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Abstract
Federated Continual Learning (FCL) has emerged
as an important research area, as data from dis-
tributed clients often arrives in a streaming man-
ner and requires sequential learning. In this pa-
per, we consider a more practical and challeng-
ing FCL setting where clients may have unre-
lated or even conflicting tasks. In such scenarios,
statistical heterogeneity and data noise can lead
to spurious correlations, biased feature learning,
and severe catastrophic forgetting. Existing FCL
methods often rely on generative replay to recon-
struct previous tasks, but these approaches suffer
from task divergence and forgetting themselves,
which results in overfitting and degraded perfor-
mance. To address these challenges, we propose a
novel approach called Spatio-Temporal grAdient
Matching with rehearsal dataPool (STAMP). Our
key idea is to perform unified gradient match-
ing across both the spatial and temporal dimen-
sions of FCL. Spatial matching aligns gradients
across clients at the same time step, while tem-
poral matching aligns gradients across sequential
tasks within each client. This dual perspective
mitigates negative transfer and improves knowl-
edge retention across diverse and evolving tasks.
Extensive experiments show that STAMP outper-
forms existing FCL methods under heterogeneous
conditions.

1. Introduction
Federated Learning (FL) is a distributed and privacy-
preserving learning paradigm that enables collaboration
among multiple entities, such as devices or organizations,
without sharing raw data (Lim et al., 2020; Le et al., 2025).
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Due to the robustness of distributed machine learning, this
approach supports the capabilities of the emerging Inter-
net of Agents (IoA) (Wang et al., 2025). In FL, a central
server coordinates the training of a global model by aggre-
gating updates from distributed clients. This approach has
gained widespread adoption across various domains, includ-
ing healthcare (Nguyen et al., 2023a), Internet-of-Things
(Nguyen et al., 2023b; 2022), autonomous driving (Fan-
tauzzo et al., 2022; Tung et al., 2025), Internet-of-Agents
(Wang et al., 2025), and large language models (Tran et al.,
2025). However, most existing FL methods assume a fixed
set of classes and stable data distributions, which rarely hold
in real-world applications where new classes and shifts in
data naturally occur over time (Elsayed & Mahmood, 2024).
Continuously training new models from scratch to adapt to
these changes is computationally inefficient. While transfer
learning offers a more efficient alternative by leveraging pre-
trained models, it often suffers from catastrophic forgetting
(Dong et al., 2024), where the model loses previously ac-
quired knowledge. To tackle this issue, recent studies (Luo
et al., 2023) have proposed Federated Continual Learning
(FCL), which combines the strengths of FL and Continual
Learning (CL) (Yang et al., 2023) to support sequential
learning in distributed environments.

In FCL, clients collaboratively learn models for their own
private, sequential tasks while ensuring data privacy. How-
ever, the inherently sequential nature of these tasks means
that each client typically only has access to a limited amount
of data for the current task. This limitation often leads to
forgetting previously learned knowledge, a phenomenon
known as catastrophic forgetting. In contrast to conventional
settings, we investigate a more demanding variant of FCL,
referred to as heterogeneous FCL. This scenario introduces
two key challenges not addressed by standard FCL methods.
First, clients in heterogeneous FCL often work on entirely
different tasks simultaneously, resulting in a highly non-
uniform learning environment (see Figure 1b). This vari-
ability causes domain shifts in the aggregated global model
after each communication round, hindering stable conver-
gence. Second, existing Federated Class-Incremental Learn-
ing (FCIL) approaches struggle under heterogeneous FCL
conditions. These methods typically rely on the assumption
of a shared, consistent class distribution across clients, al-
lowing for the incremental addition of task-specific output
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(a) Generalization gap on CIFAR100
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Figure 1: The illustration highlights the challenges encountered by current FCL methods (e.g., AF-FCL (Wuerkaixi et al.,
2024), FedSSI (Li et al., 2025a)) when applied in heterogeneous settings. A notable gap between local and global test
accuracy arises due to client-specific data heterogeneity within each task at every time step. STAMP demonstrates superior
robustness over current baselines by mitigating inter-client divergence throughout the learning process, leading to a reduced
local-global generalization gap.

heads. However, in heterogeneous FCL, clients encounter
distinct class sets at each stage, leading to misaligned local
model architectures. This mismatch significantly reduces
the effectiveness of current FCIL techniques.

To address the aforementioned challenges, we propose
a novel method, dubbed Federated Continual Learning
via Spatio-Temporal grAdient Matching with rehearsal
dataPool (STAMP). Our key contributions are as follows:

• We address a more practical and challenging Feder-
ated Continual Learning (FCL) scenario where clients
learn from non-identical and sequential tasks under
significant statistical heterogeneity.

