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ABSTRACT

Generative models are increasingly able to produce remarkably high quality images
and text. The community has developed numerous evaluation metrics for comparing
generative models. However, these metrics do not always effectively quantify data
diversity. We develop a new, more flexible diversity metric that can readily be
applied to data, both synthetic and natural, of any type. Our method employs
random network distillation, a technique introduced in reinforcement learning.
We validate and deploy this metric on both images and text. We further explore
diversity in few-shot image generation, a setting which was previously difficult to
evaluate.

1 INTRODUCTION

State-of-the-art generative adversarial networks (GANs) are able to synthesize such high quality
images that humans may have a difficult time distinguishing them from natural images (Brock et al.,
2018} [Karras et al.,|2019). Not only can GANs produce pretty pictures, but they are also useful for
applied tasks from projecting noisy images onto the natural image manifold to generating training
data (Samangouei et al.| 2018} |Sixt et al., 2018; Bowles et al., 2018). Similarly, massive transformer
models are capable of performing question-answering and translation (Brown et al., 2020). In order
for GANs and text generators to be valuable, they must generate diverse data rather than memorizing
a small number of samples. Diverse data should contain a wide variety of semantic content, and its
distribution should not concentrate around a small subset of modes from the true image distribution.

A number of metrics have emerged for evaluating GAN-generated images and synthetic text. However,
these metrics do not effectively quantify data diversity, and they work on a small number of specific
benchmark tasks (Salimans et al.,|2016; [Heusel et al.,[2017). Diversity metrics for synthetic text use
only rudimentary tools and only measure similarity of phrases and vocabulary rather than semantic
meaning (Zhu et al.,[2018)). Our novel contributions can be summarized as follows:

e We design a framework (RND) for comparing diversity of datasets using random network
distillation. Our framework can be applied to any type of data, from images to text and
beyond. RND does not suffer from common problems that have plagued evaluation of
generative models, such as vulnerability to memorization, and it can even be used to evaluate
the diversity of natural data (not synthetic) since it does not require a reference dataset.

e We validate the effectiveness of our method in a controlled setting by synthetically ma-
nipulating the diversity of GAN-generated images. We use the same truncation strategy
employed by BigGAN to increase FID scores, and we confirm that this strategy indeed
decreases diversity. This observation calls into question the usefulness of such popular
metrics as FID scores for measuring diversity.

e We benchmark data, both synthetic and natural, using our random distillation method. In
addition to evaluating the most popular ImageNet-trained generative models and popular
language models, we evaluate GANSs in the data scarce regime, i.e. single-image GANSs,
which were previously difficult to evaluate. We also evaluate the diversity of natural data.
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2 DESIGNING A GOOD DIVERSITY METRIC

Formally defining “diversity” is a difficult problem; human perception is hard to understand and does
not match standard mathematical norms. Thus, we first define desiderata for a useful diversity metric,
and we explore the existing literature on evaluation of generative models.

2.1 WHAT DO WE WANT FROM A DIVERSITY METRIC?

Diversity should increase as the data distribution’s support includes more data. For example,
the distribution of images containing brown dogs should be considered less diverse than the distribu-
tion of images containing brown, black, or white dogs. While this property might seem to be a good
stand-alone definition of diversity, we have not yet specified what types of additional data should
increase diversity measurements.

Diversity should reflect signal rather than noise. If a metric is to agree with human perception of
diversity, it must not be highly sensitive to noise. Humans looking at static on their television screen
do not recognize that this noise is different than the last time they saw static on their screen, yet these
two static noises are likely far apart with respect to [, metrics. The need to measure semantic signal
rather than noise precludes using entropy-based measurements in image space without an effective
perceptual similarity metric. Similarly, diversity metrics for text that rely on counting unique tokens
may be sensitive to randomly exchanging words with their synonyms, or even random word swaps,
without increasing the diversity of semantic content.

Quality # diversity. While some GANs can consistently produce realistic images, we do not want to
assign their images a high diversity measurement if they produce very little variety. In contrast, other
GANs may produce a large variety of unrealistic images and should receive high diversity marks. The
quality and diversity of data are not the same, and we want a measurement that disentangles the two.

Metrics should be agnostic to training data. Recent developments in training GANs on limited
data, as well as the advent of single-image and few-shot GANs means that GANSs are increasingly
able to generate many distinct images from very few training images (sometimes just one) (Karras
et al.,2020; |Shaham et al.| 2019b; (Clouatre & Demers, [2019)). Thus, a good metric should be capable
of producing diversity scores for synthetic data that are higher than those of the training set. Likewise,
simply memorizing the training data should not allow a generative model to achieve a maximal
diversity score. Moreover, two companies may deploy face-generating models trained on two disjoint
proprietary datasets, and we should still be able to compare the diversity of faces generated by these
models without having training set access. An ideal diversity metric would allow one to collect data
and measure its diversity outside of the setting of generative models.

