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Abstract
Estimation and inference for the Average Treat-
ment Effect (ATE) is a cornerstone of causal infer-
ence and often serves as the foundation for devel-
oping procedures for more complicated settings.
Although traditionally analyzed in a batch setting,
recent advances in martingale theory have paved
the way for adaptive methods that can enhance
the power of downstream inference. Despite these
advances, progress in understanding and develop-
ing adaptive algorithms remains in its early stages.
Existing work either focus on asymptotic analy-
ses that overlook exploration-exploitation trade-
offs relevant in finite-sample regimes or rely on
simpler but suboptimal estimators. In this work,
we address these limitations by studying adaptive
sampling procedures that take advantage of the
asymptotically optimal Augmented Inverse Prob-
ability Weighting (AIPW) estimator. Our analy-
sis uncovers challenges obscured by asymptotic
approaches and introduces a novel algorithmic
design principle reminiscent of optimism in multi-
armed bandits. This principled approach enables
our algorithm to achieve significant theoretical
and empirical gains compared to previous meth-
ods. Our findings mark a step forward in the ad-
vancement of adaptive causal inference methods
in theory and practice.

1. Introduction
The problem of estimating the average treatment effect
(ATE) is central to causal inference and has been extensively
studied. We have a precise understanding of the difficulty of
this problem in both asymptotic and nonasymptotic regimes.
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However, our understanding of the challenges associated
with adaptive ATE estimation remains limited.

Classically, adaptive ATE estimation has been analyzed
in an asymptotic setting, where past work has focused on
designing adaptive sampling procedures that ensure that
the resulting ATE estimate achieves the smallest possible
asymptotic variance, that is, the semiparametric efficiency
bound. More recently, there has been growing interest in
developing algorithms that provide nonasymptotic perfor-
mance guarantees. However, these works suffer from certain
drawbacks that lead to poor finite sample performance, an
issue that we discuss in detail in Sections 2 and 4.1.

In this work, we take a nonasymptotic perspective on adap-
tive ATE estimation, focusing on the Augmented Inverse
Propensity Weighting (AIPW) estimator. Our finite-sample
analysis reveals key aspects of algorithmic design that prior
work has overlooked. This enables us to propose a new algo-
rithm with substantially improved theoretical and empirical
performance while also simplifying the analysis.

At the heart of our approach is the insight that initially over-
sampling arms that should eventually be under-sampled
according to the (unknown) optimal allocation can lead to
better estimates of the ATE. Interestingly, this idea can be
interpreted as an instance of the principle of optimism, a
well-established algorithmic design paradigm in the litera-
ture on regret minimization in multi-armed bandits (MAB)
and reinforcement learning. We discuss this connection in
more detail in Section 4.

Contributions. Our main contributions are as follows:

1. We develop and analyze a new algorithm, Optimistic
Policy Tracking (OPTrack), for the adaptive estima-
tion of ATE that enjoys significant theoretical improve-
ments over previous approaches along with a signifi-
cantly simplified analysis.

2. We perform simulations that demonstrate that our theo-
retical improvements translate into empirical improve-
ments, especially in the small sample regime, which
is critical for applications such as randomized clinical
trials.
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Organization. The remainder of this paper is structured as
follows. In Section 2, we review previous and related work.
Section 3 introduces our problem setup, establishing the
necessary framework for our contributions. In Section 4, we
identify key limitations of existing approaches and present
our proposed OPTrack algorithm. Section 5 contains our
main theoretical results, providing a rigorous performance
characterization of OPTrack. Finally, in Section 6, we
empirically validate our method, demonstrating its supe-
rior performance compared to existing approaches and its
competitiveness with—often surpassing—even an infeasible
oracle baseline.

2. Prior and Related Works
Adaptive experimental design has a long and distinguished
history, dating back to the seminal work of Neyman (1934)
on optimal allocation in experimental studies. Thompson
(1933) introduced a Bayesian adaptive design, thus laying
the foundation for the MAB problem. Thompson’s approach
of sequential updating beliefs about treatments (or arms)
based on observed outcomes is now central in MAB research
(Lattimore & Szepesvári, 2020). However, many problem
formulations focus on maximizing cumulative rewards over
repeated rounds of exploration-exploitation. In contrast, our
objective of ATE estimation differs from the typical MAB
focus and raises different forms of exploration trade-offs.

2.1. Prior Work

Our work builds on a recent line of work investigating adap-
tive algorithms aimed at efficiently estimating ATE. Hahn
et al. (2009) sparked this research direction by proposing
a two-stage design, conceptually similar to the Explore-
then-Commit algorithms in MAB (Garivier et al., 2016) and
showing that it asymptotically attains the minimum-variance
semiparametric efficiency bound. Subsequently, Kato et al.
(2020) introduced a fully adaptive procedure using the adap-
tive AIPW estimator (A2IPW), and showed that it is asymp-
totically optimal (in the above sense) while also providing
improved empirical performance compared to the less adap-
tive two-stage design. Later, Cook et al. (2024) proposed
an alternative method called Clipped Standard-Deviation
Tracking (ClipSDT), which inherits the same asymptotic
optimality under milder assumptions, admits modern uncer-
tainty quantification tools (Waudby-Smith et al., 2022), and
outperforms the earlier approach empirically. In parallel
work, Li et al. (2024) significantly generalized the two-stage
design in Hahn et al. (2009), extending its applicability to
a broad spectrum of problems, including Markovian and
non-Markovian decision processes.

Despite these advances, all of the above approaches focus on
characterizing the asymptotic behavior of their approaches,
leaving open questions about finite-sample performance

of their work. In order to address these questions, Dai
et al. (2023) takes an initial step toward understanding the
nonasymptotic difficulty by introducing the ClipOGD al-
gorithm for the fixed-design setting. They introduce and
analyze the Neyman regret (in the design-based setting),
which is a normalized proxy to the variance of the resulting
ATE estimate. Even more recently, Neopane et al. (2025)
proposed and analyzed the ClipSMT algorithm for the su-
perpopulation setting and shows that it enjoys an improved
log T bound on the Neyman regret.