• We propose Spatio-Temporal grAdient Matching with
rehearsal dataPool (STAMP), a novel model-agnostic
framework that explicitly aligns gradients across both
spatial (inter-client) and temporal (intra-client) dimen-
sions. STAMP facilitates stable and generalizable
learning by reducing negative transfer across clients
and tasks, enabling more reliable knowledge accumu-
lation.

• We validate STAMP through extensive experiments on
a series of benchmark datasets under heterogeneous
task distributions. Our results demonstrate the effec-
tiveness and superiority of STAMP over prior state-of-
the-art FCL methods.

2. Backgrounds & Preliminaries
2.1. Federated Continual Learning

Federated Continual Learning (FCL) describes a realistic
learning paradigm that integrates the principles of Federated
Learning (FL) and Continual Learning (CL). Consider a
system with U clients. Each client u learns over a sequence
of T tasks. At any step indexed by t × R + r, where R
denotes the number of communication rounds allocated
per task and r is the current round within task t, client u
maintains local model parameters θt,ru and has access only
to data associated with task t. On client u, the dataset for
task t is denoted as Dt

u = {(xt
i, y

t
i)}

Nt
u

i=1, where N t
u is the

number of labeled samples available for that task.

Most prior works have primarily focused on a task reshuf-
fling setting, where all clients share the same task set but
encounter the tasks in different orders (Yoon et al., 2021).
However, in real-world applications, the task distributions
across clients may not be correlated. That is, the sequence
of tasks {D1

u,D2
u, . . . ,DT

u } for client u may not exhibit any
clear relationship, nor is there any guaranteed similarity
among tasks {Dt

1,Dt
2, . . . ,Dt

U} across clients. Therefore,
we adopt a more practical and generalized scenario called
the Limitless Task Pool (LTP).

Limitless Task Pool. In the Limitless Task Pool (LTP)
setting, tasks are randomly sampled from a large and di-
verse repository, leading to scenarios where two clients may
have entirely disjoint task sets (i.e., {Di

u}
tu
i=1 ∩ {Di

v}
tv
i=1 =

∅, ∀u, v ∈ {1, 2, . . . , U}). Furthermore, due to statistical
heterogeneity, each client may have a distinct joint data-
label distribution p(x, y), meaning that knowledge trans-
ferred from one client may introduce biases when applied
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to another client’s tasks.

At each task t, the objective is to collaboratively train a
global model with parameters θt while preserving perfor-
mance on prior tasks. Under the privacy-preserving con-
straints of FL and CL, the goal is to balance learning the
current task effectively while retaining knowledge of previ-
ous tasks across all clients. This can be formalized as:

min
θt

[St
1,St

2, . . . ,St
U ],

where St
u =

[
L(θt;D1

u),L(θt;D2
u), . . . ,L(θt;Dt

u)
]
. (1)

However, due to the limited storage and computational capa-
bilities of client devices, maintaining full access to previous
task data D[1:t−1]

u is impractical. Consequently, while learn-
ing task t, client u cannot directly minimize the cumula-
tive empirical loss over all past tasks, i.e.,

∑t
i=1 L(θtu;Di

u).
Additionally, task-specific and client-specific data hetero-
geneity often leads to domain and label distribution shifts,
resulting in conflicting gradients during training (Nguyen
et al., 2025).

2.2. Gradient Matching

When learning from diverse and non-identical tasks, one
of the most critical challenges is the presence of gradient
conflict.
Definition 2.1 (Gradient Conflict). Given two task-specific
gradients gi and gj (i ̸= j), a gradient conflict occurs if their
cosine similarity is negative, i.e., cos(gi, gj) =

gi·gj
∥gi∥·∥gj∥ <

0. In such cases, updating the model in the direction of gi
would negatively impact the performance with respect to
task j, and vice versa.

To alleviate gradient conflict as described in Definition 2.1,
we adopt the Gradient Matching (GM) technique proposed
in (Nguyen et al., 2025). This method computes a task-
aligned gradient that preserves consistency across tasks
while reducing interference:

GM(g(r)) =
κ∥ḡ(r)∥
∥Γ∗g(r)∥

Γ∗g(r)

s.t. Γ∗ = argmin
Γ

Γg(r) · ḡ(r) + κ∥ḡ(r)∥∥g(r)Γ ∥, (2)

ḡ(r) =
1

|T |
∑
t∈T

g
(r)
t ,

where g(r) = [g
(r)
t | t ∈ T ] denotes the set of task-specific

gradients participating in the current training round. The
aggregated gradient gG = GM(g(r)) leverages the direc-
tional information from multiple tasks to maintain the task-
invariant components of individual gradients. By ensuring
that gG · gi ≤ 0 for all i ∈ T , the method guarantees that
the resulting gradient avoids negative transfer. As a result,
the GM approach enables better generalization across tasks
within the continual learning framework.

