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ABSTRACT

Knowledge editing techniques have emerged as essential tools for updating the
factual knowledge of large language models (LLMs) and multimodal models
(LMMs), allowing them to correct outdated or inaccurate information without
retraining from scratch. However, existing benchmarks for multimodal knowledge
editing primarily focus on entity-level knowledge represented as simple triplets,
which fail to capture the complexity of real-world multimodal information. To
address this issue, we introduce MMKE-Bench, a comprehensive MultiModal
Knowledge Editing Benchmark, designed to evaluate the ability of LMMs to edit
diverse visual knowledge in real-world scenarios. MMKE-Bench addresses these
limitations by incorporating three types of editing tasks: visual entity editing, visual
semantic editing, and user-specific editing. Besides, MMKE-Bench uses free-form
natural language to represent and edit knowledge, offering a more flexible and
effective format. The benchmark consists of 2,940 pieces of knowledge and 7,229
images across 110 fine-grained types, with evaluation questions automatically
generated and human-verified. We assess five state-of-the-art knowledge editing
methods on three prominent LMMs, revealing that no method excels across all
criteria, and that visual and user-specific edits are particularly challenging. MMKE-
Bench sets a new standard for evaluating the robustness of multimodal knowledge
editing techniques, driving progress in this rapidly evolving field.

1 INTRODUCTION

Large language models (LLMs) and multimodal models (LMMs) have demonstrated remarkable
success across various tasks due to their powerful understanding and reasoning abilities, grounded
in vast amounts of knowledge (Brown et al., 2020; Zhao et al., 2023; Liu et al., 2024b). However,
the knowledge within these models can become outdated or inaccurate over time due to evolving
real-world information and changes in factual data. To address this, knowledge editing techniques
have been developed to correct inaccuracies and inject new knowledge into pre-trained models
with minimal cost, without affecting unrelated content (Mitchell et al., 2022b; Yao et al., 2023). In
recent years, several datasets have been introduced to benchmark the progress of knowledge editing
methods in both the textual (Yao et al., 2023; Onoe et al., 2023; Cao et al., 2021; Li et al., 2023b) and
multimodal domains (Cheng et al., 2023; Huang et al., 2024; Li et al., 2024; Zhang et al., 2024).

However, most existing benchmarks focus on editing entity-level knowledge, typically formatted as a
triplet (subject, relation, object). While effective in certain tasks, this format lacks the complexity
required for real-world applications, particularly in multimodal domains where visual knowledge
must also encompass actions, body gestures, and object relationships. Furthermore, knowledge
editing techniques have quickly saturated on these benchmarks, achieving near-perfect performance.
For example, simply fine-tuning the LLaVA model achieved 99.59%, 99.43%, and 95.48% accuracies
for reliability, text generalization, and image generalization, respectively, on the VLKEB bench-
mark Huang et al. (2024). This highlights the urgent need for a more challenging benchmark to foster
the development of multimodal knowledge editing techniques.

To address these issues, we introduce MMKE-Bench, a comprehensive multimodal knowledge editing
benchmark designed to evaluate diverse semantic editing in real-world scenarios. MMKE-Bench
represents multimodal knowledge using free-form natural language descriptions paired with images,
providing a richer and more flexible expression of interconnected information. Reflecting real-world
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Figure 1: Comparison between the existing benchmark and MMKE-Bench with a detailed example.
In this example, the texts in red represent the edited counterfactual content. T/I-Rel represents
text and image reliability, T/I-Gen represents text and image generalization and Port represents
portability. Previous benchmarks mainly focus on entity recognition editing using a triplet-based
knowledge representation format, which does not align with actual scenarios. MMKE-Bench focuses
on evaluating diverse semantic editing in realistic scenarios in a natural language format.

needs, MMKE-Bench includes three types of editing: visual entity editing, visual semantic editing,
and user-specific editing. Visual entity editing updates entity-centric visual knowledge, while visual
semantic editing targets complex object behaviors and relationships, such as referee gestures and
traffic signals. Lastly, user-specific editing evaluates the model’s ability to integrate individualized
knowledge. The first two types modify existing knowledge, while the third adds new knowledge.
Comparisons with existing benchmarks are shown in Fig.1 and Tab.1.

To construct MMKE-Bench, we first collect original knowledge from various images and knowledge
sources (e.g., multimodal knowledge graphs, demo videos, Google, and LLM generation). Next,
we create editing knowledge by applying counterfactual editing for the text modality and image
replacement for the image modality. User-specific editing involves adding entirely new, personalized
knowledge to the model and does not need counterfactual editing. Following previous works (Zheng
et al., 2023; Huang et al., 2024), we adhere to four evaluation principles: reliability, locality, gener-
alization, and portability, generating evaluation questions and answers automatically. Finally, all
questions and answers undergo human verification and are revised where necessary. The resulting
benchmark contains 2,940 pieces of knowledge and 7,229 images across 110 fine-grained types.

We evaluate five of the most prominent multimodal knowledge editing methods on three representative
LMMs, assessing their performance in both single and sequential editing tasks. Empirically, we
find that (i) no single editing method excels across all evaluation criteria; (ii) visual knowledge and
user-specific knowledge are more difficult for LMMs to edit; (iii) modern LMMs excel in producing
and applying edited knowledge; and (iv) the proposed benchmark proves more challenging than
previous benchmarks.

To sum up, our contribution can be summarized as follows:

• We propose MMKE-Bench, a challenging benchmark for evaluating diverse semantic editing
in real-world scenarios. It adopts free-form natural language-based knowledge representation
and includes three types of editing aligned with real-world contexts.
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Table 1: Overall comparison with existing multimodal knowledge editing benchmarks.

Benchmark Knowledge Representation Visual Entity
Editing

Visual Semantic
Editing

User-Specific
Editing Evaluation Principle

MMEdit Short-Text ✓ ✗ ✗ Reliability, Locality, and Generalization
MIKE Triplet ✓ ✗ ✗ Reliability, Locality, and Generalization
MC-MKE Triplet ✓ ✗ ✗ Reliability, Locality, and Generalization
VLKEB Triplet ✓ ✗ ✗ Reliability, Locality, Generalization, and Portability
MMKE-Bench Free-Form Natural Language ✓ ✓ ✓ Reliability, Locality, Generalization, and Portability

• We introduce a novel pipeline for benchmark construction that collects original knowledge,
generates editing knowledge, and produces evaluation questions guided by four principles.

• Extensive experiments with various baseline methods and LMMs in both single and se-
quential editing settings are conducted, revealing several limitations in existing knowledge
editing approaches.

2 RELATED WORK

2.1 LARGE MULTIMODAL MODEL

Large multimodal models have achieved excellent performance in various multimodal understanding
tasks due to vast knowledge and effective cross-modality alignment. Typically, such models integrate
a vision encoder with a pertained large language model, linking the two components by an alignment
module. Notably, BLIP-2 (Li et al., 2023a) adopts Q-Former, a lightweight Transformer, as the
alignment module. Inspired by the instruction tuning in LMM, MiniGPT-4 (Zhu et al., 2023) and
InstructBLIP (Dai et al., 2023) enhance this structure with multimodal instruction tuning. In contrast,
LLaVA (Liu et al., 2024b) utilizes an MLP layer for alignment and proposes to generate an instruction-
tuning dataset by self-instruct strategy (Wang et al., 2022). Qwen-VL (Bai et al., 2023) introduces a
novel module, the visual receptor, as its alignment module and proposes a three-stage training pipeline,
achieving excellent performance across various multimodal tasks. Besides, several notable LMMs,
such as mPLUG-DocOw 1.5 (Hu et al., 2024), InternVL-2 (Chen et al., 2024), and MiniCPM-V
2.5 (Yao et al., 2024), have also achieved comparable or even superior results compared with GPT-4o.

2.2 KNOWLEDGE EDITING FOR LARGE LANGUAGE MODEL

Existing methods for LLM can be divided into three categories: resorting to external knowledge,
incorporating knowledge into the model, and editing internal knowledge. Resorting to external
knowledge typically involves maintaining memory and retrieving the most relevant cases for each
input. For instance, IKE Zheng et al. (2023) provides in-context learning example support by building
three types of demo examples: copy, update, and retain. SERAC Mitchell et al. (2022b) builds a new
counterfactual model by keeping the base model and using a scope classifier to determine whether
to answer with a counterfactual model. The category of merging the knowledge into the model
aims to learn representations of the new knowledge and incorporate this information into the model.
Eva-KELLM Wu et al. (2023a) employs LoRA for knowledge editing, while GRACE (Hartvigsen
et al., 2023) adopts a novel approach by maintaining a discrete codebook functioning as an adapter.
Lastly, editing intrinsic knowledge works on directly modifying the model’s weight using knowledge-
specific methods through meta-learning and localization editing. The meta-learning method trains
a hypernetwork to learn how to adjust the model. KE De Cao et al. (2021) utilizes new knowledge
representations directly to train the model to update the matrix, while MEND Mitchell et al. (2022a)
applies rank-one decomposition to divide the model into two rank matrices. Additionally, localization
approaches, like ROME Meng et al. (2022) and MEMIT, Meng et al. (2024) employ a causal analysis
method to detect which parts of the hidden state are more important by treating editing as minimal
optimization, ensuring its reliability and non-circumvention.

