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Abstract

The AI research community plays a vital role

in shaping the scientific, engineering, and soci-

etal goals of AI research. In this position paper,

we argue that focusing on the highly contested

topic of ‘artificial general intelligence’ (‘AGI’)

undermines our ability to choose effective goals.

We identify six key traps—obstacles to produc-

tive goal setting—that are aggravated by AGI

discourse: Illusion of Consensus, Supercharging

Bad Science, Presuming Value-Neutrality, Goal

Lottery, Generality Debt, and Normalized Exclu-

sion. To avoid these traps, we argue that the

AI research community needs to (1) prioritize

specificity in scientific, engineering, and societal

goals, (2) center pluralism about multiple worth-

while approaches to multiple valuable goals, and

(3) foster innovation through greater inclusion

of disciplines and communities. Therefore, the

AI research community needs to stop treating

“AGI” as the north-star goal of AI research.
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1. Introduction

How can we ensure that AI research goals serve scientific,

engineering, and societal needs? What constitutes good sci-

ence in AI research? Who gets to shape AI research goals?

What makes a research goal legitimate or worthwhile? In

this position paper, we argue that a widespread emphasis

on AGI threatens to undermine the ability of researchers to

provide well-motivated answers to these questions.

Recent advances in large language models (LLMs) have

sparked interest in “achieving human-level ‘intelligence”’

as a “north-star goal” of the AI field (McCarthy et al.,

1955; Morris et al., 2024). This goal is often referred

to as “artificial general intelligence” (“AGI”) (Chollet,

2024a; Tibebu, 2025). Yet rather than helping the field

converge around shared goals, AGI discourse has mired

it in controversies. Researchers diverge on what AGI

is and assumptions about goals and risks (Summerfield,

2023; Morris et al., 2024; Blili-Hamelin et al., 2024).

Researchers further contest the motivations, incentives,

values, and scientific standing of claims about AGI

(Gebru & Torres, 2024; Mitchell, 2024; Ahmed et al.,

2024; Altmeyer et al., 2024). Finally, the building blocks

of AGI as a concept—intelligence and generality—are

contested in their own right (Gould, 1981; Anderson,

2002; Hernández-Orallo & Seán Ó hÉigeartaigh, 2018;

Cave, 2020; Raji et al., 2021; Alexandrova & Fabian,

2022; Blili-Hamelin & Hancox-Li, 2023; Hao, 2023;

Guest & Martin, 2024; Paolo et al., 2024; Mueller, 2024).

Building on prior work on the ambiguity be-

tween exploratory and confirmatory research in ML

(Herrmann et al., 2024), unscientific performance claims

(Altmeyer et al., 2024), SOTA-chasing (Raji et al.,

2021; Church & Kordoni, 2022), homogenization of

research approaches (Kleinberg & Raghavan, 2021;

Fishman & Hancox-Li, 2022; Bommasani et al., 2022),

the values embedded in ML research (Birhane et al.,

2022b), and more, our account identifies key obstacles to

productive goal setting in AI research—traps.1 We pro-

vide them here as a diagnosis of problems in goal-setting

1Our terminology parallels Selbst et al. (2019) on fairness.
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that we believe are normatively worth addressing, but

that the AGI narrative makes difficult to overcome. To

avoid these traps, we posit that communities should stop

treating AGI as the north-star goal2 of AI research.

An overarching theme in our discussion is the research

community’s unique responsibility to help distinguish hype

from reality. The outputs of AI research are deployed as

real-world products at a staggering pace, in proliferating

contexts, affecting billions of people. This warrants ur-

gent work on trusted, evidence-based answers to questions

about the scientific, engineering, and societal merits of AI

tools. As argued by the U.N.’s AI Advisory Body, there

is “an overwhelming amount of information. . . making it

difficult to decipher hype from reality. This can fuel confu-

sion, forestall common understanding and advantage major

AI companies at the expense of policymakers, civil society

and the public” (United Nations, 2024). Our position paper

addresses this theme: Each of the six traps in our account

is an obstacle to distinguishing hype from reality.

A secondary theme in our discussion is the relationship be-

tween people and technology. Ultimately, we argue that in-

stead of a single north-star goal, the AI community needs to

pursue multiple specific scientific, engineering, and societal

goals. If building consensus around an alternative unifying

goal proves useful, we propose the goal of supporting and

benefiting human beings.

In the next section, we examine six ‘traps’ in AI research—

obstacles to productive goal setting (§2). We argue that

AGI discourse reinforces and amplifies each problem. Sub-

sequently, we provide three recommendations for avoiding

these traps (§3): specificity of goals; pluralism of goals and

approaches; and more inclusive goal setting. We conclude

by offering a rebuttal against an alternative view (§4): that

AGI should remain the north-star goal of the field.

Because the contested nature of AGI is a central theme

in the present paper, we avoid providing our own defini-

tion for the term. Instead, we provide example definitions

throughout the present discussion, as well as a table of il-

lustrative definitions in Appendix A.3 We detail how AGI

currently serves as a north-star goal in Appendix B.

2Sailors who navigate by the astronomical North Star use it to
orient their travels toward a desired destination on Earth. With
AGI, some researchers are using AGI as a “guiding star” to orient
their AI research “travels” towards. Other researchers, however,
are actually hoping and working towards the goal of “arriving” at
AGI. Our paper argues against both of these approaches.

3Arguably, many of the concerns we raise about AGI ap-
ply to other terms used to refer to future forms of AI, such
as “powerful AI” (Amodei, 2024) and “transformative AI”
(Gruetzemacher & Whittlestone, 2022). Ultimately, as we revisit
in §4, our account can be viewed as critically interrogating north-
star goals more generally.

2. Traps

We examine six key traps that hinder the research commu-

nity’s ability to set worthwhile goals. We argue that each is

aggravated by AGI narratives.

The problems we discuss are highly interrelated. For in-

stance, SOTA-chasing, discussed in relationship to the role

of misaligned incentives in shaping goal setting (§2.4), also

has implications for bad science (§2.2). Similarly, the prob-

lem of the lack of consensus about AGI (§2.1) is a theme

that recurs throughout. We do not intend the traps to be mu-

tually exclusive. Rather, our goal for each trap is to provide

distinct and useful insights for mitigating failure modes in

productive goal setting.

2.1. Illusion of Consensus

Using shared term(s) in a way that gives a false impression

of consensus about goals, despite goals being contested

The popular use of the term “AGI” (Grossman, 2023; IBM,

2023; Holland, 2025) creates a sense of familiarity, giving

the illusion that there is a shared understanding on what

AGI is, and broad agreement on research goals in AGI de-

velopment. However, there are vastly different opinions on

what the term AGI refers to, what an AGI research agenda

looks like, and what the goals in AGI development are. Left

unchecked, this illusion obstructs explicit engagement on

what the goals of AI research are and should be.