Diversity should be measureable on many kinds of data. Measurements based on hand-crafted
perceptual similarity metrics or high-performance neural networks trained carefully on large datasets
can only be used for the single type of data for which they are designed. We develop a diversity
concept that is adaptable to various domain, including both images and text.

2.2 EXISTING METRICS

We now review existing metrics for generative models to check if any already satisfy the above
criteria. We focus on the most popular metrics before briefly discussing additional examples.

Inception Score (IS) (Salimans et al.,[2016). The Inception Score is a popular metric that rewards
having high confidence class labels for each generated example, according to an ImageNet trained
InceptionV3 network, while also producing a diversity of softmax outputs across the overall set
of generated images (Deng et al., 2009} Szegedy et al., 2016). While this metric does encourage
generated data to be class-balanced and is not fooled by noise, IS suffers from several disqualifying
problems when considered as a measure of diversity. First, it does not significantly reward diversity
within classes; a generative model that memorizes one image from each class in ImageNet may
achieve a very strong score. Second, IS often fails when used on classes not in ImageNet and is not
adaptable to settings outside of natural image classification (Barratt & Sharmal, 2018). Finally, IS
does not disentangle diversity from quality. The Inception Score can provide a general evaluation of
GANS trained on ImageNet, but it has limited utility in other settings.
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Fréchet Inception Distance (FID) (Heusel et al., 2017). The FID score measures the Fréchet
distance between a Gaussian distribution fit to InceptionV3 features on generated data and a Gaussian
distribution fit to features on ground-truth data, for example natural images on which the generative
model was trained. Unlike IS, FID scores compare generated data to real data, and they do not
explicitly rely on ImageNet classes. Thus, FID more effectively discourages a generator from
memorizing one image per class. FID has successfully been able to match human perceptions of
diversity on a some large, benchmark tasks [Brock et al.|(2018)). However, FID assumes that the
training data is “sufficient” and does not reward producing more diversity than the training data. A
second problem with FID is that it relies on either (1) ImageNet models being useful for the problem
at hand or (2) the ability to acquire a reference dataset and train a high-performance model on the
problem. Like IS, FID does not disentangle diversity from quality and suffers from similar problems.

Several additional metrics have attempted to address these problems. For example, precision and
recall have been suggested to tease apart different aspects of a generative model’s performance
(Sajjadi et al., 2018 [Kynkiidnniemi et al. [2019). However, these metrics (as used to measure
diversity), along with other earlier metrics, like Parzen window estimates |[Breuleux et al.| (2010), all
aim to estimate the likelihood of real data under the generated distribution, and thus, require access
to a reference ground-truth dataset. This makes these metrics inflexible, and these metrics achieve
optimal values when a generator simply memorizes the reference dataset. Other examples of metrics
include the Modified Inception Score (m-IS) uses a cross-entropy term to resolve the fact that IS
rewards models for memorizing one image per ImageNet class (Gurumurthy et al., 2017). However,
m-IS is still beholden to the InceptionV3 label space and still prevents a user from discerning diversity
from quality. Boundary distortion is a method for detecting covariate shift in GAN distributions by
comparing how well classifiers trained on synthetic data perform on ground-truth data (Santurkar
et al.,|2018)). This measurement indicates similarity to the true data distribution rather than purely
measuring diversity, and it ignores the possibility of models generating even more diverse data
than the data on which they are trained. Additionally, this method assumes the user has a large
ground-truth dataset. Recently, classification accuracy score (CAS) was introduced to measure the
performance of generative models by training classifiers on synthetic data produced by the generative
models and evaluating the performance of the classifier (Ravuri & Vinyals| 2019). Similar to the
boundary distortion method, this measurement focuses its comparison on the likeness of the synthetic
data distribution to the ground-truth distribution and is dependent upon having access to labeled
ground-truth data.

In natural language processing, several metrics exist for evaluating text generation for dialogue,
conversational Al systems, and machine translation. |Papinenti et al.|(2002) introduced the now widely
used Bilingual Evaluation Understudy (BLEU) score as a metric for evaluating the quality of
machine translated text. BLEU uses a modified form of precision to compare a candidate translation
against multiple reference translations, where diversity ideally can be evaluated by including all
plausible translations as references when computing the score. However, this requires massive
annotation cost, and it remains difficult to capture all viable translations for a given sentence. |Li
et al.| (2015)) and |Xu et al.| (2018) propose counting the number of unique n-grams as a measure
for evaluating the diversity of text generation tasks in conversational models, however, this metric
does not account for the semantic meaning of different tokens and fails to capture paraphrases of
semantically similar text. Montahaei et al.| (2019) propose a joint metric for assessing both quality
and diversity for text generation systems by approximating the distance of the learned generative
model and the real data distribution. This metric couples both diversity and quality in a single metric.
Zhu et al.| (2018) introduce Self-BLEU to evaluate sentence variety. Self-BLEU measures BLEU
score for each generated sentence by considering other generations as references. By averaging these
BLEU scores, a metric called Self-BLEU is computed where lower values indicate more diversity.
However, Self-BLEU remains very sensitive to local syntax, and it fails to capture global consistency
and diverse semantic information in generated text.