2.3 KNOWLEDGE EDITING FOR LARGE MULTIMODAL MODEL

Recently, several benchmarks have been proposed to evaluate the performance of editing LMMs.
The MMEdit benchmark (Cheng et al., 2023) systematically defines the first evaluation framework
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for multimodal knowledge editing based on visual question answering and image caption tasks. As
the MMEdit could not assess fine-grained entity knowledge, subsequent evaluation benchmarks
focus on fine-grained entity recognition editing. MIKE (Li et al., 2024) evaluates recognizing new
entities while VLKEB (Huang et al., 2024) targets editing known entities and introduces a portability
evaluation principle. MC-MKE (Zhang et al., 2024) further extends fine-grained entity recognition by
emphasizing modality consistency. However, these benchmarks mainly represent editing knowledge
through triples and overlook diverse semantic editing in realistic scenarios.

3 PROBLEM DEFINITION

3.1 KNOWLEDGE REPRESENTATION AND EDITING

MMKE-Bench is distinctive in evaluating diverse semantic editing in realistic scenarios, leveraging
natural language-based knowledge representation. It includes three types of editing: visual entity
editing, visual semantic editing, and user-specific editing. Each piece of knowledge is represented
in a unified format, k = (i, d), where i refers to the image and d represents the natural language
description of the main object, visual content, or a user-personalized item. For example, in the case
of a referee’s gesture, the image captures the action performed by the referee, while the description
explains how the gesture is executed and its impact on the match. During knowledge editing, the
original knowledge is transformed into ke = (ie, de) in both visual entity and visual semantic editing,
while it remains ke = (i, d) for user-specific editing. This is because user-specific editing introduces
entirely new personalized knowledge into LMMs without needing to alter the image or description.

3.2 EDITING TYPE OF MMKE-BENCH

Considering real-world needs, MMKE-Bench includes three types of editing as follows.

Visual Entity Editing This type targets entity-centric modifications and the description covers
multiple aspects of an entity. In realistic scenarios, models may misidentify or retain incorrect or
outdated information about the entity. Visual entity editing addresses this issue by allowing for
simultaneous correction of all related content. To simulate such scenarios, we propose replacing the
original image of the entity with that of another entity of the same type and modifying key information
into counterfactual content. As shown in Fig.1, Zlatan Ibrahimović’s image is replaced with that of
Wayne Rooney, and related information (e.g., nationality, club) is altered to counterfactual details.

Visual Semantic Editing This type focuses on complex visual semantics-centric modifications,
encompassing body gestures, actions, object relationships, and so on. The description provides de-
tailed information about the semantic action and its rules or meanings. The LMMs may misrecognize
and misunderstand these semantics, but visual semantic editing can address this issue by modifying
both actions images, and meanings simultaneously. To simulate this, this type of editing also involves
replacing the image of one semantic action with that of another action of the same type and altering
the rule or meaning to counterfactual content. As shown in Fig.1, the offside gesture in soccer is
replaced with that of substitution, and the associated rule (e.g. kick-off location) is modified to
counterfactual contents.

User-Specific Editing This type focuses on injecting personalized user information into LMMs, and
the description details the relationship between the user and the object, as well as their experiences.
As there is a growing demand for LMMs to function as personalized AI assistants that can remember
relevant user information, user-specific editing is designed to meet this need. Pre-trained LMMs
serve as general models, so all user-specific information is treated as new knowledge for LMM. Thus,
counterfactual editing is unnecessary, and original knowledge is used as editing knowledge. For
example, Fig.1 describes the relationship between the toy puppet and the user’s habits.

4 BENCHMARK

As shown in Fig. 2, we construct the benchmark through four steps: i) Original Knowledge Collection;
ii) Editing Knowledge Generation; iii) Evaluation Question Generation; and iv) Human Verification.
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Figure 2: The construction pipeline of MMKE-Bench.

4.1 ORIGINAL KNOWLEDGE COLLECTION

In gathering original knowledge, we first list candidate fine-grained entities, visual semantics, or
user-specific items, and then collect their corresponding images and descriptions.

For visual entity editing, we source candidates from two datasets: the multimodal knowledge graph,
MMpedia Wu et al. (2023b), and the visual entity recognition dataset, OVEN Hu et al. (2023).
For each entity selected from the existing dataset, we get their images from the datasets and then
manually review the images by removing the entities that cannot uniquely identify the main entity
from images and noise images. For entities with less than two images, we recollect additional images
by crawling from Google. Next, we retrieve entity descriptions from the Wikipedia summary dumps1

and summarize the description by an LLM to generate the final descriptions. As shown in Fig. 3, this
type covers 10 broad categories and 70 types.

Figure 3: The types of samples in MMKE-Bench.

For visual semantic editing, as shown in
Fig. 3, we define the candidates across 14
broad categories of semantic knowledge,
including single-person behaviors, single-
object behaviors or attributes, object rela-
tionships, and global structures. These cat-
egories are further divided into 25 types.
For certain types of visual knowledge that
have corresponding datasets, such as ob-
ject relationships, textures, and art styles,
we collect both the candidate semantics
and associated images from these datasets.
For other cases, we extract images from
demonstration videos or gather them via
Google, applying human verification for
quality control. Descriptions of the visual
semantic actions, along with the rules or
meanings conveyed by these behaviors, are
generated with the assistance of LLM or hu-
man writers. Details of the image sources
are provided in the appendix.

For user-specific editing, we consider 9 broad categories of personalized information sources, such as
favorite singers, owned pets, and alma maters. For personal items and pets, we gather candidates and
images from the existing personalized research works Nguyen et al. (2024); Alaluf et al. (2024). For
singers, actors, and cartoon characters, we first generate a candidate list and then crawl images from
Google. For other categories, including company, university, sports club, and organization, we source
candidates from MMpedia, manually verifying and removing noise images. Finally, we employ an
LLM to generate personalized relationships and experiences between the user and these objects.

1https://dumps.wikimedia.org/enwiki/20240620/
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4.2 EDITING KNOWLEDGE GENERATION

Considering the multimodal nature of large multimodal models (LMMs), we propose editing both
text and visual modalities when constructing the benchmark. Specifically, we focus on editing visual
entities and visual semantic knowledge while leaving user-specific knowledge unchanged. The former
is treated as knowledge editing, while the latter is regarded as knowledge insertion.

For the visual modality, we follow the image-replacement-based editing approach from previous
work Huang et al. (2024), where an image of the entity or semantic action is randomly replaced
with another of the same type. For example, as illustrated in Fig. 1 and Fig. 2, the assistant referee’s
offside penalty gesture is replaced with a substitution gesture in the edited visual content. In the text
modality, we modify key information about the entity and the rule or meaning into counterfactual
content for visual entity editing and visual semantic editing, respectively. Additionally, we update
the action description to align with the new visual content. In the example of the offside gesture, the
original action description is replaced with that of the substitution gesture, and the kick-off location
is edited from the foul position to the penalty spot.

4.3 EVALUATION QUESTION GENERATION

We adhere to four key evaluation principles to generate both the questions and answers. The reliability
and portability questions are generated by prompting LLM and we show the prompts in the appendix.

