
Accelerated Preference Optimization for Large
Language Model Alignment

Jiafan He
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
jiafanhe19@ucla.edu

Huizhuo Yuan
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
hzyuan@cs.ucla.edu

Quanquan Gu
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
qgu@cs.ucla.edu

Abstract

Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal
tool for aligning large language models (LLMs) with human preferences. Direct
Preference Optimization (DPO), one of the most popular approaches, formulates
RLHF as a policy optimization problem without explicitly estimating the reward
function. It overcomes the stability and efficiency issues of two-step approaches,
which typically involve first estimating the reward function and then optimizing
the policy via proximal policy optimization (PPO). Since RLHF is essentially
an optimization problem, and it is well-known that momentum techniques can
accelerate optimization both theoretically and empirically, a natural question arises:
Can RLHF be accelerated by momentum? This paper answers this question in
the affirmative. In detail, we first show that the iterative preference optimization
method can be viewed as a proximal point method. Based on this observation, we
propose a general Accelerated Preference Optimization (APO) framework, which
unifies many existing preference optimization algorithms and employs Nesterov’s
momentum technique to speed up the alignment of LLMs. Theoretically, we
demonstrate that APO can achieve a faster convergence rate than the standard itera-
tive preference optimization methods, including DPO and SPPO. Empirically, we
show the superiority of APO over DPO, iterative DPO, and other strong baselines
for RLHF on the AlpacaEval 2.0 benchmark.

1 Introduction
Large Language Models (LLMs) have emerged as a pivotal technique in the era of artificial general
intelligence and recently demonstrated impressive capabilities in tasks such as text generation (Bubeck
et al., 2023; Anil et al., 2023; Touvron et al., 2023), coding (Chen et al., 2021; Austin et al., 2021),
and problem solving (Cobbe et al., 2021; Wei et al., 2022). A key element contributing to these
achievements is the alignment of LLMs with human preference data, utilizing reinforcement learning
from human feedback (RLHF) (Ziegler et al., 2019; Christiano et al., 2017; Ouyang et al., 2022; Bai
et al., 2022; Munos et al., 2023).

The standard RLHF method (Ouyang et al., 2022) involves three main steps: feedback collection,
reward modeling, and policy optimization. Specifically, the LLM receives human-generated prompts
and produces several possible responses. Subsequently, human preferences for these responses are

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

collected and used to train a reward model that matches these preferences. Finally, the policy opti-
mization process updates the large language model using optimization algorithms such as Proximal
Policy Optimization (PPO) (Schulman et al., 2017) to produce responses with higher preference
based on the trained reward model.

Recently, Rafailov et al. (2023) introduced the Direct Preference Optimization (DPO) method based
on the Bradley-Terry (BT) model (Bradley and Terry, 1952). This method skips the reward modeling
process and replaces it with a reparameterized reward with respect to the policy, allowing for direct
optimization of the LLM. It simplifies the implementation, while maintaining a comparable or even
better performance than standard RLHF. Later, several works (Munos et al., 2023; Azar et al., 2024;
Wu et al., 2024; Rosset et al., 2024) considered the general preference model rather than the BT
model, and designed algorithms (Nash-MD, IPO, SPPO, and DNO) that more flexibly represent
human preferences while maintaining a simple implementation. Nonetheless, both the standard RLHF
process and its variations rely on the policy optimization process. In fact, for general optimization
problems, it is well-known that momentum techniques (Polyak, 1964; Nesterov, 2013; Bubeck et al.,
2015b) can accelerate the convergence of the optimization algorithm in both theory and practice.
Therefore, a natural question arises:

Can reinforcement learning from human feedback be accelerated?

In this paper, we affirmatively answer this question. In details, following Xu et al. (2023); Yuan
et al. (2024b); Chen et al. (2024); Wu et al. (2024), we consider the iterative preference optimization
framework. In this framework, a series of models is constructed, with each model being improved
based on the previous one using preference optimization algorithm such as DPO and SPPO. The
contributions of our work are highlighted as follows:

• We propose a general preference optimization framework, APO, based on Nesterov’s momentum
to accelerate preference optimization. Our theoretical analysis shows that iterative DPO achieves
an Õ(1/t) sub-optimality gap from the optimal policy under the Bradley-Terry (BT) model. As a
comparison, our algorithm APO achieves a smaller Õ

(
(1− α)/t

)
sub-optimality gap, where α is

the extrapolation parameter in the momentum. To the best of our knowledge, our work provides
the first convergence analysis of iterative DPO and the first accelerated preference optimization
algorithm with provable guarantees.

• With an additional minimal sub-optimality gap assumption in the BT model, we prove that APO will
convergence to the optimal policy in total variation (TV) distance at the rate of exp

(
−O(t/(1−α))

)
,

improving the exp
(
−O(t)

)
rate of iterative DPO. In addition, we extend our results to the general

preference model and show that APO with the SPPO loss function can also accelerate SPPO under
a similar minimal sub-optimality gap assumption.

• Empirically, we verify the performance of APO when applied to DPO method on fine-tuning
Mistral-7B-Instruct-v0.2. In the AlpacaEval 2.0 evaluation tasks, APO with 3 iterations
achieves a length-controlled win rate of 31.73%, demonstrating a 1.78% improvement over iterative
DPO and a 5.34% improvement over Snorkel’s Mistral-PairRM-DPO. Moreover, APO with 2
iterations obtains a win rate of 37.53%, matching iterative DPO’s 37.65% with 3 iterations, with
noticeably shorter response lengths. This is consistent with our theoretical analysis. In addition,
the evaluation on five general instruction-following tasks from MT-Bench shows an average score
of 9.57 out of 10, further demonstrating APO’s superior performance.