Although these two works take important first steps toward
understanding the nonasymptotic difficulty of adaptive ATE
estimation, their algorithms rely on the IPW estimator which
is known to be suboptimal. In fact, these works define the
Neyman regret with respect to the minimum variance IPW
estimator, where the minimization is performed over all pos-
sible allocations. In contrast, our definition of the Neyman
regret is much stronger as the baseline against which we
compete is defined as the minimum attainable variance over
all pairs of estimators and allocations. Notably, using this
stronger definition of regret, the aforementioned approaches
obtain linear Neyman regret, where as we are able to design
an algorithm which obtains logarithmic Neyman regret.

2.2. Related Works

The problem of off-policy evaluation, which generalizes
ATE estimation, has been extensively studied in the litera-
ture on reinforcement learning (Dudı́k et al., 2011; Li et al.,
2011; Jiang & Li, 2016). Most of the research in this area
has focused on offline estimation, leading to precise charac-
terizations of minimax lower bounds along with matching
upper bounds (Li et al., 2015; Wang et al., 2017; Duan
et al., 2020; Ma et al., 2021). Beyond policy evaluation,
these methods have been extended to estimate other quanti-
ties, such as the cumulative distribution function of rewards
(Huang et al., 2021; 2022). However, there has been limited
exploration of adaptive versions of these methods. Some
existing work includes Hanna et al. (2017), which focuses
on off-policy learning, and Konyushova et al. (2021), which
integrates offline off-policy evaluation techniques with on-
line data acquisition to enhance sample efficiency in policy
selection. However, these works are primarily empirical.

A related area of research concerns inference procedures
for adaptively collected data. This can be categorized into
asymptotic and non-asymptotic approaches. On the asymp-
totic side, one direction has focused on reweighting esti-
mators and establishing their asymptotic normality (Hadad
et al., 2021; Zhang et al., 2020; 2021). Another direction
avoids asymptotics, instead leveraging modern advances in
martingale theory to derive nonasymptotic confidence inter-
vals and sequences for adaptively collected data, including
estimates of the ATE (Howard et al., 2021; Waudby-Smith

2



Optimistic Algorithms for Adaptive ATE Estimation

& Ramdas, 2023; Waudby-Smith et al., 2022).

Subsequent work. After our initial arXiv posting,
(Noarov et al., 2025) presented an extension of the
ClipOGD algorithm to the fixed design setting, achiev-
ing logarithmic Neyman regret with respect to the optimal
IPW estimator – which would imply linear regret against
the stronger baseline we consider in this paper. Furthermore,
this improved regret rate is notable, it requires substantially
more restrictive assumptions than our analysis, including
conditions that preclude standard stochastic reward models
such as Bernoulli outcomes. These limitations reflect the
inherent difficulty of obtaining logarithmic rates in their
more challenging fixed design framework.

3. Background
Problem Setup We are interested in adaptive estima-
tion of the average treatment effect. During each round,
t, Alg uses the history of past observations Ht−1 =
{(πs, As, Rs)}t−1

s=1 to select the probability of treatment al-
location πt. Then, πt is used to assign the next experimental
unit to either the control (At = 0) or the treatment (At = 1)
by sampling At ∼ Bernoulli(πt). Finally, after assign-
ing the experimental unit, we observe the outcome Rt which
marks the end of round t.

We formalize the above interaction protocol as follows. Let
Ft = σ (Ht) denote the filtration generated by the past
observations. An algorithm Alg = {(πt, ht)}Tt=1 is defined
as a sequence of Ft−1 measurable random elements where
πt ∈ [0, 1] is the treatment allocation probability and ht :
(πt, At, Rt) 7→ R≥0 which can be thought of as the ATE
estimate produced by Alg on round t.

We assume that the rewards are generated as Rt =
I [At = 1]Rt (1) + I [At = 0]Rt (0), where Rt (a) are
called the potential outcomes. We assume that the se-
quence of potential outcomes are jointly distributed accord-
ing to some probability measure ν (the “environment”) that
satisfies the following assumptions. The first assumption
is that the rewards are unconfounded, which means that,
given Ft−1, the potential outcomes Rt (1) , Rt (0) are con-
ditionally independent of the treatment assignment At, i.e
Rt (1) , Rt (0) ⊥ At | Ft−1. The second assumption is
that the reward means and variances are conditionally fixed
so that for all t, we have Eν [Rt (a) | Ft−1] = r⋆ (a) and
Vν [Rt (a) | Ft−1] = σ2 (a).

Our objective within this framework is to estimate the ATE
∆, which is defined as

∆ = r⋆(1)− r⋆(0).

The A2IPW Estimator. An algorithm for adaptive ATE
estimation thus requires us to specify a method to compute

the treatment allocation probability πt as well as the estimate
ht. A natural choice for ht is the AIPW estimator, which
given some reward estimate r̂, is defined as

ht =
g (At)

PAlg,ν (At)
(Rt − r̂ (At)) + ∆̂(r̂), (1)

where g (At) = I [At = 1]−I [At = 0] and ∆̂(r̂) = r̂ (1)−
r̂ (0). However, this estimator isn’t well suited to sequential
estimation, motivating Kato et al. (2020) to propose the
Adaptive AIPW (A2IPW) estimator. Specifically, letting
r̂t denote any Ft−1 measurable function (i.e. a predictable
reward estimate), they defined

ht =
I [At = 1]− I [At = 0]

πt (At)
(Rt − r̂t (At))+∆̂(r̂t). (2)

The A2IPW and AIPW estimators differ in two critical
ways. First, the A2IPW estimator constructs propensity
scores using the policy πt rather than the marginal probabil-
ities PAlg,ν (At), avoiding the computational infeasibility
of computing marginal probabilities for adaptive sampling
algorithms. Second, the A2IPW incorporates predictable
rewards r̂t, enabling sequential updates to reward estimates
and fully adaptive algorithm design without phase-based
approaches. Beyond these computational advantages, the
A2IPW estimator possesses strong theoretical properties: it
achieves asymptotic optimality necessary for sublinear Ney-
man regret, and recent developments have produced tight
confidence sequences for this estimator, facilitating sequen-
tial testing and uncertainty quantification. These properties
make the A2IPW estimator a natural choice for adaptive
ATE estimation.