3. Proposed Method
We introduce a novel framework, STAMP, designed for
heterogeneous federated continual learning (FCL). The
STAMP framework consists of two key components: (1)
on-client temporal gradient matching, (2) on-server spatial
gradient matching.

3.1. Temporal Gradient Matching

Temporal Gradient Matching is performed locally on each
client during training. Specifically, the client leverages task-
specific gradients from both past and current tasks to solve
a gradient matching optimization problem. The local model
update is defined as follows:

θt,r+1
u = θt,ru − GM(g[0:t]

u ), (3)

where g
[0:t]
u = [giu | i ∈ {1, 2, . . . , t}] denotes the set of

gradients corresponding to all tasks learned so far by client
u, including the current task gradient gtu and historical gra-
dients g

[0:t−1]
u . Conventionally, such historical gradients

are estimated using stored exemplars from previous tasks
(Lopez-Paz & Ranzato, 2017; Luo et al., 2023; Wu et al.,
2024). By explicitly incorporating gradient information
from prior tasks, this component reduces the risk of catas-
trophic forgetting in continual learning.

3.2. Spatial Gradient Matching

Inspired by (Nguyen et al., 2025), the Spatial Gradient
Matching component is executed on the server to identify
a unified gradient direction that remains consistent across
heterogeneous tasks received from multiple clients. This
approach helps the global model stabilize its learning trajec-
tory by mitigating the effects of task diversity and reducing
negative transfer. The server-side update rule is given by:

θt,r+1 = θt,r − GM(gt), (4)

where gt = [gtu | u ∈ {1, 2, . . . , U}], (5)

and each local gradient gtu is implicitly computed via the
model update, i.e., gtu = θt,r+1

u − θt,ru . Notably, this for-
mulation avoids additional communication cost, as the re-
quired gradients are derived from already transmitted model
weights. By aligning the gradient directions across par-
ticipating clients, spatial gradient matching alleviates the
impact of client drift and enhances global model consistency
under heterogeneous FCL settings.

4. Experimental Evaluations
In this section, we present extensive experiments to evalu-
ate the effectiveness of the proposed STAMP framework.
Implementation details and additional results are provided
in Appendix B. To ensure a fair evaluation of FCL baselines
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Table 1: We report the average per-task performance of FCL under a setting where each task is assigned 20 classes.
Evaluations are conducted using 10 clients (fraction = 1.0) across 5 independent trials. OOM refers to the out of memory in
GPU. ↑ and ↓ indicate that higher and lower values are better, respectively. C→S and S→C denote communication from the
client to the server and from the server to the client, respectively.

CIFAR100 (U = 10, C = 20)

Methods Accuracy ↑ AF ↓ Avg. Comp. ↓ Comm. Cost ↓ GPU (Peak) ↓ Disk ↓
(Sec/Round) C→S S → C

FedAvg 27.2 (± 2.2) 5.9 (± 0.9) 27.6 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedALA 28.5 (± 2.4) 6.5 (± 1.2) 28.2 sec 44.6 MB 44.6 MB 1.93 GB N/A
FedDBE 28.3 (± 1.6) 5.5 (± 0.7) 28.3 sec 44.6 MB 44.6 MB 1.91 GB N/A
FedAS 40.2 (± 1.1) 30.7 (± 0.3) 135.7 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedOMG 36.8 (± 1.4) 8.5 (± 0.6) 32.7 sec 44.6 MB 44.6 MB 1.92 GB N/A

GLFC 29.8 (± 2.1) 7.5 (± 0.4) 167.8 sec 88.2 MB 46.5 MB 3.83 GB 22.1 MB
FedCIL 32.4 (± 1.7) 6.3 (± 1.2) 199.3 sec 95.3 MB 44.6 MB 4.21 GB 18.5 MB
LANDER 45.1 (± 1.3) 5.4 (± 0.8) 153.6 sec 112.4 MB 138.7 MB 4.83 GB 131.5 MB
TARGET 32.1 (± 2.3) 5.9 (± 1.6) 236.4 sec 112.4 MB 44.6 MB 3.65 GB 18.5 MB
FedL2P 30.2 (± 1.8) 6.3 (± 1.3) 78.1 sec 56.3 MB 56.3 MB 2.56 GB N/A

