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Abstract

The focus of this paper is on sample complexity guarantees of average-reward
reinforcement learning algorithms, which are known to be more challenging to
study than their discounted-reward counterparts. To the best of our knowledge, we
provide the first known finite sample guarantees using both constant and dimin-
ishing step sizes of (i) average-reward TD(λ) with linear function approximation
for policy evaluation and (ii) average-reward Q-learning in the tabular setting to
find the optimal policy. A major challenge is that since the value functions are
agnostic to an additive constant, the corresponding Bellman operators are no longer
contraction mappings under any norm. We obtain the results for TD(λ) by working
in an appropriately defined subspace that ensures uniqueness of the solution. For
Q-learning, we exploit the span seminorm contractive property of the Bellman
operator, and construct a novel Lyapunov function obtained by infimal convolution
of a generalized Moreau envelope and the indicator function of a set.

1 Introduction

The average-reward setting is a classical setting for formulating the goal in an infinite-horizon Markov
decision process (MDP) [1]. The need to maximize the average reward has been demonstrated in
many applications, including scheduling automatic guided vehicles [2], inventory management in
supply chains [3], communication system control and routing [4], cooperative multi-robot learning
[5] and queuing network control [6]. In these problems, the discounted-reward criterion usually leads
to poor long-time performance since the system operates over an extended period of time and the
goal is to optimize long-term behavior, whereas the discounted objective biases the optimal policy to
choose actions that lead to high near-term performance.

Even though there is a well developed theory of average-reward MDPs [7, 8, 9], the theoretical
understanding of average-reward RL methods is still quite limited. Most existing results are focused
only on asymptotic convergence [10, 11, 12, 13]. The focus of this paper is to understand the sample
efficiency. How much data is required to guarantee a given level of accuracy?

Recent literature obtains finite sample guarantees for discounted-reward TD learning and Q-learning
algorithms by developing novel analytical techniques [14, 15, 16, 17, 18]. Such a study of average-
reward RL algorithms is not undertaken. Analysis of average-reward RL algorithms is known to
be more challenging to study than their discounted-reward counterparts. The key property that is
exploited in the study of discounted-reward problems is the contraction property of the underlying
Bellman operator. In the average-reward setting, such a contraction property does not hold under any
norm, and the Bellman equation is known to have multiple fixed points.
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In this work, we take the first step toward understanding finite sample guarantees of (i) average-
reward TD(λ) with linear function approximation for policy evaluation, and (ii) average-reward
tabular Q-learning in the synchronous setting for the control problem.

1.1 Contributions and Summary of Our Techniques

We establish the first finite sample convergence guarantees of average-reward TD(λ) with linear
function approximation and average-reward tabular Q-learning in the literature.

TD(λ) Results. We study the average-reward TD(λ) with linear function approximation under a
general asynchronous update. We present finite sample bounds under both constant and diminishing
step sizes. With a constant step-size, the iterates converge at an exponential rate to a small cylinder
around the set of TD fixed points. With properly chosen diminishing step sizes, the mean-square
distance of the iterates to the set of TD fixed points converges with an Õ

(
1
T

)
rate, and this leads to

a sample complexity of Õ
(

1
ε2

)
. Our sample complexity bound also suggests that an intermediate

value of λ yields the best performance. The dependence on the effective horizon plays a key role
in the study of discounted-reward RL algorithms [19, 20]. There is no such effective horizon in
average-reward problems, and the spectral gap of an appropriately defined matrix plays a key role
instead.

TD(λ) Analysis. A major challenge in the analysis is that the projected Bellman operator is not a
contraction under any norm. Moreover, even though the projected Bellman equation can be written
as a linear set of equations, they are underdetermined. So existing techniques [14, 15] are not directly
applicable. Since the value function is unique up to an additive constant, we have a unique solution of
the projected Bellman equation when restricted to an appropriately defined subspace. We exploit this
property and work in this subspace, and use a quadratic Lyapunov function to obtain finite sample
guarantees.

Q-learning Results. We consider a J-step synchronous Q-learning algorithm. We present finite
sample error bounds for both constant and diminishing step sizes. The span of a vector is defined
to be the difference between the maximum and minimum element. Since the optimal action-value
function, Q∗, is agnostic up to an additive constant, we show that, with at most O(1/ε2) samples, the
expected span of the error QT −Q∗ converges to ε for both decreasing and constant step sizes.

Q-learning Analysis. While the corresponding Bellman operator is not a contraction under any
norm, it is known to be a contraction under the span seminorm. The span seminorm can be interpreted
as the `∞-distance to the subspace spanned by the all-ones vector. Finite sample bounds for stochastic
approximation of `∞-norm contractive operators were obtained in [18] by using generalized Moreau
envelop as a smooth Lyapunov function. Here, we generalize this approach and introduce a new
Lyapunov function to study span seminorm contractive operators. Our Lyapunov function is obtained
by applying an infimal convolution with respect to an indicator function to the generalized Moreau
envelop used in [18].