Neyman Allocation and Regret We use the mean squared
error (MSE) to measure the quality of the estimates pro-
duced by our algorithm. However, by itself, the MSE is
difficult to interpret because it does not consider the inherent
difficulty of the problem. Therefore, we would like to nor-
malize this error with respect to some problem-dependent
baseline which we now define and motivate. Hahn et al.
(2009) show that for any fixed allocation, π, the minimum
attainable MSE of any estimator is

σ2 (1)

π
+

σ2 (0)

1− π
. (3)

The Neyman allocation π⋆ is defined as the allocation which
minimizes the above variance and a simple calculation
shows that

π⋆ =
σ (1)

σ (0) + σ (1)
. (4)

Ideally, we would like to design an algorithm whose vari-
ance is close to this baseline and in order to understand the
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rate at which this occurs, we consider the Neyman regret
which is defined as

RT = T ·
(
MSE

(
∆̂T

)
− MSE⋆

)
, (5)

where MSE⋆ is the mean square error attained by an oracle
algorithm which sets πt = π⋆ for all t ∈ {1, . . . , T}. The
Neyman regret is simply the difference in the normalized
MSE between the optimal variance and the MSE of the
estimate produced by Alg. This normalization guarantees
that the MSE converges to a constant (rather than 0), so that
if Alg has sublinear regret, then we are guaranteed that its
MSE converges to the optimal MSE.

Using the fact that the A2IPW is unbiased, along with the
fact that πt and r̂t are predictable, we can express the Ney-
man regret as

RT =
T∑

t=1

EAlg,ν [ℓ(πt, r̂t)]− ℓ(π⋆, r⋆), (6)

where

ℓ(π, r) =
∑

a∈{0,1}

σ2 (a)

π (a)
+

1− π (a)

π (a)
ε2t (a) (7)

is the Neyman loss and εt (a) = r⋆ (a)−r̂t (a) is the reward
estimation error.

Notation. In what follows, we will let

Nt(a) =

t∑
s=1

I [As = a]

denote the number of times the action a is selected at the
end of round t,

µt (a) =
1

Nt(a)

t∑
s=1

RsI [As = a]

denote the empirical mean after t rounds, and

σ̂2
t (a) =

1

Nt(a)

t∑
s=1

(RsI [As = a]− µt (A))
2

denote the emprical variance. We use Õ (·) to denote asymp-
totic equivalence up to doubly logarithmic factors.

4. The Optimistic Policy Tracking Algorithm
In this section, we introduce our Optimistic Policy Tracking
(OPT) algorithm. We begin with a discussion of the diffi-
culties of adaptive ATE estimation and the suboptimality of
existing approaches. Next, we introduce our algorithm and
provide insight into why it resolves the issues of existing
approaches. Finally, we conclude with a brief discussion of
the algorithmic design principles underlying our algorithm
and their relation to ideas in the literature.

4.1. Preliminaries

The difficulties of adaptive ATE estimation. The pri-
mary difficulty of adaptive ATE estimation is in balancing
the exploration-exploitation trade-off that arises from adap-
tive allocation. If we condition on Ft−1 some algebra shows
(see Lemma C.1) that the variance of the A2IPW estimator
is ∑

a

σ2 (a)

πt (a)
+

1− πt (a)

πt (a)
(r⋆ (a)− r̂t (a))

2
, (8)

which is minimized by setting (π, r) = (π⋆, r⋆) where π⋆ is
the Neyman allocation introduced in Section 3. Since π⋆ and
r⋆ are not known a priori, we need to design an algorithm
to adaptively estimate them. However, this is challenging
because optimizing the exploration allocation separately for
estimating π⋆ and r⋆ (each requiring a different allocation)
results in a procedure with high Neyman regret. As such,
designing an algorithm to adaptively balance the exploration
of π⋆ and r⋆ while simultaneously minimizing the Neyman
regret becomes a very delicate task.

Insights into improvements. In order to better understand
the improvements that can be made, we investigate previous
approaches for balancing this trade-off. To simplify the
exposition, in this section we assume that π⋆ ≤ 1

2 . The
primary approach that past works (both asymptotic and
nonasymptotic) have utilized is clipping the allocation. In
fact, the algorithms proposed by Cook et al. (2024), Dai
et al. (2023), Neopane et al. (2025) all utilize a clipping
approach which computes the empirical allocation

π̂t =
σ̂t (1)

σ̂t (0) + σ̂t (1)
,

and plays a clipped version of this estimate

πt = min {1− ct,max {ct, π̂t}} ,

for some carefully chosen clipping sequence ct satisfying
ct → 0. However, these clipping approaches have some
important limitations.

The first limitation is that a clipping approach cannot be
fully adaptive to the underlying problem instance because
the clipping sequence must be chosen a priori. As such, past
works choose ct in order to optimize the performance of
their algorithm in a worst-case sense, leading to suboptimal
Neyman regret for easy problem instances. As an example,
Neopane et al. (2025) show that setting ct = t−

1
3 is optimal

when we are not willing to bound π⋆ away from 0 and 1.
However, many practical problems are typically much easier
than the worst case, and so we would like a procedure which
is able to adapt to the underlying problem instance more
appropriately.