FedWeIT 37.3 (± 2.3) 4.7 (± 0.8) 38.7 sec 44.2 MB 44.2 MB 7.21 GB N/A
AF-FCL 35.6 (± 0.4) 5.2 (± 0.5) 45.3 sec 156.3 MB 121.3 MB 8.93 GB N/A

STAMP 41.3 (± 0.9) 5.4 (± 0.6) 56.3 sec 44.6 MB 44.6 MB 1.92 GB 16.3 MB

ImageNet1K (U = 10, C = 20)

FedAvg 17.3 (± 3.3) 14.1 (± 0.2) 1485.2 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedALA 17.6 (± 5.6) 14.9 (± 0.8) 1556.6 sec 112.5 MB 112.5 MB 16.12 GB N/A
FedDBE 18.8 (± 5.2) 13.9 (± 0.3) 1572.7 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedAS 22.3 (± 5.0) 18.2 (± 0.6) 5108.5 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedOMG 21.2 (± 3.3) 11.3 (± 0.7) 1821.2 sec 112.5 MB 112.5 MB 16.11 GB N/A

GLFC 22.5 (± 2.1) 6.3 (± 0.2) 5647.3 sec 225.3 MB 121.2 MB 20.24 GB 112.6 MB
FedCIL 24.1 (± 2.8) 7.3 (± 0.4) 7120.3 sec 245.5 MB 112.5 MB 23.47 GB 184.3 MB
LANDER 31.8 (± 1.4) 7.8 (± 0.9) 6825.8 sec 267.4 MB 453.6 MB 26.54 GB 1.31 GB
TARGET 25.8 (± 3.8) 6.7 (± 0.4) 9958.2 sec 287.4 MB 112.5 MB 21.08 GB 184.3 MB
FedL2P 22.3 (± 3.7) 9.4 (± 0.6) 3278.7 sec 146.6 MB 146.6 MB 18.21 GB N/A

FedWeIT 24.8 (± 1.3) 5.1 (± 0.8) 1763.8 sec 110.4 MB 110.4 MB 41.23 GB 61.7 GB
AF-FCL 21.3 (± 5.1) 4.5 (± 0.6) 1823.7 sec 421.3 MB 336.8 MB 46.81 GB N/A

STAMP 26.8 (± 2.3) 5.8 (± 0.4) 3041.2 sec 112.5 MB 112.5 MB 16.11 GB 152.6 MB

under heterogeneous task settings and to accurately measure
catastrophic forgetting, we deliberately avoid the use of pre-
trained models. This decision is motivated by the fact that
commonly used pretrained backbones (e.g., those trained on
ImageNet-1K) share significant overlap with our datasets,
which could otherwise introduce evaluation bias.

4.1. Benchmarking with Baselines

Tables 1 and 2 present the results on the CIFAR100 and
ImageNet1K datasets, both of which involve varying class
distributions across tasks. In addition to average accuracy
and average forgetting (AF), we evaluate several key system-
level metrics: computational overhead, communication cost,
GPU utilization, and disk usage. Computational overhead is
defined as the average time per round, capturing the cost of
client-side training, particularly for methods involving gen-
erative models. Communication cost represents the average

amount of data transferred (in GB) per client-server round.
GPU utilization measures peak memory usage, which is
crucial in scenarios with limited hardware resources. Disk
usage indicates the total client-side storage consumption,
including replay buffers and task-specific model parame-
ters. The standard FL baselines, such as FedAvg, FedALA,
FedAS, FedDBE, and FedOMG, often cause the model to
forget previously learned knowledge, as reflected by their
high average forgetting scores. FedWeIT stores task-specific
head parameters in GPU memory. However, when the num-
ber of classes (e.g., 1000 classes in ImageNet1K) and the
number of tasks (e.g., 500 tasks in our ImageNet setup) are
both large, the total number of parameters increases signif-
icantly. Consequently, storing all task-specific parameters
in GPU memory becomes impractical, and they must be
offloaded to disk, which in turn causes a notable increase in
average training time. LANDER stores all generated pseudo
task-specific data on disk, resulting in a client-side storage
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Table 2: We report the average per-task performance of FCL under a setting where each task is assigned 2 classes. Evaluations
are conducted using 10 clients (fraction = 1.0) across 5 independent trials. OOM refers to the out of memory in GPU. ↑ and
↓ indicate that higher and lower values are better, respectively. C→S and S→C denote communication from the client to the
server and from the server to the client, respectively.