1.2 Related Literature

Average-Reward MDP. There is an extensive body of literature on average-reward MDPs. Several
authors have made early contributions to average-reward problems [21, 7, 8, 22, 23]. There are well
known dynamic programming algorithms for finding optimal policies such as policy iteration [7] and
value iteration [24]. However, these algorithms require complete knowledge of the MDP, and are also
computationally intractable in large state spaces [25].

Average-Reward Policy Evaluation. Tsitsiklis and Van Roy [10] proved the asymptotic convergence
of the average-reward TD(λ) with linear function approximation, and provided approximation error
bounds. Yu and Bertsekas [26] proved the asymptotic convergence of the average-reward LSPE(λ),
and provided the rate of convergence for constant step size. Both TD(λ) with linear function
approximation and LSPE(λ) aim to solve the same projected Bellman equation. However, TD(λ) is
based on stochastic approximation while LSPE(λ) is based on least squares. In addition, the papers
above assumed that the set of basis functions are independent of the all-ones vector, which apparently
does not hold in the tabular setting. We do not require such a restrictive assumption in this paper.
Recent work has also established the asymptotic convergence of the off-policy average-reward TD
learning algorithm in the tabular setting [12], and finite sample guarantees of average-reward gradient
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TD algorithms with linear function approximation [13]. Note that, [13] needed either the restrictive
assumption aforementioned or the ridge regularization to obtain the finite sample results.

Average-Reward Control. The earliest control algorithms were those introduced by Schwartz [27]
and Singh [28] without convergence proofs. The first provably convergent algorithms are RVI Q-
learning and SSP Q-learning, introduced by Abounadi, Bertsekas, and Borkar [11]. SSP Q-learning
and the algorithm introduced later by Gosavi [29] are limited to MDPs with a special state that
is recurrent under all stationary policies, whereas RVI Q-learning is convergent for more general
MDPs. Recently, Wan et al.[12] introduced an algorithm without a reference function, which is
needed in RVI Q-learning, and proved its asymptotic convergence with the techniques which are a
slight generalization of those in [11]. To the best of our knowledge, our paper is the first work in the
literature that studies the finite sample guarantees of a general average-reward Q-learning algorithm.

Stochastic Approximation. Many RL algorithms can be viewed through the lens of stochastic
approximation (SA). There is a well developed asymptotic theory of SA [30, 31, 32]. The ODE
method is a dominant approach used in most asymptotic convergence proofs in RL [33]. However,
this is a coarse tool, since it is not able to generate insight into an algorithm’s sensitivity to noise in
the system and step-size choices. Driven by the interest in finite sample guarantees of RL algorithms,
recent years have witnessed a focus shifted from asymptotic analysis to non-asymptotic analysis of SA
schemes. For example, a finite-time bound for linear SA was given in [15], which leads to finite-time
bounds for asynchronous TD learning. [17] provided a finite-time analysis of asynchronous nonlinear
SA, which yields finite-time bounds for asynchronous Q-learning.

Others. There are other related papers which are beyond the scope of the present paper. For instance,
there is a line of work [34, 35, 36] on regret guarantees, which is a different focus compared to
our work, for learning in average-reward MDPs. In addition, there are RL methods based on linear
programming [37, 38], or learning automata [39, 40].

2 The Average-Reward Problem Setting

We consider an infinite-horizon average-reward MDP described by (S,A,R, p), where S =
{1, 2, · · · , |S|} is a finite state space,A = {1, 2, · · · , |A|} is a finite action space,R : S×A → [0, 1]
is the reward function, and p : S × S × A → [0, 1] is the transition dynamics of the environment.
An agent interacts with the environment according to the following protocol: at each time step
t = 0, 1, 2, · · · , the agent is in a state St ∈ S and selects an action At ∈ A, then receives from the
environment an immediate rewardR(St, At) and the next state St+1 which is a sample drawn from
p(·|St, At). The average reward of a deterministic stationary policy µ : S → A starting from state
s ∈ S is defined as

rµ(s) := lim inf
T→∞

1

T
E

[
T−1∑
t=0

R(St, µ(St))|S0 = s

]
. (2.1)

Let r∗(s) := supµ∈M rµ(s), where M is the set of deterministic stationary policies. A policy
µ∗ ∈M is said to be optimal if it satisfies rµ

∗
(s) = r∗(s) for all s ∈ S.

