
Published as a conference paper at ICLR 2024

NETWORK MEMORY FOOTPRINT COMPRESSION
THROUGH JOINTLY LEARNABLE CODEBOOKS AND
MAPPINGS

Edouard Yvinec1,2, Arnaud Dapogny2, Kevin Bailly1,2
Sorbonne Université1, CNRS, ISIR, f-75005, 4 Place Jussieu 75005 Paris, France
Datakalab2, 114 boulevard Malesherbes, 75017 Paris, France
ey@datakalab.com

ABSTRACT

The massive interest in deep neural networks (DNNs) for both computer vision
and natural language processing has been sparked by the growth in computational
power. However, this led to an increase in the memory footprint, to a point where
it can be challenging to simply load a model on commodity devices such as mobile
phones. To address this limitation, quantization is a favored solution as it maps
high precision tensors to a low precision, memory efficient format. In terms of
memory footprint reduction, its most effective variants are based on codebooks.
These methods, however, suffer from two limitations. First, they either define a
single codebook for each tensor, or use a memory-expensive mapping to multiple
codebooks. Second, gradient descent optimization of the mapping favors jumps
toward extreme values, hence not defining a proximal search. In this work, we pro-
pose to address these two limitations. First, we initially group similarly distributed
neurons and leverage the re-ordered structure to either apply different scale factors
to the different groups, or map weights that fall in these groups to several code-
books, without any mapping overhead. Second, stemming from this initialization,
we propose a joint learning of the codebook and weight mappings that bears sim-
ilarities with recent gradient-based post-training quantization techniques. Third,
drawing estimation from straight-through estimation techniques, we introduce a
novel gradient update definition to enable a proximal search of the codebooks and
their mappings. The proposed jointly learnable codebooks and mappings (JLCM)
method allows a very efficient approximation of any DNN: as such, a Llama 7B
can be compressed down to 2Go and loaded on 5-year-old smartphones.

1 INTRODUCTION

Deep neural networks (DNNs) have reached a point of hegemony in most areas of machine learning.
This is most blatant in the context of computer vision Ren et al. (2015); Chen et al. (2017) and natural
language processing Devlin et al. (2018). In particular, the transformer architectures Vaswani et al.
(2017) have achieved the most impressive results in terms of performance and predictive relevance,
with large language models Zhang et al. (2022a) in the lead. However, these deep architectures
and their performance come at a price: their memory footprint. This cost has reached new heights
with some architectures requiring multiple modern, high-end, devices to simply load such models.
For example, to this day, the largest consumer grade graphics processing unit (GPU) has 24Go of
VRAM, which is not enough to load even the smallest member of the Llama LLM family Touvron
et al. (2023) using the default floating point (fp32) format (28Go). This computational cost growth
has been more and more hindering DNNs integration and deployment, especially on mobile devices.

In practice, this limitation is often addressed using weight quantization techniques. The latter con-
sists in mapping the original high-precision tensors to low-precision, memory efficient represen-
tations. The resulting quantized model requires a significantly lower memory footprint and often
leverages less costly individual operations. However, the quantization process itself may be costly,
as the best performing such solutions (namely QAT, short for Quantization-Aware Training Zhang
et al. (2022b)) usually involves full retraining, sometimes with larger batch sizes and number of

1

Published as a conference paper at ICLR 2024

0 3

0 2

2 0

3 1

1

2

0

-1.23

0.96

1

0.17

-0.09

Hard Indices Soft Index Codebook Index Gradient
Update

Standard Backpropagation

0 3

0 2

2 0

3 1

1

2

0

-1.23

0.96

1
0.17

-0.09

Hard Indices Soft Index Codebooks

JLCM (multiple codebooks)
Index Gradient

Update

-2.01

1.52

0.77

0.13

0 3

0 2

2 0

3 1

1

2

0

-1.23

0.96

1

0.17

-0.09

Hard Indices Soft Index Codebook

JLCM (multiple scales)

Index Gradient
Update

1.02

1.12

0.97

0.89

Scales

Figure 1: Left side: in the standard approach, each weight is represented by a soft index that points
to a value within a single codebook. Assuming that the loss for this weight suggests increasing
its value (highlighted in red), then the standard gradient update would be scaled by the codebook
values, thus skipping 0.17 and directly increasing the weight of 0.96 in the codebook. Center/right
side: a contrario, JLCM leverages multiple codebooks and/or scales and defines a novel gradient
update term to allow proximal search within the codebook values.

epochs. To circumvent this and scale to any DNN size, post-training quantization has been intro-
duced, with the most extreme scenario being the fully data-free setup, as described in Nagel et al.
(2019), however generally at a significant expanse in terms of accuracy of the quantized models.
Noteworthy, beyond this fully data-free setting, the performance of quantization techniques can be
greatly overhauled by considering very small calibration sets, as in the work of Nagel et al. (2020).