CIFAR100 (U = 10, C = 2)

Methods Accuracy ↑ AF ↓ Avg. Comp. ↓ Comm. Cost ↓ GPU (Peak) ↓ Disk ↓
(Sec/Round) C→S S → C

FedAvg 31.7 (± 1.7) 25.2 (± 1.3) 3.3 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedALA 36.5 (± 2.4) 27.3 (± 0.5) 3.6 sec 44.6 MB 44.6 MB 1.93 GB N/A
FedDBE 37.0 (± 1.6) 26.1 (± 0.7) 3.6 sec 44.6 MB 44.6 MB 1.91 GB N/A
FedAS 58.2 (± 0.1) 56.1 (± 0.1) 13.7 sec 44.6 MB 44.6 MB 1.92 GB N/A
FedOMG 39.1 (± 1.3) 24.5 (± 0.4) 4.1 sec 44.6 MB 44.6 MB 1.92 GB N/A

GLFC 44.8 (± 2.1) 29.5 (± 0.4) 18.3 sec 88.2 MB 46.5 MB 4.33 GB 22.1 MB
FedCIL 46.5 (± 2.2) 28.8 (± 1.2) 22.3 sec 95.3 MB 44.6 MB 4.81 GB 18.5 MB
LANDER 50.8 (± 1.3) 22.6 (± 0.4) 15.8 sec 88.2 MB 104.3 MB 5.26 GB 131.5 MB
TARGET 45.1 (± 2.4) 28.6 (± 1.6) 25.6 sec 112.4 MB 44.6 MB 3.65 GB 18.5 MB
FedL2P 48.2 (± 1.8) 28.1 (± 0.6) 8.6 sec 56.3 MB 56.3 MB 2.56 GB N/A

FedWeIT 52.6 (± 1.3) 25.7 (± 0.9) 5.4 sec 44.5 MB 44.5 MB 5.83 GB 61.7 GB
AF-FCL 51.4 (± 0.7) 48.7 (± 1.2) 4.9 sec 156.3 MB 121.3 MB 8.93 GB N/A

STAMP 52.8 (± 0.9) 24.3 (± 0.8) 9.1 sec 44.6 MB 44.6 MB 1.92 GB 16.3 MB

ImageNet1K (U = 10, C = 2)

FedAvg 24.3 (± 5.1) 19.6 (± 0.1) 133.2 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedALA 27.2 (± 9.1) 20.3 (± 0.2) 141.6 sec 112.5 MB 112.5 MB 16.12 GB N/A
FedDBE 29.2 (± 7.2) 19.4 (± 0.2) 142.7 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedAS 43.5 (± 4.4) 40.2 (± 0.4) 498.5 sec 112.5 MB 112.5 MB 16.11 GB N/A
FedOMG 30.4 (± 3.8) 21.1 (± 0.7) 171.3 sec 112.5 MB 112.5 MB 16.11 GB N/A

GLFC 31.4 (± 3.1) 27.4 (± 0.6) 466.7 sec 225.3 MB 121.2 MB 20.24 GB 112.6 MB
FedCIL 33.8 (± 3.6) 25.8 (± 0.7) 652.3 sec 245.5 MB 112.5 MB 23.47 GB 184.3 MB
LANDER 34.9 (± 2.7) 26.1 (± 0.9) 573.8 sec 267.4 MB 453.6 MB 26.54 GB 1.31 GB
TARGET 33.2 (± 4.2) 25.2 (± 0.4) 913.2 sec 287.4 MB 112.5 MB 21.08 GB 184.3 MB
FedL2P 34.5 (± 4.8) 26.4 (± 0.2) 303.7 sec 146.6 MB 146.6 MB 18.21 GB N/A

FedWeIT 39.7 (± 3.1) 21.5 (± -) 194.2 sec 111.8 MB 111.8 MB 62.7 GB 640 GB
AF-FCL 8.3 (± 5.3) 46.6 (± 0.3) 176.7 sec 421.3 MB 336.8 MB 46.81 GB N/A

STAMP 41.5 (± 2.4) 24.2 (± 0.8) 321.2 sec 112.5 MB 112.5 MB 16.11 GB 152.6 MB

burden similar to conventional CL methods relying on re-
play memory. Moreover, transmitting synthetic data from
the server to clients imposes considerable communication
overhead.

Key insights from Tables 1 and 2 show that more difficult
scenarios, particularly those with only two classes per task,
are more prone to catastrophic forgetting. This arises be-
cause each task conveys limited information about the entire
dataset, leading to higher average forgetting (AF) scores.
STAMP achieves the most notable improvements in both
accuracy and forgetting. In addition, its communication
cost remains on par with standard FL methods. STAMP
also demands relatively low RAM and disk usage, making
it well-suited for deployment on devices with constrained
resources.