Many other metrics exist for generative models which do not approach the problem of diversity. Our
work is not the first to recognize this gap in the literature (Borji, 2019).
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3  MEASURING DIVERSITY WITH RANDOM NETWORK DISTILLATION

3.1 RANDOM NETWORK DISTILLATION

Random Network Distillation (RND) was first introduced as an exploration bonus for RL agents
(Burda et al.,[2018)). The bonus is tied to how well an agent could predict the random features extracted
from its environment. This served as a useful proxy for how “novel" the agent’s environment was.
This bonus is designed to overcome a reward trap wherein RL agents gets “stuck" in an environment.
Agents could, for example, get stuck in front of an ever-changing static TV screen because the agent
is rewarded for seeing a “novel" environment - a new instance of random noise. With the RND bonus,
the predictor network quickly learns to predict the features of the static TV screen, and the agent is
not rewarded for remaining in the same environment.

3.2 OUR APPROACH

We propose a diversity measurement framework, the RND score, motivated by random network
distillation. In our method, after randomly splitting the data into train and validation sets, we train a
predictor network to predict the feature vectors output by a randomly initialized target network. This
target network is never trained. Then, the RND score is the average (normalized) generalization gap
at the end of training. Intuitively, when data is diverse, we expect training data to differ significantly
from validation data, while when data is not diverse, we expect training to be similar to validation
data. Thus, a predictor network trained on training data from a very diverse data distribution should
have a harder time predicting the output of the target network on validation data. The following
framework can be applied to any type of data by choosing a network architecture, size of training split,
and a training routine appropriate for the setting. In Appendix[A.4] we demonstrate that RND-based
comparisons between datasets are stable under these choices.

Given a dataset .9, a target network 7, and a predictor network P, both with architecture A4, let

MSE(T,P;8) = l—; ST (@) - P2 (1)

zes

We randomly initialize target and predictor networks, 7 and P, prior to training, and we randomly
split dataset S into train/validation splits, .S; and .S,,. After ¢ epochs of training the predictor network
on this mean squared error loss, let

_ MSE(T,P: Sy) — MSE(T, Py; St)

RND;(S) = . 2
(5) = ISE(T. P;; 80) + MSE(T, Pi: 50) @
Then, the RND score is given by
1 n
ND(S)=E| —— ND; , 3
RND(S) = |y 3 RN D) ®

where ny and n denote start and end epochs for measuring RN D;, respectively, and the expectation
is taken over random data splits and network initializations. We now discuss several design choices.

Why random networks? We leverage randomly initialized feature extractors since this keeps the
RND score independent of any auxiliary datasets. Large, pre-trained feature extractors, as seen in
the calculation of FID, are trained to extract useful features for classification problems on a fixed
data distribution. While these feature extractors are often able to extract salient features from other,
like distributions, the utility of pre-trained feature extractors diminishes on drastically different
distributions. Furthermore, we want to separate image fidelity from image diversity. Scores like FID,
which rely upon pre-trained feature extractors, are sensitive to changes in image quality (Ravuri &
Vinyals|, 2019). Random features are well-studied, both for kernel methods and neural networks
(Rahimi & Recht, [2008; Rudi & Rosasco, |[2017; | Yehudai & Shamir, 2019; Me1 & Montanari, 2019).

Why normalize the generalization gap? We normalize the generalization gap by the magnitudes
of its components in order to promote scale invariance. Otherwise, data whose entries have larger
magnitudes may receive a higher diversity score, despite having similar semantic content.

Consider the simple case where the target and trained predictor networks, 7 and P, are linear, and
consider a dataset split into Sy, S,,. Now, consider the datasets, 25; and 25,,, formed by multiplying
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each element of the original datasets by 2. Since both learning problems are convex, and the target and
predictor networks are of the same family, P = T and MSE(T,P;2S;) = MSE(T,P;S;) = 0.
However, the generalization gaps have the property that M SE(T,P;2S,) — MSE(T,P;25;) =
22[MSE(T,P;S,) — MSE(T,P; S¢)] since T (2x) — P(2x)=2(T (x) — P(z)). In other words,
the generalization gap increases substantially if we do not normalize.