The primary aim of the aforementioned quantization techniques is to reduce the latency of the net-
work by performing arithmetic in lower precision formats. This may however introduce unnecessary
constraints if the goal is to rather limit the memory footprint. In order to do this, the most effective
methods in terms of compression rates consists in storing in a codebook a restricted set of values,
onto which each weight shall be mapped using a more compact code. Nevertheless, these methods
suffer from two major drawbacks , as illustrated on Figure 1 . First, the granularity problem: these
approaches use a single codebook for each tensor in order to avoid a more costly, conditional map-
ping: intuitively, if multiple codebooks were to be used, one would need to store both the codebook
and value indexes for each weight (vs. only the value index in a single codebook), which would
dramatically increase the memory footprint. Second, we argue that the optimization of the mapping
itself is not well-defined. Formally, for a given scalar weight value, a gradient-based optimization
would favor jumps towards extreme values rather than closer values in the target codebook. This
would be in opposition with the desired proximal behavior of gradient descent optimization. As a re-
sult, codebooks and mappings cannot be learned in a joint manner using gradient-based algorithms,
limiting their efficiency.

In this work, we propose to tackle these two limitations, as pinpointed on Figure 1 . First, we pro-
pose to group similar neurons as defined by their weight distribution. We can then apply different
scaling factors to homogeneous weight values or, alternatively, we can assign multiple codebooks
to the reordered weight matrix without additional memory overhead (as, in this case, the indexation
to different codebooks depends implicitly on the weight index). This provides a finer grained ini-
tialization. Second, stemming from that initialization, we propose to jointly optimize the codebooks
and mappings in a setup similar to what is done in gradient-based post training quantization. Third,
drawing inspiration from straight-through estimation in DNN quantization, we propose to rewrite
the gradient update for the codebook mappings, favoring proximal values in the codebooks. The
proposed jointly learnable codebooks and mappings (JLCM) method can be summarized in:

• a neuron re-ordering based on weight distribution similarities. This can be leveraged to ap-
ply different scale factors on homogeneous weight groups, or map these groups to multiple
codebooks without any memory overhead over the mappings.

• a joint learning of the codebooks and mappings that bears similarities with gradient-based
post-training quantization techniques.

• a new gradient update definition for the codebook assignment, which favors proximal val-
ues over extreme values.

The proposed JLCM method achieves almost ternary compression of all the layers of large trans-
formers with less than one percent performance degradation. Such compression rates are of par-
ticular interest for large language models deployment at scale. For instance, JLCM enables us to

2

Published as a conference paper at ICLR 2024

preserve the 95% of the performance of a Llama 7B model on a 2Go device such as the iPhone 8 or
a Samsung Galaxy A10.

2 RELATED WORK

In this section, we delve into the current state-of-the-art in the related DNN quantization techniques,
as well as the recent gradient-based post-training quantization techniques. We also review existing
codebook-based methods for DNN memory footprint compression.

2.1 QUANTIZATION

In post training quantization, the data-free setup was first introduced in Nagel et al. (2019). In this
work, the core challenge at hand was to identify quantization ranges for both weights and activations
without having access to any data. To do this, the authors proposed to use statistics stored during
training by the batch-normalization layers. With respect to the weight tensors, the proposed method
leveraged baseline uniform operators Krishnamoorthi (2018) between floating points and integers.
Since this work, many iterations Zhao et al. (2019); Cong et al. (2022) have been proposed, focusing
on improving the weights encoding. However, all the aforementioned methods struggle to retain a
good accuracy when weights are quantized using 4 or fewer bits, even on models that are nowadays
deemed less challenging to quantize such as ResNet 50 He et al. (2016). This shortcoming is often
addressed with non-uniform quantization. For instance, Li et al. (2019) propose to use the logarithm
function to map weight values to an integer exponent: this changes the nature of the arithmetic used
by the quantized networks, with multiplications becoming bit shifts. Yvinec et al. (2023c) argue that
such change is hard to leverage on existing hardware in practice, and propose a power quantization
method that preserve the nature of these operations. However, this method also requires custom
implementation to provide latency boosts on existing hardware. Furthermore, on LLMs, fully data-
free power quantization does not enable quantization below the 4 bits mark, even combined with
group-wise quantization techniques.

2.2 GRADIENT-BASED POST-TRAINING QUANTIZATION

In order to circumvent this limitation while maintaining the scalability of data-free quantization,
Nagel et al. (2020) introduced AdaRound, the first gradient-based post-training quantization (GPTQ)
technique. This method and its iterations Li et al. (2021); Wei et al. (2022); Liu et al. (2023); Yvinec
et al. (2023b)consist in optimizing the quantized weights over a small calibration set excerpted from
the original training data. AdaRound optimizes each layer individually and sequentially in a self-
distillation Hinton et al. (2014) fashion, where the quantized model learns to imitate its original
counterpart. This optimization framework has inspired other compression domains, such as pruning
Kwon et al. (2022). However, the primary goal of these methods is to reduce the latency of the
quantized models: however, if the purpose is to reduce the memory footprint of the models, GPTQ
methods struggle to scale to very large networks, e.g. LLMs. In terms of raw memory footprint
compression, the most effective methods are the more dedicated codebook-based methods.