The second, more pressing issue is that clipping approaches
lead to algorithms which under-exploit, which is caused by
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Figure 1. A plot of ℓ(π, r⋆) where π⋆ < 1
2

. Note how the Neyman
loss is smaller for π⋆ + ϵ. This is due to the fact that π⋆ + ϵ is
closer to 1

2
, highlighting how less exploratoratory allocations incur

larger Neyman regret.

the asymmetry of the Neyman loss. To demonstrate this
issue, in Figure 1, we plot the Neyman loss ℓ(π, r⋆) for
a problem with π⋆ < 1

2 . In this figure, we consider the
Neyman loss at the points π+ = π⋆ + ϵ and π− = π⋆ − ϵ.
It is easy to see that ℓ(π+, r

⋆) < ℓ(π−, r
⋆), and in fact

this problem only worsens as π⋆ → {0, 1}. Practically, the
implication is that an algorithms which under-sampled the
arm with a smaller probability according to the Neyman
allocation must necessarily pay a higher price than the same
algorithm which over-sampled the same arm by the same
amount. This is not merely a theoretical issue — we see in
our experiments that while clipping-based approaches pro-
duce allocations which are closer to the Neyman allocation,
they still have significantly worse empirical performance.

4.2. Optimistic Policy Tracking

Main Algorithm. Our proposed algorithm, OPT, is de-
signed to address these aforementioned issues. Indeed, as
we will see, not only does OPT better adapt to the underly-
ing problem instances, it also better handles the exploration-
exploitation trade-off when compared to prior works. The
algorithm itself if simple and plays the allocation

πt = argmin
π∈CSt(π⋆)

∣∣∣∣12 − π

∣∣∣∣ , (9)

where CSt(π
⋆) is a confidence sequence for the Neyman

allocation. For reward estimation, we simply use the sample
mean r̂t (a) =

1
Nt−1(a)

∑t−1
s=1 Rs · I [At = a].

The main difficulty now is in constructing the confidence
sequence CSt(π

⋆). In order to do so, we first construct
confidence sequences for the standard deviations of each
arm. This is accomplished in Lemma B.1, which constructs
a confidence sequence CSt(σ (a)) = [Lt(σ (a)),Ut(σ (a))]

whose with scales like O
(√

log log t+log 1
δ

t

)
. Using these

confidence sequences on σ (a), we can construct a confi-
dence sequence for the Neyman allocation as follows

CSt(π
⋆) =

[
Lt(σ (1))

Ut(σ (0)) + Lt(σ (1))
,

Ut(σ (1))

Lt(σ (0)) + Ut(σ (1))

]
.

(10)

The full algorithm is provided in Algorithm 1.

Algorithm 1 Optimistic Policy Tracking (OPTrack)

1: for t = 1, 2, . . . do
2: Compute CSt(π

⋆) according to equation (10)
3: Set πt = argminπ∈CSt(π⋆)

∣∣ 1
2 − π

∣∣
4: Sample At ∼ Bernoulli(πt)
5: Observe Rt ∼ ν(At)
6: Compute ht according to equation (2)
7: end for

Interpretation as Optimism. We can interpret our algo-
rithm as implementing the celebrated principle of optimism
in the face of uncertainty. Optimism is an algorithmic de-
sign principle which is the basis of many well-known MAB
and reinforcement learning algorithms (such as the “upper
confidence bound”). Roughly speaking, the principle states
that we should act as if the underlying problem instance is
the easiest instance, which is feasible according to our past
observations. In the regret minimization framework, this
means playing the arm which has the largest upper confi-
dence bound. For adaptive ATE estimation, this involves
playing the allocation that is closest to 1

2 . This is because the
difficulty of a problem is determined by the deviation of the
Neyman allocation from 1

2 – when the Neyman allocation is
close to 1

2 , the objectives of exploration and exploitation are
aligned. Suppose the Neyman allocation deviates from 1

2 ,
then as the allocation we play converges to the Neyman allo-
cation, we are necessarily under-sampling one arm and thus
slowing down our convergence to the Neyman allocation.
This intuition is supported by the results of Neopane et al.
(2025) and Dai et al. (2023) who show that the Neyman re-
gret scales inversely with

∣∣π − 1
2

∣∣. Therefore, implementing
optimism for adaptive ATE estimation involves playing the
most feasible allocation (as determined by our past obser-
vations) closest to 1

2 – this is exactly the driving principle
behind our OPTrack algorithm.

5. Results
In this section, we build our intuition on the behavior of
OPTrack and conclude by stating our main result which is
a bound on the Neyman regret of OPTrack.
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Before we begin, we introduce some additional notation
which will make our exposition easier. For any π, we define
∆(π) =

∣∣ 1
2 − π

∣∣ and π = min {π, 1− π}. Additionally,
we let ∆(σ) = σ (1)− σ (0).

Our analysis begins with a Concentration result which
demonstrates that the standard deviations concentrate at
a 1 over square root of t rate. Specifically, in Lemma B.1,
we demonstrate that with probability at least 1− δ, for all
t ≥ 2we have that

|σ − σ̂t| ≤ O

(√
log log t+ log δ−1

t

)
. (11)

This result follows through generalizing a similar result
from (Audibert et al., 2006) utilizing modern martingale
arguments (Howard et al., 2021). This enables us to obtain
time uniform concentration which is valid in our setting
with adaptively collected data.