How do we estimate the RND score? We estimate the expected value in eq. [3] by training the
predictor network with multiple data splits. On each run, we average RN D, at several epochs, ng
through n, to remove noise at no extra computational cost. Experiments concerning the stability of
this estimate can be found in Appendix[A.4] See Appendix[A.T| Algorithm|[I|for a sketch of the RND
score computation pipeline. The exact architecture and training procedure depends on the setting.
For example, we use a transformer architecture to evaluate text, and we use a ResNet architecture
to evaluate images (Vaswani et al., 2017 [He et al.,[2016). More details about training, and ablation
studies, can be found in appendices[A.3|and [A.4]

4 EXPERIMENTS

4.1 VALIDATING RND IN A CONTROLLED SETTING

In order to validate RND in a controlled setting, we synthetically manipulate the diversity of GAN-
generated images by truncating latent distributions. The “truncation trick" allows generative models,
such as BigGAN, to improve image quality at the cost of diversity (Brock et al.,[2018)). Intuitively,
the generator produces better looking (but less diverse) images given a latent vector coming from a
truncated distribution, since similar latent vectors were more likely to be sampled during training.
Thus, a good diversity metric should be able to measure the trade-off in diversity that occurs when
the latent truncation parameter is tuned. It is worth noting that unlike RND, FID scores do not always
rank images according to the extent of their latent truncation. Ravuri & Vinyals|(2019) show that
while FID scores do improve as the latent truncation parameter grows from a very small value, FID
scores eventually degrade as the truncation parameter increases. This behaviour may occur because
FID is also sensitive to image quality - a characteristic that makes it ill-suited to measure diversity.

We validate our diversity measurement by generating images from three different truncation parame-
ters in the range found on the TensorFlow Hub implementation of BigGAN. We see in Figure I] that
the RND scores perfectly rank-order every experiment in terms of the latent truncation parameter.
Additionally, we validate the RND score by verifying that it measures signal, rather than noise, in
Appendix [A-4] More details about the training setup and models are in Appendix [A.2] [A3] It is
worth noting that the increased diversity due to raising the truncation parameter in these experiments
matches human perception of diversity, as noted in |Brock et al.| (2018)).

. 0.02
0.0354 0.5
w10

0.030 1

0.025 1

RND Score
o
)
IS
S

0.015
0.010 1
0.005 I I
0.000 T T T T ™ T T T T T
0 100 200 300 400 500 600 700 800 900

Class Index

Figure 1: Left: RND scores (1) for BigGAN images generated from latent distributions with various
truncations. Right top: four images from the least diverse (most severely truncated) distribution
(0.02). Right middle: four images from the second least diverse distribution (0.5). Right bottom:
four images from the most diverse distribution (1.0). All images randomly selected from generated
data from the ImageNet class “Academic Gown" (index 400).

5
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Table 1: Baseline comparisons to other metrics. Left: intra-class FID ({) scores on the truncation
experiment detailed in Fig. m Right: Recall (k=5) (1) scores on the same truncation experiment.

Class idx 0.02 0.5 1.0 Class idx 0.02 0.5 1.0

0 66.6105 44.5934  29.6121 0 0.0 0.5288 0.6337
100 42.7727 20.1884  13.7058 100 0.3461 0.6206 0.6323
200 145.0549  58.5112  30.8629 200 0.0 0.6093  0.6259
300 59.4561 28.2421  14.2526 300 0.0209 0.6201 0.6337
400 134.0554  87.4824  40.7599 400 0.0517 0.6064 0.6196
500 70.3494 45.6860  29.2421 500 0.1909 0.5795 0.6254
600 232.9096  92.5253  64.2264 600 0.2182 0.5986 0.5991
700 236.5844  122.7225 68.5625 700 0.0 0.6235 0.6245
800 136.2272  83.9329  57.2190 800 0.0 0.5322  0.6318
900 78.18263  49.4285  33.6281 900 0.0 0.5927 0.6015

We include baseline comparisons to both intra-class FID, and the recall metric proposed in
(2019) in Table[T] We find that for these truncation experiments, the RND score matches
both the human perceived increase in diversity, and the diversity measured by well established metrics.

4.2 IMAGENET GANS

ImageNet (ILSVRC2012 dataset - [Russakovsky et al.| (2015)) is widely considered a difficult task
for generative models because of its size and diversity (Brock et al., [2018)). Fittingly, we benchmark
well-known generative models of varying recency on several ImageNet classes. In our comparison,
we include BigGAN (128 x 128), Self-Attention GAN (SAGAN), and AC-GAN (Brock et al,[2018};
[Zhang et al 2019} [Odena et all, 2017). We find that the newer generative models, BigGAN and
SAGAN, generally produce more diverse images than the older AC-GAN model. However, our
metric is able to detect a class where the SAGAN model collapses and produces homogeneous images
(see Figure ). Note that the training procedure in calculating RND scores varies from that of the
truncation experiments due to the differences in settings such as image size. More details on this
experiment can be found in appendix section[A.3]
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Figure 2: Left: RND scores (1) for different ImageNet 128 x 128 GANs. Right top: four images
from BigGAN. Right middle: four images from ACGAN. Right bottom: four images from SAGAN.
All images randomly selected from generated data from the ImageNet class “Tench" (index 0). The
RND score emphasizes the poor diversity in this class of SAGAN data.