3 Policy Evaluation Algorithm: TD Learning

3.1 Problem Formulation

We consider the problem of evaluating a given policy µ ∈M when the data is generated by applying
the policy µ in the MDP. Since the system is an induced Markov reward process (MRP), for simplicity,
we employ the notation R(i) := R(i, µ(i)) for rewards, and P (i, j) := p(j|i, µ(i)) for transition
probabilities. We make the following standard assumption to ensure the existence and uniqueness of
a stationary distribution π := [π1, · · · , π|S|]>.

Assumption 1. The Markov chain associated with P is irreducible and aperiodic.

It is a standard assumption in studying convergence of TD learning algorithms with linear function approxi-
mation [41, 10, 14] and guarantees that all states are visited an infinite number of times during an infinitely long
trajectory.
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Notice that π satisfies π>P = π>, with πi > 0 for all i ∈ S. Let Eπ[·] denote expectation with
respect to π and define D = diag(π1, · · · , π|S|) ∈ R|S|×|S|. It is easy to see that 〈x, y〉D := x>Dy

is a D-weighted inner product and we denote its induced norm by ‖x‖D :=
√
x>Dx.

Under Assumption 1, the average reward in (2.1) satisfies rµ(s) = r(µ) := π>R for all s ∈ S. A
differential value function v : S → R for policy µ satisfies the Bellman equation Tv = v, where
the Bellman operator T : R|S| → R|S| is defined by Tv := R− r(µ)e+ Pv. Here, e ∈ R|S| is the
all-ones vector. Under Assumption 1, it is known that the set of differential value functions takes the
form {vµ + ce|c ∈ R}, where vµ : S → R, known as the basic differential value function, is given
by vµ :=

∑∞
t=0 P

t (R− r(µ)e).

Most modern applications have large state spaces, so due to the curse of dimensionality, exact value
function learning may be intractable. To mitigate this, we consider a linear function approximation
Vθ(i) = φ(i)>θ to differential value functions, where φ(i) := [φ1(i), · · · , φd(i)]> ∈ Rd is the
feature vector for state i ∈ S and θ ∈ Rd is a tunable parameter vector. Here, {φk : S → R|k =
1, 2, · · · , d} is a set of d basis functions to be viewed as vectors of dimension |S|. With this notation,
Vθ can be expressed compactly in the form Vθ = Φθ, where Φ is an |S|×dmatrix whose k-th column
is φk. We assume that Φ has full column rank; that is, the basis functions {φk|k = 1, 2, · · · , d} are
linearly independent. This results in no loss of generality because if some basis function φk is a linear
combination of the others, it can be eliminated without changing the power of the approximation
architecture. Additionally, we assume that ‖φ(i)‖2 ≤ 1 for all i ∈ S, which can be ensured through
feature normalization.

3.2 Average-Reward TD(λ)

Algorithm 1: TD(λ) with linear function approximation

Input : initial guess r̄0 and θ0, basis functions {φk}dk=1, step-size sequence {βt}t∈N and
positive constant cα.

Initialize: z−1 = 0, λ ∈ [0, 1).
for t = 0, 1, . . . do

Observe tuple: Ot = (st,R(st), st+1)

Get TD error: δt(θt) = R(st)− r̄t + φ(st+1)>θt − φ(st)
>θt

Update eligibility trace: zt = λzt−1 + φ(st)
Update average-reward estimate: r̄t+1 = r̄t + cαβt(R(st)− r̄t)
Update parameter vector: θt+1 = θt + βtδt(θt)zt

end

We study the average-reward TD learning with eligibility traces [10], denoted by TD(λ) and parame-
terized by λ ∈ [0, 1). We consider the Markov chain observation model, where the observed tuples
used by TD(λ) are gathered from a single trajectory of the MRP. At every time step t, the algorithm
observes one data tuple Ot := (st,R(st), st+1) consisting of the current state, the current reward
and the next state. Suppose that at some time t, the current value of the parameter vector θ is θt, and
we have a scalar estimate r̄t of the average reward r(µ), we define the TD error δt(θt) corresponding
to the transition from st to st+1 as δt(θt) := R(st)− r̄t + φ(st+1)>θt − φ(st)

>θt. TD(λ) updates
r̄t and θt as follows:

r̄t+1 = r̄t + αt(R(st)− r̄t) and θt+1 = θt + βtδt(θt)zt, (3.1)

where αt and βt are scalar step sizes, and the vector zt :=
∑t
k=0 λ

t−kφ(sk) is called the eligibility
trace.