To proceed, we split the behavior of OPTrack into two
phases, an exploration exploration phase and the concentra-
tion phase. We define the exploration phase as the rounds
for which πt =

1
2 . During the early stages of interaction,

we expect that each arm has been played sufficiently few
times so that 1

2 ∈ CSt(π
⋆), and the exploration time T is

the length of this phase. Intuitively, during this phase, there
is not enough information in our observations to reliably
predict π⋆ and so our best choice is to explore each arm uni-
formly. Fortunately, the length of this phase is not too long,
and our first result bounds the length of this phase in terms
of the absolute distance between the standard deviations.

Lemma 5.1. Define the exploration time as

T = min

{
t : πt ̸=

1

2

}
. (12)

Then, with probability at least 1− δ, we have

T = Õ
(
∆−2

(σ) log
1

δ

)
. (13)

The proof of this result is given in Appendix A.2. This result
shows that OPTrack is able to adapt to the difficulty of
the underlying problem instance — if the gap between the
standard deviations is large, then the exploration phase will
be short, and if the gap is small, then the exploration phase
will be longer.

Once the exploration phase is over, the algorithm will be
able to focus on the concentration phase. In this phase,
optimism guarantees ∆(πt) < ∆(π⋆). Therefore, we can
control the number of times each arm is played which we
can in turn convert to bounds on |πt − π⋆|.

Our next result formalizes this intuition.

Lemma 5.2. With probability at least 1− δ, we have that

πt − π⋆ = Õ

√ log 1
δ

π⋆ · t
· 1

σ (0) + σ (1)

 . (14)

The reason for the appearance of π⋆ is due to the conver-
gence of πt based on the number of times that both arms
have been played. If we play one arm too often, then the
width of the confidence interval for π⋆ would depend en-
tirely on the width of the lesser sampled arm.

Our main result combines the above lemmas to provide a
bound on the Neyman regret.

Theorem 5.3. With probability at least 1− δ, the Neyman
regret of OPTrack is upper-bounded as

Õ

(
∆−2

(σ) +

(
1

π⋆

)2

log T

)
. (15)

The first term above is the per-round Neyman regret during
the exploration phase and our bound follows from the fact
that the Neyman regret is at most 4 when we play πt =

1
2 .

The second term in our bound is the Neyman regret during
the concentration phase and follows from the application of
Lemma 5.2 in conjunction with Lemma 2 of (Neopane et al.,
2025) showing that the Neyman regret scales according to
|π⋆ − πt|2 ≈ 1

π⋆·t . Since the contribution to the Neyman re-
gret from the reward estimation also scales like 1

π⋆·t , taking
a sum over these two terms gives us the desired result.

In order to get a better understanding of our result, we
consider the behavior of a hypothetical algorithm which
plays the optimal Neyman allocation π⋆ but incurs a loss
based on the empirically computed allocation, πt. A sim-
ple calculation shows that πt converges to π⋆ at a rate of
Θ
(
(π⋆ · t)−

1
2

)
. This in turn implies that the Neyman regret

would be

Õ

((
1

π⋆

)2

log T

)
, (16)

which, modulo the regret from the clipping phase, is the
same as the Neyman regret incurred by OPTrack. This
suggests that our algorithm is correctly adapting to the diffi-
culty of the problem.

Comparison with ClipSMT. At first glance, our result
appears to be quite similar to the Neyman regret bound
from (Neopane et al., 2025) who similarly show a logarith-
mic bound on the Neyman regret. However, this is not the
case, due to differing definitions of the Neyman regret. In
(Neopane et al., 2025), the Neyman regret is defined with
respect to the minimum variance over allocations for the
fixed IPW estimator. Our Neyman regret is defined with
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respect to the minimum attainable variance over any pair
of estimators and allocations. This means that while our
regret bounds share a similar form, the performance of our
algorithm is significantly better than the performance of the
ClipSMT algorithm. Concretely, using our definition of
the Neyman regret to characterize the performance of the
ClipSMT algorithm (as well as the ClipOGD algorithm),
we see that these algorithms actually have linear Neyman
regret since the variance of their policies cannot converge
to the minimum attainable variance.

6. Experiments
In this section, we present experiments1 to evaluate the
empirical performance of our algorithm. We compare
OPTrack against the ClipSDT algorithm proposed by
Cook et al. (2024), as well as two oracle algorithms that fol-
low the Neyman allocation. One of these oracle algorithms
sequentially estimates the reward, while the other has access
to the true reward. We evaluate these algoritmhs on a range
of synthetic simulations as well as on a macro-insurance
intervention dataset (Groh & McKenzie, 2016).

We do not include results for the ClipSMT and ClipOGD
algorithms, as their variances fail to converge to the oracle
variance, consistently leading to significantly worse perfor-
mance than the other algorithms which obscures the clarity
of the plots. This outcome is expected, given that both
algorithms incur linear Neyman regret.

We consider 6 problem instances where both arms fol-
lows Bernoulli distributions. For each of these problem
instances, we fix the treatment mean to be 1

2 and vary
µ0 ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} which in turn leads to
problem instances with different Neyman allocations.

For each of these problems, we run OPTrack,
ClipSDT, and the reward estimation oracle for T ∈
{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000}
and plot the normalized MSE (T · MSE) over 500,000
simulations. For the oracle baseline, we explicitly compute
the MSE. The results of these simulations are given in
Figure 2. We include error bars in Figure 2, though they are
barely visible due to the large number of simulations.

Our results show that OPTrack consistently outperforms
ClipSDT over all problem instances. The difference be-
tween the two becomes negligible for larger values of T
which is expected since all algorithms eventually converge
to the Neyman allocation and true reward function. How-
ever, for smaller sample sizes, we see that OPTrack pro-
vides around a 10-15 percent improvement over ClipSDT.
This improvement is due to the reasons given in Section 4.

1Code for replicating experiments can be found at the fol-
lowing GitHub repo: https://github.com/oneopane/
adaptive-ate-estimation.