2 Preliminaries
In the setting of RLHF, we assume a finite context set X , and possible response set Y . For any
prompts x ∈ X , a policy π : X → ∆(Y) maps the prompt x to the discrete distributions over the
response set Y . For a given context x ∈ X collected from distribution ρ, we generate two responses
y1, y2 with a reference policy µ and receive preferences from either humans or more advanced
language models between these two responses (yw ≻ yl), where yw and yl represent the preferred
and dispreferred generated responses in {y1, y2}. Following Christiano et al. (2017); Ouyang et al.
(2022); Rafailov et al. (2023), we assume the existence of a latent reward model r∗(x, y), and the
preference distribution satisfies the Bradley-Terry (BT) model (Bradley and Terry, 1952):

P(y1 ≻ y2|x) =
exp

(
r∗(x, y1)

)
exp

(
r∗(x, y1)

)
+ exp

(
r∗(x, y2)

) . (2.1)

2

3 Accelerated Preference Optimization
In this section, we present a general framework for language model alignment, namely accelerated
preference optimization (APO), which is built upon the iterative preference optimization framework.

3.1 Iterative Preference Optimization Freamework

Under the iterative Preference Optimization framework (Xu et al., 2023; Yuan et al., 2024b; Chen
et al., 2024; Wu et al., 2024), the algorithm progressively updates the policy πt, aiming to converge to
the optimal policy. In detail, for each iteration t ∈ [T], it designates the reference policy as the policy
generated from the previous iteration, denoted by πt. It estimates the reward model by minimizing
the expected loss function l(r, x, yw, yl) over the dataset Dt:

rt(·, ·)← argmax
r(·,·)

E(x,yw,yl)∼Dt

[
ℓ(r, x, yw, yl, πt)

]
, (3.1)

Then, it updates the reference policy by solving the following KL-regularized optimization problem:
π̂t+1 ← argmax

π∈Π
Ex∼ρ,y∼π(·|x)[rt(x, y)]− βEx∼ρ

[
KL
(
π(·|x)∥πt(·|x)

)]
. (3.2)

According to Rafailov et al. (2023), for each iteration t ∈ [T], the optimization problem (3.2) has the
following closed-form solution:

π̂t+1(y|x) ∝ πt(y|x) · exp
(
rt(x, y)/β

)
.

Thus, we can reparamterize the reward function for each policy π as follows:

rπ(x, y) = β log
π(y|x)
πt(y|x)

.

With this reparameterized reward function, the previous two-step optimization process in (3.1) and
(3.2) can be integrated into the following one-step direct preference optimization:

π̂t+1 ← arg min
rπ∈Rt

E(x,yw,yl)∼Dt

[
ℓ(rπ, x, y

w, yl, πt)
]
, (3.3)

where Dt represents the data collected at iteration t using the reference policy πt.

For the vanilla iterative preference optimization framework, the updated policy π̂t+1 is directly used
as the reference policy in the next iteration, where πt+1 = π̂t+1. In this situation, the iterative
optimization of the policy resembles the (Bregman) Proximal Point Method (Bregman, 1967; Censor
and Zenios, 1992; Kiwiel, 1997), which iteratively minimizes the following proximal subproblem:

πt+1 ← argmin
π∈Π

{
ft(π) = Lt(π) + βD(π, πt)

}
(3.4)

for a given regularization parameter β and Bregman divergence D(·, ·). In this reduction, the expected
reward −Ex∼ρ,y∼π(·|x)[rt(x, y)] corresponds to the target function Lt(π) in the proximal function
ft(π), and the Bregman divergence D(π, πt) is chosen as the Kullback–Leibler (KL) divergence to
the behavior policy πt: Ex∼ρ

[
KL
(
π(·|x)|πt(·|x)

)]
.

3.2 Accelerated Preference Optimization

So far, we have demonstrated that the iterative preference optimization framework resembles the
proximal point method. For standard optimization problems, it is well known that Nesterov’s
momentum method (Nesterov, 1983, 2008, 2013) can accelerate the optimization algorithm both
theoretically and empircally. In particular, Lin et al. (2018) proposed a framework called Catalyst,
which extends Nesterov’s momentum method to the proximal point method and has shown that it can
accelerate it provably. In the Catalyst method, after solving the proximal operator

xt+1 = argmin
x

{
ft(x) = f(x) + κD(x, yt)

}
,

where D(x, yt) is the Bregman divergence, an extrapolation step is introduced as follows:
yt+1 = xt+1 + αt(xt+1 − xt),

where αt is the Nesterov’s extrapolation parameter and xt+1 − xt denotes the momentum from the
previous update. Following the above idea, we introduce an extrapolation step after solving (3.3) to
obtain πt+1:

log πt+1(y|x) = log π̂t+1 + α
(
log π̂t+1 − log π̂t

)
, (3.7)

where α is the Nesterov’s extrapolation parameter. After normalizing the policy πt+1(y|x), we obtain
πt+1(y|x) ∝ π̂t+1(y|x) ·

(
π̂t+1(y|x)/π̂t(y|x)

)α
.

Putting together all key components discussed above, we present the APO framework in Algorithm 1.

3

Algorithm 1 APO (Accelerated Preference Optimization)
1: input: Reference policy πref, learning rate β, Extrapolation parameter α, number of iterations T
2: Initialize π0 = π̂0 = πref
3: for iteration t = 0, . . . , T do
4: Collect the dataset |Dt| = N with prompts distribution x ∼ ρ and current reference policy πt

5: Set the reparameterized reward function class as following:

Rt ←
{
rπ(x, y) = β log

π(y|x)
πt(y|x)

∣∣∣π ∈ Π

}
6: Update the policy π̂t+1 as following:

π̂t+1 ← argmin
π∈Π

E(x,yw,yl)∼Dt

[
ℓ(rπ, x, y

w, yl, πt)
]

(3.5)

7: Compute the policy πt+1 with an extrapolation step

πt+1(y|x) ∝ π̂t+1(y|x) ·
(
π̂t+1(y|x)/π̂t(y|x)

)α
(3.6)

8: end for

4 Experiments
In this section, we detail the experimental settings used to validate the efficacy ofAPO algorithm. We
evaluate the model’s performance across various benchmark tasks and explore the impact of different
momentum schedules.