4.3 IMAGENET CLASSES

Because our metric does not rely on comparing generated samples to ground-truth data, unlike FID,
we are able to compare the diversity of natural data across classes on ImageNet. We compare diversity
across the 10 ImageNet classes on which we measured the diversity of ImageNet generators. We
present these results in Figure [3] We find that there is a wide range of diversity among ImageNet
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classes. RND scores for the classes, along with randomly selected example images from the least and
most diverse classes are included in Figure [3]
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Figure 3: Left: RND scores (1) for ten different ImageNet classes. We observe a range of diversity
measurements and display images from the most and least diverse classes. Right top: four images
taken from the least diverse ImageNet class measured (“Tibetan terrier” - index 200). Right bottom:
four images taken from the most diverse class measured (“Hook/Claw” - index 600).

4.4  SINGLE-IMAGE GANS

Popular generative models often leverage large amounts of data during training to generate high
quality and diverse images. However, a growing body of work aims to generate images when
training data is scarce [Karras et al.| (2020). Recent work has demonstrated unconditional image
generation learned from a single image (Shaham et al] [2019a} [Hinz et al.} [2020). These models
leverage the idea that images can be decomposed into patches which can be re-configured to distribute
information to parts of a synthetic image where it did not exist in the single training sample. In this
domain, practitioners hope the generated data will be more diverse than the ground-truth data. FID
fails to accurately measure diversity in this setting because these methods do not seek to replicate
the distribution of data they were trained on. Additionally, in the data-scarce setting, underlying
distributions may be very different than the distribution of ImageNet data used to train the feature
extractor leveraged in FID. Since our metric does not depend on a ground-truth dataset, we avoid
these problems and are able to measure the diversity of images generated by few-shot generative
models.

We benchmark two recent methods in the data-scarce regime: SinGAN (Shaham et al 20194)
and ConSinGAN 2020). The authors of SinGAN propose Single-Image FID (SIFID)
to measure performance in this domain. SIFID calculates the Fréchet distance between Gaussian
distributions fit to early layer features (compared with last layer features of the extractor used by FID).
Thus, SIFID also suffers from the problem that simply reproducing the training image minimizes the
score. Furthermore, because only one image is used in the feature extraction, SIFID was later found
to exhibit very high variance across generated images and does not provide a valuable distinction

between “better" and “worse" images (Hinz et al.,[2020).

To benchmark these models, we generate a variety of images from randomly selected fixed training
images, and we compare the diversity measurements. Results of the experiments can be found in
Figure ] While ConSinGAN claims significant advantages in training time over SinGAN, we find
that in many cases, SinGAN actually produces more diverse data than ConSinGAN, confirming the

suspicions of (2020). More details can be found in Appendix [A.3]
4.5 CELEBA

In addition to measuring the diversity of a variety of generative models on ImageNet data, we
also benchmark several generative models, including a VAE, on unconditional (w.r.t face attributes)
CelebA 128 x 128 images. The CelebA dataset contains over 200K images of celebrities with different
facial attributes 2018). We measure the diversity of faces generated by RealnessGAN,
Adversarial Latent Autoencoder (ALAE), and Progressive Growing GAN (PGAN)
2020} [Pidhorskyi et al 2020} [Karras et al, 2017). Our results indicate that newer generative models,
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Figure 4: Left: RND scores (1) comparing single-image GANs. Right top: four randomly selected
images generated from a single ImageNet training image by SinGAN. Right bottom: four randomly
selected images generated from a single ImageNet training image by ConSinGAN. Images are from
the class “Tiger Beetle" (index 300).

like RealnessGAN, outperform the older PGAN model, which tends to produce faces in the same
pose and scale, on diversity of generated samples (see Figure[5).
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Figure 5: Left: RND scores (1) for different CelebA 128 x 128 generative models. Right top: four
images randomly taken from the most diverse data generated by RealnessGAN. Right middle: four
random images generated by PGAN. Right bottom: four random images generated by ALAE.

4.6 RND IN A NATURAL LANGUAGE PROCESSING SETTING

In addition to measuring the diversity of generative models for images, we also benchmark several
natural language processing models. We seek to answer the following questions empirically:

e How does RND measure diversity in a controlled setting where we manipulate the size of
the model vocabulary?

e How does RND rank diversity for naturally and synthetically generated text from models of
varying capacity?