The performance of OPTrack is competitive with the re-
ward estimation oracle for moderate values of π⋆ and even
outperforms the reward estimation oracle on some problem
instances. This is because OPTrack is more exploratory
and obtains better reward estimates early on.

We additionally perform experiments on a macro-insurance
intervention dataset (Groh & McKenzie, 2016) which in-
vestigates the effects of macro-insurance in Egypt. The
results from this experiment are given in Table 1. Our exper-
iments qualitatively align with the results from our synthetic
experiments, demonstrating that our proposed algorithm out-
performs prior approaches, especially in the small sample
regime.

Algorithm 100 300 500 1000 1500
ClipSDT 0.117 0.102 0.098 0.093 0.095
OPTrack 0.103 0.095 0.094 0.093 0.092
Est. Reward Oracle 0.10 0.097 0.094 0.093 0.094
Oracle 0.092 0.090 0.093 0.090 0.091

Table 1. Mean square error of the ClipSDT, OPTrack algo-
rithms as well as two oracle baselines – an oracle which has
knowledge of π⋆, and an oractle with knowlege of π⋆ and r⋆

on a macro-insurance intervention dataset. Note that ClipSDT is
competitive with the Oracle, even in the small sample regime.

7. Conclusion
This work proposed a new algorithm for adaptive ATE esti-
mation. We identified some key issues with past approaches
which limited their performance both empirically and theo-
retically and demonstrated how to resolve them. Our pro-
posed solution borrows ideas from the literature on Regret
Minimization and showed how to extend some of these
ideas to the problem of adaptive ATE estimation. We be-
lieve that these ideas will be crucial for developing adaptive
algorithms for inference for more complicated settings as
well as for related problems like Off-Policy Evaluation.

7.1. Future Work

We believe there are a few directions for future work that
we find very compelling. The first is the extension of our
algorithm to the setting with covariates and with more so-
phisticated reward estimation. In the causal inference liter-
ature, practitioners typically use nonparametric regression
to estimate the r⋆ and so extending our ideas to work with
such estimators warrants more attention. Another interest-
ing direction is the extension to multiple arms. Here we
believe that the correct extension is to compute a confidence
interval around the Neyman allocation, and then project
this set onto the Uniform distribution over the actions. The
primary difficulty for this extension is in the analysis – if we
apply our techniques directly, this will result in an additional

7
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(a) µ0 = 0.5 (b) µ0 = 0.4

(c) µ0 = 0.3 (d) µ0 = 0.2

(e) µ0 = 0.1 (f) µ0 = 0.05

Figure 2. Normalized MSE (T ·MSE) for OPTrack, ClipSDT, and the oracle baselines across six problem instances, each with Bernoulli
rewards with µ1 = 1

2
and µ0 ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Results are averaged over 500,000 simulations. OPTrack consistently

outperforms ClipSDT, with a 10-15 improvement for smaller T . Notably, OPTrack is competitive with the reward estimation oracle
and even outperforms it in some cases due to better exploration of the reward function early on. As T increases, all algorithms converge to
the oracle baseline.

factor of K in the term that is dependent on T , where K is
the number of arms. It is an interesting question to see if our
analysis can be improved to remove this additional factor.

Finally extending these ideas to more complicated interac-
tion protocols such as Reinforcement Learning warrants
further study.

8
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A. Analysis of Optimistic Policy Tracking
Preliminaries We will begin by defining our good event. Consider the following events

Eσ(δ) =
⋂

a,t∈N

{
|σ̂t (a)− σ (a)| ≤ 4.2

√
ℓ(t, δ)

t

}
(17)

EN (δ) =
⋂
t∈N

{∣∣∣Nt(a)−
∑

πt (a)
∣∣∣ ≤√tℓ(t, δ)

}
(18)

Er(δ) =
⋂
at∈N

{
|r̂t (a)− r⋆ (a)| ≤

√
tℓ(t, δ)

}
. (19)

Let δ̃ = δ
5 and define the good event E(δ̃) = Eσ(δ)∩ EN (δ)∩ Er(δ). Applying Lemma B.1 to control Eσ(δ̃) and Theorem 1

from (Howard et al., 2021) to control EN (δ̃), and Er(δ̃) shows that the event E(δ̃) occurs with probability at least 1 − δ.
Throughout the remained of this section, we assume the good event holds.

A.1. Proof of Theorem 1

We begin by decomposing the Neyman regret

RT =

T∑
t=1

ℓ(πt, r̂t) (20)

=

T∑
t=1

∑
a

(
σ2 (a)

πt (a)
+

1− πt (a)

πt (a)
ε2t (a)−

σ2 (a)

π⋆[a]

)
(21)

=

T∑
t=1

∑
a

(
σ2 (a)

πt (a)
+

1− πt (a)

πt (a)
ε2t (a)−

σ2 (a)

π⋆[a]

)
+

T∑
t=T+1

∑
a

(
σ2 (a)

πt (a)
+

1− πt (a)

πt (a)
ε2t (a)−

σ2 (a)

π⋆[a]

)
. (22)

For the first term, we have that πt =
1
2 , and εt (a) ≤ 1, so that

∑
a

(
σ2 (a)

πt (a)
+

1− πt (a)

πt (a)
ε2t (a)−

σ2 (a)

π⋆[a]

)
(23)

≤
∑
a

(
σ2 (a)

πt (a)
− σ2 (a)

π⋆[a]

)
+ 2 (24)

≤ 4, (25)

to so that the regret from the exploration phase is 4T.