From popular discourse to research papers to corporate

marketing materials, the vast majority of references to AGI

fall into this trap when they uncritically cite claims about

so-called AGI. For examples of uncritical media claims,

see Grossman (2023) and IBM (2023); see Altmeyer et al.

(2024) for examples of overhyped research.4 Summerfield

(2023) summarizes the issue: “AI researchers hope to dis-

cover how to build AGI. The problem is that nobody re-

ally knows exactly what an AGI would look like.” Mueller

(2024) calls AGI “a meaningless concept, an emperor with

no clothes.” Blili-Hamelin et al. (2024) identify multiple

types of disagreement among definitions of AGI or human-

level AI. The contested nature of AGI as a goal is even more

acute in critiques of AGI concepts (e.g., Altmeyer et al.,

2024; Mueller, 2024; Van Rooij et al., 2024).

Beyond AGI, AI research is rife with topics that involve

disagreement about goals, values, and concepts. For ex-

ample, Mulligan et al. (2016) argue that privacy should be

understood as an “essentially contested concept.” They ar-

gue lack of agreement about the meaning and significance

of privacy is not merely a matter of confusion—rather, dis-

4Some researchers who advocate for AGI as a goal have
avoided the Illusion of Consensus trap (§2.1); e.g., Morris et al.
(2024) explicitly call for investigating disagreements about goals,
predictions, and risks that underpin prominent accounts of AGI.
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agreement and contestation are desirable features that en-

able privacy to adapt to changing technical and social con-

texts. Similarly, there is now widespread acceptance fair-

ness should be understood as a contested topic, not only ad-

mitting incompatible mathematical formalizations but also

incompatible values, worldviews, and theoretical assump-

tions (Friedler et al., 2021; Jacobs & Wallach, 2021).

In suggesting this trap, we do not presume that contested

topics are inherently problematic. Rather, we argue that

when dealing with the important question of the goals of AI

research, the significant disagreements that surround AGI

should be embraced as signals of conflicting values.

2.2. Supercharging Bad Science

Worsening current problems with bad science in AI due to

poorly defined concepts and experimental procedures

Research that produces reliable empirical knowledge about

AI is vital to public interest decisions about AI’s poten-

tial for societal and environmental benefit and harm. Yet,

many experts have noted a pervasive lack of scientific

grounding in AI research (Hullman et al., 2022; Raji et al.,

2022; Sloane et al., 2022; Suchman, 2023; Guest & Martin,

2024; Narayanan & Kapoor, 2024; United Nations, 2024;

Van Rooij et al., 2024; Widder & Hicks, 2024). We argue

that vagueness in AGI discourse exacerbates existing prob-

lems with the scientific validity of AI research.

Problem 1: Underspecification and external validity.

One problem with the pursuit of AGI as a concrete goal

is underspecification (D’Amour et al., 2022), where lack

of specificity in goals or concepts leads to cascading epis-

temic problems, including irrefutability, lack of external va-

lidity, flawed experimental design, and flawed evaluation.

These common problems in AI research are worsened in

the AGI context by the lack of scientifically grounded defi-

nitions of AGI (§2.1).

Underspecification of learning goals also undermines exter-

nal validity—the question of whether a measurement corre-

sponds to the real-world phenomenon it’s supposed to cap-

ture. A good example is the debate about whether “lan-

guage understanding” benchmarks actually measure lan-

guage understanding (Jacobs & Wallach, 2021; Liao et al.,

2021).

External validity is also relevant when researchers equate

human faculties with model proxies (Hullman et al., 2022),

such as claiming that a model “capable of linking spe-

cific objects with more general visual context” is evi-

dence of “imagination” (Fei et al., 2022). This rhetorical

move is enabled by using colloquial terms like “imagina-

tion” without considering whether it corresponds to the

human faculty. Altmeyer et al. (2024) likewise critiques

Gurnee & Tegmark (2024) for inflated claims enabled by

the vagueness of the term “world model”. Underspecified

goals trickle down into many areas of experimental design,

such as learning pipelines, evaluation metrics, tasks, repre-

sentations, and methods.

External validity is also undermined when researchers

claim to measure concepts from other fields, like intelli-

gence. The fields of psychology, neuroscience, and cog-

nitive science have studied human intelligence for genera-

tions, yet even they lack consensus on what “intelligence”

is (Gopnik, 2019; Hao, 2023). Conversely, AI research

is no longer concerned with modeling human cognition

(Guest & Martin, 2024; Van Rooij et al., 2024). Instead, AI

developers define “intelligence” on their own terms, privi-

leging definitions convenient for benchmarking or selling

products (§2.4), while benefiting from historically positive

connotations of the term “intelligence”.

Problem 2: Ambiguity between science and engi-

neering. Another problem with the pursuit of AGI

is confusion between science and engineering (Agre,

2014; Hutchinson et al., 2022; Altmeyer et al., 2024). As

Hullman et al. (2022) point out, a “typical supervised ML

paper” (e.g., one that reports accuracy metrics on a bench-

mark) is often just an “engineering artifact”, a tool attached

to performance claims that cannot be refuted because of

replication challenges. Altmeyer et al. (2024) argue that

this ambiguity between science and engineering means rig-

orous hypothesis testing with “specific conditions and con-

sidering effect sizes” is often omitted, with results often

presented as “engineering achievements” without specify-

ing precisely what is being tested, relevant hypotheses, and

what effect sizes would constitute substantial findings.

This ambiguity invites experimenter and confirmation bi-

ases, since researchers are incentivized to “pay little or

no attention to competing hypotheses or explanations”

or “[fail] to articulate a sufficiently strong null hypothe-

sis,” (Altmeyer et al., 2024). Confusion between science

and engineering also manifests when it is unclear if a

study is pursuing scientific goals—of explanation, hypoth-

esis confirmation, etc.—or goals of specific engineering

applications—e.g., a proof-of-concept (Hutchinson et al.,

2022). This exacerbates questions about external validity:

without clear and specific experimental goals, it is easier to

provide post-hoc interpretations of experiments that “sup-

port” a wide variety of goals (§2.4).

Problem 3: Ambiguity between confirmatory and ex-

ploratory research. The ambiguity between engineer-

ing and scientific methodology is related to another prob-

lem: confusion between confirmatory and exploratory

research (Bouthillier et al., 2019; Herrmann et al., 2024).

Herrmann et al. (2024) state that confirmatory research

“aims to test preexisting hypotheses to confirm or refute

existing theories [while] exploratory research is an open-
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ended approach that aims to gain insight and understand-

ing in a new or unexplored area.” They go on to argue

that “most current empirical machine learning research is

fashioned as confirmatory research while it should rather be

considered exploratory” and that experiments are “set up to

confirm the (implicit) hypothesis that the proposed method

constitutes an improvement” (emphasis theirs). By implic-

itly conflating exploratory analysis with confirmatory re-

search, “exploratory findings have a slippery way of ‘trans-

forming’ into planned findings as the research process pro-

gresses” (Calin-Jageman & Cumming, 2019). Using the

vague and contested concept of AGI to frame confirmatory

claims worsens this problem, as it makes it harder to figure

out what is being claimed.