2.3 CODEBOOK-BASED APPROACHES FOR MEMORY FOOTPRINT REDUCTION

Codebook-based methods Chen et al. (2015); Han et al. (2015); Eban et al. (2020); Jeon et al.
(2020); Javaheripi et al. (2022); Yvinec et al. (2021) consist in mapping a continuous set of weight
values to a finite set, and each weight is represented on fewer bits by an index referring to one of
the codebook values. Among these methods, most focus on effective implementations Chen et al.
(2015); Jeon et al. (2020); Javaheripi et al. (2022) and use naive approaches with respect to the
mapping step itself. On the flip side, other techniques propose to learn the codebook values Han
et al. (2015); Eban et al. (2020). Ultimately, some of these techniques Eban et al. (2020); Yvinec
et al. (2021) are only introduced as a stepping stone for further compression through pruning. All
these methods bear a number of limitations that render them ineffective for compression in large
networks such as LLMs: first, these methods generally work at a coarse granularity level that does
not allow much expressively. Second, to the best of our knowledge, there is no method that jointly
learns the codebook and weight mappings in an end-to-end manner, which, we argue, is critical to

3

Published as a conference paper at ICLR 2024

Table 1: Relative footprint of the weights
MW and activations MA (in %) and total
memory footprint Mref (in MB) of several
deep neural network architectures.

model MW MA Mref
ResNet 18 94.47 5.53 87.11
MobNet v2 95.70 4.30 121.48
EffNet B0 95.99 4.01 129.64
ViT b16 99.02 0.98 433.77

Table 2: Comparison between the latency (in ms)
of models fully loaded on a CPU (i7 13th gen),
GPU (A100) v.s. loaded on the fly from the disk
of several deep neural network architectures.

model CPU GPU disk
ResNet 18 9.32 1.99 18.45
MobNet v2 9.29 3.51 22.12
EffNet B0 12.28 5.40 31.22
ViT b16 65.90 3.98 114.75

Llama 7B 704.28 53.22 23982.74

enable more efficient memory compression of DNNs, particularly for LLMs. In what follows, we
present the proposed JLCM method, which addresses all of these shortcomings.

3 METHODOLOGY

Let F denote a trained neural network comprising L parametric layers with weight tensors
(Wl)l2{1,...,L}. Empirical evidence (see Table 7 from appendix A) shows that near identical per-
formance can be achieved using the floating point 16 (fp16) format as compared to the default
floating point 32 (fp32). Consequently, we note Mref the reference memory footprint (in Megabits)
of a forward pass of F using fp16. Our goal is to reduce the memory footprint M of the final model
F̃ as much as possible. We note ↵ = Mref

M the compression goal. For instance, a per-tensor quan-
tization in 4 bits (W4) would result in ↵ ⇡ 4. More precisely, we would get ↵ < 4 as each scalar
value is indeed stored using 4 times less memory, but an overhead occurs from the presence of extra
scaling parameters. In what follows, we will design JLCM such that its only hyperparameter will be
↵. Furthermore, as we focus on memory footprint during runtime, we need to evaluate the cost of
each component of a deep neural network during inference.

3.1 MOTIVATION: DEEP NEURAL NETWORKS MEMORY FOOTPRINT

At train time, intermediate activations computed during the forward pass need to be stored for gra-
dient backpropagation during the backward pass. Conversely, at inference time, these activations
can be discarded as the subsequent layers are evaluated. Consequently, the memory footprint M of
a model at inference can be defined as the footprint of the weights MW and the maximum footprint
of intermediate features MA to store simultaneously. The second term MA is not simply defined
by the largest intermediate feature, due to the presence of skip connections in modern architectures.
Nonetheless, it can be empirically computed fairly simply for any given architecture. In Table 1, we
provide the contributions of the weights and activations to the memory footprint for several models.
We observe that the weight systematically represent at least 94% of the memory footprint. For in-
stance, the compression of the weight values by a factor ↵ ⇡ 7.2 of Llama 7B enables its loading
on a 2017 mobile device. We argue that these results motivate the focus on weight compression for
memory efficient neural networks.

In Table 2, we show the latency cost of moving tensors from different memory caches. For instance,
moving the weights from disk to RAM leads to a 38.51⇥ and 450.63⇥ overhead for ViT b16 and
Llama 7b, respectively. Overall, these results emphasize the importance of memory-efficient weight
encoding for efficient inference. Consequently, the proposed JLCM method will enable significant
inference benefits by unlocking model caching. In practice, the compression objective ↵ is given
by the size Mref of the trained neural network to run and the target hardware capacities Mcapa:
↵ > Mref

Mcapa
. A mobile device with 2Go RAM requires a Llama 7B to be compressed by ↵ ⇡ 7.2⇥ in

terms of memory footprint simply to fit on the device properly.