4.2. Performance under tasks with non-IID settings

Figure 2 illustrates the test accuracy across varying levels
of data heterogeneity for CIFAR10, CIFAR100, Digit10,
and Office31 datasets. As shown in the figure, all methods
achieve higher test accuracy as data heterogeneity decreases
(i.e., larger α). Notably, STAMP consistently delivers supe-
rior and stable performance across different heterogeneity
levels, demonstrating its robustness under non-IID condi-
tions.

4.3. Analysis on STAMP

4.3.1. ANALYSIS ON TEMPORAL GRADIENT MATCHING

To assess the effectiveness of temporal gradient matching
on the client side, we analyze the gradient angles produced
by STAMP on CIFAR100 and ImageNet1K datasets and
compare them against two sets of baseline methods: FedAvg
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Figure 3. Performance w.r.t data heterogeneity  for four datasets.
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Figure 2: Performance w.r.t data heterogeneity α for four datasets.
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Figure 3: The figures illustrate the average temporal gradient
angles across different baseline methods.

and FedL2P for standard FL, and FedWeIT and AF-FCL
for FCL. Figure 3 shows that STAMP achieves superior
gradient alignment with previously learned tasks. This en-
hanced alignment indicates that STAMP is less susceptible
to catastrophic forgetting compared to existing methods.

4.3.2. EFFICIENCY OF SPATIO GRADIENT MATCHING

Figure 4 reports the gradient divergence for various baseline
methods on CIFAR100 and ImageNet1K under two scenar-
ios: 20 classes per task and the more challenging 2 classes
per task. Unlike existing baselines that typically neglect
alignment among client gradients, STAMP attains signifi-
cantly better gradient alignment. This improvement enables
model updates to better approximate invariant aggregated
gradient directions across clients for specific tasks, thus im-
proving the generalization of the aggregated model. This
finding aligns with the reduced global-local generalization
gap observed in Figure 1b.
4.4. Ablation Study on STAMP

Table 3 shows the ablation results for each component of the
framework. The findings indicate that both Spatio grAdient
Matching (SAM) and Temporal grAdient Matching (TAM)
consistently improve average classification accuracy. In par-
ticular, SAM has a more pronounced impact on accuracy
by enhancing generalization across tasks within a single
communication round, whereas TAM is more crucial for
lowering average forgetting by alleviating catastrophic for-
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Figure 4: The figures illustrate the average spatio gradient
angles across different baseline methods.
Table 3: We conduct ablation studies on the CIFAR100 and
ImageNet1K datasets, using 10 clients and 2 classes per task.
Specifically, (1) refers to spatio-temporal gradient matching
performed on the server side, (2) denotes temporal gradient
matching executed on the client side.

Method CIFAR100 ImageNet1K
Acc. AF Acc. AF

FedAvg 31.7 (± 1.7) 22.1 (± 1.3) 24.3 (± 5.1) 19.6 (± 0.1)
(1) 38.1 (± 1.3) 23.8 (± 0.4) 30.5 (± 2.8) 26.1 (± 0.7)
(2) 37.8 (± 0.6) 21.7 (± 0.9) 28.3 (± 2.6) 23.8 (± 0.6)
STAMP 52.8 (± 0.9) 24.3 (± 0.8) 41.5 (± 2.8) 24.2 (± 0.8)

getting through aligning learned gradients with those from
previous tasks on the same client.

5. Conclusion
This paper addresses the challenges of federated contin-
ual learning (FCL) in realistic scenarios marked by client
data heterogeneity and task conflicts. To overcome the
limitations of current generative replay-based approaches,
we proposed a novel model-agnostic framework: Spatio-
Temporal Gradient Matching. Our method effectively re-
duces catastrophic forgetting and data bias by performing
gradient matching in both temporal and spatial domains. Ex-
tensive experimental results demonstrate that our approach
consistently surpasses existing baselines, underscoring its
effectiveness as a robust solution for FCL in diverse and
dynamic settings.
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A. Related Works
A.1. Importance-based Sampling

LGA (Dong et al., 2024) proposes balancing class contributions to the gradient to reduce forgetting caused by class imbalance
in incremental tasks. Re-Fed (Li et al., 2024) defines an importance score to selectively store key samples in replay memory.
SCFL (Luu et al., 2023) removes samples that has the high affinity score with the previous samples. FedWeIT (Yoon et al.,
2021) splits model weights into global and task-specific parts, letting clients combine task-specific knowledge from others
in a weighted manner. FedSSI (Li et al., 2025a) adds a regularization term that tracks how important each weight is during
training. It prevents important weights from changing too much, helping to preserve past knowledge.

A.2. Gradient Memory

GradMA (Luo et al., 2023) adjusts gradients locally by projecting them using stored gradients from other clients, optimized
through quadrature methods.