4.1 Experimental Setup

Model and Datasets. We use Mistral AI’s Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) as
our base model, which is a fine-tuned version based on the pretrained Mistral-7B-v0.2 (Jiang
et al., 2023a) on several publicly available datasets for instruction-following. For training, we employ
the UltraFeedback dataset (Cui et al., 2023). Unlike traditional fine-tuning methods that depend
on responses and preference labels generated by proprietary models like GPT-4, we utilize only
the instruction set from UltraFeedback. All responses are autonomously generated by our model
following an online principle, and the preference pairs are labeled using a separate reward model,
PairRM (Jiang et al., 2023b). The instruction set used for both training and validation includes a total
of 64k instructions that span a diverse range of tasks, such as UltraChat, ShareGPT, Evol-Instruct,
TruthfulQA, FalseQA, and FLAN, as detailed in Cui et al. (2023). Over three training iterations, we
divided the instruction set into three folds as in Hoang et al. (2023); Kawin et al. (2023), allocating
approximately 2k instructions per iteration, with an additional 1k left out for validation. Overall, our
training pipeline is independent of human or GPT inputs. We defer hyperparameters to Sec. F.3.

Evaluation. For evaluating the performance of our model, we utilize three common benchmarking
tasks: the AlpacaEval 2.0 (Li et al., 2023b), the MT-Bench (Zheng et al., 2024), and the Open LLM
Leaderboard (Beeching et al., 2023; Gao et al., 2023). Due to space limitations, only the results
for AlpacaEval 2.0 are provided in the main text and the results for MT-Bench and Open LLM
Leaderboard are deferred to Sec. F.4 and F.5.

AlpacaEval 2.0. As our primary evaluation metrics, AlpacaEval 2.0 incorporates an extensive set
of 805 prompts. These prompts are simplified versions derived from the AlpacaFarm (Dubois et al.,
2023) evaluation set, covering a wide range of topics such as Health, Linguistics, Entertainment,
Technology, Coding, Gaming, Arts, Sports, and more (Yuan et al., 2024b). During the evaluation,
we consult the help of GPT-4-Turbo to compare the responses generated by our model with those
produced by GPT-4-Turbo. The final win rate are weighted based on the uncertainty of the judge.

Baselines. Starting from Mistral-7B-Instruct-v0.2, we compare our method with existing
iterative training results, including iterative DPO (Hoang et al., 2023) and iterative KTO (Ethayarajh
et al., 2024; Kawin et al., 2023). We also present results from our own iterative DPO training. All three
baselines utilize the same base model, training dataset, dataset splits, and training pipelines, which
effectively highlights the differences in methodology. Additionally, we include the Self-Rewarding

4

Table 1: AlpacaEval 2.0 evaluation. Comparison of APO with state-of-the-art iterative training
algorithms. Results are reported in both raw win rate (%) and length-controlled (LC) win rate
(%). Additionally, the average response character length (Avg. Len) of each model is provided.
Improvements of LC win rate from the previous iteration to the current iteration are calculated and
marked by a subscripted ’(+)’ in red.

Model Epochs AlpacaEval 2.0
LC Win Rate Win Rate Avg. Len

Mistral-7B-Instruct-v0.2 - 17.11 14.72 1676

Snorkel (Mistral-PairRM-DPO) - 26.39 30.22 2736

Contextual AI (KTO-Mistral-PairRM) - 29.71 33.23 2521

Self-Rewarding 70B Iter1 - - 9.94 1092
Self-Rewarding 70B Iter2 - - 15.38 1552
Self-Rewarding 70B Iter3 - - 20.44 2552

DPO Iter1 Epoch 1 25.35 30.71 2369
DPO Iter2 Epoch 3 26.92 32.54 2529
DPO Iter3 Epoch 4 29.95 37.64 2736

APO Iter1 (π̂1) Epoch 1 25.35(+8.24) 30.71 2369
APO Iter1 (π1) - 28.23 35.75 2640
APO Iter2 (π̂2) Epoch 1 29.56(+4.21) 37.53 2636
APO Iter2 (π2) - 29.73 38.65 2799
APO Iter3 (π̂3) Epoch 4 31.73(+2.17) 39.38 2950

algorithm (Yuan et al., 2024b) as another baseline. Note that different from other baselines, the
training for the Self-Rewarding algorithm incorporates additional self-instruct data augmentation and
is based on the LLama2 70B model, but requires no external reward model.

4.2 Experimental Results

AlpacaEval 2.0 Evaluation. Table 1 summarizes the AlpacaEval 2.0 results of different models. As
shown, APO surpasses all other state-of-the-art iterative training models under the same experimental
setting, with a final length controlled (LC) win rate 1 of 31.73%, and a raw win rate of 39.38%. This
demonstrates an increase of 1.78% in LC win rate and 1.74% in raw win rate over our implementation
of iterative DPO. Delving deeper into the effects of extrapolation from one iteration to the next, we
observe that starting from the same iteration 1 with an LC win rate of 25.35%, APO at iteration 2
achieves a 29.56% LC win rate, which is 4.21% higher than iteration 1, and 2.64% higher than the
26.92% attained by vanilla DPO. By iteration 3, APO exibits a further 2.17% improvement over
its previous iteration, maintaining a lead of 1.78% over vanilla DPO. This is significant, especially
considering the increasing challenge of achieving gains at higher performance levels. Notably, the
momentum acceleration step is both training-free and data-free. It maximizes the potential of a single
iteration of training data, advancing further toward optimality without requiring additional inputs.
While iterative training across three iterations with approximately 20k data points each often plateaus
at around 30%, APO effectively surpasses this threshold by a large margin.

5 Conclusions and Future Work
In this work, we studied the iterative preference optimization framework for aligning large language
models (LLMs) with human preferences and showed that it resembles the proximal point method.
Based on this observation, we introduced a general framework, APO, incorporating Nesterov’s
momentum technique. Theoretically, we show that our method achieves a faster convergence rate than
the standard iterative DPO and SPPO methods. Our experimental results demonstrate the superiority
of APO over iterative DPO on the AlpacaEval 2.0 benchmark and on the instruction-following tasks
of MT-Bench, achieving both accelerated convergence rate, and better final performance.