Reliability Question Generation The reliability criterion assesses whether the edited knowledge is
correctly produced after the editing process. When generating questions and answers, we prompt the
LLM with a requirement that the question must ask one aspect of the edited counterfactual content
(e.g., the kick-off location of the offside penalty). To evaluate this, we consider both text reliability
and image reliability, measuring the LMM’s ability to edit across text and visual modalities. Text
reliability questions are crafted to be answerable without images, while image reliability questions
use the format {the type in the image} to reference the main object, behavior, or personalized item.
An example is provided in Fig. 2. We denote the reliability question sets as Qrel = (ie, qr, ar), where
ie represents the edited image, qr the question, and ar the answer. Let Mθ and M ′

θ denote the original
and edited LMMs, respectively, and I[·] denoted indicator function, reliability is then evaluated as:

E(ie,qr,ar)∼Qrel
I [M ′

θ(ie, qr) = ar] (1)

Locality Question Generation The locality criterion evaluates how much unrelated knowledge
remains unchanged in the edited model by comparing its outputs before and after the editing process.
For locality, we assess both text and image locality, which tests the model’s stability when dealing
with out-of-scope knowledge from each modality. Following prior work, we source locality questions
and answers from the VLKEB benchmark Huang et al. (2024), where the text questions are drawn
from the NQ dataset Kwiatkowski et al. (2019), and the image questions are specifically designed by
VLKEB. We represent the locality question set as Qloc = (il, ql), and locality is evaluated as:

E(il,ql)∼Qloc
I [Mθ(il, ql) = M ′

θ(il, ql)] (2)

Generalization Question Generation The generalization criterion evaluates how effectively the
model responds to neighboring samples. Unlike triplet-based knowledge editing, we focus exclusively
on image generalization, as text generalization is not considered due to the free-form knowledge
format. For image generalization, we randomly select another image ige from the multiple available
images of an entity, visual behavior, or personalized item, and reuse the same question and answer
from the image reliability, with an example shown in Fig. 2. We define the generalization question as
Qgen = (ige , qg, ag), where qg = qr and ag = ar for the same object. Generalization is evaluated as:

E(ige ,qg,ag)∼Qgen
I [M ′

θ(i
g
e , qg) = ag] (3)

Portability Question Generation The portability criterion evaluates whether the edited knowledge
can be successfully applied to related content. Following prior work Huang et al. (2024), we adopt
text portability evaluation for visual entity editing and image modality portability for visual semantic
and user-specific editing to enhance visual modality evaluation.

For visual entity editing, we generate questions about the edited content, utilizing supplementary
information from Wikipedia for question generation. For example, if the current entity is the Eiffel
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Tower and the edited content refers to the building’s designer, we might create a question like, “Who
is the designer of the Eiffel Tower?” We can then generate another question about the edited content,
such as asking for the designer’s birth year. By combining these two questions, we can formulate the
final probability question: “In which year was the builder of the Eiffel Tower born?”

In the case of visual semantic and user-specific editing, we first combine the image of the main
behavior or item with another image of the same type to create a new image, denoted as ipe . We then
pose a question focusing on the differences between the two images, such as hair color or object shape.
By integrating this question with one related to the edited content, we derive the final portability
question. For instance, as shown in Fig. 2, given an image that includes the offside penalty gesture
and the corner-kick gesture made by two assistant referees, we might ask, “What color is the tops
of the referee who is making the offside gesture in the image?”. Denote the portability question as
Qport = (ipe, qp, ap), portability is evaluated as:

E(ipe ,qp,ap)∼Qport
I [M ′

θ(i
p
e, qp) = ap] (4)

4.4 HUMAN CHECK & BENCHMARK STATISTICS

During benchmark construction, we manually collected, reviewed, and filtered the samples multiple
times. In the original knowledge collection stage, we conducted a thorough manual review of
the images associated with each entity, behavior, and object to ensure the quality of the collected
visuals. Furthermore, after counterfactual editing and question generation, we manually reviewed the
questions, revised unsuitable questions, and corrected wrong answers.

Table 2: The statistics of MMKE-Bench.

Types Train Test Images
Visual Entity Editing 75 636 955 3,182
Visual Semantic Editing 42 214 293 1,521
User-Specific Editing 24 331 511 2,526

The statistics of MMKE-Bench are shown in Tab.2.
MMKE-Bench encompasses 3 classes of edited
knowledge, totaling 2,940 knowledge pieces and
7,229 images. The knowledge spans 110 types,
highlighting the diversity of MMKE-Bench. We
split the dataset into training and validation sets at
4:6, with the training set reserved solely for specific
knowledge editing methods (e.g., SERAC Mitchell et al. (2022b) and MEND Mitchell et al. (2022a)).

5 EXPERIEMENT

5.1 EXPERIMENTAL SETUP

LMMs and Editing Methods To evaluate our benchmark, we conduct experiments on three
representative LMMs: BLIP-2 (Li et al., 2023a), MiniGPT-4 (Zhu et al., 2023), and LLaVA-1.5 (Liu
et al., 2024a). Besides, following the previous benchmarks, we select five representative multimodal
knowledge editing methods: 1) Fine-tuning (FT). We focus on finetuning the LLM (FT-LLM) or
the vision-language alignment module (FT-Alignment), where only the last layer of the LLM is fine-
tuned.2) Knowledge Editor (KE) (De Cao et al., 2021). KE uses a hyper-network with constrained
optimization to predict the weight update at test time. 3) MEND (Mitchell et al., 2022a): MEND
learns a low-rank decomposition of the gradient of standard fine-tuning. 4) SERAC (Mitchell et al.,
2022b): SERAC is a memory-based method and it stores edits in explicit memory. 5) In-context
Knowledge Editing (IKE) (Zheng et al., 2023): IKE is inspired by in-context learning, and a new
demonstration formatting and organization strategies are to construct for guiding knowledge editing.

Experiments settings We perform experiments under both single editing and sequential editing.
Single editing is mostly adopted and it updates the base model for each piece of knowledge and then
evaluates the editing performance. The sequential editing continuously updates the base model with
multiple pieces of knowledge and then evaluates the first piece of knowledge. We follow the previous
benchmark and adopt the token-level editing accuracy.

5.2 REULTS

5.2.1 SINGLE EDITING RESULTS

The results of the existing multimodal knowledge editing methods on MMKE-Bench are shown in
Tab. 3, Tab. 4, and Tab. 5. Based on the results, we have several observations.

1) FT-LLM is a strong baseline, while IKE demonstrates the best reliability and generalization.
FT-LLM serves as a strong baseline, with other multimodal knowledge editing methods like SERAC,
MEND, and KE performing similarly or even worse than FT-LLM. Notably, IKE achieves the best
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Table 3: The results of single editing for BLIP-2 on MMKE-Bench.

Method T-Loc I-Loc T-Rel I-Rel I-Gen Port
FT-LLM 66.72 19.55 30.88 28.37 28.72 22.06
FT-Alignment 100.00 8.65 20.21 23.23 22.84 16.90
IKE 65.41 12.31 34.82 34.04 33.99 20.17
SERAC 99.98 63.18 20.23 23.05 23.12 16.36
MEND 96.36 68.42 29.69 28.50 28.49 16.97

Visual Entity
Editing

KE 78.43 17.86 28.00 26.93 27.52 28.74
FT-LLM 63.69 20.01 32.16 31.01 31.17 2.47
FT-Alignment 100.00 9.46 15.83 28.91 26.11 4.92
IKE 74.63 12.24 32.55 32.73 32.90 4.84
SERAC 99.99 76.96 16.13 17.92 18.92 3.56
MEND 97.37 75.02 26.38 27.18 27.56 3.64

Visual Semantic
Editing

KE 69.15 15.68 27.57 20.55 21.30 5.76
FT-LLM 62.90 21.32 12.34 26.70 26.95 5.18
FT-Alignment 100.00 8.61 7.37 17.28 16.99 6.29
IKE 74.64 12.39 12.82 31.39 31.10 5.84
SERAC 99.90 93.39 7.37 14.07 14.39 4.91
MEND 96.91 73.03 11.15 25.66 25.45 4.92

User-Specific
Editing

KE 67.23 17.48 13.3 20.45 20.21 10.83
FT-LLM 64.44 20.29 25.13 28.69 28.95 9.90
FT-Alignment 100.00 8.91 14.47 23.14 21.98 9.37
IKE 71.56 12.31 26.73 32.72 32.66 10.28
SERAC 99.96 77.84 14.58 18.35 18.81 8.28
MEND 96.88 72.16 22.41 27.11 27.17 8.51

Average

KE 71.60 17.01 22.96 22.64 23.01 15.11

Table 4: The results of single editing for MiniGPT4 on MMKE-Bench.

Method T-Loc I-Loc T-Rel I-Rel I-Gen Port

Visual Entity
Editing

FT-LLM 81.42 29.97 43.44 36.88 36.83 34.79
FT-Alignment 100.00 24.60 31.93 31.11 32.06 27.22
IKE 54.80 10.50 60.56 55.46 44.14 43.15
SERAC 99.99 85.26 31.92 32.02 32.18 28.73
MEND 97.36 77.86 41.77 37.97 38.01 30.66
KE 81.93 20.47 39.53 39.00 38.89 36.70

Visual Semantic
Editing

FT-LLM 85.20 31.54 44.55 45.08 45.31 6.71
FT-Alignment 100.00 25.20 23.08 41.62 38.45 8.25
IKE 60.79 11.13 61.49 53.44 53.18 10.92
SERAC 99.95 70.14 23.25 26.52 25.40 7.25
MEND 97.84 80.52 36.79 43.08 42.83 6.85
KE 80.61 21.50 37.77 35.32 35.20 13.25

User-Specific
Editing

FT-LLM 81.81 34.19 39.79 38.83 38.56 10.24
FT-Alignment 100.00 28.33 21.28 33.86 34.69 11.56
IKE 61.51 11.37 84.09 62.05 61.89 13.89
SERAC 100.00 99.90 21.30 30.48 30.08 10.50
MEND 97.51 81.09 28.12 40.82 40.23 11.19
KE 78.04 21.67 21.89 36.29 36.36 19.97

Average

FT-LLM 82.81 31.90 42.59 40.26 40.23 17.25
FT-Alignment 100.00 26.04 25.43 35.53 35.07 15.68
IKE 59.03 11.00 68.71 56.98 53.07 22.65
SERAC 99.98 85.10 25.49 29.67 29.22 15.49
MEND 97.57 79.82 35.56 40.62 40.36 16.23
KE 80.19 21.21 33.06 36.87 36.82 23.31

results across nearly all knowledge editing tasks for three LMMs, excelling in text reliability, image
reliability, and image generalization. These results indicate that in-context examples significantly
enhance the model’s understanding of how knowledge is edited, leading to superior performance.