In what follows, we assume a given weight tensor W 2 Rno⇥ni (i.e. one of the aforementioned
Wl) with no output neurons. Codebook-based memory compression methods suffer from two main
shortcomings, namely the granularity problem and the difficulty to jointly learn the codebooks and
mappings due to gradient instability.

4

Published as a conference paper at ICLR 2024

3.2 SOLVING THE GRANULARITY PROBLEM WITH EFFICIENT MULTI-CODEBOOK
FORMULATION

The first shortcoming of clustering techniques is that they usually assume a single distribution for
all weights of the whole tensor. Formally, for a given clustering technique C (e.g. k-means Lloyd
(1982)) we transform the weight tensor W into a pair (C, I) of cluster centers C and mapping
indices I such that Wi,j = hC; Ii,ji. In other words, the clustering method C is applied over W ,
viewed as a no ⇥ ni samples of size 1. The resulting memory footprint is defined as ⌦(C) ⇥ 16 +
log(⌦(C))⌦(W) as compared to the original 16⇥⌦(W) footprint (assuming a 16-bit representation
of the codewords), with ⌦(A) indicating the number of elements in a tensor A. As a result, the larger
the codebook C, the higher the memory cost.

Per-channel scaling factors: in order to operate at a finer granularity, we propose to draw in-
spiration from quantization through the use of scaling factors. Formally, instead of using a larger,
common codebook, a first approach consists in sharing a smaller codebook across the weight tensor
W with specific per-channel scaling factors. For instance, for a per-channel granularity (one scaling
factor for each row of the weight matrix), the scaling factor s reads:

Wi = shC; Iii. (1)
This solution leads to a better control over the memory footprint MW = (⌦(C) + ⌦(s)) ⇥ 16 +
log(⌦(C))⌦(W) as we can use smaller codebooks. Intuitively, the memory reduction comes from
the fact that the dominant term is log(⌦(C))⌦(W). However, this approach still assumes that the
different neurons of a layer share similar distributions up to a scaling term.

Weight matrix reordering: in order to alleviate the aforementioned shortcoming, we propose to
use distinct codebooks Ck rather than scaling factors. In practice, in a naı̈ve approach, the mapping I
would need to encode both a codebook index (indicating to which codebook this weight shall point
to) and value (the associated value in this specific codebook). Such formulation would increase
the dominant term the cost log(⌦(C))⌦(W) in MW which, in practice, is the dominant term, as
log(⌦(C)) 4 and ⌦(W) = ni ⇥ no � 10000 . To circumvent this limitation, we propose to
systematically assign a codebook to a specific region of the weight tensor. This enables the mapping
term I to only encode the codebook value, as the codebook index can be derived from the row index
of the considered weight. The resulting compressed weight values are defined as

Wi,j = hCb i⇥k
no

c; Ii,ji. (2)

In practice, the number of codebooks and the number of scaling factors are directly derived from ↵
(the compression goal) as follows:

multi-scaling: ⌦(s) =
(16� ↵ log(⌦(C)))⇥ ⌦(W)

16⇥ ↵

multi-codebooks: k =
(16� ↵ log(⌦(C)))⇥ ⌦(W)

16⇥ ↵ ⇥ ⌦(C)

(3)

In order to set the codebook size ⌦(C), we propose to simply use 2b
16
↵ c. As a result, the proposed

coding can leverage the different distributions from different parts of the weight tensor (depending
on the granularity), assuming that two closely related neurons (as defined by their row indexes)
will have similar weight distributions. This is however not the case in practice, e.g. two neurons
far from each other in the weight matrix can be similarly distributed. In order to leverage these
similarities, we propose to re-order the neurons beforehand: formally, in the absence of a subsequent
skip-connection, we can re-order the output neurons of a layer by re-ordering the input columns of
the subsequent layer, as in Chen et al. (2021); Liang et al. (2018); Pool & Yu (2021) . The re-
ordering (�i)i is given by a C clustering of the neurons, defined by their corresponding weight
values. Formally, we apply C to W viewed as no samples of size ni. The given clusters are ordered
such that neurons clustered together are contiguous in memory. We update equation 2, and get the
final compressed weight values

Wi = hCj
�i⇥k
no

k; Iii. (4)

As a result, the initialization procedure reads as follows: first, we cluster the neurons and re-order
them, second cluster the scalar weight values based on the hyperparameter ↵ into several code-
books or scalings. These steps are summarized in Algorithm 1 at lines 2 to 4. Stemming from this
initialization, we propose to optimize both the codebooks and mappings through gradient descent.