1The length-controlled learning rate is calculated using logistic regression, with inputs including the model
weights, the instruction, and the length difference between the model and a baseline. The LC win rate is
designed to correlate more strongly with human preferences and to be more robust against length attacks. Longer
responses are penalized in a manner that closely simulates (by causual inference) human length preferences.

5

References
ACHIAM, J., ADLER, S., AGARWAL, S., AHMAD, L., AKKAYA, I., ALEMAN, F. L., ALMEIDA, D.,

ALTENSCHMIDT, J., ALTMAN, S., ANADKAT, S. ET AL. (2023). Gpt-4 technical report. arXiv
preprint arXiv:2303.08774 .

AGARWAL, A., KAKADE, S., KRISHNAMURTHY, A. and SUN, W. (2020). Flambe: Structural
complexity and representation learning of low rank mdps. Advances in neural information
processing systems 33 20095–20107.

AHN, K. and SRA, S. (2022). Understanding nesterov’s acceleration via proximal point method. In
Symposium on Simplicity in Algorithms (SOSA). SIAM.

ALLEN-ZHU, Z. and ORECCHIA, L. (2014). Linear coupling: An ultimate unification of gradient
and mirror descent. arXiv preprint arXiv:1407.1537 .

ANIL, R., DAI, A. M., FIRAT, O., JOHNSON, M., LEPIKHIN, D., PASSOS, A., SHAKERI, S.,
TAROPA, E., BAILEY, P., CHEN, Z. ET AL. (2023). Palm 2 technical report. arXiv preprint
arXiv:2305.10403 .

AUSTIN, J., ODENA, A., NYE, M., BOSMA, M., MICHALEWSKI, H., DOHAN, D., JIANG, E., CAI,
C., TERRY, M., LE, Q. ET AL. (2021). Program synthesis with large language models. arXiv
preprint arXiv:2108.07732 .

AZAR, M. G., GUO, Z. D., PIOT, B., MUNOS, R., ROWLAND, M., VALKO, M. and CALAN-
DRIELLO, D. (2024). A general theoretical paradigm to understand learning from human prefer-
ences. In International Conference on Artificial Intelligence and Statistics. PMLR.

BAI, Y., JONES, A., NDOUSSE, K., ASKELL, A., CHEN, A., DASSARMA, N., DRAIN, D., FORT,
S., GANGULI, D., HENIGHAN, T. ET AL. (2022). Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862 .

BAUSCHKE, H. and COMBETTES, P. (????). Convex analysis and monotone operator theory in
hilbert spaces, 2011. CMS books in mathematics 10 978–1.

BECK, A. and TEBOULLE, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences 2 183–202.

BEECHING, E., FOURRIER, C., HABIB, N., HAN, S., LAMBERT, N., RAJANI, N., SANSEVIERO,
O., TUNSTALL, L. and WOLF, T. (2023). Open llm leaderboard. https://huggingface.co/
spaces/HuggingFaceH4/open_llm_leaderboard.

BRADLEY, R. A. and TERRY, M. E. (1952). Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika 39 324–345.

BREGMAN, L. M. (1967). The relaxation method of finding the common point of convex sets and its
application to the solution of problems in convex programming. USSR computational mathematics
and mathematical physics 7 200–217.

BUBECK, S., CHANDRASEKARAN, V., ELDAN, R., GEHRKE, J., HORVITZ, E., KAMAR, E., LEE,
P., LEE, Y. T., LI, Y., LUNDBERG, S. ET AL. (2023). Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712 .

BUBECK, S., LEE, Y. T. and SINGH, M. (2015a). A geometric alternative to nesterov’s accelerated
gradient descent. arXiv preprint arXiv:1506.08187 .

BUBECK, S. ET AL. (2015b). Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning 8 231–357.

CENSOR, Y. and ZENIOS, S. A. (1992). Proximal minimization algorithm with d-functions. Journal
of Optimization Theory and Applications 73 451–464.

CHEN, M., TWOREK, J., JUN, H., YUAN, Q., PINTO, H. P. D. O., KAPLAN, J., EDWARDS, H.,
BURDA, Y., JOSEPH, N., BROCKMAN, G. ET AL. (2021). Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 .

6

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

CHEN, S., SHI, B. and YUAN, Y.-X. (2022). Revisiting the acceleration phenomenon via high-
resolution differential equations. arXiv preprint arXiv:2212.05700 .

CHEN, Z., DENG, Y., YUAN, H., JI, K. and GU, Q. (2024). Self-play fine-tuning converts weak
language models to strong language models. arXiv preprint arXiv:2401.01335 .

CHRISTIANO, P. F., LEIKE, J., BROWN, T., MARTIC, M., LEGG, S. and AMODEI, D. (2017).
Deep reinforcement learning from human preferences. Advances in neural information processing
systems 30.

COBBE, K., KOSARAJU, V., BAVARIAN, M., CHEN, M., JUN, H., KAISER, L., PLAPPERT, M.,
TWOREK, J., HILTON, J., NAKANO, R. ET AL. (2021). Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168 .

COHEN, M. B., SIDFORD, A. and TIAN, K. (2020). Relative lipschitzness in extragradient methods
and a direct recipe for acceleration. arXiv preprint arXiv:2011.06572 .

CUI, G., YUAN, L., DING, N., YAO, G., ZHU, W., NI, Y., XIE, G., LIU, Z. and SUN, M.
(2023). Ultrafeedback: Boosting language models with high-quality feedback. arXiv preprint
arXiv:2310.01377 .

DIAKONIKOLAS, J. and ORECCHIA, L. (2017). Accelerated extra-gradient descent: A novel
accelerated first-order method. arXiv preprint arXiv:1706.04680 .

DUBOIS, Y., LI, X., TAORI, R., ZHANG, T., GULRAJANI, I., BA, J., GUESTRIN, C., LIANG, P.
and HASHIMOTO, T. B. (2023). Alpacafarm: A simulation framework for methods that learn from
human feedback.

DUDÍK, M., HOFMANN, K., SCHAPIRE, R. E., SLIVKINS, A. and ZOGHI, M. (2015). Contextual
dueling bandits. In Conference on Learning Theory. PMLR.