2.3. Presuming Value-Neutrality

Framing goals as purely technical or scientific, when they

are in fact laden with political, social, or ethical values

Presuming Value-Neutrality occurs when technical

or scientific goals become disconnected from their

value-laden assumptions: aspects of AI research that

are—and should be—informed by political, social,

and ethical considerations. The AI research commu-

nity has recently begun examining these value-laden

assumptions (Shilton, 2018; Broussard et al., 2019;

Abebe et al., 2020; Blodgett et al., 2020; Costanza-Chock,

2020; Denton et al., 2020; 2021; Dotan & Milli, 2020;

Birhane & Guest, 2021; Green, 2021; Scheuerman et al.,

2021; Viljoen, 2021; Birhane et al., 2022b; Bommasani,

2023; Fishman & Hancox-Li, 2022; Hutchinson et al.,

2022; Mathur et al., 2022; Blili-Hamelin & Hancox-Li,

2023; Blili-Hamelin et al., 2024; Zhao et al., 2024).

When efforts to define AGI and related concepts do

not explicitly examine the societal goals and values

embedded in their definitions, they fall into the Pre-

suming Value-Neutrality trap. Examples include pro-

posals for “universal intelligence” (Legg & Hutter, 2007;

Hernández-Orallo et al., 2014).

The pursuit of value-neutral approaches echoes de-

bates about psychometric views of human intelligence.

Intelligence, like “health,” and “well-being,” inher-

ently carries normative assumptions about which be-

haviors or abilities are desirable (Anderson, 2002;

Alexandrova & Fabian, 2022). Researchers fall into the

Presuming Value-Neutrality trap by sidestepping these

value-laden dimensions (Anderson, 2002; Cave, 2020;

Blili-Hamelin & Hancox-Li, 2023). Warne & Burningham

(2019) exemplify this by advocating for purely statistical

definitions of intelligence, precisely because cultural defi-

nitions vary.

Value-laden assumptions within concepts like AGI drive le-

gitimate disagreement about their meaning, reflecting di-

vergent societal goals (Blili-Hamelin et al., 2024). This

makes consensus on AGI challenging, as it requires align-

ment on political, social, and ethical priorities. Similar

disagreements affect related concepts like AI (Cave, 2020;

Blili-Hamelin & Hancox-Li, 2023), “human-level AI”, “su-

perintelligence”, and “strong AI”, reinforcing the Illusion

of Consensus trap (§2.1).

2.4. Goal Lottery

Adopting goals which are not adequately justified by scien-

tific, engineering, or social merit, but instead on the basis

of incentives, circumstances, or luck

Researchers have studied the role of socioeconomic

factors, trends, and circumstantial factors in shaping AI

research. For instance, Hooker (2021) has argued that

a form of hardware lottery—the greater availability of

hardware with strengths in parallel processing—was key

to the resurgence of deep learning in the 2010s.5 Similarly,

researchers have examined the role of incentives, socioeco-

nomic factors, and hype cycles in AI research (Raji et al.,

2022; Delgado et al., 2023; Sartori & Bocca, 2023;

Widder & Nafus, 2023; Gebru & Torres, 2024; Hicks et al.,

2024; Narayanan & Kapoor, 2024; Wang et al., 2024).

With this trap, we focus on cases where lotteries (luck) or

incentives drive the adoption of unjustified goals—goals

that are inadequately supported by scientific, engineering,

or societal merit.

Consider AGI definitions centered on economic value, like

OpenAI’s emphasis on “outperform[ing] humans at most

economically valuable work” (OpenAI, 2018). The pri-

macy of economic value for setting AI research goals is

contentious from both engineering and societal perspec-

tives. Such definitions create misalignment between incen-

tives and justifications by reducing complex societal, engi-

neering, and scientific considerations to purely economic

metrics.

Another example is benchmark SOTA-chasing—pursuing

top scores on popular benchmarks (Bender et al., 2021;

Raji et al., 2021; Church & Kordoni, 2022; Hullman et al.,

2022). Despite strong professional incentives encour-

aging this practice, it lacks scientific, engineering, and

societal justification. Benchmarks poorly reflect model

performance in real application contexts because of

problems like data leakage, overfitting to benchmarks,

and data heterogeneity (El-Mhamdi et al., 2021; 2023;

Hanneke & Kpotufe, 2022; Balloccu et al., 2024; Xu et al.,

2024; Zhang et al., 2024). In short, the measurement

method lacks external validity. Yet the practice persists

5On similar lottery or path dependence effects, see
Liebowitz & Margolis (1995); Peacock (2009); Dehghani et al.
(2021); Fishman & Hancox-Li (2022); Rossbach (2023);
Bauer & Gill (2024); Hooker (2024).
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due to reputational and financial rewards, demonstrating

misalignment between incentivized goals and their actual

merits.

The dynamics of goal lotteries are also visible in the story

of the multi-decade neglect of deep learning architectures.

In this case, a research agenda was sidelined for reasons

that eventually proved to be misguided from an engineer-

ing, scientific, or societal perspective (e.g., due to “gate-

keeping” effects against less popular research agendas; see

Siler et al., 2015). Meanwhile, the AI industry went all in

on the expert systems “bubble” (Haigh, 2024). Reductions

in diversity within contemporary AI research can be a sign

that similar mistakes are at play (§2.6). Some recent initia-

tives to counter homogenization (Chollet et al., 2024) rely

on operationalizing AGI through benchmarks.6 In practice,

they end up as yet another benchmark: incentivizing SOTA-

chasing, supercharged by intense media and marketing at-

tention (Jones, 2025). For this reason, we remain some-

what skeptical of whether approaches like ARC (Chollet,

2019) outweigh the negative consequences of news-cycle-

accelerated SOTA-chasing.

2.5. Generality Debt

Relying on the generality or flexibility of tools to postpone

crucial engineering, scientific, or societal decisions

AGI definitions differ on how much “generality” is de-

sirable (Blili-Hamelin et al., 2024). This indicates a

lack of clarity and consensus about the goals of AI re-

search, forming a trap that (a) encourages suboptimal

science/engineering practices (related to points made in

2.2); (b) suppresses important social/ethical questions

about which research directions are worth pursuing. We

term this trap “Generality Debt” to parallel technical debt

(Sculley et al., 2014): it delays the work that needs to be

done as part of AI research which, if left undone, takes

more work to address in the future.