5

Published as a conference paper at ICLR 2024

3.3 JOINTLY LEARNING CODEBOOK AND MAPPINGS THROUGH GRADIENT DESCENT

In order to jointly optimize the codebook values and mappings, we adapt the sequential, layer per
layer optimization introduced in Nagel et al. (2020). For a given layer, we learn the two parameters
C and I such that they minimize the similarity loss

���f̃(X̃)� f(X)
���
2

2
=

����((C ⇥ softmax(I))X̃)� �(WX)
���
2

2
. (5)

In this formulation, for each weight in W , softmax(I) denote a soft assignment to one of the code-
book values. In order to fight overfitting (which, given the small size of the calibration set, is a
major problem in GPTQ methods Hubara et al. (2021)) while driving this mapping to a hard assign-
ment, we propose two regularization terms: the first one, L1(C, I) = kC ⇥ softmax(I)�Wk22.
Intuitively, L1 encourages the final weight tensor to be similar to the original weight values. This
is a different solution to achieve a similar behavior as in AdaRound where the optimized value is
bounded by the quantized space step-size. The second one, specifically enforcing hard assignment,
is defined as L2(I) = 1� |2⇥ softmax(I)� 1|� . The resulting total objective L reads

L(C, I) =
���f̃(X̃)� Y

���
2

2
+ L1(C, I) + �L2(I) (6)

In order to keep the solution simple, we only use a single hyperparameter � to control the mapping
sharpness. Such approach is standard in post-training optimizations Nagel et al. (2020); Li et al.
(2021); Wei et al. (2022); Liu et al. (2023) and we use the same scheduler as proposed in the work
of Nagel et al. (2020). Note however that, practically speaking, in this state, the optimization fails.
In what follows, we delve into shortcomings of the gradient computation and propose an effective
solution for joint learning the codebooks and mappings.

3.4 ENABLING PROXIMAL SEARCH USING AN ALTERNATIVE GRADIENT TERM

During the backward pass, we compute the gradient updates, as
8
><

>:

@kf̃(X̃)�f(X)k2

2
@C =

@kf̃(X̃)�f(X)k2

2

@(C⇥softmax(I))X̃
⇥ softmax(I)X̃

@kf̃(X̃)�f(X)k2

2
@I =

@kf̃(X̃)�f(X)k2

2

@(C⇥softmax(I))X̃
⇥ X̃C @softmax(I)

@I

(7)

The first gradient update in equation 7 is well suited for optimization. Intuitively, It corresponds
to the grouping of the standard weight update through stochastic gradient descent filtered by the
soft mapping softmax(I). However, on the flip side, we can see that the gradient update term in
the second row of equation 7 is not adapted to the task. As I is learned, the goal is to assign a
new index in the codebook C to a specific weight value. In other words, a large magnitude of the

gradient
@kf̃(X̃)�Y k2

2

@(C⇥softmax(I))X̃
⇥ X̃ implies that a change may be required. However, in the standard

chain rule, this term is multiplied by the values of the codebook C, which leads to an update that is
proportional to the codebook. This favors larger values in the codebook, regardless of the current
indexing. For example, if we have an initial value of 0.12 for a weight and a ternary codebook
C = (�1.23 �0.09 0.17 0.96), with the corresponding mapping I = (0 1 0 0). Then,
for a negative gradient, it is likely that the indexing should shift from the second and to the third
value. In practice, the chain rule would favor the update of the index corresponding to the value
0.96 (illustrated in Figure 1) . This is due to the fact that the gradient update term is an increasing
function of the distance between two codebook values Cj � Cj0 . To allow for a proximal behavior,
we argue that we should instead use a decreasing function of this quantity.

We draw inspiration from straight-through estimation (STE), a method that was originally proposed
for DNN quantization. In this context, STE consists in redefining a custom gradient update to
sidestep the zero gradients of the rounding function. In this vein, ideally, we would want the gradient
update to consider the proximity of the codewords. Consider the following function D:

Di,j =
sign(Cargmax(Ii) � Cj)

1 + |Cargmax(Ii) � Cj |
� (I⌦(C))argmax(Ii),j

, (8)

6

Published as a conference paper at ICLR 2024

where I|C| is the identity matrix, with the size of the codebook C and the convention that sign(0) =
1, with index i for the weight value and j for the codebook value, respectively. With that convention,
we get the following custom gradient updates

8
><

>:

@kf̃(X̃)�Y k2

2
@C =

@kf̃(X̃)�Y k2

2

@(C⇥softmax(I))X̃
⇥ softmax(I)X̃

@kf̃(X̃)�Y k2

2
@I =

@kf̃(X̃)�Y k2

2

@(C⇥softmax(I))X̃
⇥DX̃

(9)

This gradient update redefinition allows for a proximal update of the codebook values, which, in
turn, enables the joint learning of the codebooks and mappings (JLCM) by optimizing Equation
equation 6. The proposed approach is summarized in Algorithm 1 (in Appendix B). In the following
section, we provide an empirical validation of this method, as well as a comparison with existing
baselines.

4 EXPERIMENTS

In order to evaluate the proposed JLCM method, we considered both computer vision and natural
language processing tasks and models. All details are available in Appendix C. First, we compare
multiple methods (clustering method, multiple scaling factors or codebooks) for the initialization,
as detailed in Section 3.2. Second, we evaluate each component of the proposed JLCM method
through an ablation study. Third, we compare the proposed method to the current state-of-the-art
DNN memory compression techniques.

4.1 INITIALIZATION

Table 3: Evaluation of the clustering initialization method for the codebooks with a compression
goal of ↵ = 3.9 and codebooks of size 16.