ETHAYARAJH, K., XU, W., MUENNIGHOFF, N., JURAFSKY, D. and KIELA, D. (2024). Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306 .

GAO, L., TOW, J., ABBASI, B., BIDERMAN, S., BLACK, S., DIPOFI, A., FOSTER, C., GOLDING,
L., HSU, J., LE NOAC’H, A., LI, H., MCDONELL, K., MUENNIGHOFF, N., OCIEPA, C., PHANG,
J., REYNOLDS, L., SCHOELKOPF, H., SKOWRON, A., SUTAWIKA, L., TANG, E., THITE, A.,
WANG, B., WANG, K. and ZOU, A. (2023). A framework for few-shot language model evaluation.

GEER, S. A. (2000). Empirical Processes in M-estimation, vol. 6. Cambridge university press.

GÜLER, O. (1992). New proximal point algorithms for convex minimization. SIAM Journal on
Optimization 2 649–664.

HE, B. and YUAN, X. (2012). An accelerated inexact proximal point algorithm for convex mini-
mization. Journal of Optimization Theory and Applications 154 536–548.

HOANG, T., CHRIS, G. and BRADEN, H. (2023). Iterative dpo alignment. Tech. rep., Snorkel AI.

JIANG, A. Q., SABLAYROLLES, A., MENSCH, A., BAMFORD, C., CHAPLOT, D. S., CASAS, D.
D. L., BRESSAND, F., LENGYEL, G., LAMPLE, G., SAULNIER, L. ET AL. (2023a). Mistral 7b.
arXiv preprint arXiv:2310.06825 .

JIANG, D., REN, X. and LIN, B. Y. (2023b). Llm-blender: Ensembling large language models with
pairwise comparison and generative fusion. In Proceedings of the 61th Annual Meeting of the
Association for Computational Linguistics (ACL 2023).

JIN, Y., SIDFORD, A. and TIAN, K. (2022). Sharper rates for separable minimax and finite sum
optimization via primal-dual extragradient methods. In Conference on Learning Theory. PMLR.

KAWIN, E., WINNIE, X., DAN, J. and DOUWE, K. (2023). Human-centered loss functions (halos).
Tech. rep., Contextual AI. Https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf.

KIWIEL, K. C. (1997). Proximal minimization methods with generalized bregman functions. SIAM
journal on control and optimization 35 1142–1168.

7

KNOX, W. B. and STONE, P. (2009). Interactively shaping agents via human reinforcement: The
tamer framework. In Proceedings of the fifth international conference on Knowledge capture.

KOVALEV, D., GASNIKOV, A. and RICHTÁRIK, P. (2022). Accelerated primal-dual gradient method
for smooth and convex-concave saddle-point problems with bilinear coupling. Advances in Neural
Information Processing Systems 35 21725–21737.

KWON, W., LI, Z., ZHUANG, S., SHENG, Y., ZHENG, L., YU, C. H., GONZALEZ, J. E., ZHANG,
H. and STOICA, I. (2023). Efficient memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems
Principles.

LESSARD, L., RECHT, B. and PACKARD, A. (2016). Analysis and design of optimization algorithms
via integral quadratic constraints. SIAM Journal on Optimization 26 57–95.

LI, C. J., YUAN, H., GIDEL, G., GU, Q. and JORDAN, M. (2023a). Nesterov meets optimism:
rate-optimal separable minimax optimization. In International Conference on Machine Learning.
PMLR.

LI, X., ZHANG, T., DUBOIS, Y., TAORI, R., GULRAJANI, I., GUESTRIN, C., LIANG, P. and
HASHIMOTO, T. B. (2023b). Alpacaeval: An automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

LIN, H., MAIRAL, J. and HARCHAOUI, Z. (2015). A universal catalyst for first-order optimization.
Advances in neural information processing systems 28.

LIN, H., MAIRAL, J. and HARCHAOUI, Z. (2018). Catalyst acceleration for first-order convex
optimization: from theory to practice. Journal of Machine Learning Research 18 1–54.

MARTINET, B. (1970). Régularisation d’inéquations variationnelles par approximations successives.
rev. française informat. Recherche Opérationnelle 4 154–158.

MOREAU, J.-J. (1965). Proximité et dualité dans un espace hilbertien. Bulletin de la Société
mathématique de France 93 273–299.

MUNOS, R., VALKO, M., CALANDRIELLO, D., AZAR, M. G., ROWLAND, M., GUO, Z. D., TANG,
Y., GEIST, M., MESNARD, T., MICHI, A. ET AL. (2023). Nash learning from human feedback.
arXiv preprint arXiv:2312.00886 .

NESTEROV, Y. (1983). A method for solving the convex programming problem with convergence
rate o(1/k2). Proceedings of the USSR Academy of Sciences 269 543–547.

NESTEROV, Y. (2008). Accelerating the cubic regularization of newton’s method on convex problems.
Mathematical Programming 112 159–181.

NESTEROV, Y. (2013). Introductory lectures on convex optimization: A basic course, vol. 87.
Springer Science & Business Media.

OPENAI, R. (2023). Gpt-4 technical report. arxiv 2303.08774. View in Article 2.

OUYANG, L., WU, J., JIANG, X., ALMEIDA, D., WAINWRIGHT, C., MISHKIN, P., ZHANG,
C., AGARWAL, S., SLAMA, K., RAY, A. ET AL. (2022). Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems 35 27730–
27744.

POLYAK, B. T. (1964). Some methods of speeding up the convergence of iteration methods. Ussr
computational mathematics and mathematical physics 4 1–17.

RAFAILOV, R., SHARMA, A., MITCHELL, E., ERMON, S., MANNING, C. D. and FINN, C. (2023).
Direct preference optimization: Your language model is secretly a reward model. arXiv preprint
arXiv:2305.18290 .

ROCKAFELLAR, R. T. (1976). Monotone operators and the proximal point algorithm. SIAM journal
on control and optimization 14 877–898.