2) Image locality is more challenging than text locality, and SERAC and MEND perform best in
maintaining locality. Most knowledge editing methods deliver better text locality results compared
to image locality, suggesting that editing LMMs tends to compromise visual knowledge more severely,
resulting in lower image locality scores. SERAC and MEND stand out by achieving high locality
results. It may owe to the good retrieval accuracy of SERAC and fewer parameter updates by MEND.

3) All knowledge editing methods generalize well but struggle with portability. The I-gen results
mirror those of I-rel, indicating that current large multimodal models can extract invariant features
across different image variants of the same object. However, all existing multimodal methods fall
short in the portability evaluation, highlighting the difficulty of applying edited knowledge to new
content. KE performs best portability in most scenarios, suggesting that parameter-based editing
methods handle this challenge more effectively.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: The results of single editing for LLaVA on MMKE-Bench.

Method T-Loc I-Loc T-Rel I-Rel I-Gen Port

Visual Entity
Editing

FT-LLM 75.01 16.79 47.16 43.57 43.66 45.78
FT-Alignment 100.00 8.49 35.61 36.01 37.62 35.95
IKE 61.67 15.59 64.39 61.11 61.16 48.73
SERAC 100.00 99.19 35.61 34.19 34.02 36.22
MEND 96.79 71.15 45.67 42.22 42.35 39.42
KE 77.57 16.51 44.04 44.53 44.63 47.04

Visual Semantic
Editing

FT-LLM 79.62 16.06 48.68 47.81 47.54 11.09
FT-Alignment 100.00 19.61 27.66 42.06 34.56 14.51
IKE 61.10 16.12 59.04 53.9 53.19 22.67
SERAC 99.99 34.4 27.76 41.02 41.85 12.49
MEND 98.15 83.34 41.43 44.19 43.99 11.95
KE 71.39 8.08 47.80 40.69 39.50 19.28

User-Specific
Editing

FT-LLM 75.19 20.53 58.10 47.63 48.29 12.78
FT-Alignment 100.00 13.06 42.51 40.39 44.56 20.76
IKE 68.49 17.09 92.26 75.71 76.04 42.25
SERAC 99.95 97.39 42.81 36.38 36.59 13.37
MEND 98.3 84.12 52.05 46.43 46.33 14.36
KE 69.63 9.29 54.62 48.27 48.55 24.64

Average

FT-LLM 76.61 17.79 51.31 46.34 46.50 23.22
FT-Alignment 100.00 13.72 35.26 39.49 38.91 23.74
IKE 63.75 16.27 71.90 63.57 63.46 37.88
SERAC 99.98 76.99 35.39 37.20 37.49 20.69
MEND 97.75 79.54 46.38 44.28 44.22 21.91
KE 72.86 11.29 48.82 44.50 44.23 30.32

4) Visual Semantic Knowledge and User-Specific Knowledge are more difficult for LMMs to
edit. Editing complex visual semantics and user-specific knowledge proves more challenging than
editing visual entities, as evidenced by lower reliability and portability scores. This suggests that
more advanced editing techniques are needed to edit complex visual semantics and inject personalized
information, further emphasizing the value of the proposed benchmark.

5) Modern LMMs excel in producing and applying edited knowledge. For reliability, generaliza-
tion, and portability evaluations, LLaVA-1.5 outperforms BLIP-2 and MiniGPT-4. This improved
performance can be attributed to its larger model size and better instruction-following capability,
as LLaVA-1.5 has more parameters than BLIP-2 and a more refined instruction-tuning design than
MiniGPT-4. These factors lead to its superior ability to understand and apply evolving knowledge.

Figure 4: Evaluation comparison of IKE for
MiniGPT-4 with existing benchmarks. Port for
MMEdit and MIKE, is set 1, as they are not
evaluated.

6) No single editing method excels across all eval-
uation criteria. In conclusion, no single knowledge
editing method outperforms across all four evalua-
tion criteria. In-context learning-based methods are
strong at reproducing edited knowledge, memory-
based methods excel at preserving unrelated content,
and parameter-based methods are better at applying
edited knowledge to new contexts.

7) The proposed benchmark is more challenging
than previous ones. The comparison of IKE with
existing benchmarks for MiniGPT-4 is shown in
Fig. 4, this method achieves high scores across most
evaluation principles in previous benchmarks but
performs worse on our benchmark. This suggests
that the proposed benchmark introduces greater chal-
lenges than its predecessors.

5.2.2 SEQUENTIAL EDITING RESULTS

Editing knowledge separately is impractical in real-world applications while continuous updates with
vast amounts of information are necessary. Consequently, we conduct sequential editing experiments
and utilize FT-LLM, FT-Alignment, and SERAC as editing methods. IKE and KE are excluded
because the edit samples also need to serve as test samples, which is not feasible in this context.

The results for LLaVA-1.5 are shown in Tab. 6, where the “gap” refers to the sequential length,
and “user num” is the number of users, with each user allowed a maximum of nine personalized
items. As observed, both FT-LLM and FT-Alignment tend to forget the previous editing, as shown by
the decreasing performance in text and image reliability and generalization with increasing gap. In
contrast, SERAC effectively maintains edited knowledge due to its explicit memory. Additionally,
FT-Alignment often preserves unrelated text outputs, while FT-LLM exhibits the opposite behavior.
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Table 6: The results of sequential editing for LLaVA-1.5 on MMKE-Bench.

Method GAP /User Num T-Loc I-Loc T-Rel I-Rel I-Gen Port

Visual Entity
Editing

FT-LLM

- 76.76 17.19 45.78 41.72 41.55 47.36
3 56.03 8.39 44.62 39.34 40.18 35.59
6 54.99 8.22 43.75 39.55 39.67 35.56

10 54.75 8.13 42.76 38.01 38.55 36.08

FT-Alignment

- 100.00 8.7 36.37 35.03 37.53 36.23
3 100.00 1.03 36.37 32.54 29.89 34.82
6 100.00 1.01 36.37 29.16 27.70 35.11

10 100.00 0.09 36.37 33.53 30.36 38.93

SERAC

- 100.00 98.91 36.37 33.77 33.27 35.63
3 100.00 98.79 36.37 33.77 33.24 35.63
6 100.00 98.78 36.37 33.77 33.24 35.63

10 100.00 98.78 36.37 33.77 33.24 35.63

Visual Semantic
Editing

FT-LLM

- 76.89 16.14 49.00 49.44 49.04 10.67
3 50.33 7.36 42.86 46.73 45.02 8.29
6 49.09 7.25 41.49 45.58 43.52 7.25

10 48.23 7.02 41.51 45.09 42.08 7.63

FT-Alignment

- 100.00 19.41 27.83 44.5 35.37 15.00
3 100.00 1.44 28 34.06 24.57 6.51
6 100.00 1.38 27.83 31.62 23.54 6.96

10 100.00 1.38 27.83 29.79 23.92 7.25

SERAC

- 100.00 34.53 27.83 41.09 41.82 11.29
3 99.93 13.56 27.99 29.71 30.70 11.17
6 99.93 13.54 27.92 29.91 31.09 11.34

10 99.93 13.52 27.88 29.93 31.13 11.23

User-Specific
Editing

FT-LLM

- 75.68 20.11 57.82 48.04 48.66 12.63
1 69.12 17.30 52.06 44.36 44.14 8.67
3 66.60 16.26 49.79 41.87 41.85 6.16
5 66.70 17.29 49.43 40.78 40.29 5.88

FT-Alignment

- 100.00 12.82 41.41 41.01 43.72 21.21
1 100.00 14.47 41.39 30.15 30.02 7.66
3 100.00 15.28 41.39 30.81 29.52 8.67
5 100.00 17.98 41.39 29.77 28.09 7.37

SERAC

- 99.97 97.27 41.76 37.49 37.67 13.23
1 99.92 97.67 41.45 38.09 37.98 12.79
3 99.92 97.63 41.39 37.93 37.98 12.79
5 99.93 97.60 41.33 37.90 37.98 12.79

5.3 INSIGHT ANALYSIS

Case Study An editing example of visual entity editing by IKE and FT-LLM for LLaVA-1.5 is
presented in Fig.5. Both IKE and FT-LLM correctly answered the text reliability question. However,
IKE outperformed FT-LLM by also providing correct answers to the image generalization and
portability questions, highlighting IKE’s superior performance. The case study of reliability on visual
semantic editing is shown in Fig.6. As we can see, after editing, the model could effectively answer
the question based on editing knowledge.

