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Abstract

In large-scale retrieval systems, model upgrades
require re-extracting all gallery embeddings from
upgraded models. However, it inevitably spends a
prohibitively large amount of computational cost
and even entails the downtime of the service. To
alleviate this bottleneck, backward-compatible
learning is proposed to learn feature space of new
model while being compatible with those of old
model. Although it sidesteps this challenge by
tackling query-side representations, this leads to
suboptimal solutions in principle because gallery
embeddings cannot benefit from model upgrades.
We address this dilemma by introducing an on-
line backfilling algorithm, which enables us to
achieve a progressive performance improvement
during the backfilling process without sacrificing
the full performance of the new model after the
completion of backfilling. To this end, we first
show that a simple distance rank merge is a rea-
sonable option for online backfilling. Then, we
incorporate a reverse transformation module and
metric-compatible contrastive learning, resulting
in desirable merge results during backfilling with
no extra overhead.

1. Introduction
Image retrieval models (Sun et al., 2014; Li et al., 2014;
Wang et al., 2018a) have achieved remarkable performance
by adopting deep neural networks for representing images.
Yet, all models need to be upgraded at times to take advan-
tage of improvements in training datasets, network architec-
tures, and training techniques. This unavoidably leads to
the need for re-extracting the features from millions or even
billions of gallery images using the upgraded new model.
This process, called backfilling or re-indexing, needs to be
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completed before the retrieval system can benefit from the
new model, which may take months in practice.

To sidestep this bottleneck, several backfilling-free ap-
proaches based on backward-compatible learning (Shen
et al., 2020; Meng et al., 2021; Su et al., 2022; Wan et al.,
2022; Duggal et al., 2021) have been proposed. They learn
a new model while ensuring that its feature space is still
compatible with the old one, thus avoiding the need for up-
dating old gallery features. Although these approaches have
achieved substantial performance gains without backfilling,
they achieve feature compatibility at the expense of feature
discriminability and their performance is suboptimal. We
argue that backward-compatible learning is not a fundamen-
tal solution and backfilling is still essential to accomplish
state-of-the-art performance without performance sacrifices.

To resolve this compatibility-discriminability dilemma, we
relax the backfill-free constraint and propose a novel online
backfilling algorithm equipped with three technical compo-
nents. We posit that an online backfilling technique needs to
satisfy three essential conditions: 1) immediate deployment
after the completion of model upgrade, 2) progressive and
non-trivial performance gains in the middle of backfilling,
and 3) no degradation of final performance compared to
offline backfilling. In this paper, we proposed a fundamen-
tal distance rank merge framework and metric compatible
training approach to satisfy this constraints. The main con-
tributions of our work are summarized as follows.

• We propose an online backfilling approach, a funda-
mental solution for model upgrades in image retrieval
systems, based on distance rank merge to overcome
the compatibility-discriminability dilemma in existing
compatible learning methods.

• We incorporate a reverse query transform module to
make it compatible with both the old and new galleries
while computing the feature extraction of query only
once in the middle of the backfilling process.

• We adopt a metric-compatible learning technique to
make the merge process robust by calibrating distances
in the feature embedding spaces of old and new models.
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2. Image Retrieval by Rank Merge
2.1. Overview

Our goal is to develop a fundamental solution to overcome
the compatibility-discriminability trade-off via online back-
filling in compatible model upgrade. We aim to remove
inherent limitations of backfill-free backward-compatible
learning—the inability to benefit from upgraded representa-
tions of gallery images extracted from new models—while
avoiding system downtime and outdated service during of-
fline backfilling process until the completion of backfilling.

Image retrieval systems with online backfilling should sat-
isfy the following three conditions:

1. The system can be deployed as soon as the model
upgrade is completed.

2. The performance should monotonically increase with-
out negative flips1 as backfill progresses.

3. The final performance should be better than or equiva-
lent to the algorithm relying on offline backfilling.

We present a distance rank merge approach for image re-
trieval, which enables online backfilling in arbitrary model
upgrade scenarios. This method maintains two separate
retrieval pipelines corresponding to the old and new mod-
els and merges the retrieval results from the two models
based on distances from a query embedding. This allows
us to run the retrieval system without a warm-up period
and achieve surprisingly good results during the backfilling
process. Note that the old and new models are not required
to be compatible at this moment but we will make them so
to further improve performance in the subsequent sections.