8

https://github.com/tatsu-lab/alpaca_eval

ROSSET, C., CHENG, C.-A., MITRA, A., SANTACROCE, M., AWADALLAH, A. and XIE, T. (2024).
Direct nash optimization: Teaching language models to self-improve with general preferences.
arXiv preprint arXiv:2404.03715 .

SALZO, S., VILLA, S. ET AL. (2012). Inexact and accelerated proximal point algorithms. Journal of
Convex analysis 19 1167–1192.

SCHULMAN, J., WOLSKI, F., DHARIWAL, P., RADFORD, A. and KLIMOV, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347 .

SHI, B. (2021). On the hyperparameters in stochastic gradient descent with momentum. arXiv
preprint arXiv:2108.03947 .

SHI, B., DU, S. S., JORDAN, M. I. and SU, W. J. (2022). Understanding the acceleration phe-
nomenon via high-resolution differential equations. Mathematical Programming 1–70.

SHI, B., DU, S. S., SU, W. and JORDAN, M. I. (2019). Acceleration via symplectic discretization
of high-resolution differential equations. Advances in Neural Information Processing Systems 32.

SU, W., BOYD, S. and CANDES, E. J. (2016). A differential equation for modeling nesterov’s
accelerated gradient method: Theory and insights. Journal of Machine Learning Research 17
1–43.

SWAMY, G., DANN, C., KIDAMBI, R., WU, Z. S. and AGARWAL, A. (2024). A minimaximalist
approach to reinforcement learning from human feedback. arXiv preprint arXiv:2401.04056 .

TAYLOR, A. B., HENDRICKX, J. M. and GLINEUR, F. (2017). Smooth strongly convex interpolation
and exact worst-case performance of first-order methods. Mathematical Programming 161 307–
345.

THEKUMPARAMPIL, K. K., HE, N. and OH, S. (2022). Lifted primal-dual method for bilinearly
coupled smooth minimax optimization. In International Conference on Artificial Intelligence and
Statistics. PMLR.

TOUVRON, H., MARTIN, L., STONE, K., ALBERT, P., ALMAHAIRI, A., BABAEI, Y., BASHLYKOV,
N., BATRA, S., BHARGAVA, P., BHOSALE, S. ET AL. (2023). Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288 .

TSENG, P. (2009). On accelerated proximal gradient methods for convex-concave optimization. 2008.
Submitted to SIAM J. Optim .

TVERSKY, A. (1969). Intransitivity of preferences:’psychological review 76: 31-48.. 1972. Elimina-
tion by aspects: A theory of choice 281–299.

WEI, J., WANG, X., SCHUURMANS, D., BOSMA, M., XIA, F., CHI, E., LE, Q. V., ZHOU, D.
ET AL. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances
in neural information processing systems 35 24824–24837.

WIRTH, C., AKROUR, R., NEUMANN, G., FÜRNKRANZ, J. ET AL. (2017). A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research 18 1–46.

WU, Y., SUN, Z., YUAN, H., JI, K., YANG, Y. and GU, Q. (2024). Self-play preference optimization
for language model alignment. arXiv preprint arXiv:2405.00675 .

XIONG, W., DONG, H., YE, C., ZHONG, H., JIANG, N. and ZHANG, T. (2023). Gibbs sam-
pling from human feedback: A provable kl-constrained framework for rlhf. arXiv preprint
arXiv:2312.11456 .

XU, J., LEE, A., SUKHBAATAR, S. and WESTON, J. (2023). Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682 .

XU, Y. and ZEEVI, A. (2020). Upper counterfactual confidence bounds: a new optimism principle
for contextual bandits. arXiv preprint arXiv:2007.07876 .

9

YUAN, A., LI, C. J., GIDEL, G., JORDAN, M., GU, Q. and DU, S. S. (2024a). Optimal extragradient-
based algorithms for stochastic variational inequalities with separable structure. Advances in Neural
Information Processing Systems 36.

YUAN, W., PANG, R. Y., CHO, K., SUKHBAATAR, S., XU, J. and WESTON, J. (2024b). Self-
rewarding language models. arXiv preprint arXiv:2401.10020 .

ZHENG, L., CHIANG, W.-L., SHENG, Y., ZHUANG, S., WU, Z., ZHUANG, Y., LIN, Z., LI, Z., LI,
D., XING, E. ET AL. (2024). Judging llm-as-a-judge with mt-bench and chatbot arena. Advances
in Neural Information Processing Systems 36.

ZIEGLER, D. M., STIENNON, N., WU, J., BROWN, T. B., RADFORD, A., AMODEI, D., CHRIS-
TIANO, P. and IRVING, G. (2019). Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593 .

Limitation
Due to limited computational resources, we do not evaluate APO with the SPPO (Wu et al., 2024)
loss function in the current experiments, and we plan to investigate it in our future work. Additionally,
while our model demonstrates consistent improvements on instruction-following tasks, it faces
challenges in solving math problems. This limitation is largely due to the choice of dataset and the
restriction of not utilizing additional information from GPT-4 or human sources. In the future, we
aim to address this by incorporating larger datasets and leveraging GPT-4 supervision.

Broader Impact
This paper studies the alignment of LLMs with human preferences and presents a Nesterov’s method
for the alignment process. We believe our work has the following social impacts. Firstly, Large
Language Models (LLMs) have emerged as pivotal tools across several fields, including text genera-
tion, coding, and problem-solving, which are increasingly relied upon by individuals. Our method
demonstrates superiority over existing benchmarks, which could be beneficial for constructing AI
assistants. Secondly, aligning LLMs with human preferences requires material resources, and the
accelerated method may expedite the learning process and reduce the required resources.

A Related Work
A.1 Reinforcement Learning from Human Feedback

Learning from human feedback in reinforcement learning can be traced back to Knox and Stone
(2009); Wirth et al. (2017) and was later popularized by Christiano et al. (2017), which incorporated
human preferences into deep reinforcement learning. Recently, RLHF has gained popularity in
natural language processing and has become a paradigmatic method for fine-tuning large language
models (LLMs) (Achiam et al., 2023; Touvron et al., 2023; OpenAI, 2023) to align with human
objectives. The standard process for alignment with human feedback (Ouyang et al., 2022) requires
both reward modeling and policy optimization. Recently, Rafailov et al. (2023) proposed the Direct
Preference Optimization method, which replaces the reward modeling process with a reparameterized
reward and directly performs policy optimization using preference data. Similarly, Kawin et al. (2023)
proposed the Kahneman-Tversky Optimization method (KTO) with a reparameterized reward, while
considering different human-aware loss functions.