This trap includes the appeal to many different notions

of generality at play in machine learning: (1) variety

of tasks (Hernández-Orallo & Seán Ó hÉigeartaigh,

2018); (2) capability to be trained for “any task”

vs. ability to perform many predefined tasks

(Hernández-Orallo & Seán Ó hÉigeartaigh, 2018); (3)

whether the task or data distribution the model is being

evaluated on is “seen” or “unseen” (i.e., available, or not,

to the model during its training phase) (Altmeyer et al.,

2024); (4) variety of data in model input/output, such as

structured vs unstructured, modality, etc.; (5) whether the

performance of the model reflects “performance consid-

ered ‘surprising’ to humans” (Altmeyer et al., 2024); (6)

6Chollet proposes that “We will have AGI when creating
[benchmarks ‘that are easy for humans, yet impossible for AI’]
becomes outright impossible” (2024b).

variety of goals; (7) ability to “accept a general language

for the problem statement” (Newell & Ernst, 1965); and (8)

having a “general” internal representation (Newell & Ernst,

1965; McCarthy & Hayes, 1981).

As Paolo et al. (2024) note, despite the multiple possible

meanings of “generality”, most papers do not define gener-

ality even if it is central to their argument. Without formal

definition, assessing or improving generalization becomes

challenging. Assuming that “generalization” is desirable

while acknowledging its poor definition is misguided. We

should first define specific, measurable properties before ar-

guing that they are desirable.

Without proper definition, the value of generality re-

mains unclear. Different types of generality support dif-

ferent future visions, raising unexplored questions about

their relative importance. Further, vague definitions of gen-

erality lead to bad science and engineering (§2.2). For

example, Altmeyer et al. (2024) note how the pursuit of

generality has led to vague task specifications. In paral-

lel, Gebru & Torres (2024) argue that some conceptions of

AGI contravene good engineering practices: it is hard to

test the functionality of systems under “standard operating

conditions” if the system is advertised as a “universal algo-

rithm for learning and acting in any environment.”

Aiming to achieve certain forms of generality could also

mean making a tradeoff with ecological validity, as argued

by Saxon et al. (2024). They argue that, in practice, “holis-

tic” benchmarks tend to be a collection of disparate specific

benchmark tasks, meaning that they have task-level con-

struct validity. However, these tasks do not always match

with user-relevant capabilities. Methodological challenges

to achieving such capabilities may or may not be overcome,

in time, given innovative solutions, but the pursuit of AGI

assumes such challenges are surmountable. Methodologi-

cal issues often inspire novel solutions, but we cannot as-

sume a solution will be found, nor can those pursuing AGI.

Further, strategies for pursuing AGI may introduce or re-

veal new challenges to achieving user-relevant capabilities.

Finally, the vagueness around “generality” is also an ethical

concern, as it sidesteps normative questions about which

types of generality merit pursuit and obscures implicit deci-

sions about how to prioritize different research directions.

2.6. Normalized Exclusion

Excluding communities and experts from shaping goals

The negative consequences of exclusion in AI have

been extensively discussed, both in terms of how it

affects product quality and model performance (e.g.,

Obermeyer et al., 2019), and also how it harms peo-

ple (e.g., Buolamwini & Gebru, 2018; Shelby et al., 2023;

Whitney & Norman, 2024). We argue that AGI discourse
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aggravates problems of exclusion.

Problem 1: Excluding communities. Many communi-

ties are left out of meaningful participation in shaping

the goals of AI research (Delgado et al., 2023). Exclud-

ing communities causes serious harm, especially to mi-

noritized communities (Pierre et al., 2021); it also under-

mines the utility of end products, reduces model perfor-

mance, oversimplifies technical challenges (Kierans et al.,

2025), and can impede innovation (e.g., Burt, 2004). For

instance, the infamous case of facial recognition engines—

such as those used by Google, Apple, and Meta—mistaking

Black people for gorillas (BBC News, 2015) is still oc-

curring more than 8 years after the problem was first

identified (Appelman, 2023; Grant & Hill, 2023), with

downstream impacts on surveillance and law enforcement

(Jones, 2020; Pour, 2023). Similarly, selective forms

of inclusion in data annotation raise ethical and practi-

cal concerns about downstream effects (Wang et al., 2022;

Bertelsen et al., 2024). Other examples of exclusion or in-

clusion of communities impacting performance are plen-

tiful (see Buolamwini & Gebru, 2018; Young et al., 2019;

Raji et al., 2020; Andrews et al., 2024; Bergman et al.,

2024; Salavati et al., 2024; Weidinger et al., 2024). Ex-

cluding communities from meaningful feedback also un-

dermines societal goals, such as fostering collective le-

gitimacy through accountability to impacted communities

(Schulz et al., 2002; Mikesell et al., 2013; Costanza-Chock,

2020; Birhane et al., 2022a; Young et al., 2024).

The recent prominence of AGI discourse intensifies the

existing problem of community exclusion in AI research

(Frank et al., 2017; Kelly, 2024). Many proponents of AGI

envision a future where AI systems perform an extraordi-

nary range of tasks for countless communities. However,

research and design processes fall short of the inclusive-

ness demanded by this ambitious vision. For example,

December 2024 reporting suggests that OpenAI and Mi-

crosoft “signed an agreement last year stating OpenAI has

only achieved AGI when it develops AI systems that can

generate at least $100 billion in profits” (OpenAI, 2025d;

Zeff, 2025), a stark departure from OpenAI’s public def-

inition of AGI (OpenAI, 2018). As several authors ar-

gue, economic value is not the only type of desirable value

(Agrawal et al., 2022; Dulka, 2022; Harrigian et al., 2023;

Morris et al., 2024; Pierson et al., 2025). The economic

definition helps guide the engineering decisions of OpenAI.

However, it is questionable whether an emphasis on profits

will lead to the most beneficial or useful end products or to

meaningful consensus about goals, especially for minori-

tized groups.

Problem 2: Excluding disciplines. From application

domains (e.g., medicine (Obermeyer et al., 2019), finance

(Cao, 2022), cybersecurity (Salem et al., 2024), learn-

ing (Leong & Linzen, 2024)) to the practices involved

in building AI—data annotation, qualitative and quan-

titative methods, domain expertise, computer science,

and many more (Wang et al., 2022; Bertelsen et al., 2024;

Widder, 2024)—AI research crosses disciplinary bound-

aries. The cross-disciplinary challenges of AI research mir-

ror those of other disciplines (Stokols et al., 2003; Stirling,

2014; Amoo et al., 2020; Vestal & Mesmer-Magnus, 2020;

The Royal Society, 2024).

One major challenge is disciplinary silos, where knowledge

is inadequately shared across disciplines (Stokols et al.,

2003; Stirling, 2014; Ballantyne, 2019; Amoo et al., 2020;

DiPaolo, 2022; The Royal Society, 2024). For instance,

lack of knowledge sharing could be partly responsible

for low attention to the distinction between explana-

tory and exploratory research in ML, discussed in §2.2

(Herrmann et al., 2024).