Res18 ViT b16 Eff B0 Mob V2 Res18 ViT b16 Eff B0 Mob V2
Multi-Scales Multi-Codebooks

random 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
K-means 64.641 80.572 50.174 9.277 62.536 80.622 46.165 20.222

B. K-means 28.297 78.879 42.582 0.220 4.005 75.272 40.545 0.630
Graph 38.328 72.903 7.965 0.098 0.100 0.144 0.100 0.112

Hierarchical 64.937 80.624 51.773 8.599 64.277 80.670 44.334 22.961

The proposed initialization has three hyperparameters: the compression goal ↵, the clustering tech-
nique C and the choice of using multiple scales or multiple codebooks. The de facto standard
centroid-based method C is the K-means clustering Lloyd (1982) and its iterations, such as bisecting
k-means Wang et al. (1998). We also considered graph-based clustering Shi & Malik (2000) and
hierarchical clustering Müllner (2011). In Table 3, we report our results on ImageNet models. Our
observations are two-fold. First, the clustering method plays a crucial role, as random clustering
leads to near zero accuracy for all the tested networks. Second, the hierarchical and k-means clus-
tering achieve the highest performance, which can be explained by the fact that, for scalar clustering,
they tend to behave similarly. Still, it appears the hierarchical clustering leads to a slightly higher
performance over the tested configurations. Consequently, we will use this initialization scheme
for the upcoming experiments. Furthermore, it appears that the proposed multi-scaling approach
performs best on convolutional layers. On the flip side, the multi-hashlists variants are more effec-
tive on fully-connected layers. Intuitively, we suggest that relative scales are more important for
convolutional 2D kernels while scalar values nuance is more important for fully-connected layers.
Consequently, for the remainder of the article, JLCM will use multi-scalings for CNNs architectures
and multi-hashlists for transformers.

4.2 ABLATION STUDY

In Table 4, we evaluate the influence of each component of the optimization phase in JLCM. More
specifically, learn C means that we only update the codebook during optimization by applying the

7

Published as a conference paper at ICLR 2024

Table 4: Ablation of the optimization components of JLCM for a compression rate ↵ = 7.5.

learn C learn C & I Proximal search acc for ResNet 18 acc for ViT
7 7 7 20.555 60.691
3 7 7 22.149 63.912
3 3 7 20.343 57.800
3 3 3 41.779 69.996

Table 5: Comparison to state-of-the-art compression techniques on ImageNet.

architecture method Compression rate (↵) optimization integer acc

Resnet 18

DFQ 5.33 (W3/A16) 7 3 0.442
SQuant 5.33 (W3/A16) 7 3 19.532

PowerQuant 5.33 (W3/A16) 7 3 3.909
RED++ 5.33 7 7 14.124

JLCM (init) 5.33 7 7 41.133
JLCM (init) 7.5 7 7 20.555
AdaRound 5.33 (W3/A16) 3 3 19.634

BrecQ 5.33 (W3/A16) 3 3 52.943
NUPES 5.33 (W3/A16) 3 7 53.000
JLCM 5.33 3 7 62.939
JLCM 7.5 3 7 41.779

ViT b16

DFQ 5.33 (W3/A16) 7 3 11.678
SQuant 5.33 (W3/A16) 7 3 13.804

PowerQuant 5.33 (W3/A16) 7 3 75.330
RED++ 5.33 7 7 75.743

JLCM (init) 5.33 7 7 76.316
JLCM (init) 7.5 7 7 60.691
AdaRound 5.33 (W3/A16) 3 3 61.154

BrecQ 5.33 (W3/A16) 3 3 73.123
NUPES 5.33 (W3/A16) 3 7 77.231
JLCM 5.33 3 7 80.558
JLCM 7.5 3 7 69.996

first row update in Equation equation 7. This leads to a steady performance improvement. Fur-
thermore, jointly optimizing the codebook and mappings (learn C & I) by applying the whole
equation 7 leads to a decrease in performance: this is due to the limitations of the naive gradient
update pinpointed in Section 3.4. Nevertheless, joint learning can be managed by using the pro-
posed alternative gradient update term (Proximal search, equation 8), which dramatically enhances
the accuracy of the compressed networks in both configurations. In what follows, we show that this
framework allows to significantly outperform existing methods for memory compression of DNNs.

4.3 COMPARISON TO STATE-OF-THE-ART METHODS

In Table 5, we report a comparison of JLCM to state-of-the-art post-training compression techniques
on ImageNet. We distinguished convolutional neural networks (ResNet 18) and vision transformers
(ViT) as well as the data usage (data-free (white) v.s. data-driven (light gray) methods) and report
results at two different compression goals, 5.33 (float 16 ! int3) and 7.5 (float 16 ! ⇡ int2). On
CNNs, it appears that the data-free JLCM initialization already vastly outperforms other data-free
methods Nagel et al. (2019); Cong et al. (2022); Yvinec et al. (2022; 2023c) as well as AdaRound
Nagel et al. (2020) at an equal compression goal. This result is maintained in the data-driven con-
text, where JLCM improves the previous state-of-the-art by 9.939 points. On ViT b16, PowerQuant
and RED++ already achieve strong results: consequently, improving over these results is more chal-

8

Published as a conference paper at ICLR 2024

Table 6: Evaluation on Generative AI models.