More recently, iterative variants of policy optimization have garnered increasing attention. Xu
et al. (2023) investigated the iterative preference optimization method and proposed the PAIRWISE
CRINGE algorithm, which iteratively generates a new preference dataset using the current model
and then updates the model with a combination of the original preference data and the newly labeled
data. Additionally, they studied the iterative version of Direct Preference Optimization (DPO) and
demonstrated that it achieves better performance than standard PPO or DPO. Later, Yuan et al.
(2024b) studied Self-Rewarding Language Models, where the algorithm iteratively updates the
reference policy in the DPO method and uses LLM-as-a-Judge prompting (Zheng et al., 2024) to
provide its own rewards for the generated new preference data. Despite this work demonstrating
the superiority of iterative optimization process, there is a lack of theoretical foundations for these
practical frameworks. Recently, Xiong et al. (2023) proposed Gibbs Sampling from Human Feedback,
offering theoretical analysis with the aid of linear function approximation and the incorporation of

10

an uncertainty bonus. Compared with previous methods, the reference policy remains fixed, the
newly trained model is only used to generate new preference data, and this trained model will not be
inherited in the subsequent iteration. On the contrary, our research focuses on studying the iterative
DPO model without incorporating an uncertainty bonus, and it continually updates the reference
policy throughout the process.

Most of the works motioned above rely on the assumption that the latent preference distribution
P (y1 ≻ y2|x) follows the Bradley-Terry (BT) model (Bradley and Terry, 1952)), and there exists a
series of works focusing on general preference, where human preference may not strictly be transitive.
Under the general preference assumption, iterative optimization (Munos et al., 2023; Swamy et al.,
2024; Rosset et al., 2024; Wu et al., 2024) is also employed to find the Nash-equilibrium policy. We
leave the extension of our algorithm to general preference model in the future work.

A.2 Accelerated Optimization with Momentum

The idea of accelerating gradient methods has been extensively explored over the decades. One of
the earliest contributions to this field was the Polyak momentum (Polyak, 1964), which achieved
faster convergence by leveraging the history of previous iterates. However, this early approach
sometimes failed to converge even for strongly convex objectives (Lessard et al., 2016). This was
further refined by Nesterov’s accelerated gradient (NAG) (Nesterov, 1983), with a guarantee for faster
convergence rates for general smooth convex functions. Following these foundational works, other
acceleration algorithms and analyses emerged for gradient descent and its proximal variants (Beck
and Teboulle, 2009; Tseng, 2009; Taylor et al., 2017; Allen-Zhu and Orecchia, 2014; Bubeck et al.,
2015a; Diakonikolas and Orecchia, 2017; Cohen et al., 2020). In addition, there has been another
line of work in understanding Nesterov’s acceleration through continuous analysis and Lyapunov
function analysis (Su et al., 2016; Shi et al., 2019; Shi, 2021; Shi et al., 2022; Chen et al., 2022).
Momentum techniques have also proven effective in accelerating minimax game settings (Jin et al.,
2022; Kovalev et al., 2022; Thekumparampil et al., 2022; Li et al., 2023a; Yuan et al., 2024a).
However, the application of acceleration techniques to LLMs remains relatively unexplored.

The Proximal Point Method (PPM) (Moreau, 1965; Martinet, 1970; Rockafellar, 1976; Güler, 1992;
Bauschke and Combettes) is a fundamental methodology that achieves optimality by iteratively
solving auxiliary problems in a regularized form. Generally, these auxiliary problems cannot be
solved directly, and different approximation methods yield various types of acceleration (He and
Yuan, 2012; Salzo et al., 2012). One of the connections between PPM and NAG is established in Ahn
and Sra (2022), where the authors interpret the updates of NAG as different approximations of the
proximal method. The Catalyst approach (Lin et al., 2015, 2018) represents another variant of PPM
that achieves accelerated convergence through practical inexact schemes (Lin et al., 2015; Salzo et al.,
2012). This method effectively integrates Nesterov’s acceleration with the proximal point framework,
making it applicable to a wide range of machine learning algorithms, including gradient descent and
block coordinate descent. It can be applied to variance reduction algorithms (Lin et al., 2015, 2018),
demonstrating its strong adaptability to various machine learning scenarios. Despite the widespread
adoption of momentum acceleration in both theoretical and practical applications, we are the first to
establish a connection between DPO and the proximal point method, linking iterative DPO with the
Catalyst approach, and providing a comprehensive theoretical analysis of this interpretation.

B Theoretical Analysis
Notation. For any positive integer n, we employ [n] to denote the set {0, . . . , n}. For two sequences
{an} and {bn}, we write an = O(bn) if there exists an absolute constant C such that an ≤ Cbn. We
use Õ(·) to further hide the logarithmic factors.

B.1 The Choice of Loss Function

By choosing different loss function ℓ(rπ, x, y
w, yl, πt) in (3.3), we can recover many existing iterative

preference optimization algorithms. In detail, the loss function depends on the preference model
P, and we provide several concrete examples of the loss function and the corresponding preference
optimization algorithms as follows.
Example B.1 (DPO). If we choose the loss function in (3.3) as:

ℓDPO(rπ, x, y
w, yl, πt) = − log σ

(
rπ(x, y

w)− rπ(x, y
l)
)
,

it recovers DPO (Rafailov et al., 2023).