To answer these questions, we conduct experiments on the WikiText dataset (Merity et al., 2016)).
The WikiText language modeling dataset is a collection of over 100 million tokens extracted from
the set of verified Good and Featured articles on Wikipedia. Following (2018), we use the
number of distinct tokens in the vocabulary as a surrogate for controlling diversity. We synthetically
manipulate the diversity of the text by truncating the size of the vocabulary. Similar to our experiments
infsubsection 4.1] this “truncation trick” allows us to improve the text quality at the cost of diversity.
We validate our diversity measurement by evaluating text from the WikiText dataset using five
different vocabulary sizes: 5k, 10k, 15k, 20k, 25k, where we keep track of the top-k tokens in the
text, and replace the least frequent tokens with an out-of-vocabulary (unknown) token.
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Additionally, we compare the natural text from WikiText to synthetic text from the OpenAl GPT-
1 (Radford et al., |2018)) and GPT-2 (Radford et al.,[2019) models (see Appendix @] for details).

We use a Tranformer model (Vaswani et al., [2017) implemented in Pytorch (Paszke et al.l [2019)
as the model architecture for the predictor and target networks. We use the CMU Book Summary
Dataset (Bamman & Smith} 2013) to generate input prompts for the GPT models.

- sK 10K 15K 20K — 25K — GPT-1 GPT-2 WikiText-2

Generalization Gap
Generalization Gap

Number of Epochs Number of Epochs

Figure 6: Left: Generalization gap for different vocabulary sizes. RND captures the correct ranking
of diversity with larger vocabulary sizes achieving higher scores than less diverse, smaller vocabulary
text. Right: Generalization gap for natural and synthetic text. RND scores the more diverse natural
text higher than the synthetic text, with the stronger GPT-2 scoring higher than GPT-1.

The results are presented in along with RND scores in Appendix We plot the
generalization gap versus the number of training epochs. The figure shows the results for the

controlled experiment where we vary the size of the vocabulary. Here, we see that RND captures the
correct ranking of diversity with larger vocabulary sizes achieving higher scores than less diverse text
with smaller vocabulary. Also included in the figure are diversity comparisons for the natural versus
synthetically generated text. We observe that RND captures the correct ranking of diversity with the
more diverse natural text scoring higher than the synthetic text and the more diverse generations from
the stronger GPT-2 model scoring higher than generations from the older GPT-1 model.

5 DISCUSSION AND BROADER IMPACT

We present the need for a diversity metric and introduce a novel framework for comparing diversity
based on a technique from reinforcement learning - Random Network Distillation. Our framework
avoids many of the pitfalls of existing metrics when it comes to measuring diversity. Furthermore, our
metric is flexible and dataset-agnostic, allowing us to measure diversity in several settings including
natural images and text, along with a setting for which current metrics are poorly suited: few-shot
image generation. We validate our method in a number of controlled scenarios and present results on
a wide variety of well-known generative models.

ETHICS STATEMENT

We do not currently foresee any negative applications for our work, and we think that more inves-
tigation into diversity metrics for data can aid the in the effort to ensure fair representation of data
coming from different communities in network training data, as is the effort of Holland et al.|(2018).

REPRODUCIBILITY

We include code in the supplementary material to calculate our RND metric, and we link to data used
in our experiments.
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A APPENDIX

A.1 ALGORITHM

Algorithm 1 Random Network Distillation Score

Require: Dataset S, training set size k, number of runs r, start and end RND score epochs, ng
and n, and network architecture A.
for j = 1tordo
Randomly initialize target network 7 and predictor network P.
Randomly split S into training set S; with & elements, and validation set .S,
for: =1tondo
Calculate RN D; as in eq. [2]
Update parameters of P to minimize eq.
Calculate RND' = Z?:n_no RN D;, the average RN D value for run j.
end for
end for _
Return: + Y7 | RN D’

A.2 GENERATOR DETAILS

ImageNet For validating our method on BigGAN truncation data, we generate im-
ages from a given class at resolution 256 X 256 using pretrained weighs from the
BigGAN TF Hub at a truncation value of 1.0 unless otherwise specified. (https:
//colab.research.google.com/github/tensorflow/hub/blob/master/
examples/colab/biggan_generation_with_tf_ hub.ipynb). For comparing Ima-
geNet generative models, we generate images at the 128 x 128 resolution since this is the resolution
at which a majority of the models we test produce images. We use pretrained SAGAN, and ACGAN
models taken from https://github.com/ilyakava/gan. The SAGAN baseline model
achieves an FID score of 16.39. The ACGAN baseline model achieve an FID score of 24.72.
For the BigGAN generated images, we again use pretrained weights from the BigGAN TF Hub.
Details about the FID scores of BigGAN can be found in Brock et al.|(2018)). For 128 x 128 GAN
comparisons, we use 100 training points as compared with 200 for the full resolution, BigGAN
benchmark