A.3. Generative Replay Memory

Generative models contributes significantly to the design of generative replay memory, by introducing models that generate
pseudo data (Vu et al., 2025). FedCIL (Qi et al., 2023) offers an efficient way to train GAN-based replay memory in
distributed settings. TARGET (Zhang et al., 2023a) trains a server-side generative model to create data aligned with the
global model, then uses it to update local models through knowledge distillation. AF-FCL (Wuerkaixi et al., 2024) applies a
normalizing flow to model the core data distribution while removing biased features. pFedDIL (Li et al., 2025b) uses a small
auxiliary classifier in each personalized model to distinguish its own task from others, aiding knowledge transfer across
tasks. FBL (Dong et al., 2023) generates trustworthy pseudo labels using adaptive class balancing, semantic correction, and
relation consistency, which helps correct background shifts and stabilize gradient updates.

A.4. Episodic Replay Memory for Continual Learning

GEM (Lopez-Paz & Ranzato, 2017) introduces episodic memory to store selected past samples and compute task-specific
gradients, enabling gradient projection to reduce forgetting. VR-MCL (Wu et al., 2024) presents a meta-learning approach
that leverages stored data in memory for continual learning.

(Qi et al., 2023) shows that client-specific feature shifts can harm GAN-based replay in federated learning. FedCIL addresses
this with a distillation strategy to reduce domain discrepancies. GPM (Saha et al., 2021) stores gradient directions in memory
instead of raw data, supporting continual learning. FS-DGPM (Deng et al., 2021) improves GPM by flattening gradient
projections, leading to better generalization and resistance to noisy loss landscapes.
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B. Experimental Details
Our experiments are built upon the pFLLib framework (Zhang et al., 2025) and conducted using a system equipped with
four NVIDIA GeForce RTX 4090 GPUs and two NVIDIA GeForce RTX 3090 GPUs. Detailed configurations are described
below.

B.1. Datasets

We investigate heterogeneous Federated Continual Learning (FCL) settings to simulate realistic, challenging non-IID
scenarios. Following (Dohare et al., 2024), we create sequential classification tasks by grouping classes. For instance,
one task might involve differentiating chickens from llamas, while another might focus on distinguishing phones from
computers.

To assess performance under varying levels of heterogeneity, we test two distinct task configurations. In the first, each task
comprises 20 distinct classes, representing a conventional setup commonly found in existing literature (Wuerkaixi et al.,
2024). In the second, each task contains only 2 classes, creating a more challenging environment where models are more
prone to overfitting and catastrophic forgetting, leading to increased client divergence.

We utilize two widely recognized benchmark datasets:

Non-Overlapped-CIFAR100. This dataset (Krizhevsky, 2009) contains 60,000 32×32 images across 100 object categories.
For the 2-class per task setup, 4950 unique tasks can be formed. For 20 classes per task, over 5× 1020 tasks are possible.

Non-Overlapped-ImageNet1K. This dataset (Deng et al., 2009) features over 1.3 million high-resolution images (224×224
after resizing) from 1,000 categories. With 2 classes per task, we can form half a million tasks. For 20 classes per task, over
3× 1041 tasks can be created. ImageNet1K’s large scale and diversity present significant challenges in terms of memory,
computation, and model scalability.

B.2. Baselines

We compare our approach against several established methods from both traditional Federated Learning (FL) and Federated
Continual Learning (FCL). For conventional FL, we include FedAvg (McMahan et al., 2017) as the foundational baseline.
We also incorporate personalized FL methods like FedALA (Zhang et al., 2023c), FedL2P (Lee et al., 2023), and FedAS
(Yang et al., 2024), which help models adapt to client-specific data. Furthermore, we include methods focused on constructing
more robust global models by reducing inter-client bias, such as FedDBE (Zhang et al., 2023b) and FedOMG (Nguyen et al.,
2025).

For FCL, we assess several state-of-the-art methods. FedWeIT (Yoon et al., 2021) exemplifies approaches that use
specialized modules for task-specific adaptation. GLFC (Dong et al., 2022) employs a distillation-based method to combat
forgetting. FedCIL (Qi et al., 2023), LANDER (Tran et al., 2024), TARGET (Zhang et al., 2023a), and AF-FCL (Wuerkaixi
et al., 2024) adopt generative replay strategies, training generative models on each client to synthesize pseudo-data for
previously encountered tasks. Among these, AF-FCL is particularly relevant as it directly addresses heterogeneous FCL.
Lastly, FedSSI (Li et al., 2025a) is included for its approach of estimating the importance of weight changes to preserve
prior knowledge.

B.3. Evaluation Metrics

We use two standard metrics from the Continual Learning (CL) literature (Yoon et al., 2021; Mirzadeh et al., 2021) to
evaluate global model performance in FCL: accuracy and averaged forgetting.