Another challenge is epistemic hierarchies—where the

expertise of some disciplines is explicitly or implicitly

devalued (Knorr Cetina, 1999; 2007; Simonton, 2004;

Fourcade et al., 2015; Graziul et al., 2023). This can mani-

fest as expert groups being limited to narrow input rather

than contributing to broader research design decisions

(Bertelsen et al., 2024).

AI researchers’ focus on applying their work to other do-

mains creates another major challenge. Insufficient do-

main knowledge might affect the functionality of AI tools—

whether they operate as advertised (Raji et al., 2022). For

instance, AI tools are deployed to make predictions about

future individual-level outcomes, from pre-trial risk predic-

tion and predictive policing to automated employment de-

cisions (Wang et al., 2024). Yet inadequate evidence of ef-

fectiveness often fails to prevent predictive tools from be-

ing built, marketed, and deployed (Doucette et al., 2021;

Cameron, 2023; Connealy et al., 2024).

The problem of disciplinary silos becomes particularly

acute in AGI-oriented research due to two factors: its

claims to be creating cognates or replacements of human

intelligence, and its claims to expertise in many disciplines.

In the former case, claims are often made while ignoring de-

bates in cognitive science and psychology about the nature

of intelligence (Summerfield, 2023; Guest & Martin, 2024;

Mitchell, 2024; Van Rooij et al., 2024). In the latter case,

achieving AGI is often framed in terms of being able to “re-

place” domain experts in various domains—which are then

often taken up uncritically by the media without input from

domain experts themselves (e.g., Henshall, 2024).

Problem 3: Resource disparities. In recent years, we

have witnessed an unprecedented growth in computational

resources required for model training, with requirements

doubling approximately every few months (Sevilla et al.,
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2022). This trend compounds existing resource dispari-

ties, as state-of-the-art AI research often relies on access to

computational resources accessible to very few researchers

(Yu et al., 2023; LaForge, 2024). The financial cost of

these resources excludes a wide range of actors from con-

tributing to AI research, as even top research universi-

ties have a fraction of the computational resources that

many corporations use to advance AI research. Efforts

are underway to address this resource disparity by sup-

porting access to large-scale computational resources main-

tained by government entities (e.g., NAIRR in the United

States). Yet, resource parity is an aspirational goal in re-

sponse to widespread recognition that AI researchers in in-

dustry enjoy a de facto advantage in setting the goals of

AI research due to their access to industrial scale compu-

tational resources. This structural advantage is reinforced

by the use of pre-print archives to publicize AI research

without peer review (Devlin et al., 2019; Rombach et al.,

2022; Bubeck et al., 2023; OpenAI et al., 2024), a strategy

which legitimizes this work as scientific in nature with-

out applying traditional standards for scientific integrity

(Tenopir et al., 2016; Lin et al., 2020; Soderberg et al.,

2020; Rastogi et al., 2022; Kwon & Porter, 2025).

While resource disparities exist for all forms of AI research,

they are particularly stark when AGI is taken as a north-

star goal for the discipline, due to the orientation of current

AGI efforts towards sheer computational scale and the con-

centration of such efforts in large tech companies.7 Such

concentration of power makes it even more important that

those efforts include, rather than exclude, relevant commu-

nities and experts. That is, AGI discourse accelerates the

existing trend in AI of discounting domain expertise and

lived experiences in favor of models that are allegedly ex-

perts in everything.

3. Recommendations

We have argued that AGI discourse hinders setting well-

motivated scientific and engineering goals in AI develop-

ment, while being destructive to the development of AI that

has social merit. We now provide three recommendations

for avoiding these traps.

Recommendation 1: Goal Specificity. The AI community

must prioritize highly specific language when discussing

the scientific, engineering, and societal goals of AI.

More specific definitions of tangible scientific, engineering,

and societal goals promote a shared understanding of these

goals, and thus the capacity to evaluate whether these goals

are well-motivated. Without such specificity, researchers,

practitioners, and others can develop divergent understand-

7Large-scale efforts also have detrimental impacts on climate,
reinforcing resource disparities (Bucknall & Dori-Hacohen, 2022;
Kaack et al., 2022; Luccioni et al., 2024).

ings of a goal and how it should be achieved. This diver-

gence enables conceptual arbitrage on the part of AI re-

searchers and practitioners who seek to advance their own

goals, since these actors ultimately determine the details of

model development and implementation. People external

to AI development may then be left assuming that a system

achieves a specific goal when, in fact, it does not.

Specificity can maintain sufficient flexibility for ex-

ploratory research by engaging in best practices around de-

veloping a research question. Consider the research goal

“How can a mixture of experts (MoE) strategy improve per-

formance of Whisper large-v3 in challenging speech do-

mains?” which could cover various domains of speech or

MoE strategies. A reformulated, more specific goal would

be: “How can a MoE strategy, where experts are a series

of models fine-tuned on short (<2s), medium (2–20s), and

long utterances (>20s), help improve performance of Whis-

per large-v3 in a speech domain dominated by short utter-

ances but also containing relatively long utterances?” With-

out additional specification, answering the first question

provides little guarantee that a solution would address the

specific features of the second question, at least not without

substantial effort to understand how such a general solution

may be applied to this specific case/domain. This example

is illustrative, though based on real features of a speech

domain where accuracy is essential (i.e., police radio com-

munications, see Srivastava et al. 2024; Venkit et al. 2024).

Goal Specificity addresses the Illusion of Consensus trap

(§2.1), promoting conceptual clarity as an essential part of

goal-setting. Clarity also helps to avoid the Goal Lottery

trap (§2.4) by making goal selection explicit. It similarly

addresses the Presuming Value-Neutrality Trap (§2.3) by

explicitly surfacing values tied to specific goals, and di-

rectly reduces Generality Debt (§2.5) . Finally, goal speci-

ficity addresses the underspecification issues highlighted in

the Supercharging Bad Science Trap (§2.2).

Recommendation 2: Pluralism of goals and approaches.

Rather than a single general north-star goal (or small set

of goals), the AI community should articulate many worth-

while scientific, engineering, and societal goals—and many

possible paths to fulfilling them.

Reaching meaningful scientific and societal consensus on

the goals of a field as broad-ranging as AI is challenging.

When consensus may not be viable or desirable, we rec-

ommend pluralism: allowing multiple viable conceptions

of the goals of AI research. Pluralism is healthy in a soci-

ety composed of individuals and institutions with divergent

values. By default, the research community should be plu-

ralistic about goals and paths to achieving them, aiming

for heterogeneity instead of homogeneity (Sorensen et al.,

7
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2024a;b).8

Researchers who study the dynamics of knowledge produc-

tion and problem-solving in groups have found pluralism

to be beneficial (Hong & Page, 2004; Muldoon, 2013), in-

cluding unique benefits ascribable to egalitarian group dy-

namics (Xu et al., 2022).

Pluralism in AI research can take several forms, each with

distinct implications for how we approach complex prob-

lems. For example:

Methodological pluralism implies that different ways of

approaching a problem help achieve better solutions, often

an effective strategy for complex problem-solving in gen-

eral (Midgley, 2000; Veit, 2020; Zhu, 2022) .