In this work, we focus on the single time-scale variant of TD(λ) presented in Algorithm 1, that is,
we assume that there exists a constant cα > 0 such that αt = cαβt for all t. In order to represent
TD(λ) in a compact form, we construct a process Xt := (st, st+1, zt). It is easy to see that {Xt} is

a Markov chain with an infinite state space. If we let Θt :=

[
r̄t
θt

]
, the TD(λ) updates (3.1) can be

expressed compactly as

Θt+1 = Θt + βt
[
A(Xt)Θt + b(Xt)

]
, (3.2)
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where

A(Xt) =

[
−cα 0
−zt zt

(
φ(st+1)> − φ(st)

>)] and b(Xt) =

[
cαR(st)
R(st)zt

]
.

Non-uniqueness of TD(λ) limit point. For any m = 0, 1, · · · , the m-step Bellman operator is
given by

Tmv =

m∑
t=0

P t (R− r(µ)e) + Pm+1v.

The asymptotic properties of TD(λ) are closely tied to the λ-weighted version of the m-step Bellman
operator. Define the averaged Bellman operator

T (λ)v := (1− λ)

∞∑
m=0

λmTm+1v.

Note that the set of differential value functions is also the fixed points of T (λ); see Lemma 3 in [10]
for a proof.

We denote by A := Eπ[A(Xt)] and b := Eπ[b(Xt)] the steady-state expectations of A(Xt) and
b(Xt), respectively. Stochastic approximation theory [32] shows that the asymptotic behavior of
the sequence {Θt} generated by (3.2) is closely linked with the corresponding ordinary differential

equation (ODE) Θ̇t = AΘt + b, and the limit of Θt, denoted by Θ∞ =

[
r̄∞
θ∞

]
if exists, is an

equilibrium point of the ODE, i.e.,

AΘ∞ + b = 0. (3.3)

Therefore, r̄∞ = r(µ), and θ∞ is a solution of the projected Bellman equation

Φθ = ΠD,WΦ
T (λ)Φθ, (3.4)

where ΠD,WΦ := Φ
(
Φ>DΦ

)−1
Φ>D is the projection matrix onto the column space WΦ :=

{Φθ|θ ∈ Rd} of Φ with respect to the norm ‖·‖D. It is worth noting that if e ∈WΦ, then ΠD,WΦT
(λ)

has multiple fixed points, since any scalar multiple of e when added to a fixed point of ΠD,WΦ
T (λ)

would also be a fixed point. For example, in the tabular case where Φ = I , Eq. (3.4) would become
θ = T (λ)θ, of which the set of differential value functions are solutions.

3.3 Finite-Time Bounds for Average-Reward TD(λ)

Before we present the finite-time bounds on the performance of TD(λ) with Markovian observation
noise, we illustrate the key ideas, which are inspired by [15]. The detailed proof can be found in
Appendix A.3.

We study the drift of an appropriately chosen Lyapunov function to obtain an upper bound on the
mean-square error. We define the subspace SΦ,e as

SΦ,e := span
(
{θ|Φθ = e}

)
=

{
{0}, if e 6∈WΦ,

{cθe|c ∈ R}, if e ∈WΦ and Φθe = e.

Let E be the orthogonal complement of SΦ,e. We can interpret E as the set of equivalent classes with
the equivalence relation ∼ on Rd defined by θ1 ∼ θ2 if and only if θ1 − θ2 is in SΦ,e. The following
lemma characterizes the set of TD(λ) fixed points; see Appendix A.1 for a proof.
Lemma 1. Under Assumption 1, the fixed points of the projected Bellman equation (3.4) are

L := θ∗ + SΦ,e =

{
{θ∗}, if e 6∈WΦ,

{θ∗ + cθe|c ∈ R}, if e ∈WΦ and Φθe = e,

where θ∗ ∈ E is a unique solution to the equation Φθ = ΠD,WΦ,E
T (λ)Φθ. Here, ΠD,WΦ,E

(·) is the
projection operator onto the subspace WΦ,E := {Φθ|θ ∈ E} with respect to the norm ‖·‖D
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Remark 1. In the case where e 6∈WΦ, the projected Bellman equation (3.4) has a unique fixed point
θ∗. This is why prior work requires that e does not belong to the column space of Φ.

We consider the Lyapunov function Φ(r̄, θ) := (r̄ − r(µ))
2

+ ‖Π2,E (θ − θ∗)‖22. Here, Π2,E is
the projection onto the subspace E with respect to the 2-norm ‖·‖2. Note that ‖Π2,E (θ − θ∗)‖22
measures the distance of θ to the set of TD(λ) fixed points. The following Lemma establishes that the
matrix A in (3.3) is negative definite over the subspace R× E for a sufficiently large cα. The proof
is presented in Appendix A.2. With this result, we can show that the Lyapunov function Φ(r̄, θ) has a
one-time-step negative drift.
Lemma 2. Under Assumption 1, we have

∆ := min
‖θ‖2=1,θ∈E

θ>Φ>D
(
I − P (λ)

)
Φθ > 0, (3.5)

where P (λ) = (1− λ)
∑∞
m=0 λ

mPm+1. Furthermore, when cα ≥ ∆ +
√

1
∆2(1−λ)4 − 1

(1−λ)2 , we
have

min
‖Θ‖2=1,Θ∈R×E

−Θ>AΘ ≥ ∆

2
.