Single-Image GANs To test single-image GANSs, we fix randomly selected base image IDs for each
ImageNet class tested, and then generate 200 images from each base image. Then, we collect all the
generated images from multiple ground-truth images, and randomly shuffle these into a training and
validation set. All code taken from the respective github pages for Shaham et al.|(2019b); Hinz et al.
(2020). We perform runs with a training split of 100 images because of the relative lack of diversity
of single-image GANs compared with classical GANs trained on a large amount of data. Experiments
were averaged over 20 runs, on a ResNet18 with final 10 epochs averaged out of 40 training epochs.

CelebA We use pretrained models for each of the CelebA experiments. Pretrained models for
ALAE, RealnessGAN can be found on their respective github pages. We use the pretrained PGAN
model found on the pytorch GAN zoo github https://github.com/facebookresearch/
pytorch_GAN_zoo. ALAE requires a base image to generate data, so we randomly sample
(unconditionally) images from CelebA to generate samples from ALAE.

NLP: As described in Radford et al.| (2018)), the GPT-1 model consists of a 12-layer decoder
transformer with 12 attention heads and 3, 072-dimensional hidden states. GPT-2 (a successor to
GPT-1), was trained to predict the next word in 40GB of Internet text. GPT-2 is a larger transformer-
based language model trained on a dataset of 8 million web pages.

For the experiments in [Figure 6] we use word representations of size 400, feedforward layers with
inner dimensions 400, multi-head attention with 4 attention heads. The model is optimized with
Adam (Kingma & Bal |2014)) using a learning rate of 0.001. The learning rate was selected using a
grid search on an independent subset of the WikiText-2 dataset using a grid search with value ranging
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from 0.01 to le-7. We use 4 transformer encoder layers, and we use a simple linear decoder for
computing the scores over vocabulary tokens.

A.3 EXPERIMENT DETAILS
Unless otherwise stated, we run experiments with the following hyperparameter choices:

e Net: ResNet-18

e Learning rate: 0.01

Epochs to average score: 10
Epochs: 50

e Number of runs: 40

o Training number: 200

e Optimizer: SGD with momentum = 0.9

We perform ablation studies on these choices in appendix [A.4] It is worth noting that within a fixed
comparison like comparing ImageNet GANSs in Figure 2] diversity is can be compared, but comparing
diversity scores across experiments is difficult because of changes in the setting such as image size,
training/validation split, architecture. We show stability of these choices within a given experiment in
appendix [A.4] but the choices do affect comparisons across experimental settings.

Normalization: To improve comparability across different models, we normalize data to have
mean=0, std=1 for each channel before training the predictor network. We estimate the mean and std
of the distribution using the generated samples.

Measurement time: The measurement time varies depending on how much training data is used, and
how many runs the measurement is averaged over. For 20 runs on an ImageNet class at full resolution,
with the predictor net trained for 50 epochs, the RND score takes approximately 3.85 gpu-hours to
complete on a NVIDIA GV100.

Hardware: Experiments were run on a hetergeneous mixture of hardware consisting of NVIDIA
GV100 and NVIDIA RTX 2080 Ti gpus.

A.4 ADDITIONAL EXPERIMENTS

Does RND measure signal vs. noise? A good diversity measurement should be able to distinguish
between meaningful features in data, and random noise. As RND was able to distinguish these in the
setting of RL, we expect the RND diversity measurement to be able to distinguish these as well. To
test this, we generate a fixed set of 3-channel noise data (uniform between [0, 1]), and compare the
RND score to a randomly selected ImageNet class (see Figure[7).. We find natural images are far
more diverse than random noise. Averaged over 40 runs.

Epochs: The RND score is calculated by training a predictor net for n epochs, and averaging over
the last ng epochs. We perform ablation studies on the number of epochs the predictor net is trained
in Figure 8| We find that while the scale of the RND scores changes slightly, the ordering of the
diversity scores does not change.

Additionally, we test the effect of the choice of ny on the RND score in Figure[9] We find there is
leeway in this choice of hyperparameter as averaging over 10, 15, 20 epochs all produces the same
ordering in truncation diversity experiments.

Number of Runs: Each run in the calculation of RND corresponds to a new instance of randomly
initialized target and predictor networks. We test the effects of the number of runs used in calculating
the RND score, finding that the relative ordering of diversity for a given class is preserved (see Figure

10).