Value pluralism, as applied to alignment research, implies

a direct connection between technical advancement and ac-

commodation of plural values (Sorensen et al., 2024a;b).

Algorithmic pluralism addresses the “patterned inequal-

ity” associated with algorithmic monoculture and implies a

“plurality of paths to different outcomes” must be supported

to avoid reproducing existing social inequalities (e.g., em-

bedded in data) (Jain et al., 2024) .

Each form of pluralism translates into concrete research

practices, such as choice of method(s), setting of pluralistic

goals, and testing algorithms to ensure known harms (i.e.,

algorithmic discrimination) are addressed.

To name just one example, algorithmic decision-making in

hiring processes is unlikely to benefit from AGI as much as

from targeted solutions to that particular setting, which ac-

count for the domain-specific nature of most positions, the

different ways hiring managers evaluate candidates, and ex-

isting evidence of algorithmic discrimination in hiring. In

practice, pluralism can manifest in how resources are dis-

tributed among different research approaches. For example,

rather than investing most computational resources in pur-

suit of AGI, they could be more evenly distributed among

diverse goals and approaches within AI.

Pluralism addresses the Illusion of Consensus trap (§2.1)

by acknowledging the lack of consensus, and using di-

versity of perspectives as a tool for scientific and social

progress; the Goal Lottery trap (§2.4) by reducing the

chances of arbitrarily or prematurely excluding some goals

from consideration; and the Exclusion trap (§2.6) by en-

couraging a plurality of goals and approaches.

8We’re not rejecting consensus on unifying, general north-star
goals as a matter of principle. In some circumstances, like coordi-
nating collective action in response to the climate crisis, strong
consensus may become crucial. But the research community
should not begin from the assumption that such consensus is nec-
essary, or that consensus is optimal from a scientific or societal
perspective.

Recommendation 3: Greater Inclusion in Goal Setting.

Greater inclusion of communities and disciplines in shap-

ing the goals of AI research is beneficial to innovation.

Inclusion supports innovation (Burt, 2004; Hewlett et al.,

2013; Zhang et al., 2021; Xu et al., 2022). Identifying

worthwhile goals, related use cases, and potential unin-

tended consequences depends on engaging diverse view-

points. Within AI research, these viewpoints must include

those of end users, experts from other fields, those affected

by research outcomes, and data annotators. Excluding any

of these groups impoverishes the potential of AI to achieve

worthwhile goals since it would discount the perspectives

that define these goals as worthwhile. Including them en-

riches AI research.

Cross-pollination of ideas between disciplines leads

to more impactful research (Dori-Hacohen et al., 2021;

Shi & Evans, 2023). Such impact requires that we aban-

don silos of (tacit) knowledge (e.g., epistemic cultures:

Knorr Cetina, 1999; 2007) and prioritize epistemic hier-

archies that value non-computational research (Simonton,

2004; Fourcade et al., 2015). While technical complex-

ity can make participation by non-experts challenging

(Pierre et al., 2021), working through these challenges can

surface issues experts have not anticipated (Cooper et al.,

2022) and enable practical scientific contributions by in-

tegrating the insights and experiences of non-experts,

or experts in other fields, into system design decisions

(Delgado et al., 2023; Salavati et al., 2024).

As a topic, AGI often involves imagining AI technologies

that impact the lives of everyone. Exclusion thus causes

socially significant disagreements regarding the goals, pro-

cesses, and actors who shape AI research and deployment.

These disagreements are often overlooked or ignored by

those with the power to shape the field. Inclusion is nec-

essary to ensure that decisions about technology are suffi-

ciently justified to institutions, communities, and individu-

als (Anderson, 2006; Binns, 2018; Alexandrova & Fabian,

2022; Birhane et al., 2022a; Lazar, 2022; Ovadya, 2023).

This recommendation addresses the Normalized Exclusion

trap (§2.6) by treating inclusion as essential to innovation.

Moreover, it addresses the Illusion of Consensus and the

Presuming Value-Neutrality traps (§2.1, §2.3) by acknowl-

edging socially significant disagreements about the value-

laden goals of AI research and development and using

those disagreements productively.

4. Alternative Views

We have argued that AGI is a poor choice as a north-star

to guide AI research. We conclude by championing our

position against a strong alternative view: that the traps we

have identified can be addressed through a modified pursuit

8
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of AGI. We argue that improved approaches to AGI would

not go far enough.

4.1. Counterargument

“AGI is a good north-star goal; to avoid the above traps,

improved definitions and accounts of AGI are needed.”

Thoughtful attempts to address shortcomings in accounts of

AGI indeed exist (e.g., Adams et al., 2012; Chollet, 2019;

Summerfield, 2023; Morris et al., 2024). If prior accounts

of AGI are counterproductive or flawed, why not pursue

new accounts that address those flaws?

As an example of an alternative view, Morris et al. (2024)

arguably mitigate the Illusion of Consensus trap by dis-

entangling the disagreements about goals, predictions,

and risks that plague other accounts of AGI. Moreover,

their proposal for a practical strategy analogous to Lev-

els of Driving Automation standards (SAE International,

2021) could be viewed as mitigating the Presuming Value-

Neutrality trap. Setting society-wide standards could be

done in a way that explicitly centers specific risks that the

standards address (Morris et al., 2024). In this way, the val-

ues being favored manifest in the risks that are centered by

the standards. Such works showcase a potential response

to traps. In arguing that AGI discourse aggravates multi-

ple standing problems, we cannot rule out the possibility

of efforts that mitigate these same problems while retain-

ing AGI as a goal. Moreover, given that lack of agreement

about how to define AGI is likely to persist, as Summerfield

(2023), Morris et al. (2024), and many others believe, it

would be especially implausible for us to presume to have

a complete enough view of the landscape of possible con-

ceptions of AGI to draw definitive conclusions.

4.2. Rebuttal

Why favor our position against this alternative?

Reason 1: Conflict with our recommendations. Al-

though the definition of AGI is highly contested, a frequent

motivation for embracing AGI as a north-star goal is the

desire for a single, large-scale, unifying vision for the field

(Summerfield, 2023). This is somewhat in tension with our

recommendation of goal pluralism, which we argue is valu-

able for AI research. “AGI” also brings with it a notion of

“general” that can be discordant with our recommendation

of specificity.9 As such, there are reasons to be wary of

AGI-focused alternatives.

9Note that these are not all things considered (or definitive)
reasons to abandon the alternative view. Rather, readers who are
convinced by our arguments in favor of specificity and pluralism
have, to some extent, reasons to be wary of the project of improv-
ing AGI. These are so-called pro-tanto (i.e., “to that extent”) rea-
sons, which can be overridden by other considerations (Alvarez,
2023).