To handle the Markovian noise, we use the conditioning argument along with the geometric mixing
of the underlying Markov chain {Xt}. Thus, we consider the following definition of the mixing time
of a Markov chain.
Definition 1. Given a positive constant ε, we define τ(ε) ≥ 1 to be the mixing time of a Markov
chain {Xt} such that

‖E [A(Xt)|X0]−A‖2 ≤ ε and ‖E [b(Xt)|X0]− b‖2 ≤ ε, for any X0 and t ≥ τ(ε)

The following lemma establishes that the expectations of A(Xt) and b(Xt) converge to their steady-
state values at a geometric rate. See Lemma 6.7 in [42] for a proof.
Lemma 3. Under Assumption 1, the Markov chain {Xt} has a geometric mixing time, i.e., there
exists a constant K ≥ 1 such that given a small positive constant ε we have τ(ε) ≤ K ln

(
1
ε

)
.

We now state two finite-time bounds on the performance of TD(λ). Part (a) studies TD(λ) applied
with sufficiently small constant step-size, which is common in practice. In this case, the iterates θt
will never converge to any TD(λ) fixed point due to the noise variance, but our result shows that the
expected distance of θt to the set of TD(λ) fixed points decreases at an exponential rate below some
level that depends on the choice of step-size. Part (b) attains an Õ

(
1
T

)
convergence rate to some

TD(λ) fixed point with a carefully chosen decaying step-size sequence.
Theorem 1. Consider iterates {(r̄t, θt)} generated by Algorithm 1 with Assumption 1 and

cα ≥ ∆ +
√

1
∆2(1−λ)4 − 1

(1−λ)2 . Let ξ1 :=

(
2
√
r̄2
0 + ‖θ0‖22 +

√
r(µ)

2
+ ‖θ∗‖22 + 1

)2

and

ξ2 := 228η2

(√
r(µ)

2
+ ‖θ∗‖22 + 1

)2

, where η :=
√
c2α + 5

(1−λ)2 .

(a) Let βt = β for all t, where positive constant β is properly chosen such that ∆β < 2 and
βτ(β) ≤ min{ 1

4η ,
∆

228η2 }. Then, for all T ≥ τ(β), we have

E
[
(r̄T − r(µ))

2
+ ‖Π2,E (θT − θ∗)‖22

]
≤ ξ1

(
1− ∆

2
β

)T−τ(β)

+ ξ2
βτ(β)

∆
.

(b) Let βt = c1
t+c2

where positive constants c1 and c2 are properly chosen such that 2 < ∆c1 < 2c2

and there exists a smallest positive integer t∗ such that
∑t∗−1
k=0 βk ≤ 1

2η , and for all t ≥ t∗,∑t−1
k=t−τ(βt)

βk ≤ min{ 1
4η ,

∆
228η2 }. Then, for all T ≥ t∗, we have

E
[
(r̄T − r(µ))

2
+ ‖Π2,E (θT − θ∗)‖22

]
≤ ξ1

(
t∗ + c2
T + c2

)∆c1
2

+
8eKc21ξ2
∆c1 − 2

ln(T + c2)− ln(c1)

T + c2 + 1
.
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Therefore, with an appropriate decaying step sizes suggested in Theorem 1(b), the following sample
complexity of Algorithm 1 can be obtained.
Corollary 1. To find a pair (r̄, θ) with E [|r̄ − r(µ)|] ≤ ε and E

[
‖Π2,E (θ − θ∗)‖2

]
≤ ε, Algorithm

1 requires at most the following number of samples:

Õ

(
K log

(
1
∆

)
‖θ∗‖22

∆4(1− λ)4ε2

)
,

where K is the mixing time constant defined in Lemma 3.
Remark 2. Since ∆ defined in (3.5) is a non-decreasing function of λ, the sample complexity in
Corollary 1 implies that the optimal λ should be neither too large nor too small.