Figure 5: Case study of editing examples Figure 6: Case study of reliability

6 CONCLUSION

In this paper, we propose a comprehensive multimodal knowledge editing benchmark, named MMKE-
Bench, designed to evaluate diverse semantic editing in real-world scenarios using free-form natural
language representation. We propose to use free-form natural language representation combined with
an image to represent knowledge instead of representing it with a triplet. Besides, we propose three
kinds of editing to align with real-world scenarios. We conducted experiments on representative
LMMs and knowledge editing methods and found that more advanced knowledge editing methods
are needed for LMMs. We hope our work could inspire more multimodal knowledge editing research.
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Table 7: The image source of visual semantic knowledge in MMKE-Bench.

Type Source

Human Action Crawling from google
Life Gesture Crawling from google

Emotion LFW-emotion dataset
https://huggingface.co/datasets/TrainingDataPro/facial-emotion-recognition-dataset

Referee Gesture Demo videos from Youtube and Bilibili
Traffic Cop Sign Crawling from google

Traffic Sign TSRD dataset
https://nlpr.ia.ac.cn/PAL/TRAFFICDATA/recognition.html

Texture DTD dataset (Cimpoi et al., 2014)
Color Crawling from google
Shape Crawling from google
Animal Body Language Crawling from google
Relationship Siwg-HOI (Wang et al., 2021) and
Social action Crawling from google
Layout Crawling from google

Art Style Wiki-art dataset (Dataset, 2022)
https://huggingface.co/datasets/keremberke/painting-style-classification

A BENCHMARK CONSTRUCTION

A.1 ORIGINAL KNOWLEDGE COLLECTION

In our process of gathering original knowledge, we begin by listing candidate fine-grained entities,
visual semantics, or user-specific items, and subsequently collect their corresponding images.

For visual entity editing, we source candidates from two datasets: The multimodal knowledge graph,
MMpedia (Wu et al., 2023b), and the visual entity recognition dataset, OVEN (Hu et al., 2023). Given
the extensive size of MMpedia, we filter entities with Wikipedia summaries of fewer than 40 words
and eliminate candidates that cannot uniquely identify the main entity through images. Using the
Wikipedia API, we retrieve the entity type and select the most popular 10% within each type. We
further apply optical character recognition (OCR) to exclude images containing entity names, such as
university logos. After this, we gather images from the relevant datasets and manually remove any
noisy images, or crawl additional images from Google for entities with fewer than two images. The
same process is applied to the OVEN dataset, except without sampling.

For visual semantic editing, we first list the semantic candidates from four broad categories: single-
person behavior, single-object behavior or attributes, object relationship, and global structure. The
single-person behavior includes human action, life gestures, referee gestures, traffic cop signs, and
emotion. The single-object behavior or attribute covers animal body language, traffic signs, color,
shape, and texture. The object relationship involves human-object interactive relationship and social
actions, while global structure encompasses layout and art style. Where datasets exist, such as for
texture, we gather the entities and images from existing sources. Otherwise, we manually curate the
candidates using domain expertise and collect images from various sources. The sources for each
type are listed in Tab.7. Specifically, images for human action, life gestures, traffic cop signs, color,
shape, social action, animal body language, and layout are crawling from Google. Images for traffic
signs, textures, relationships, emotions, and art styles come from existing datasets. Referee gesture
images are collected by extracting frames from demo videos on YouTube and Bilibili.

To sum up, this benchmark covers a total of 2,940 pieces of knowledge, along with 7,229 images
from 141 fine-grained types, and detailed type names are shown in Tab.8.

As for user-specific editing, we consider nine types of personal information, including items, pets,
actors, singers, cartoon characters, organizations, universities, sports clubs, and companies. The
candidate relationships between users and these objects are outlined in Tab.9, including examples
like ”employed at,” ”exchanged at,” ”studied at,” and ”favorite” for universities. We collect images
for these items from various sources. For items and pets, candidates and images are sourced from
existing datasets used for personalized large multimodal research (Nguyen et al., 2024; Alaluf et al.,
2024). For organizations, universities, sports clubs, and companies, we follow the same process as in
visual entity editing, using data from MMpedia. For actors, singers, and cartoon characters, images
are collected from Google.

After collecting the images, we generate natural language descriptions for each entity, visual semantic,
and user-specific item. For visual entities, we retrieve descriptions from the Wikipedia summary, and
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Table 8: The data type in MMKE-Bench.

Broad Categories Types
Person Human
Aerial Animals Bird, Dragonfly, Fly, Butterfly, Grasshopper,

Wasp, Insect
Marine Animals Jellyfish, Turtle, Sea Star, Fish, Crab, Sea Lion
Terrestrial Animals Bear, Monkey, Amphibian, Mammal, Wild

Boar, Rodent, Squirrel, Dog Breed, Fox, Wolf,
Tick, Rabbit, Rhinoceros, Arthropod, Animal,
Salamander, Spider, Mollusc, Crustacean, Bee-
tle, Toad, Cat Breed, Deer, Sloth, Frog, Mol-
lusk, Snail, Hedgehog, Cat, Leopard, Milli-
pede, Pangolin, Dog, Cattle, Moth, Snake,
Lizard, Antelope

Virtual Character Anime Character, Animated Character,
Comics Character

Plant Fruit, Tree, Flower, Mushroom, Orchid, Fun-
gus, Vegetable, Plant

Building Building, Church Building, Monument, Sculp-
ture, Tower, Statue

Musical Group Musical Group
Vehicle Car, Aircraft Model, Aircraft, Vehicle

Visual Entity
Editing

Others Instrument, Ball
Human Action Body Posture Adjustments, Head Adjustments,

Hand Actions, Leg Actions, Whole-Body Ac-
tions, Eye Expressions, Facial Expressions,
Water Sports, Sound Actions, Object Actions

Life Gesture Life Gesture, Life Gesture Number
Emotion Emotion Sign
Referee Gesture Soccer Linesman, Soccer, Basketball, Bad-

minton, Table Tennis, Volleyball, Volleyball
Card, Baseball, Puck, Fencing, Handball

Traffic Cop Sign Traffic Cop Sign
Traffic Sign Traffic Sign Forbidden, Traffic Sign Allow,

Traffic Sign Point
Texture Texture
Color Color
Animal Body Language Monkey Body Language, Dog Body Lan-

guage, Cat Body Language
Shape Circular Shapes, Triangles, Special Plane

Shapes, Common Polyhedrons, Solids of Rev-
olution, Special Shapes

Social Action Social Action
Art Style Art Style
Layout Layout

Visual Semantic
Editing

Relationship Relationship
Item Cup, Toy Puppet, Statue, Toy, Plush Doll
Actor Actor
Singer Singer
Cartoon Character Cartoon Character
Organization Nonprofit Organization, Organization
University University
Sports Club Baseball Team, Basketball Team, Sports Club,

Sports Team, Association Football Team,
Canadian Football Club, Futsal Team, Field
Hockey Club

User-Specific
Editing

Pet Pet dog, Pet cat
Company Airline, Enterprise, Company
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Table 9: The relationship between humans and the objects and data source of user-specific data in
MMKE-Bench.

Types Relationship Image Source

Company Employed at, Interned at, collaborated with, Favorite MMpedia
Organization Employed at, Interned at, Helped by, Favorite MMpedia
University Employed at, Exchanged at, Studied at, Traveled to, Favorite MMpedia
Club Employed at, Visited, Favorite MMpedia
Cartoon character Favorite Crawling from Google
Actor Favorite, Admire most Crawling from Google
Singer Favorite, Admire most Crawling from Google
Pet Owned MyVLM (Alaluf et al., 2024) and YoLLaVA (Nguyen et al., 2024)
Item Owned MyVLM (Alaluf et al., 2024) and YoLLaVA (Nguyen et al., 2024)

if the summary is too lengthy, we use a large language model (LLM) to condense it to fewer than
100 words. For visual semantic editing, the description includes both a language description of the
action and an explanation of its meaning or rule. These are gathered either from relevant domain
knowledge by ourselves or generated with the help of an LLM. For user-specific editing, we select
one relationship from the candidate list and use an LLM to craft a personalized description of the
user’s personal information.