2.2. Formulation

Let q ∈ Q be a query image and G = {g1, ...,gN} be a
gallery composed of N images. An embedding network
φ(·) projects an image onto a learned feature space. To
retrieve the closest gallery image given a query, we solve
argming∈G dist (φ(q), φ(g)), where dist(·, ·) is a distance
metric. Following (Shen et al., 2020), the retrieval accuracy
is given by

M(φ(Q), φ(G)), (1)

whereM(·, ·) is an evaluation metric such as mAP or CMC.

Backward compatibility Denote the old and new embed-
ding networks by φold(·) and φnew(·) respectively. If φnew(·)
is backward compatible with φold(·), then we can perform

1The “negative flip” refers to performance degradation caused
by incorrect retrievals in the new model, which were correct in the
old model.

search on a set of old gallery embeddings using a new
query embedding, i.e., argming∈G dist(φnew(q), φold(g)).
As stated in (Shen et al., 2020), the backward compatibility
is achieved when the following criterion is satisfied:

M(φnew(Q), φold(G)) >M(φold(Q), φold(G)). (2)

From now, we refer to a pair of embedding networks for
query and gallery as a retrieval system, e.g., {φ(·), φ(·)}.

Rank merge Assume that the first M out of a total of
N images are backfilled, i.e., Gnew = {g1, ...,gM} and
Gold = {gM+1, ...,gN}. Note that the total number of
stored gallery embeddings is fixed to N during the back-
filling process, i.e., Gold = G−Gnew. Then, we first con-
duct image retrieval using the individual retrieval systems,
{φold, φold} and {φnew, φnew}, independently as

gm = argmin
gi∈Gold

dist
(
φold(q), φold(gi)

)
, (3)

gn = argmin
gj∈Gnew

dist (φnew(q), φnew(gj)) . (4)

For each query image q, we finally select gm if
dist(φold(q), φold(gm)) < dist(φnew(q), φnew(gn)) and gn

otherwise. The retrieval performance after rank merge dur-
ing backfilling is given by

Mt := (5)

M({φold(Q), φnew(Q)}, {φold(Gold
t ), φnew(Gnew

t )}),

where t ∈ [0, 1] indicates the rate of backfilling completion,
i.e., |Gnew

t | = t|G| and |Gold
t | = (1 − t)|G|. The criteria

discussed in Section 2.1 are formally defined as

M0 ≥M(φold(Q), φold(G)), (6)
M1 ≥M(φnew(Q), φnew(G)), (7)
Mt1 ≥Mt2 if t1 ≥ t2. (8)

Comprehensive evaluation To measure both backfilling
cost and model performance comprehensively during online
backfilling, we utilize the following metrics that calculate
the area under mAP or CMC curves as

AUCmAP =

∫ 1

0

mAPtdt and AUCCMC =

∫ 1

0

CMCtdt.

3. Metric Compatible Training
3.1. Reverse Query Transform

One may argue that the proposed approach is computation-
ally expensive at inference time because we need to conduct
feature extraction twice per query for both the old and new
models. To reduce the computational cost incurred by com-
puting query embeddings twice for two separate systems at

2



Metric Compatible Training for Online Backfilling in Large-Scale Retrieval

Figure 1: Image retrieval with our final rank merge framework including Section 3.1-3.3. Backward retrieval system consists
of reversely transformed new query and old gallery, {ρrev, φold}. The final image retrieval results are given by merging the
outputs from {ρrev, φold} and {ρnew, ρnew}.