3.4 Approximation Error

As we are satisfied with an approximation of any differential value function, we define the approx-
imation error, infc∈R ‖Φθ∗ − (vµ + ce)‖D, as the infimum of the D-weighted Euclidean distance
of Φθ∗ to the set of differential value functions. Following the similar arguments from the proof of
Theorem 3 in [10], we obtain the following approximation error bound,

inf
c∈R
‖Φθ∗ − (vµ + ce)‖D ≤

1√
1− c2λ

inf
θ∈Rd,c∈R

‖Φθ − (vµ + ce)‖D, (3.6)

where the constant cλ is in [0, 1) for any λ ∈ [0, 1) and goes to 0 as λ → 1. Note that the term
infθ∈Rd,c∈R ‖Φθ − (vµ + ce)‖D is the minimal error possible given our approximation architecture,
and becomes zero if our approximation architecture is able to represent exactly some differential
value function. In particular, under the tabular setting, since any differential value function has exact
representation, we have infc∈R ‖Φθ∗ − (vµ + ce)‖D = 0.

4 Control Algorithm: Q-learning

4.1 Problem Formulation

We consider the problem of finding an optimal policy µ∗ ∈ M under the following unichain
assumption (see Section 8.4 in [9] for details).
Assumption 2. An MDP is called unichain if the induced Markov chain consists of a single recurrent
class plus a possibly empty set of transient states for any deterministic stationary policy.

Under Assumption 2, standard MDP theory [9] shows that there exist a unique r∗ ∈ R such that
r∗(s) = r∗ for all s ∈ S, and a unique Q∗ : S × A → R up to an additive constant, such that the
following Bellman optimality equation holds for all state-action pairs (s, a) ∈ S ×A:

Q∗(s, a) = R(s, a) +
∑
s′∈S p(s

′|s, a) maxa′∈AQ
∗(s′, a′)− r∗. (4.1)

The optimal policy µ∗ is then obtained by µ∗(s) := argmaxa∈AQ
∗(s, a). If we define Ē := {ce|c ∈

R} as the subspace spanned by the all-ones vector e ∈ R|S|×|A| and denote the Bellman operator H
by

H(Q)(s, a) = R(s, a) +
∑
s′∈S p(s

′|s, a) maxa′∈AQ
∗(s′, a′), ∀(s, a) ∈ S ×A,

then (4.1) can be rewritten as a set inclusion condition:

Q∗ −H(Q∗) ∈ Ē. (4.2)

Importantly, by observing that the operator H is indifferent to constant shifting, i.e., H(Q+ ce) =
H(Q) + ce, we can view all Q constant shifts, QĒ := {Q+ ce : c ∈ R}, as an equivalent class and
interpret (4.2) as a fixed-set equation:

Q∗Ē = H(Q∗Ē). (4.3)

Next we propose an SA algorithm to solve (4.3) by iteratively updating some “representative" of the
underlying equivalent class.
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Algorithm 2: J-step Synchronous Q-learning

Input : initial guess Q0, step-size sequence {ηt}t∈N, offset function f : R|S|×|A| → R.
for t = 0, 1, . . . do

Compute the Qt-improving policy µt(s) := arg maxaQt(s, a) for all s ∈ S.
for (s, a) ∈ S ×A do

Sample s1 ∼ p(·|s, a), s2 ∼ p(·|s1, µt(s
1)), . . . , sJ ∼ p(·|sJ−1, µt(s

J−1)).
Compute Qt+1(s, a)← Qt(s, a) +

ηt

(
R(s, a) +

∑J−1
j=1 R(sj , µt(s

j)) +Qt(s
J , µt(s

J))−Qt(s, a)− f(Qt)
)
.

end
end

4.2 Synchronous Q-learning

Given the sample Bellman operator Ĥ defined by

Ĥ(Q)(s, a) := R(s, a) + max
a′∈A

Q(s′, a′), s′ ∼ p(·|s, a), ∀(s, a) ∈ S ×A,

an SA algorithm for solving (4.3) is

Qt+1 := Qt + ηt

(
Ĥ(Qt)−Qt

)
. (4.4)

It might be necessary, sometimes, to apply H to Q for J steps before updating Q. More specifically,
if we denote by µQ(s) := arg maxaQ(s, a) the Q-improving policy, the J-step Bellman operator
and the J-step fixed-set equation are

HJ(Q)(s, a) := R(s, a) + Es1∼P (·|s,a),...,sJ∼P (·|sJ−1,µQ(sJ−1)) [

R(s1, µQ(s1)) + . . .+R(sJ−1, µQ(sJ−1)) +Q(µJ , µQ(sJ))
]
, (4.5)

HJ(Q∗Ē) = Q∗Ē . (4.6)

So the J-step SA algorithm is the same as (4.4) except for a J-step sample Bellman operator,

ĤJ(Q)(s, a) := R(s, a) +R(s1, µQ(s1)) + . . .+R(sJ−1, µQ(sJ−1)) +Q(µJ , µQ(sJ)),

where s1 ∼ p(·|s, a), . . . , sJ ∼ p(·|sJ−1, µQ(sJ−1)). The complete algorithm is presented in
Algorithm 2.
Remark 3. (1) The SA algorithm in (4.4) is a special case of Algorithm 2 with J = 1. (2) The
solution to the J-step fixed-set equation (4.6) is the same for all J ≥ 1. (3) An extra offset function
f(Q) is included to ensure numerical stability (see Section 2.2 in [11]). If J = 1 and the offset
function f satisfies Assumption 2.2 in [11], Algorithm 2 recovers the RVI Q-learning algorithm.