Reason 2: Distinguishing hype from reality. Another rea-

son to favor our position is the AI research community’s

responsibility to help distinguish hype from reality. We be-

lieve that our community must provide trusted, evidence-

based answers to increasingly complex questions about AI

technologies, their goals, and their impacts. In the current

moment, the hyped terminology of AGI undermines this

responsibility.

No matter how well or poorly defined, AGI has acquired a

cultural significance that exacerbates the challenge of dis-

tinguishing hype from reality. “Intelligence” and “gener-

ality” hold the promise of being beneficial for countless

needs and contexts (§2.3, §2.5). No matter how cautious

the research community attempts to be, the cultural associ-

ations of these terms risk stoking the flames of unscientific

thinking about AI. This enables various parties to loosely

project utopian or dystopian characteristics onto AGI in

ways that support their calls for more power and resources.

Reason 3: Benefiting humans as the goal of technol-

ogy. If the AI community nevertheless wants an overar-

ching goal to strive towards, the goal should be the sup-

port and benefit of human beings. The goals of technology

are shaped by people. Evidence-based approaches to ex-

amining whether technology effectively meets the needs of

people—be they “users”, “consumers”, “patients”, “schol-

ars”, or a myriad of business and social monikers—are

well-established. In a quest to achieve AGI, communities

often lose sight of the needs of people as a goal, in favor of

focusing on just the technology.

There is another, more ambitious reason to work towards

consensus on supporting and benefiting human beings as

a goal. We have noted the role of socially significant dis-

agreements about the goals of technology in our third rec-

ommendation of inclusion. Processes ensuring that tech-

nology benefits humans have the potential to provide col-

lectively legitimate responses to such disagreements. This

could occur through processes that embrace democratic

ideals: such as universal inclusion in interrogation, de-

liberation, and dissent about the “common good” and

“public interest”, while enacting strong accountability to

participants as “rights-holders” (Anderson, 2006; Putnam,

2011; Binns, 2018; Gabriel, 2020; Birhane et al., 2022a;

Lazar & Nelson, 2023; Ovadya, 2023; Blili-Hamelin et al.,

2024). Aiming for collective legitimacy amounts to requir-

ing politically and socially effective forms of consensus.

In sum, we urge communities to stop treating “AGI” as

the north-star goal of AI research.
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A. Definitions of AGI and Related Concepts

Table 1 below presents illustrative definitions of AGI and

usefully related concepts. We agree with Morris et al.

(2024)’s proposal to broaden discussions of AGI defini-

tions to include accounts that avoid the term “AGI” yet

address similar goals of achieving human-level intelli-

gence. For example, while OpenAI’s influential defini-

tion (OpenAI, 2018) focuses on outperforming humans at

economically valuable work, sharing key parallels with

Nilsson (2005). Yet it notably differs from Chollet et al.

(2024); Summerfield (2023); Morris et al. (2024); Chollet

(2019); Goertzel (2014) and others by not explicitly em-

phasizing generality.

Following Blili-Hamelin et al. (2024), we believe discus-

sions of AGI definition should include approaches that

challenge AGI’s central premises. Below, we include

Weizenbaum (1976) and Attard-Frost (2023). Including

these critical accounts enables noticing a surprising similar-

ity with Summerfield (2023)’s reconceptualization of AGI

through the lens of natural intelligence: all three accounts

favor a strong form of contextualism and pluralism about

what intelligence means.

B. AGI as a North-Star Goal

This paper argues against AGI serving as a north-star goal

of AI research. When we talk about AGI being treated

as north-star goal, we are not claiming that the majority

of AI researchers are explicitly working in pursuit of this

goal. In fact, many AI researchers may, like us, doubt

or reject this goal (Salvaggio, 2025; Francesca Rossi et al.,

2025). Rather, we claim that influential researchers and ex-

ecutives hold this view, enough so for it to deserve scrutiny.

These dominant voices are further amplified by the public-

ity that discussions of AGI generate, including by members

of the press (Klein, 2025), and by government commissions

(Bommasani et al., 2025). As such, AGI has come to per-

meate both community incentives and cultural norms. In

this context, interrogating its role and influence in the AI

research community matters. Below we provide a small

sample of quotes and resources illustrating this effect.

OpenAI The mission statement of OpenAI is “. . . to

ensure that [AGI] benefits all of humanity.” Its web-

site (OpenAI, 2025a) states that “we are building safe

and beneficial AGI, but will also consider our mission ful-

filled if our work aids others to achieve this outcome.”

This goal directly influences both the company’s direct

work (OpenAI, 2025b) and the work that it funds (OpenAI,

2025c).

Google DeepMind The vision statement (DeepMind,

2025) of Google DeepMind states that “[AGI] has the po-
tential to drive one of the greatest transformations in his-

tory.” In a recent briefing (Browne, 2025), Demis Hass-

abis stated that, though current systems still have limita-

tions, over the next 5–10 years “a lot of those capabilities

will start coming to the fore and we’ll start moving towards

what we call [AGI].” A position paper (Morris et al., 2024)

by Google DeepMind authors last year defines concrete

goals in pursuit of AGI.

Anthropic In the essay “Machines of Loving Grace,” An-

thropic CEO Dario Amodei argues how the world could

be shaped positively by “Powerful AI” aligned with “AGI”

goals (Amodei, 2024). Amodei recently told CNBC that

AI that is “better than almost all humans at almost all tasks”

can emerge shortly (Browne, 2025). Anthropic’s official

recommendations (Anthropic, 2025) to OSTP for the U.S.

AI Action Plan state that “we expect powerful AI systems

will emerge [with] intellectual capabilities matching or ex-

ceeding that of Nobel Prize winners.”

Other Influential Executives & Researchers In

“Sparks of AGI” (Bubeck et al., 2023), researchers at

Microsoft argue that GPT-4 “could reasonably be viewed

as an early (yet still incomplete) version of [AGI].” In

announcing xAI, Elon Musk stated (Kerner, 2023) that “the

overarching goal of xAI is to build a good AGI.” Speaking

to TIME (Perrigo, 2024), Yann LeCunn explained that

he refers to “what people call ‘AGI”’ as “human-level

intelligence,” and noted that “the mission of FAIR [Meta’s

Fundamental AI Research team] is human-level intelli-

gence.” Geoff Hinton stated to Forbes (Maymin, 2023)

that he “is certain we will have AGI soon, and biological

humans will be relegated to be the second-smartest species

on the planet.”
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Table 1: Sample of proposed definitions of AGI and related concepts.

Weizenbaum (1976). “Intelligence is a meaningless concept in and of itself. It requires a frame of reference, a specification of a domain
of thought and action, in order to make it meaningful. [. . . ] [T]hese domains are themselves not measurable.” Argues that any argument
that calls for the conclusion or denial that “machines may surpass us in general intelligence” is “ill-framed and therefore sterile” due to
“our inability to compute an upper bound on machine intelligence.” We follow Blili-Hamelin et al. (2024) in considering this critical
account relevant to debates about how to conceive AGI.