(a) CLIP Score of a stable diffusion model (origi-
nal score: 28.5353) 2.0 on DiffusionDB.

method compression ↵ acc
DFQ 3.9 (W4/A16) 25.369

SQuant 3.9 (W4/A16) 26.237
PQuant 3.9 (W4/A16) 27.510
RED++ 3.9 27.498

JLCM (init) 3.9 28.471

(b) Average common sense reasoning performance of a
Llama 7B (original score: 56.140).

method compression ↵ acc
SQuant 5.33 (W3/A16) 32.725

LLM.int8() 2.14 (W8/A8) 55.208
PQuant 5.33 (W3/A16) 33.466
RED++ 5.33 36.430
OPTQ 5.33 (W3/A16) 49.938
AWQ 5.8 47.678

SqueezeLLM 5.8 48.169
JLCM (init) 3.9 56.153
JLCM (init) 5.33 45.314

JLCM 5.33 55.940
JLCM 7.0 53.081

JLCM (+ REx) 6.95 56.002

lenging. Still, JLCM manages to reach over 99% of the original model accuracy in its data-driven
variant. This corresponds to a 3.327 points improvement over Yvinec et al. (2023b).

In Table 6a and 6b, we report our results on larger, more recent generative models. Our results show
that JLCM offers a significant improvement in the data-free set-up. For instance, on the Stable Dif-
fusion model, JLCM preserves 99.8% of the original performance, which is 3.4% higher than the
previous state-of-the-art method (RED++). Similarly, on Llama 7B, we observe an 8.884% improve-
ment. This can be attributed to the finer-grained weight compression, which enables JLCM to better
address the challenge of outlying values encoding, as discussed by Dettmers et al. (2022). In the
data-driven setup, JLCM further increase the gap with previous techniques, which struggle to scale
to large models. Furthermore, on Llama, JLCM reaches a 3.143% higher average score on common
sense reasoning tasks as compared to OPTQ Frantar et al. (2022) with a 31.33% higher compres-
sion rate. In addition, as compared to SqueezeLLM Kim et al. (2023), JLCM not only achieves
higher fidelity but at higher compression rates which can be attributed to our more effective usage
of codebooks and proximal learning. On top of this, when JLCM is combined with outlier specific
compression from REX Yvinec et al. (2023a) (also used by SQueezeLLM), we reach the original
performance at similar compression rate, which is a major improvement over existing methods. Last
but not least, we also provide qualitative results on diffusion models to complete this score-based
evaluation (see Appendix D).

5 CONCLUSION

In this work, we pinpointed two major drawbacks of existing DNN memory compression techniques:
the granularity (i.e. the ability to use multiple codebooks per tensor with no mapping overhead) as
well as the difficulty to optimize the mapping through stochastic gradient descent, as the process fa-
vors extreme codebook values over proximal ones. To circumvent these limitations, we introduced
a novel efficient codebook mapping which leverages tensor structure. To do so, we proposed to
re-order neurons in order to group them by distribution similarity. We then proposed to either ap-
ply different scaling factors (which, experimentally, works best for convolutional layers), or encode
each group using a separate codebook (which is more efficient for dense layers, e.g. in transform-
ers), removing the need for codebook indexing that causes memory overhead on the value mapping.
We then propose a joint learning of the codebooks and weight mappings (JLCM) method that draws
inspiration from gradient-based post-training quantization techniques. Last but not least, we pro-
pose an alternative gradient update rule that allows a proximal search within codebook values. The
proposed method significantly outperforms other approaches for memory-efficient inference of deep
neural networks. As an example, JLCM compresses a Llama-7B model to fit on a 2Go device while
retaining 95% of its original performance, which represents a massive improvement over previous
state-of-the-art, and an important stepping stone for the deployment of ever-growing deep neural
networks.

9

Published as a conference paper at ICLR 2024

REFERENCES

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In AAAI, volume 34, pp. 7432–7439, 2020.

Liang-Chieh Chen et al. Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. TPAMI, pp. 834–848, 2017.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. Advances in Neural Information Processing Systems, 34:19637–19651, 2021.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In International conference on machine learning, pp.
2285–2294. PMLR, 2015.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint

arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Guo Cong et al. Squant: On-the-fly data-free quantization via diagonal hessian approximation.
ICLR, 2022.

J. Deng, W. Dong, et al. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

Elad Eban, Yair Movshovitz-Attias, Hao Wu, Mark Sandler, Andrew Poon, Yerlan Idelbayev, and
Miguel A Carreira-Perpinán. Structured multi-hashing for model compression. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11903–11912, 2020.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning

Representations, 2022.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Kaiming He, Xiangyu Zhang, et al. Deep residual learning for image recognition. In CVPR, pp.
770–778, 2016.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
NeurIPS, 2014.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In International Conference on Machine Learning, pp.
4466–4475. PMLR, 2021.