4.3 Finite-Time Analysis

Now we seek to establish finite-time convergence guarantees of Algorithm 2. Since the Q-improving
policy and its suboptimality gap are the same for any Q ∈ QĒ , we can measure Algorithm 2’s
progress by

‖Q−Q∗‖α,sp := min
c∈R
‖(Q−Q∗)− ce)‖α , (4.7)

for some norm ‖·‖α. For example, the span seminorm is equivalent to ‖·‖∞,sp. Additionally, we need
to make a span contraction assumption similar to Theorem 8.5.2 in [9].
Assumption 3. The J-step Bellman operator HJ is a span contraction for some J ≥ 1, i.e., there
exists a γ ∈ [0, 1) such that for any Q1 and Q2 defined on S ×A,∥∥HJ(Q1)−HJ(Q2)

∥∥
∞,sp ≤ γ ‖Q1 −Q2‖∞,sp .

Such an assumption is not restrictive. A lower bound for 1− γ is the minimum probability of any
two deterministic stationary Markov policies starting from any pair of states ending in the same state
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in J steps [9]. Thus, under an unichain assumption, γ < 1 can be guaranteed for J = |S| if we apply
the aperiodic transformation in Section 8.5.4 of [9] to ensure a non-zero probability of all states in a
single recurrent class in |S| steps.

We sketch the outline of our Lyaponuv convergence proof and leave the details to Appendix B.
First, we construct a Lyaponov function. The key insight is that the span seminorm ‖·‖∞,sp can be
interpreted as the infimal convolution of the `∞-norm ‖·‖∞ and the indicator function of Ē, i.e.,

‖x‖∞,sp = (‖·‖∞2δĒ)(x) := inf
y
‖x− y‖∞ + δĒ(y), ∀x, (4.8)

where δĒ(x) :=

{
0, x ∈ Ē,
∞, otherwise.

As illustrated by Lemma 4 in Appendix B.1, the inifimal convolution operation has many desirable
properties. For example, it is commutative, associative, convexity-preserving and smoothness-
preserving. These nice properties allow us to design a Lyaponov function MĒ for the equivalent
classes by tweaking the usual Lyaponov function M as follows,

MĒ(Q) := (M2δĒ) (Q). (4.9)

In particular, since Assumption 3 implies only span contraction, we utilize the smoothed Lyaponov
function proposed in [18] for `∞-norm contraction, i.e., M(Q) := 1

2 (‖·‖2∞2 1
u ‖·‖

2
p)(Q) with

p := 4 log(|S||A|) and u := (1/2 + 1/(2γ))2 − 1. We show MĒ(·) is a uniform approximation of
‖·‖2∞,sp:

(1 + (1 + 1/γ)2/4
√
e)MĒ(Q) ≤ 1

2 ‖Q‖
2
∞,sp ≤ (1 + (1 + 1/γ)2/4)MĒ(Q), ∀Q,

and it is smooth with respect to ‖·‖p,sp:

MĒ(Qt+1 −Q∗) ≤MĒ(Qt −Q∗) + 〈∇MĒ(Qt −Q∗), Qt+1 −Qt〉

+ 2 log(|S||A|)
u ‖Qt+1 −Qt‖2p,sp .

(4.10)

Next, since the span contraction assumption leads to a negative drift in (4.10) for some constant α2

defined in Appendix B.3,

E [〈∇MĒ(Qt −Q∗), Qt+1 −Qt〉] ≤MĒ(HJ(Qt)−Q∗)−MĒ(Qt −Q∗)
≤ −2α2MĒ(Qt −Q∗),

(4.11)

we can use the smoothness and uniform approximation properties ofMĒ to provide a recursive bound
of Qt+1 for some α3 and α4 defined in Appendix B.3,

E[MĒ(Qt+1 −Q∗)] ≤ (1− 2α2ηt + α3η
2
t )MĒ(Qt −Q∗) + α4η

2
t . (4.12)

Clearly, by taking a small enough step size ηt, (4.12) implies the convergence of E [MĒ(Qt −Q∗)].
Now we can state a sample complexity upper bound for Algorithm 2 by choosing a specific step-size
sequence.