For the second term, we have

∑
a

(
σ2 (a)

πt (a)
+

1− πt (a)

πt (a)
ε2t (a)−

σ2 (a)

π⋆[a]

)
(26)

=
∑
a

(
σ2 (a)

πt (a)
− σ2 (a)

π⋆(a)

)
+
∑
a

(
1− πt (a)

πt (a)
ε2t (a)

)
(27)

(28)

We can bound the first term by applying Lemma 4.3 from (Neopane et al., 2025) in conjunction with so that

∑
a

(
σ2 (a)

πt (a)
− σ2 (a)

π⋆(a)

)
≤ 625

(σ (0) + σ (1))
2

ℓ(t, δ)

π⋆t
(29)

11
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In order to bound the second term, we observe that on the good event

|r⋆ (a)− r̂t (a)| ≤

√
ℓ(t, δ)

Nt(a)
(30)

≤
√

ℓ(t, δ)

π⋆t−
√
tℓ(t, δ)

(31)

≤ 2

√
ℓ(t, δ)

π⋆t
, (32)

where in the last line we have again applied Lemma 4.5 from (Neopane et al., 2025).

Therefore, we have that ∑
a

(
1− πt (a)

πt (a)
ε2t (a)

)
≤ 8ℓ(t, δ)

(π⋆)
2
t

(33)

We can bound the sum of these two terms as 625 ℓ(t,δ)

(π⋆)2t
. The result then follows by summing this over t < T and adding the

Neyman regret from the exploration phase.

A.2. Proof of Lemma 5.1

Proof. Suppose, without loss of generality, that π⋆ < 1
2 ; in order to obtain results for π⋆ > 1

2 , we can simply flip the roles
of the treatment and control arms. For the case that π⋆ = 1

2 , then OPTrack will always play πt.

Since π⋆ < 1
2 , bounding T is equivalent to determining the largest time t such that Ut(π

⋆) < 1
2 , i.e we wish to compute

min

t :
σ (1) + 4.2

√
ℓ(t,δ)
Nt(1)

σ (0) + σ (1) + 4.2
√

ℓ(t,δ)
Nt(1)

− 4.2
√

ℓ(t,δ)
Nt(0)

<
1

2

 (34)

Using the fact that πt =
1
2 for all t < T, can control

Nt(a) ∈
[
t

2
± 1.7

√
tℓ(t, δ)

]
. (35)

Plugging this into equation (34) and rearranging shows that we need to bound

min

t :
ℓ(t, δ)

t

(
1
2 − 1.7

√
ℓ(t,δ)

t

) <
∆2

(σ)

18

 . (36)

Applying Lemma B.10 from (Neopane et al., 2025) shows that whenever t ≥ Õ
(
log( 1δ )

)
, we have that 1.7

√
ℓ(t,δ)

t < 1
4 so

that we need to bound

min

{
t : t >

64

∆2
(σ)

ℓ(t, δ)

}
. (37)

Another application of Lemma B.10 shows that this quantity is bounded by

64

∆2
(σ)

log
5.2

δ
+

64

∆2
(σ)

log log
64

∆2
(σ)

(38)

which gives us the desired result.
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A.3. Proof of Lemma 5.2

Lemma A.1. Let t ≥ T. Then, with probability at least 1− δ, we have that

πt+1 − π⋆ ≤ 25

σ (0) + σ (1)

√
ℓ(t, δ)

π⋆t
. (39)

Proof. Wlog we assume π⋆ < 1
2 so that π⋆ = π⋆. First note that s ≥ T, we have that

πt+1 ∈
[
π⋆,

σ (1) + Z1,t

σ (0) + σ (1) + Z1,t − Z0,t

]
(40)

=

[
π⋆, π⋆ σ (0) + σ (1)

σ (0) + σ (1) + Z1,t − Z0,t
+

Z1,t

σ (0) + σ (1) + Z1,t − Z0,t

]
(41)

⊂
[
π⋆,

1

2

]
, (42)

where we have defined

Zt (a) = 4.2

√
ℓ(t, δ)

Nt(a)
,

and equation (42) follows from the definition of the T.

Since πt ∈
[
π⋆, 1

2

]
, we know that 1− πt ∈

[
1
2 , 1− π⋆

]
which we use to control the number of times each arm is played.

Nt(1) ≥ π⋆ · t−
√
tℓ(t, δ) (43)

Nt(0) ≥
t

2
−
√
tℓ(t, δ). (44)

Plugging these values into the upper bound in equation (41), some algebra shows that

πt+1 − π⋆ = π⋆ σ (0) + σ (1)

σ (0) + σ (1) + Z1,t − Z0,t
+

Z1,t

σ (0) + σ (1) + Z1,t − Z0,t
− π⋆ (45)

= π⋆ · Z0 (t)− Z1 (t)

σ (0) + σ (1) + Z1,t − Z0,t
+

Z1,t

σ (0) + σ (1) + Z1,t − Z0,t
(46)

≤ Z0,t

σ (0) + σ (1) + Z1,t − Z0,t
+

Z1,t

σ (0) + σ (1) + Z1,t − Z0,t
(47)

≤ 8.4

√
ℓ(t, δ)

π⋆t−
√
tℓ(t, δ)

·
(

1

σ (0) + σ (1)− Z0,t

)
. (48)

Applying Lemma B.10 from Neopane et al. (2025), we have that when t = Õ
((

1
π⋆

)2
log 1

δ

)
, we have that π⋆t−

√
tℓ(t, δ) ≥

1
2π

⋆t. Next, since t ≥ T, we have that

Z0,t = 4.2

√
ℓ(t, δ)

t
(49)

≤
∆(σ)

8
. (50)

Therefore,

σ (0) + σ (1) + Z1,t ≥ σ (0) + σ (1)−
∆(σ)

8
(51)

= σ (0) + σ (1)− σ (0)− σ (1)

8
(52)

≥ σ (0) + σ (1)

2
. (53)
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Combining these results, we have that

πt+1 − π⋆ ≤ 25

σ (0) + σ (1)

√
ℓ(t, δ)

π⋆t
, (54)

which proves the desired result.

B. Concentration Results
The proof of this lemma is based on a similar proof found in (Audibert et al., 2006) and extends the results to hold in the
sequential setting.