Figure 2: Illustration of metric compatible learning loss
with two systems. Two boxes with dotted lines corresponds
to two terms in equation 11. For each retrieval system,
the distances between positive pairs are learned to be both
smaller than those of negative pairs in the two systems.

the inference stage, we compute the embedding using the
new model and transform it to the version compatible with
the old model through the reverse query transform module.
To establish such a mechanism, we fix the parameters of
the old and new models {φold, φnew} after training them in-
dependently, and train a lightweight network, ψ(·), which
transforms the embedding in the new model to the one in
the old model. For each training example x, our objective is
minimizing the following loss:

LRQT(x) := dist
(
ψ (φnew(x)) , φold(x)

)
, (9)

where dist(·, ·) is a distance metric such as `2 or cosine
distances. Because we only update the parameters in ψ(·),
not the ones in φnew(·) or φold(·), we can still access the
representations given by the new model at no cost even
after the optimization of ψ(·). Note that this reverse query
transform module differs from FCT (Ramanujan et al., 2022)
mainly in terms of transformation direction and requirement
of side information. FCT performs a transformation from
the old representation to the new, while the opposite is true
for our proposed approach. Since the embedding quality of
a new model is highly likely to be better than that of an old
one, our reverse transformation module performs well even
without additional side information and, consequently, is
more practical and efficient.

Integration into baseline retrieval system Figure 1 il-
lustrates the distance rank merge process together with the
proposed reverse transformation module. The whole pro-
cedure consists of two retrieval systems defined by a pair
of query and gallery representations, backward retrieval
system {φrev, φold} and new retrieval system {φnew, φnew},
where φrev := ψ(φnew). Note that we obtain both the new
and compatible query embeddings, φnew(q) and φrev(q) =
ψ(φnew(q)), using a shared feature extractor, φnew(·).

The entire image retrieval pipeline consists of two parts: 1)
feature extraction of a query image and 2) search for the
nearest image in a gallery from the query. Compared to
the image retrieval based on a single model, the computa-
tional cost of the proposed model with rank merge requires
negligible additional cost which corresponds to feature trans-
formation ψ(·) in the first part. Note that the number of total
gallery embeddings is fixed, i.e., |Gnew|+ |Gold| = |G|, so
the cost of the second part is almost the same in both cases.

3.2. Metric Compatible Contrastive Learning

While the rank merge with the basic reverse transformation
works well, the objective in equation 9 cares about the pos-
itive pairs φold and φrev with no consideration of negative
ones, which sometimes lead to misranked position. To han-
dle this issue, we employ a supervised contrastive learning
loss (Oord et al., 2018; Khosla et al., 2020) to consider both
positive and negative pairs as

LCL(xi, yi) = − log

∑
yk=yi

sold
ik∑

yk=yi
sold
ik +

∑
yk 6=yi

sold
ik

, (10)

where sold
ij = exp

(
−dist

(
φrev(xi), φ

old(xj)
))

and yi de-
notes the class membership of the ith sample. For more
robust contrastive training, we perform hard example min-
ing for both the positive and negative pairs2. Such a con-
trastive learning approach facilitates distance calibration
and improves feature discrimination because it promotes

2For each anchor, we select the half of the examples in each of
positive and negative labels based on the distances from anchors.
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Table 1: Comparison with existing compatible learning methods on four standard benchmarks in homogeneous model
upgrades. Gain denotes relative gain that each method achieves from old model in terms of AUCmAP, compared to the gain
of new model. Note that RMnaı̈ve indicates the basic version of distance rank merge described in Sec. 2.2 and that Old and
New denote embedding models of gallery images.

ImageNet-1K CIFAR-100 Places-365 Market-1501
AUCmAP AUCCMC Gain AUCmAP AUCCMC Gain AUCmAP AUCCMC Gain AUCmAP AUCCMC Gain

Old 31.2 49.7 0% 21.6 34.3 0% 16.5 30.7 0% 62.7 82.7 0%
New 51.3 70.3 100% 47.4 62.6 100% 23.4 39.1 100% 77.3 90.9 100%

RMnaı̈ve (Ours) 40.0 63.9 44% 30.8 49.1 36% 19.5 35.8 43% 69.2 87.0 45%
BCT 32.0 46.3 4% 26.4 43.5 19% 17.5 37.0 14% 66.6 84.3 27%
FCT 36.9 58.7 28% 27.1 49.4 21% 22.5 37.3 87% 66.4 84.2 25%
BiCT 35.1 59.7 19% 29.0 48.3 29% 19.0 34.9 36% 65.0 82.4 16%

RM (Ours) 53.4 68.1 110% 41.4 60.7 78% 28.2 41.7 170% 70.7 87.6 55%

separation of the positive and negative examples.