Theorem 2. If {Qt} is generated by Algorithm 2 with a decaying step-size sequence

ηt = 4
1−γ

1
t+K , with K = max

{
288 log(|S||A|)

(1− γ)2
, 3

}
,

then for some universal constant C the following bound holds for all t ≥ 1 ,

E
[
‖Qt −Q∗‖2∞,sp

]
≤ C

(
‖Q0−Q∗‖2∞,sp(log |S||A|)2

(1−γ)4t2 +
(J2+‖Q∗‖2∞,sp) log(|S||A|)

(1−γ)3t

)
.

If instead a constant step size η ≤ (1−γ)2

288 log(|S||A|) is employed, then

E
[
‖Qt −Q∗‖2∞,sp

]
≤
√
e(1− 1−γ

2 η)t ‖Q0 −Q∗‖2∞,sp +
48(J2+‖Q∗‖2∞,sp) log(|S||A|)

(1−γ)2 η.

9



In both cases, it takes

O

(
(J2 + ‖Q∗‖2∞,sp)J |S||A| log(|S||A|)

(1− γ)3ε2

)
samples to find a Qt with E

[
‖Qt −Q∗‖∞,sp

]
≤ ε. Taking into account ‖Q∗‖∞,sp ≤

J
1−γ from the

span contraction assumption, the sample complexity can be simplified further to

Õ
(
|S||A|J3

(1−γ)5ε2

)
,

which is similar to the sample complexity of γ-discounted Q-learning algorithm [18, 43].

5 Numerical Experiments

In this section we present empirical results of the average-reward TD(λ) with linear function approxi-
mation (i.e. Algorithm 1). In our simulation, we consider a randomly generated MRP with |S| = 100
states and a randomly generated feature matrix Φ with d = 20 features and e ∈WΦ. Experimental
details and figures are provided in Appendix C. All the implementations are publicly available®.

We first show that if the algorithm starts from different initial points, it will converge to different
TD fixed points. To demonstrate that, we implement the algorithm using diminishing step sizes
for 4 different θ0, and then plot E

[
‖Π2,E (θt − θ∗)‖2

]
and E

[
(θt − θ∗)> θe

‖θe‖2

]
as functions of the

number of iterations t in Figure 1 and 2, respectively. Recall from Lemma 1 that {θ∗ + cθe|c ∈ R}
is the set of TD limit points. We observe in Figure 1 that E

[
‖Π2,E (θt − θ∗)‖2

]
converges to 0 for

all 4 initial points, which means that the iterates θt converge to some TD limit point regardless of
θ0. Moreover, Figure 2 shows that E

[
(θt − θ∗)> θe

‖θe‖2

]
converges to different values for different

initial points. This, combined with Figure 1, implies that the algorithm converges to different TD
limit points, starting from different θ0.

We next numerically verify the finite-time error bounds of Algorithm 1 using decaying step sizes.
In Figure 3, we plot E

[
(r̄t − r∗)2

+ ‖Π2,E (θt − θ∗)‖22
]

as a function of t for λ ∈ {0, 0.2, 0.4, 0.8},
where r∗ denotes the average-reward of the MRP. We see that the iterates {(r̄t, θt)} of the
algorithm converge for all values of λ. To further verify the rate of convergence, we plot
lnE

[
(r̄t − r∗)2

+ ‖Π2,E (θt − θ∗)‖22
]

as a function of ln t in Figure 4 for large t and the slopes of

these lines are provided in the legend. The plot shows E
[
(r̄t − r∗)2

+ ‖Π2,E (θt − θ∗)‖22
]
≈ O

(
1
t

)
asymptotically, which agrees with Theorem 1(b). In addition, we notice from Figure 3 and 4 that the
best λ in terms of sample complexity is 0.2, which confirms our Remark 2 that intermediate value of
λ yields the best performance with regard to sample complexity.

6 Conclusion

We establish the first finite sample convergence bounds of (i) average-reward TD(λ) with linear
function approximation under Markovian observation noise, and (ii) average-reward tabular Q-
learning in the synchronous setting. These RL algorithms can be viewed as SA schemes to solve
average-reward Bellman equations. However, the Bellman operators are not contractive under any
norm. To resolve this difficulty, we construct Lyapunov functions using projection and infimal
convolution to analyze the convergence of equivalent classes generated by these algorithms. Our
approach is simple and general, so we expect it to have broader applications in other problems.

When analyzing the average-reward Q-learning algorithm, we made a J-step span contraction
assumption (i.e. Assumption 4), which is not needed for the asymptotic convergence [10]. However,
it is unclear if such an assumption is necessary for establishing any finite-time convergence bound.
Since our results are the first finite sample bounds, a future research direction is on relaxing this
assumption. Besides, it would be interesting to experiment our algorithms in practice and see how
the empirical performance is compared with our theoretical bounds.

®https://github.com/xiaojianzhang/Average-Reward-TD-Q-Learning
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