
2 2
3 2
2
1
2 1

3
4 2 3

2 2 4
1 1

2 1 3
1 3 1

1 3
11 1

1 4 1 8 1
1 10 1 10
3 9 6 2 1 1
5 15 6 3

8 3
2 7

14 6 2 3 3
4 1 4 2 1
4 4 1 4
1 1 3

16 3 6
2 1 2 1 1

8 1 3
6 1 0 2

3 1 2 6 3
6 1 2
6 2

2
2

1
1

Successful Extraction for Position vs. Target Expert

0

5

10

15

20

25

30

Su
m

 S
uc

ce
ss

Figure 8: Heatmap showing the correlation between the expert and the position in the expert buffer
for which the attack succeeds. Here, the attack progresses to the next token when any expert is
successfully exploited to leak the token of the victim.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7
Target Expert

' '
'a

'
'b

'
'c'

'd
'

'e
'

'f'
'g

'
'h

'
'i'

'k
'

'l'
'm

'
'n

'
'o

'
'p

'
'r'

's'
't'

'u
'

'v
'

'w
'

'x
'

'y
'

Le
ak

ed
 To

ke
n

Ch
ar

17 12 14 6 1 2
5 3 4 10 3 40 11 12
5 2 3 4 4 1

12 3 7 2 6 7 2 3
1 3 3 5 1 7

6 12 7 10 19 10 9 5
1 5 4 0 2 1 4

0 2 1
4 0 0
4 4 1 1 5 2 10 3
3 3 5 4 1 5
5 7 6 2 9 9 1 5
4 1 1 2 4 3 4
1 2 7 0 5 1 6
4 10 5 4 16 12
8 4 6 3 6 1 5
6 4 0 7 3 3

12 14 2 2 13 6 6 5
8 9 2 6 8 5 2 1

2 2 1 1
4 3 0 3 2 1
8 3 0 1 3 1

0 2
2 1 1 2 1

Successful Extraction of Token Char vs. Target Expert

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f E
xt

ra
ct

io
ns

Figure 9: Heatmap showing the correlation between the expert and the token for which the attack
succeeds. Here, the attack progresses to the next token when any expert is successfully exploited to
leak the token of the victim.

1.21.00.80.60.40.3
Capacity Factor

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Su

cc
es

s

Mean Success per Secret Message vs. Capacity Factor
Length: 5 tokens

hello
world
admin
words

Figure 10: Individual message (length=5 tokens) performance with varying capacity factor.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1.21.00.80.60.40.3
Capacity Factor

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Su

cc
es

s

Mean Success per Secret Message vs. Capacity Factor
Length: 7 tokens

message
leakage
attacks
prompts

Figure 11: Individual message (length=7 tokens) performance with varying capacity factor.

1.21.00.80.60.40.3
Capacity Factor

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Su

cc
es

s

Mean Success per Secret Message vs. Capacity Factor
Length: 10 tokens

top secret
a password
vulnerable
token leak

Figure 12: Individual message (length=10 tokens) performance with varying capacity factor.

1.21.00.80.60.40.3
Capacity Factor

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Su

cc
es

s

Mean Success per Secret Message vs. Capacity Factor
Length: 12 tokens

side channel
exploitation
confidential
an adversary

Figure 13: Individual message (length=12 tokens) performance with varying capacity factor.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1.21.00.80.60.40.3
Capacity Factor

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Su

cc
es

s

Mean Success per Secret Message vs. Capacity Factor
Length: 15 tokens

buffer overflow
privacy attacks
ssn aaa bb cccc
secret messages

Figure 14: Individual message (length=15 tokens) performance with varying capacity factor.

20

	Introduction
	Related Work
	Mixture of Experts
	Violations of user privacy

	Background
	Threat model
	Primer on Language Models and Mixture of Experts

	Conditional Adversarial Token-Dropping attack
	Attack overview
	Attack primitives
	Handling token priority ties in expert routing

	Extending an expert's buffer size
	Controlling target-token placement with blocker sequences
	Recovering target token Routing Path
	Do we really need token routing path maps?

	Evaluation
	Discussion
	Conclusion
	Reproducibility Statement
	Expert Choice Routing
	Exploiting tie-handling in Topk implementations
	Find Blocking Sequences
	Recovering the token routing path
	Conditional Adversarial Token-Dropping
	Attack & Position performance