Confidence Intervals: For the truncation studies in Figure [I] we perform 50 runs resulting in
confidence intervals given in Tables[2] 3] The user may tune the number of runs as a hyperparameter
with the tradeoff between time and confidence interval width.
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Figure 7: Left: RND scores (1) for random noise, and natural images taken from a randomly selected
ImageNet class. Right top: four images taken from the ImageNet class measured ("Slot" - index
800). Right bottom: four images of random noise used to calculate RND score for random noise.
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Left: predictor net trained for 30 epochs. Right: predictor net trained for 40 epochs. While we see
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variation in the scores, the relative ordering is preserved across different networks.
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Figure 9: Ablation on epochs used to average in calculating RND score. Truncation experiments
repeated as in[T] Left: RND calculated with final 15 epochs. Right: RND calculated with final 20
epochs. The relative ordering is preserved across different networks.

Training/Val split: A hyperparameter choice we make when calculating the RND score is the number
of datapoints in the training set used for distillation. Heuristically, the amount of training data will
make a difference in the RND score in the limiting cases. Too few training data, and the generalization
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Figure 10: Ablation on runs used to calculate RND score. Truncation experiments repeated as in[I]
Left: 30 runs used in the calculation. Right: 40 runs used in the calculation. The relative ordering is
preserved across number of runs.

Table 2: RND (1) scores with confidence intervals for different truncation parameters.

Class idx 0.02 0.5 1.0

0 0.0025 £ 0.0011  0.0144 £ 0.0059  0.0293 £ 0.0053
100 0.0064 + 0.0015 0.0184 +0.0059 0.0268 £ 0.0056
200 0.0074 £ 0.0016  0.0246 £ 0.0063  0.0257 £ 0.0044
300 0.0045 £ 0.0008  0.0068 £ 0.0065 0.0136 + 0.0061
400 0.0032 £ 0.0011 0.0145 £0.0059 0.0231 £ 0.0073
500 0.0047 £ 0.0013  0.0187 £ 0.0074  0.0250 £ 0.0083
600 0.0049 £ 0.0017  0.0223 £ 0.0098  0.0271 £ 0.0097
700 0.0047 £ 0.0016  0.0205 £ 0.0081  0.0254 £ 0.0061
800 0.0016 £+ 0.0007 0.0173 £ 0.0036  0.0232 £+ 0.0072
900 0.0024 £ 0.0012  0.0295 £ 0.0083  0.0372 + 0.0120

gap will be large for any dataset, diverse or not. Too many training data, and the generalization gap
for diverse sets will be small provided the network accurately learns the features of the target network.
This is because the distribution will be “saturated" with training data, and the predictor network will
be able to perform well on unseen data. However, we find that the relative ordering of diversity is

stable for a wide band of training splits (see Figure[TT).

Network Architecture:

Table 3: RND (1) scores for different ImageNet classes.

Class idx RND score

0 0.0358 £+ 0.0135
100 0.0411 £0.0134
200 0.0263 £ 0.0072
300 0.0352 £ 0.0110
400 0.0431 £ 0.0124
500 0.0302 £ 0.0076
600 0.0445 £+ 0.0126
700 0.0367 £0.0114
800 0.0389 + 0.0088
900 0.0409 + 0.0106
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Figure 11: Ablation on training split. Truncation experiments repeated for selected indices as in[I]
Left: training data set to 100. Right: training data set to 500. While we see variation in the scale of
the scores, the relative ordering is preserved across different training splits.

We test the sensitivity of the RND score to a change in network architecture. Results of these
experiments are presented in Figure We find that there is change in the RND score across
architecture, but the relative ordering of datasets of known variation in diversity remains unchanged.
Changes in architecture may be necessary when dealing with more or less complex data, as well as
settings such as text. Because of this, we stress that RND is best viewed as an intra-setting diversity
measurement because of this.
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Figure 12: Ablation on network used to calculate RND score. Truncation experiments repeated for
selected indices as in[I} Left: Alexnet results (Krizhevsky et all 2012). Right: ResNet34 Results.
While we see variation in the scores, the relative ordering is preserved across different networks.

NLP RND Scores: The numerical RND scores for the experiments described in[Figure 6|are presented
in[Table 41

Table 4: RND Scores for NLP. Left: Validating RND on NLP with different vocabulary sizes. Right:
Comparing different generated texts to natural text.

Vocabulary Size | RND Score

Model | RND Score

5k 1.0537
10k 1.4256 GPT-1 1.5561
15k 1.5877 GPT-2 1.6439
20k 1.6446 WikiText-2 1.6947
25k 1.6860
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A.5 VISUALIATION
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Figure 13: Visualizing generalization gap during training. Left: Index 0. Right: Index 100
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Figure 14: Visualizing generalization gap during training. Left: Index 200. Right: Index 300
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Figure 15: Visualizing generalization gap during training. Left: Index 400. Right: Index 500
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