A.2 EDITING KNOWLEDGE GENERATION

After collecting the original knowledge, we perform counterfactual editing to generate alternative
knowledge for both visual entity and visual semantic editing. To achieve this, we prompt a large
language model (LLM) with in-context examples. For visual entity editing, we modify key details,
such as nationality, alma mater, and occupation of a person, into counterfactual variations. For visual
semantic knowledge, we alter the rules or meanings, such as the location where a free kick is taken,
into counterfactual scenarios. The specific prompt used is shown in Tab.8.

In addition to text-based editing, we also perform image modality editing by replacing the image of
an entity or action with one from another entity or action of the same type. This replacement strategy
is consistent with existing benchmarks (Huang et al., 2024).

A.3 EVALUATION QUESTION GENERATION

When generating evaluation questions, we adhere to four key principles: reliability, locality, gen-
eralization, and portability. For locality questions, we source them from existing benchmarks. For
reliability, we generate questions by prompting a large language model (LLM) with in-context exam-
ples, ensuring that each question is related to one of the edited contents. In image reliability, we refer
to the main object in the image using its type, such as “the person in the image.” For portability, during
visual entity editing, we follow previous benchmarks by providing additional information about the
edited content to ensure text portability. In visual semantic editing and user-specific editing, we
focus on image portability by combining the current object’s image with another object of the same
type. We then create a final one-hop question by merging the counterfactual content-related question
with an easier, image-based question, such as asking about the color of shoes. After generating the
questions and answers, we conduct a human review to verify the accuracy, rewriting any incorrect
questions or answers. The prompts used for question generation are shown in Tab.9 and Tab.14.

B EXPERIMENTS

We conduct experiments using the VLKEB library2, which employs PyTorch and integrates several
knowledge editing methods and large multimodal models. The experiments are performed on NVIDIA
A100/A800 80GB GPUs. The knowledge editing methods, and large multimodal models adopted in
this study are listed below, with their hyper-parameters detailed in Tab.10, Tab.11, and Tab.12.

MLLMs. To evaluate our benchmark, we conduct experiments on three representative MLLMs.

2https://github.com/VLKEB/VLKEB
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Figure 7: Evaluation comparison of IKE for BLIP2 with existing benchmarks. I-Gen and Port for
MMEdit, along with Port for MIKE, is set 1, as they ignore the relevant criteria.

• BLIP-2 (Li et al., 2023a): BLIP2 effectively leverages both frozen pre-trained image
models and language models by bootstrapping vision-language pre-training, and bridges the
modality gap with a lightweight Querying Transformer. We follow previous work (Huang
et al., 2024; Cheng et al., 2023), and select BLIP-2 OPT as the basic edit model, where the
vision model is ViT-L and the LLM is OPT model.

• MiniGPT-4 (Bai et al., 2023): MiniGPT-4 aligns a frozen visual encoder module with a
frozen advanced LLM using one projection layer. The LLM is Vicuna and the vision model
is ViT.

• LLaVA-1.5 (Liu et al., 2024b): LLaVA-1.5 is an improved version of LLaVA, which is an
end-to-end trained large multimodal model that connects a vision encoder and an LLM with
an MLP projector for visual and language understanding. We select LLaVA-1.5 7B as the
base model where CLIP-ViT-L-336px is the vision model and Vicuna-7B is the LLM.

Editing Methods. Following the previous benchmarks (Huang et al., 2024), we select five repre-
sentative multimodal knowledge editing methods to conduct experiments.

• Fine-tuning (FT): Fine-tuning has become a widely used strategy for adapting pre-train
models to specific tasks. We focus on finetuning two parts: the LLM and the vision-language
alignment module, where only the last layer of the LLM is fine-tuned.

• Knowledge Editor (KE) (De Cao et al., 2021): KE is a method that can be used to edit this
knowledge in the base model without the need for expensive retraining or fine-tuning. It
uses a hyper-network with constrained optimization to predict the weight update at test time.

• MEND (Mitchell et al., 2022a): MEND makes fast, local edits to a pre-trained model’s
behavior using a single desired input-output pair. It learns to transform the gradient of
standard fine-tuning, using a low-rank decomposition of the gradient.

• SERAC (Mitchell et al., 2022b): SERAC is a memory-based method and it stores edits in
explicit memory. It also introduces a scope classifier and counterfactual model, where the
scope classifier is to determine whether the memory contains inputs relevant to processing
them. If determined, the input is combined with the most relevant cache item into the
counterfactual model for prediction.

• In-context Knowledge Editing (IKE) (Zheng et al., 2023): IKE is inspired by in-context
learning, and a new demonstration formatting and organization strategies are to construct
suitable in-context learning demonstrations for guiding knowledge editing.

C MORE RESULTS

Comparison of evaluation results with existing benchmarks for BLIP2 The Comparison of
evaluation results with existing benchmarks of IKE for BLIP2 is shown in Fig. 7. As we can see, IKE
achieves high results in existing benchmarks, while it performs worse in our benchmark, indicating
the proposed benchmark is more challenging.

Results of sequential editing for BLIP-2 We additionally report the results of sequential editing
for BLIP-2 on MMKE-Bench, as shown in Tab.13. As we can see, FT-LLM and FT-Alignment tend
to forget previous knowledge while SERAC is better at keeping edited knowledge.
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Table 10: The hyper-parameters of knowledge editing methods and LMMs on the visual entity
editing.

FT-LLM
Models Steps Edit Layer Optimizer Edit LR
BLIP2-OPT 30 31st layer of Transformer Module AdamW 2e− 4
MiniGPT-4 40 31st layer of Transformer Module AdamW 1e− 4
LLaVA-1.5 40 31st layer of Transformer Module AdamW 1e− 4

FT-Alignment
Models Steps Edit Layer Optimizer Edit LR
BLIP2-OPT 30 Qformer AdamW 2e− 4
MiniGPT-4 30 Qformer AdamW 1e− 4
LLaVA-1.5 30 mm projector AdamW 1e− 4

MEND
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 10,000 layer 29, 30, 31 of Transformer Module Adam 1e− 6
MiniGPT-4 30,000 layer 29, 30, 31 of Transformer Module Adam 1e− 6
LLaVA-1.5 10,000 layer 29, 30, 31 of Transformer Module Adam 1e− 6

SERAC
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 10,000 all layers of OPT-125M Adam 1e− 5
MiniGPT-4 20,000 31st layer of Vicuna-7B Adam 5e− 5
LLaVA-1.5 10,000 31st layer of Vicuna-7B-v1.5 Adam 1e− 5

KE
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 10,000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
MiniGPT-4 10,000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
LLaVA-1.5 10,000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
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Table 11: The hyper-parameters of knowledge editing methods and LMMs on visual semantic editing.

FT-LLM
Models Steps Edit Layer Optimizer Edit LR
BLIP2-OPT 30 31st layer of Transformer Module AdamW 2e− 4
MiniGPT-4 40 31st layer of Transformer Module AdamW 1e− 4
LLaVA-1.5 40 31st layer of Transformer Module AdamW 1e− 4

FT-Alignment
Models Steps Edit Layer Optimizer Edit LR
BLIP2-OPT 30 Qformer AdamW 2e− 4
MiniGPT-4 30 Qformer AdamW 1e− 4
LLaVA-1.5 30 mm projector AdamW 1e− 4

MEND
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 20,000 layer 29, 30, 31 of Transformer Module Adam 1e− 6
MiniGPT-4 30,000 layer 29, 30, 31 of Transformer Module Adam 1e− 6
LLaVA-1.5 20,000 layer 29, 30, 31 of Transformer Module Adam 1e− 6

SERAC
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 20,000 all layers of OPT-125M Adam 1e− 5
MiniGPT-4 20,000 31st layer of Vicuna-7B Adam 5e− 5
LLaVA-1.5 20,000 31st layer of Vicuna-7B-v1.5 Adam 1e− 5

KE
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 10,000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
MiniGPT-4 10,000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
LLaVA-1.5 10,000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
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Table 12: The hyper-parameters of knowledge editing methods and LMMs on user-specific editing.

FT-LLM
Models Steps Edit Layer Optimizer Edit LR
BLIP2-OPT 30 31st layer of Transformer Module AdamW 2e− 4
MiniGPT-4 40 31st layer of Transformer Module AdamW 1e− 4
LLaVA-1.5 40 31st layer of Transformer Module AdamW 1e− 4

FT-Alignment
Models Steps Edit Layer Optimizer Edit LR
BLIP2-OPT 30 Qformer AdamW 2e− 4
MiniGPT-4 30 Qformer AdamW 1e− 4
LLaVA-1.5 20 mm projector AdamW 1e− 4

MEND
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 10,000 layer 29, 30, 31 of Transformer Module Adam 1e− 6
MiniGPT-4 30,000 layer 29, 30, 31 of Transformer Module Adam 1e− 6
LLaVA-1.5 10,000 layer 29, 30, 31 of Transformer Module Adam 1e− 6

SERAC
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 10,000 all layers of OPT-125M Adam 1e− 5
MiniGPT-4 20,000 31st layer of Vicuna-7B Adam 5e− 5
LLaVA-1.5 10,000 31st layer of Vicuna-7B-v1.5 Adam 1e− 5

KE
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 10,000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
MiniGPT-4 10,000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
LLaVA-1.5 10,000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
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Table 13: The results of sequential editing for BLIP2 on MMKE-Bench.