Mojan Javaheripi, Jung-Woo Chang, and Farinaz Koushanfar. Acchashtag: Accelerated hashing
for detecting fault-injection attacks on embedded neural networks. ACM Journal on Emerging

Technologies in Computing Systems, 19(1):1–20, 2022.

10

Published as a conference paper at ICLR 2024

Yongkweon Jeon, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Jeongin Yun, and Dongsoo
Lee. Biqgemm: matrix multiplication with lookup table for binary-coding-based quantized dnns.
In SC20: International Conference for High Performance Computing, Networking, Storage and

Analysis, pp. 1–14. IEEE, 2020.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint

arXiv:2306.07629, 2023.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for transformers. Advances in Neural Information

Processing Systems, 35:24101–24116, 2022.

Tuanhui Li, Baoyuan Wu, et al. Compressing convolutional neural networks via factorized convo-
lutional filters. In CVPR, pp. 3977–3986, 2019.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. NeurIPS,
2021.

Ling Liang, Lei Deng, Yueling Zeng, Xing Hu, Yu Ji, Xin Ma, Guoqi Li, and Yuan Xie. Crossbar-
aware neural network pruning. IEEE Access, 6:58324–58337, 2018.

Jiawei Liu, Lin Niu, Zhihang Yuan, Dawei Yang, Xinggang Wang, and Wenyu Liu. Pd-quant: Post-
training quantization based on prediction difference metric. In CVPR, pp. 24427–24437, 2023.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint

arXiv:1109.2378, 2011.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up
or down? adaptive rounding for post-training quantization. In ICML, pp. 7197–7206. PMLR,
2020.

Markus Nagel et al. Data-free quantization through weight equalization and bias correction. ICCV,
pp. 1325–1334, 2019.

Jeff Pool and Chong Yu. Channel permutations for n:m sparsity. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-

formation Processing Systems, volume 34, pp. 13316–13327. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/6e8404c3b93a9527c8db241a1846599a-Paper.pdf.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. NeurIPS, 28:91–99, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Mark Sandler, Andrew Howard, et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In
CVPR, pp. 4510–4520, 2018.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/6e8404c3b93a9527c8db241a1846599a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6e8404c3b93a9527c8db241a1846599a-Paper.pdf

Published as a conference paper at ICLR 2024

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on

pattern analysis and machine intelligence, 22(8):888–905, 2000.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. ICML, pp. 6105–6114, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

James Ze Wang, Gio Wiederhold, Oscar Firschein, and Sha Xin Wei. Content-based image indexing
and searching using daubechies’ wavelets. International Journal on Digital Libraries, 1:311–328,
1998.

Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and
Duen Horng Chau. Large-scale prompt gallery dataset for text-to-image generative models.
arXiv:2210.14896 [cs], 2022. URL https://arxiv.org/abs/2210.14896.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: randomly dropping
quantization for extremely low-bit post-training quantization. ICLR, 2022.

Edouard Yvinec, Arnaud Dapogny, Matthieu Cord, and Kevin Bailly. Red: Looking for redundan-
cies for data-free structured compression of deep neural networks. NeurIPS, 2021.

Edouard Yvinec, Arnaud Dapogny, Matthieu Cord, and Kevin Bailly. Red++: Data-free pruning
of deep neural networks via input splitting and output merging. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 45(3):3664–3676, 2022.

Edouard Yvinec, Arnaud Dapgony, Matthieu Cord, and Kevin Bailly. Rex: Data-free residual quan-
tization error expansion. NeurIPS, 2023a.

Edouard Yvinec, Arnaud Dapogny, and Kevin Bailly. Nupes : Non-uniform post-training quantiza-
tion via power exponent search. arXiv preprint arXiv:2308.05600, 2023b.

Edouard Yvinec, Arnaud Dapogny, Matthieu Cord, and Kevin Bailly. Powerquant: Automorphism
search for non-uniform quantization. In ICLR, 2023c.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022a.

Yichi Zhang, Zhiru Zhang, and Lukasz Lew. Pokebnn: A binary pursuit of lightweight accuracy. In
CVPR, pp. 12475–12485, 2022b.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In ICML, pp. 7543–7552, 2019.

12

https://arxiv.org/abs/2210.14896

	Introduction
	Related Work
	Quantization
	Gradient-Based Post-Training Quantization
	Codebook-based approaches for memory footprint reduction

	Methodology
	Motivation: Deep Neural Networks Memory Footprint
	Solving the granularity problem with efficient multi-codebook formulation
	Jointly learning codebook and mappings through gradient descent
	Enabling proximal search using an alternative gradient term

	Experiments
	Initialization
	Ablation Study
	Comparison to State-Of-The-Art Methods

	Conclusion
	Fp16 and Fp32
	JLCM Algorithm
	Implementation Details
	Diffusion Models Visualization