Now, although the distances within the backward retrieval
system become more comparable, they are still not properly
calibrated in terms of the distances in the new retrieval sys-
tem. Considering distances in both retrieval systems jointly
when we train the reverse transformation module, we can
obtain more comparable distances and consequently achieve
more reliable rank merge results. From this perspective, we
propose a metric compatible contrastive learning loss as

LMCL(xi, yi) = (11)

− log

∑
yk=yi

sold
ik∑

yk=yi
sold
ik +

∑
yk 6=yi

sold
ik +

∑
yk 6=yi

snew
ik

− log

∑
yk=yi

snew
ik∑

yk=yi
snew
ik +

∑
yk 6=yi

snew
ik +

∑
yk 6=yi

sold
ik

,

where snew
ij = exp(−dist

(
φnew(xi), φ

new(xj)
)
) and sold

ij =

exp(−dist
(
φrev(xi), φ

old(xj)
)
). Figure 2 depicts the con-

cept of the loss function. The positive pairs from the back-
ward retrieval system {φrev, φold} are trained to locate closer
to the anchor than not only the negative pairs from the same
system but also the ones from the new system {φnew, φnew},
and vice versa. We finally replace equation 9 with equa-
tion 11 for training the reverse transformation module. Com-
pared to equation 10, additional heterogeneous negative
terms in the denominator of equation 11 play a role as a
regularizer to make the distances from one model directly
comparable to those from other one, which is desirable for
our rank merge strategy.

3.3. Learnable New Feature Embedding

Until now, we do not jointly train the reverse transforma-
tion module ψ(·) and the new feature extraction module
φnew(·). This hampers the distance compatibility between
the backward and new retrieval systems because the back-
ward retrieval system {φrev, φold} is the only part to be op-
timized while the new system {φnew, φnew} is fixed. To
provide more flexibility, we add another transformation
module ρ(·) on top of the new model where ρnew = ρ(φnew)

and ρrev = ψ(ρ(φnew)). In this setting, we use ρnew as the
final new model instead of φnew, and our rank merge pro-
cess employs {ρrev, φold} and {ρnew, ρnew} eventually. This
strategy helps to achieve a better compatibility by allowing
both systems to be trainable. The final loss function to train
the reverse transformation module has the identical form to
LMCL in equation 11 except for the definitions of snew

ij and
sold
ij , which are given by

snew
ij = exp (−dist (ρnew(xi), ρ

new(xj))) (12)

sold
ij = exp

(
−dist

(
ρrev(xi), φ

old(xj)
))
. (13)

This extension still does not constrain ρnew to be feature
compatible with φold, thus preserving its feature discrim-
inability while further improving distance compatibility.

4. Experiments
Table 1 and Figure A3 compare the proposed framework,
referred to as RM (Rank Merge), with existing compatible
learning approaches, including BCT (Shen et al., 2020),
FCT (Ramanujan et al., 2022), and BiCT (Su et al., 2022).
As shown in the table, RM consistently outperforms all the
existing compatible training methods by remarkably signifi-
cant margins in all datasets. BCT learns backward compat-
ible feature representations, which is backfill-free, but its
performance gain is not impressive. FCT achieves meaning-
ful performance improvement by transforming old gallery
features, but most of the gains come from side-information.3

Also, such side-information is not useful for re-identification
dataset, Market-1501, mainly because the model for the
side-information is trained for image classification using
ImageNet, which shows its limited generalizability. On the
other hand, although BiCT takes advantage of online back-
filling with less backfilling cost, it suffers from degraded
final performance and negative flips in the middle of backfill-
ing. Note that RMnaı̈ve, our naı̈ve rank merging between old
and new models, is already competitive to other approaches.

3If side-information is not available, the performance gain of
FCT drops from 62% to 28% on ImageNet.
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