Method Gap / User Num T-Loc I-Loc T-Rel I-Rel I-Gen Port

Visual Entity
Editing

FT-LLM

- 68.83 20.2 29.13 29.47 29.83 22.60
3 32.42 5.33 28.12 24.14 24.54 21.61
6 31.26 5.13 26.20 22.60 23.89 22.18
10 31.59 5.03 25.03 22.41 22.65 20.97

FT-Alignment

- 100.00 8.74 19.67 23.53 22.47 17.36
3 100.00 3.51 19.67 15.88 15.89 14.71
6 100.00 3.52 19.67 16.84 16.86 15.32

10 100.00 3.62 19.67 15.95 15.94 16.19

SERAC

- 99.97 64.34 19.67 23.30 23.21 15.1
3 99.97 55.92 19.67 19.47 19.6 14.54
6 99.97 55.93 19.67 19.53 19.63 14.28

10 99.97 55.91 19.67 19.71 19.74 14.43

Visual Semantic
Editing

FT-LLM

- 64.75 20.13 32.08 31.40 31.90 2.88
3 25.92 5.07 27.56 25.76 25.29 1.08
6 25.42 4.98 25.21 24.53 23.31 0.96

10 24.35 4.64 23.57 22.05 21.03 1.63

FT-Alignment

- 100.00 9.7 15.97 31.73 28.27 4.54
3 100.00 4.15 15.97 11.42 11.42 4.15
6 100.00 4.17 15.97 12.01 12.33 3.13

10 100.00 4.09 15.97 10.46 10.46 4.09

SERAC

- 100.00 77.42 16.22 17.77 19.77 3.79
3 100.00 77.5 15.97 12.37 12.82 3.79
6 100.00 77.47 15.97 12.58 13.00 3.79

10 100.00 77.62 15.97 12.22 12.82 3.79

User-Specific
Editing

FT-LLM

- 63.18 21.19 13.10 27.00 27.14 4.83
1 47.51 10.29 10.65 17.05 17.09 0.70
3 46.51 10.51 10.10 14.32 13.90 0.54
5 45.74 10.60 9.45 13.68 13.53 0.84

FT-Alignment

- 100.00 8.83 7.81 18.15 17.8 6.19
1 100.00 16.14 8.31 6.79 6.59 0.75
3 100.00 18.82 8.31 6.90 6.37 1.17
5 100.00 18.26 8.31 7.93 8.08 2.23

SERAC

- 99.97 93.4 7.81 15.18 15.53 4.91
1 99.94 93.73 8.31 14.89 14.90 4.16
3 99.92 93.71 8.31 14.89 14.90 4.16
5 99.90 93.64 8.31 14.89 14.90 4.16
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You are a powerful description editor. Users have an entity, the entity type, and the entity 

description consists of some different aspects. You need to edit the description of an aspect into a 

counterfactual description by editing some key points in the aspect description.

Rule 1: It is better to edit key entity nouns in the description, and at least 4 entities must be edited, 

such as the working company, place of birth, related person, and so on.

Rule 2: You are not allowed to edit object properties such as color and shape.

Rule 3: The edited description should be consistent across aspects. For example, if a competition 

is changed from one year to two years, then the winner of the championship should also be held 

every two years.

Rule 4: You need to follow the same output format as the given example.

Example User:

Input:

Entity: Microsoft

Entity type: company

Description: Microsoft is an American multinational corporation and technology company 

headquartered in Washington. Its best-known software products are the Windows line of operating 

systems, the Microsoft 365 suite of productivity applications, the Azure cloud computing platform, 

and the Edge web browser. Its flagship hardware products are the Xbox video game consoles and 

the Microsoft Surface lineup of touchscreen personal computers. It is considered one of the Big 

Five American information technology companies.

Output:

Example Assistant:

Edit description: Microsoft is an American multinational corporation and technology company 

headquartered in Chicago. Its best-known software products are the Linux line of operating 

systems, the Microsoft 365 suite of productivity applications, the Azure cloud computing platform 

and the Chrome browser. Its flagship hardware products are the iPhone and the Microsoft Surface 

lineup of touchscreen personal computers. It is considered one of the Big Five American 

information technology companies.

Highlight: Chicago; Linux; Chrome browser; Iphone;

Entity: Jorunna parva

Entity type: mollusc 

Description: Jorunna parva, commonly known as the sea bunny, is a species of dorid nudibranch, 

a shell-less marine gastropod mollusc in the family Discodorididae. Its black-and-white 

rhinophores somewhat resemble a rabbit's ears. The species was first described by Kikutaro Baba. 

Its resemblance to a rabbit facilitated a surge in popularity on Twitter throughout Japan in 2015.

Output:

Figure 8: Prompt for editing knowledge.
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You are a powerful question generator. Users will provide an entity, the entity type, a counterfactual 

entity description, the highlight content that shows some important aspects of the entity description. 

You will help generate four questions and the answers to the questions about the entity based entirely 

on the edited aspects, without covering the unedited aspects. Each entity is a visual entity, i.e., there 

are some images corresponding to the entity. Therefore, you need to generate two text-only questions, 

two multi-modal questions based on the edited description. In the multi-modal questions, you use 

'{entity type} in the image' to refer to the entity, where {entity type} must be replaced with the entity 

type. Before that, you need to select a noun entity from the highlight. For these questions, you need 

to generate the question based on the given entity description with the given entity as the head entity 

and the answer of the question to be exactly the selected entity in highlight. 

Rule 1: You must use '{entity type} in the image' to refer to entity, and {entity type} must be replaced 

with the given entity type in the Multi-modal question. 

Rule 2: The entity name is not allowed to appear in Multi-modal question. 

Rule 3: You need to follow the same output format as the given example.

Rule 4: The generated questions must have a unique answer.

Rule 5: The answer of all the generated questions must be the selected entity in highlight.

Rule 6: The answer of the generated question must be one or two words.

Example User:

Input:

Entity: Microsoft

Entity type: company

Description: Microsoft is an American multinational corporation and technology company 

headquartered in Chicago. Its best-known software products are the Linux line of operating systems, 

the Microsoft 365 suite of productivity applications, the Azure cloud computing platform and the 

Chrome browser. Its flagship hardware products are the iPhone and the Microsoft Surface lineup of 

touchscreen personal computers. It is considered one of the Big Five American information 

technology companies.

Highlight: Chicago; Linux; Chrome browser; Iphone;

Output:

Example Assistant:

Text-only question 1: What is the well-known browser of Mircosoft?

Answer: Chrome

Multi-modal question 1: What are the flagship hardware products of the company in the picture?

Answer: iPhone and the Microsoft Surface lineup of touchscreen personal computers.

Input:

Entity: Jorunna parva

Entity type: mollusc 

Description: Jorunna parva, commonly known as the sea bunny, is a species of dorid nudibranch, a 

shell-less marine gastropod mollusc in the family Discodorididae. Its red rhinophores somewhat 

resemble a rabbit's ears. The species was first described by Hiroshi Akiyama. Its resemblance to a 

rabbit facilitated a surge in popularity on Instagram throughout Japan in 2015.

Highlight: red; Hiroshi Akiyama; Instagram;

Output:

Figure 9: Prompt for editing generating reliability question.
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Table 14: The results of Visual Semantic Sequential Editing for LLaVA-1.5 on MMKE-Bench.