Lemma B.1. Let (Xt) be a [0, 1]-valued stochastic process defined on some filtration (Ft) satisfying µ = Et−1 [Xt] and
σ2 = Vt−1 [Xt]. Define

µt =
1

t

t∑
t=1

Xt (55)

σ̂2
t =

1

t

t∑
s=1

(Xt − µt)
2
. (56)

Then, with probability at least 1− δ, for all t ≥ 2 we have that

σ ∈

[
σ̂t − 1.7

√
ℓ(t, δ)

t
, σ̂t + 4.2

√
ℓ(t, δ)

t

]
. (57)

Proof. Define Yt = (Xt − µ)2 − σ2, and St =
∑t

i=1 Yt. Letting V = Vt−1 [Yt], we apply Theorem 1 from (Howard et al.,
2021) which gives us the following time-uniform Bernstein inequality (see Table 3 in the Appendix). Applying a union
bound, we have with probability at least 1− δ, for all t ∈ N, that

|µt − µ| ≤ 1.7σ

√
ℓ
(
t, δ

4

)
t

+ 1.7
ℓ
(
t, δ

4

)
t

, (58)

|Yt| ≤ 1.7

√
Vℓ
(
t, δ

4

)
t

+ 1.7
ℓ
(
t, δ

4

)
4t

(59)

≤ 1.7σ

√
ℓ
(
t, δ

4

)
t

+ 1.7
ℓ
(
t, δ

4

)
t

, (60)

where we set ℓ(t, δ) = log log 2t + 0.72 log 5.2
δ and the last inequality follows from the fact that V < σ2. Letting

µt =
1
t

∑t
s=1 Xs some algebra demonstrates that

St =

t∑
i=1

(Xi − µ)2 − σ2

=

t∑
i=1

[
((Xi − µt)− (µt − µ))

2 − σ2
]

=

t∑
i=1

[
(Xi − µt)

2 + 2(Xi − µt)(µt − µ) + (µt − µ)2 − σ2
]

= tσ2
t + 2(µt − µ)

t∑
i=1

(Xi − µt) + t(µt − µ)2 − tσ2

= tσ2
t + 0 + t(µt − µ)2 − tσ2

= t(σ2
t − σ2 + (µt − µ)2),
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which implies (
σ2
t − σ2

)
=

1

t

t∑
s=1

Ys − (µt − µ)
2 ≤ 1

t

t∑
s=1

Ys. (61)

Letting L = ℓ(t,δ)
t , and applying the bounds in equations (58) and 60, some algebra shows that

σ2 + 1.7σ
√
L+ 1.7L− σ2

t ≥ 0. (62)

Completing the square and rearranging shows that

σ ≥
√
σ2
t + (1.72 − 1.7)L− 1.7

√
L (63)

≥ σt − 1.7
√
L. (64)

Repeating the same argument with −Yt shows that

σ ≤ σt + 4.2
√
L. (65)

Combining these bounds we have with probability at least 1− δ, for all t > 2

σ ∈

[
σt − 1.7

√
ℓ(t, δ)

t
, σt + 4.2

√
ℓ(t, δ)

t

]
. (66)

C. Misc. Results
Lemma C.1. For any Alg, we have that

VAlg,ν

[
∆̂T

]
=

1

T 2

T∑
t=1

VAlg,ν [AIPWt] (67)

=
1

T 2

T∑
t=1

EAlg,ν

[∑
a

σ2 (a)

πt(a)
+

(
1− πt(a)

πt(a)

)
ε2t−1(a)

]
(68)

Proof. Leting zt = AIPWt −∆, we have

VAlg,ν

[
∆̂T

]
=

1

T 2
E

( T∑
t=1

zt

)2
 (69)

=
1

T 2

(
T∑

t=1

E
[
z2t
]
+

T∑
t=1

t=1∑
s=1

E [zt · zs]

)
(70)

=
1

T 2

T∑
t=1

E
[
z2t
]

(71)

=
1

T 2

T∑
t=1

V [AIPWt] . (72)

The applying the law of total variance shows that VAlg,ν [AIPWt] = EAlg,ν [V [AIPWt | Ft−1]] since
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V [E [AIPWt | Ft−1]] = 0. Computing the conditional variance, we obtain

VAlg,ν [AIPWt | Ft−1] = EAlg,ν

[
(AIPWt −∆)

2 | Ft−1

]
(73)

= EAlg,ν

[(
wt (δt + εt−1) + ∆̂(r)

t−1 −∆
)2

| Ft−1

]
(74)

= Eπt

[
w2

t

(
σ2 + ε2t−1

)
−
(
∆− ∆̂(r)

t−1

)2]
(75)

=
∑
a

(
σ2 (a) + ε2t−1(a)

)
πt(a)

− (εt−1 (1)− εt−1 (0))
2 (76)

=
∑
a

[
σ2 (a)

πt(a)
+

(
1

πt(a)
− 1

)
· ε2t−1(a)

]
+ 2εt−1(1) · εt−1(0) (77)

=
∑
a

[
σ2 (a)

πt(a)
+

(
1− πt(a)

πt(a)

)
· ε2t−1(a)

]
+ 2εt−1(1) · εt−1(0). (78)

Therefore, we have

VAlg,ν

[
∆̂T

]
=

1

T 2

T∑
t=1

E

[∑
a

(
σ2 (a)

πt(a)
+

(
1− πt(a)

πt(a)

)
· ε2t−1(a)

)
+ 2εt−1(1) · εt−1(0)

]
(79)

= EAlg,ν

[∑
a

σ2 (a)

πt(a)
+

(
1− πt(a)

πt(a)

)
· ε2t−1(a)

]
, (80)

where the second inequality follows from the fact that ε2t (a) are uncorrelated.
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