Averaged Forgetting (AF). This metric quantifies how much a model forgets previously learned tasks. It measures the
decline from a task’s highest accuracy (typically right after training) to its final accuracy after all tasks have been learned.
For T tasks, it’s calculated as:

AF =
1

T − 1

T−1∑
i=1

max
t∈1,...,T−1

(at,i − aT,i). (6)

Minimizing AF is crucial for maintaining overall performance as the model shifts focus to new tasks.
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B.4. Architecture Details

For CIFAR-10, CIFAR100, Digit10, and Office31, we use ResNet-18 (He et al., 2016) as the backbone network architecture
for all validation experiments. For ImageNet1K, we employ Swin Transformer Tiny (Swin-T) (Liu et al., 2021) as the
backbone. It’s important to note that FCIL, LANDER, TARGET, FedL2P, FedWeIT, and AF-FCL use additional generative
networks or modify their network architectures, with details summarized in Table 4.

Table 4: Architectural details of methods with modified models.

Method CIFAR-10, CIFAR100, Digit10, Office31 ImageNet1K

Model #Params Model #Params

FedAvg ResNet-18 11.7 M Swin-T 28.8 M
FedSSI ResNet-18 11.7 M Swin-T 28.8 M

FCIL ResNet-18 + GAN 16.1 M Swin-T + GAN 49.7 M
LANDER ResNet-18 + GAN 16.1 M Swin-T + GAN 49.7 M
TARGET ResNet-18 + GAN 16.1 M Swin-T + GAN 49.7 M
FedL2P ResNet-18 + Meta-Net 13.5 M Swin-T + Meta-Net 32.6 M

FedWeIT (T) Modified ResNet-18 596.2 M Modified Swin-T 7192.3 M
FedWeIT (C) Modified LeNet 171.8 B
AF-FCL ResNet-18 + NFlow 21.3 M Swin-T + NFlow 53.4 M

Specifically, FedWeIT augments the base model with sparse task-adaptive parameters, task-specific masks over local base
parameters, and attention weights for inter-client knowledge transfer. FCIL, LANDER, and TARGET incorporate additional
GANs to learn past task features. FedL2P introduces a meta-network that generates personalized hyperparameters, such
as batch normalization statistics and learning rates, adapted to each client’s local data distribution to improve learning on
non-IID data. AF-FCL additionally requires a normalizing flow generative model (NFlow1) for credibility estimation and a
generative replay mechanism, which guide selective retention and forgetting.

Table 5: Experimental Details. Settings for heterogeneous and non-IID distributed FCL.

Attributes Heterogeneous FCL Non-IID distributed FCL

CIFAR100 ImageNet1K CIFAR10 CIFAR100 Digit10 Office31

Task size 141 MB / 14 MB 8 GB / 0.8 GB 141 MB 141 MB 480 MB 88 MB
Image number 60K 1.3M 60K 60K 110K 4.6K
Image Size 3× 32× 32 3× 224× 224 3× 32× 32 3× 32× 32 1× 28× 28 3× 300× 300
Task number 5/50 50/500 5 10 4 3

Batch Size 128 128 64 64 64 32
ACC metrics Top-1 Top-1 Top-1 Top-1 Top-1 Top-1
Learning Rate 0.005 0.005 0.01 0.01 0.001 0.01
Data heterogeneity N/A N/A 0.1 10.0 0.1 1.0
Client numbers 10 10 10 10 10 10
Local training epoch 5 5 5 5 5 5
Client selection ratio 1.0 1.0 1.0 1.0 1.0 1.0
Communication Round 25 25 80 100 60 60

B.5. Training Details

In our proposed heterogeneous federated continual learning framework for the CIFAR100 and ImageNet1K datasets, we
consider a setting involving 10 clients with a client participation fraction of 1.0. We don’t adopt a conventional non-IID

1NFlow refers to the normalizing flow model, where the example is provided in https://github.com/zaocan666/AF-FCL/
blob/main/FLAlgorithms/PreciseFCLNet/model.py
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distribution in this scenario; instead, each client is assigned distinct classes, which introduces a level of heterogeneity that’s
more challenging than typical non-IID configurations.

Additionally, we evaluate the proposed approach under non-IID conditions using four benchmark datasets: CIFAR-10,
CIFAR100, Digit-10, and Office-31. For these experiments, we simulate data heterogeneity using the Dirichlet distribution
with varying concentration parameters (e.g., α = 0.1, 1.0, 10.0, and 100.0) to control the degree of non-IID-ness. Table 5
provides the complete experimental details.
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