Method GAP T-Loc I-Loc T-Rel I-Rel I-Gen Port

Visual Semantic
Editing

FT-LLM

- 76.89 16.14 49.00 49.44 49.04 10.67
3 50.33 7.36 42.86 46.73 45.02 8.29
6 49.09 7.25 41.49 45.58 43.52 7.25

10 48.23 7.02 41.51 45.09 42.08 7.63
40 45.40 6.23 36.83 41.85 40.53 7.83
60 43.88 5.82 36.01 39.18 38.69 7.04
80 42.99 5.58 33.67 38.27 36.79 6.83

FT-Alignment

- 100.00 19.41 27.83 44.5 35.37 15.00
3 100.00 1.44 28 34.06 24.57 6.51
6 100.00 1.38 27.83 31.62 23.54 6.96

10 100.00 1.38 27.83 29.79 23.92 7.25
40 100.00 1.22 27.83 25.4 21.63 8.58
60 100.00 1.17 27.83 26.12 22.11 8.08
80 100.00 0.94 27.83 27.31 23.81 6.75

SERAC

- 100.00 34.53 27.83 41.09 41.82 11.29
3 99.93 13.56 27.99 29.71 30.70 11.17
6 99.93 13.54 27.92 29.91 31.09 11.34

10 99.93 13.52 27.88 29.93 31.13 11.23
40 99.93 13.37 27.92 28.23 29.23 11.25
60 99.93 13.35 27.92 28.45 29.41 11.25
80 99.96 13.32 27.92 28.20 28.41 11.25
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You are a powerful question generator. Users will provide an entity, a counterfactual entity description, highlight content that 

shows some important aspects of the entity description, and optional entity description for the entities in highlight. \

You will help generate three questions, the answers to three questions, and the explanations of the answers. Before that, you 

need to select a noun entity from the highlight. For the first question, you need to generate the question based on the given entity 

description with the given entity as the head entity and the answer of the question to be exactly the selected entity. \

For the second question, you need to ask the information about the selected entity. If there are available entity description, you 

need to generate the question by the description. For the third question, you need to combine the first question and the second 

question based on the relation chains.

Rule 1: You need to follow the same output format as the following given example.

Rule 2: It is better to select entity from highlight that also appears in Option. The selected entity from the highlight muse be a 

single noun entity and could not contain the word 'and' and comma. Avoid selecting entities like time, number, and so on.

Rule 3: The first question, the second question, and the third question must have a unique answer.

Rule 4: You need to select the most important information to generate the second question based on the given information in 

Option.

Rule 5: The selected entity from highlight must be the answer of the first question and the answer of third questiom must be the 

same as the answer of the second question.

Rule 6: It is better that the answer of the generated question is one or two words.

Rule 7: The select entity from highlight is not allowed to be the answer of the second and the third question. 

Example User:

Input:

Entity: Microsoft

Description: Microsoft is a Chinese multinational corporation and technology company headquartered in Washington. Its best-

known software products are the Windows line of operating systems, the Microsoft 365 suite of productivity applications, the 

Azure cloud computing platform, and the Chrome browser. Its flagship hardware products are the iPhone and the Microsoft 

Surface lineup of touchscreen personal computers. It is considered one of the Big Five American information technology 

companies.

Highlight: Chinese; Chrome browser; iPhone

Option: 

Chrome browser: Google Chrome is a web browser developed by Google. It was first released in 2008 for Microsoft Windows, 

built with free software components from Apple WebKit and Mozilla Firefox. Versions were later released for Linux, macOS, 

iOS, and also for Android, where it is the default browser.

iPhone: The iPhone is a smartphone produced by Apple that uses Apple's own iOS mobile operating system. The first-

generation iPhone was announced by then Apple CEO Steve Jobs on January 9, 2007. Since then, Apple has annually released 

new iPhone models and iOS updates.

Output:

Example Assistant:

Selcted entity: Chrome browser

The first question: What is the well-known browser of Microsoft?

Answer: Chrome browser.

The second question: In which year is Chrome browser first released?

Answer:2008.

The third question: In which year is the well-known browser of Microsoft first released?

Answer: 2008.

Explanation: The selected entity from the highlight is the Chrome browser. The first question is 'What is the well-known 

browser of Microsoft?', and the answer is Chrome browser. The second question is 'In which year is Chrome browser first 

published?', and the answer is 2008.

Input:

Entity: Jorunna parva

Description: Jorunna parva, commonly known as the sea bunny, is a species of dorid nudibranch, a shell-less marine gastropod 

mollusc in the family Discodorididae. The species was first described by Kazuri Takahashi. Its resemblance to a rabbit 

facilitated a surge in popularity on Instagram throughout Japan in 2018.

Highlight: Kazuri Takahashi; Instagram

Option:

Kazuri Takahashi: Kazutoshi Takahashi (1977 - ) is a Japanese life scientist. He is a lecturer at the iPS Cell Research Institute of 

Kyoto University. He received his Ph.D. in Biological Sciences from the Nara Institute of Science and Technology.

Instagram: Instagram[a] is a photo and video sharing social networking service owned by Meta Platforms. It allows users to 

upload media that can be edited with filters, be organized by hashtags, and be associated with a location via geographical 

tagging. Posts can be shared publicly or with preapproved followers. Users can browse other users' content by tags and locations, 

view trending content, like photos, and follow other users to add their content to a personal feed.  

Figure 10: Prompt for generating portability question.
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Figure 11: In Fig.11 (a), the single editing takes one edit at a time and evaluates immediately, while
in Fig.11 (b) and (c) the sequential editing involves continuous edits and tests after several other edits.

Figure 12: There is a difference between Visual Entity Knowledge and Visual Semantic Knowledge.
Visual Entity Knowledge focuses on entity objects, such as people, things, etc. Visual Semantic
Knowledge focuses on the knowledge abstracted from images, such as gestures, traffic signs, facial
expressions, etc. For example, for Visual Entity Knowledge, in Figure 12 (a), the training knowledge
needs a reference to the entity, such as ”Donald John Trump”, focusing on the information of the
entity object; However, in (b) of Figure 12, for Visual Semantic Knowledge, entity reference, such as
”The man”, is not needed, but the gesture of the person in the image is emphasized.
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Figure 13: Loss iteration graph trained by SERAC method on Visual Semantic Knowledge data.
Through the analysis of images, we can find that the SERAC method can normally achieve the
convergence of loss on this data amount, and the loss value will approach 0 at last.

Figure 14: Loss iteration graph trained by MEND method on Visual Semantic Knowledge data.
Through the analysis of images, we can find that the MEND method can normally achieve the
convergence of loss on this data amount, and the loss value will approach 0 at last.
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Figure 15: Data Example-1 of Visual Entity
Editing in MMKE-Bench. Figure 16: Data Example-2 of Visual Entity

Editing in MMKE-Bench.

Figure 17: Data Example-3 of Visual Entity
Editing in MMKE-Bench.

Figure 18: Data Example-4 of Visual Entity
Editing in MMKE-Bench.
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Figure 19: Data Example-1 of Visual Semantic
Editing in MMKE-Bench.

Figure 20: Data Example-2 of Visual Semantic
Editing in MMKE-Bench.

Figure 21: Data Example-3 of Visual Semantic
Editing in MMKE-Bench.

Figure 22: Data Example-4 of Visual Semantic
Editing in MMKE-Bench.
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Figure 23: Data Example-1 of User-Specific
Editing in MMKE-Bench.

Figure 24: Data Example-2 of User-Specific
Editing in MMKE-Bench.

Figure 25: Data Example-3 of User-Specific
Editing in MMKE-Bench.

Figure 26: Data Example-4 of User-Specific
Editing in MMKE-Bench.
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Figure 27: Case Study on Visual Entity Editing
Example-1 in MMKE-Bench. Figure 28: Case Study on Visual Entity Editing

Example-2 in MMKE-Bench.
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Figure 29: Case Study on Visual Entity Editing
Example-3 in MMKE-Bench.

Figure 30: Case Study on Visual Entity Editing
Example-4 in MMKE-Bench.

Figure 31: Case Study on Visual Semantic
Editing Example-1 in MMKE-Bench. Figure 32: Case Study on Visual Semantic

Editing Example-2 in MMKE-Bench.
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Figure 33: Case Study on Visual Semantic
Editing Example-3 in MMKE-Bench.

Figure 34: Case Study on Visual Semantic
Editing Example-4 in MMKE-Bench.

Figure 35: Case Study on User-Specific Edit-
ing Example-1 in MMKE-Bench.

Figure 36: Case Study on User-Specific Edit-
ing Example-2 in MMKE-Bench.
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Figure 37: Case Study on User-Specific Edit-
ing Example-3 in MMKE-Bench. Figure 38: Case Study on User-Specific Edit-

ing Example-4 in MMKE-Bench.

Figure 39: Case Study of Reliability Example-
1 of Visual Entity Editing in MMKE-Bench.
The texts in brown indicate the same content
as the editing knowledge.

r

Figure 40: Case Study of Reliability Example-
2 of Visual Entity Editing in MMKE-Bench.
The texts in brown indicate the same content
as the editing knowledge.
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Figure 41: Case Study of Reliability Example-
1 of Visual Semantic Editing in MMKE-Bench.
The texts in brown indicate the same content
as the editing knowledge.

Figure 42: Case Study of Reliability Example-
2 of Visual Semantic Editing in MMKE-Bench.
The texts in brown indicate the same content
as the editing knowledge.

Figure 43: Case Study of Reliability Example-
1 of User-Specific Editing in MMKE-Bench.
The texts in brown indicate the same content
as the editing knowledge.

Figure 44: Case Study of Reliability Example-
2 of User-Specific Editing in MMKE-Bench.
The texts in brown indicate the same content
as the editing knowledge.
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