Searle (1980). “according to strong AI, the computer is not merely a tool in the study of the mind; rather, the appropriately programmed
computer really is a mind, in the sense that computers given the right programs can be literally said to understand and have other
cognitive states.”

Gubrud (1997) “By advanced artificial general intelligence, I mean AI systems that rival or surpass the human brain in complexity and
speed, that can acquire, manipulate and reason with general knowledge, and that are usable in essentially any phase of industrial or
military operations where a human intelligence would otherwise be needed. Such systems may be modeled on the human brain, but
they do not necessarily have to be, and they do not have to be “conscious” or possess any other competence that is not strictly relevant to
their application. What matters is that such systems can be used to replace human brains in tasks ranging from organizing and running
a mine or a factory to piloting an airplane, analyzing intelligence data or planning a battle.”

Nilsson (2005). “achieving real human-level artificial intelligence would necessarily imply that most of the tasks that humans perform
for pay could be automated. Rather than work toward this goal of automation by building special-purpose systems, I argue for the
development of general-purpose, educable systems that can learn and be taught to perform any of the thousands of jobs that humans
can perform.”

Fast Company (2010) “Wozniak: Could a Computer Make a Cup of Coffee?” tasks the machine to go into an “average” American
home, find ingredients, and make a cup of coffee. This requires embodied AI systems. Wozniak’s test has since been included in
discussions of AGI (Goertzel et al., 2012).

Chalmers (2010). “AI is artificial intelligence of human level or greater (that is, at least as intelligent as an average human). Let us
say that AI+ is artificial intelligence of greater than human level (that is, more intelligent than the most intelligent human). Let us say
that AI++ (or superintelligence) is AI of far greater than human level (say, at least as far beyond the most intelligent human as the most
intelligent human is beyond a mouse).”

Goertzel et al. (2012). Propose an architecture for human-like general intelligence that integrates slightly modified versions of previ-
ously existing architectures, emphasizing the commonalities across different approaches.

Bostrom (2014). “We can tentatively define a superintelligence as any intellect that greatly exceeds the cognitive performance of
humans in virtually all domains of interest.”

Goertzel (2014). “roughly speaking, an AGI system is a synthetic intelligence that has a general scope and is good at generalization
across various goals and contexts.”

Smart (2015). “a strong AI system would be an entirely autonomous computer system in no way controlled or influenced by human
operators. It could successfully adapt to its environment or even be part of its environment, making intelligent decisions, and for all
intents and purposes interacting with humans naturally. It would have vastly superior memory and computational abilities but would
also be able to reason and act accordingly. What all of this boils down to is that a strong AI would have to be conscious.”

OpenAI (2018). “OpenAI’s mission is to ensure that artificial general intelligence (AGI)—by which we mean highly autonomous
systems that outperform humans at most economically valuable work—benefits all of humanity.” December 2024 reporting suggests
that OpenAI and Microsoft “signed an agreement last year stating OpenAI has only achieved AGI when it develops AI systems that
can generate at least $100 billion in profits” (Zeff, 2025). If true, this is a significant departure from their former definition.

Chollet (2019); Chollet et al. (2024). Defines AGI as “a system capable of efficiently acquiring new skills and solving novel problems
for which it was neither explicitly designed nor trained.” In 2019, introduced an as yet (January 2025) unsolved benchmark for
incentivizing progress towards AGI thus defined. Proposes that “it’s still feasible to create unsaturated, interesting benchmarks that are
easy for humans, yet impossible for AI – without involving specialist knowledge. We will have AGI when creating such evals becomes
outright impossible” (Chollet, 2024b).

Hernández-Orallo et al. (2021). “independently of its overall capability, an agent can only be called fully general if it covers all tasks
up to an equivalent level of difficulty, determined by the resources that are needed for them.” Introduces two individual-specific (be
them humans, other animals or AI systems) measures that, together, decouple the concept of general intelligence: (i) ‘generality’,
which refers to “the distribution of the tasks the agent can solve,” and (ii) ‘capability’, which indicates “how far, on average, an agent
can reach in terms of task difficulty.”

Marcus (2022). Defines AGI as “a shorthand for any intelligence. . . that is flexible and general, with resourcefulness and reliability
comparable to (or beyond) human intelligence.” Calls for the need to operationalize the definition as a single system that can succeed
in at least 3 of 5 proposed tasks, including Wozniak’s coffee cup benchmark (Fast Company, 2010).
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Morris et al. (2024). Proposes a practical strategy analogous to Levels of Driving Automation standards (SAE International, 2021).
Describes a graded set of levels of achievement of target characteristics that can each be associated with tangible “metrics”, the
introduction of “risks”, and changes in “Human-AI Interaction paradigm” (Morris et al., 2024). The framework targets 2 characteristics:
levels of performance (which they define as “the depth of an AI system’s capabilities, i.e., how it compares to human-level performance
for a given task”), and levels of generality (defined as “breadth of an AI system’s capabilities, i.e., the range of tasks for which an AI
system reaches a target performance threshold”).

Summerfield (2023) We consider this account to endorse a strong form of pluralism about intelligence: natural intelligence takes many
different shapes across cultures and species, serving many goals and functions that are irreducibly shaped by “the internal model by
which an animal understands the world”, which itself “depends on its local environment, its embodied form, its desires and goals, and
its interactions with conspecifics.” The same should be expected for “strong AI” or “AGI”. However, building on Dreyfus & Dreyfus
(1986), Summerfield argues we have practical reasons to constrain the forms AI takes. The goal of AI is “to help humans in their
endeavours.” To that end,“if we want to build AI systems that exhibit human-like intelligence, with whom we can interact in pursuit of
human-centred goals, these agents will need to think in ways that make sense to us.”10

Attard-Frost (2023) Defines human and artificial intelligence as “value-dependent cognitive performance”, and “centres interdependen-
cies between agents, their environments, and their measurers in collectively constructing and measuring context-specific performances
of intelligent action.” Although this account is not presented as a conception of AGI, Blili-Hamelin et al. (2024) argue that the account
is relevant to the topic.

Suleyman & Bhaskar (2023) “Artificial intelligence (AI) is the science of teaching machines to learn humanlike capabilities. Artificial
general intelligence (AGI) is the point at which an AI can perform all human cognitive skills better than the smartest humans.”

Agüera y Arcas & Norvig (2023). “‘General intelligence’ must be thought of in terms of a multidimensional scorecard, not a single
yes/no proposition.” Dimensions discussed include topics, tasks, modalities, languages, and instructability.

10“[W]e are building AI to make the world a better place. But if we want AI to be useful to people, it will need to share our umwelt.
If we build an AI that sees the world in a radically different way to us, its behaviour and mental states will be unintelligible. Such an
agent will be at best unreliable and at worst unsafe.” (Summerfield, 2023)
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