11

Example B.2 (SPPO). For the Self-Play Preference Optimization (SPPO) (Wu et al., 2024) algorithm,
if we set the learning rate β in Algorithm 1 to be the inverse of the learning rate η in the SPPO
algorithm, the preference optimization process can be expressed as follows:

πt+1 = argmin
π

Ex∼ρ,y∼πt(·|x)

[
log

(
π(y|x)
πt(y|x)

)
− η

(
P(y ≻ πt|x)− logZπt

(x)

)]2

= argmin
π

Ex∼ρ,y∼πt(·|x)

[
β log

(
π(y|x)
πt(y|x)

)
−
(
P(y ≻ πt|x)− logZπt

(x)

)]2
= arg min

rπ∈Rt

Ex∼ρ,y∼πt(·|x)

[
rπ(x, y)− Ey′∼πt

[
P(y ≻ y′|x)

]
+ logZπt

(x)
]2

= arg min
rπ∈Rt

Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y)− 1(y ≻ y′|x) + logZπt

(x)
]2

+ Cπt

= arg min
rπ∈Rt

Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y)− 1(y ≻ y′|x) + logZπt

(x)
]2
/2

+ Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y

′)− 1(y′ ≻ y|x) + logZπt
(x)
]2
/2 + Cπt

,

where Zπt
(x) =

∑
y∈Y πt(y|x) exp

(
ηP(y ≻ πt|x)

)
represents the partition function for behavior

policy πt, Cπt
= Ex∼ρ,y,y′∼πt(·|x)

[
P(y ≻ y′|x)− 1(y ≻ y′|x)

]2
is the variance of behavior policy

πt, the second equation holds due to β = η−1 and the last equation holds because y, y′ collected
under the same behavior policy. Therefore, if we choose the loss function in (3.3) as:

ℓSPPO(rπ, x, y
w, yl, πt) =

1

2

(
rπ(x, y

w)− 1 + logZπt(x)
)2

+
1

2

(
rπ(x, y

l) + logZπt(x)
)2
,

where Zπt
(x) =

∑
y∈Y πt(y|x) exp

(
ηP(y ≻ πt|x)

)
represents the partition function for behavior

policy πt, it recovers the Self-Play Preference Optimization (SPPO) algorithm (Wu et al., 2024).

Example B.3 (IPO). If we choose the loss function in (3.3) as

ℓIPO(rπ, x, y
w, yl, πt) =

(
rπ(x, y

w)− rπ(x, y
l)− τ−1

)2
,

where τ is a regularization parameter, it recovers the Identity Preference Optimization (IPO) algorithm
(Azar et al., 2024).

B.2 Accelerated Preference Optimization with Bradley-Terry model

In this section, we provide a theoretical analysis of APO in Algorithm 1.

We begin with the following theorem, which outlines the optimization dynamics of the policy π̂t+1

over different iterations t ∈ [T].

Theorem B.4. Suppose that π̂t+1(y|x) ·
(
π̂t+1(y|x)/π̂t(y|x)

)α
belongs to the policy class Π for

each iteration t ∈ [T]. Then, the updated policy π̂t in Algorithm 1 satisfies

π̂t+1(y|x) =
1

Zt(x)
· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· ri(x, y)

)
,

where rt(x, y) = β log π̂t+1(y|x)− β log πt(y|x) represents the reparameterized reward at iteration
t, and Zt(x) =

∑
y πref(y|x) ·exp

(∑t
i=0(1/(1−α)−αt+1−i/(1−α)) ·ri(x, y)/β

)
is the partition

function.

Theorem B.4 illustrates how the policy π̂t+1 evolves with respect to the reparameterized reward
rt(x, y), which is highly dependent on the choice of the loss function ℓ in Algorithm 1.

For the Bradley-Terry (BT) model with the loss function ℓDPO in Example B.1, Theorem 1 in Rafailov
et al. (2023) demonstrates that all reward functions compatible with the BT model can be expressed
by the reparameterized reward. In addition, we introduce the following two assumptions, which are
required by our analysis.

12

Assumption B.5 (Realizability). For each iteration t ∈ [T] and each policy π ∈ Π, the following
updated policy belongs to the policy class Π:

π̂(·|x) = 1

Zπ(x)
· π(·|x) · exp

(
r∗(x, ·)

β

)
∈ Π,

where Zπ(x) =
∑

y π(x) · exp
(
r∗(x, y)/β

)
is the partition function.

Assumption B.6 (Boundedness). For each iteration t ∈ [T] and each policy π, πt ∈ Π, we have

β log
π(y|x)
πt(y|x)

∈ [−R,R]

for all x ∈ X , u ∈ Y .

Similar assumptions have been used in Rosset et al. (2024) to provide an analysis of the statistical
error for the reparameterized reward. Equipped with these assumptions, we have the following
performance guarantee for APO.
Theorem B.7 (APO with ℓDPO). For the Bradley-Terry (BT) model with loss function ℓDPO, under
Assumptions B.5 and B.6, with probability at least 1− δ, the sub-optimality gap between π̂T+1 and
the optimal policy π∗(x) = argmaxy∈Y r∗(x, y) is bounded by

Ex∼ρ,y∼π∗(·|x)
[
r∗(x, y)

]
− Ex∼ρ,y∼π̂T+1(·|x)

[
r∗(x, y)

]
≤ Õ

(
(1− α)β

T

)
+O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
,

where the coverage coefficient κt is defined as:

κt = max
(x,y)∈X×Y

π̂T+1(y|x)π∗
T+1(y|x)

π2
t (y|x)

. (B.1)

Remark B.8. The sub-optimality gap in Theorem B.7 consists of two terms: the optimization error
Õ
(
(1−α)β/T

)
and the statistical error Õ

(√
T/(Nβ2(1− α)2)

)
, and there exists a tradeoff between

these two errors. Specifically, a larger extrapolation parameter α→ 1 will decrease the optimization
error but increase the statistical error. Moreover, when the dataset size is sufficiently large (N →∞),
Theorem B.7 suggests a Õ

(
(1− α)β/T

)
sub-optimality gap for Algorithm 1 with the loss function

ℓDPO. Compared with the standard iterative DPO method with α = 0, Algorithm 1 improves the
sub-optimality gap by a factor of 1/(1− α) thanks to the Nesterov’s momentum technique.

Theorem B.7 only provides theoretical guarantee on the sub-optimality gap for the policy π̂T+1. In
order to derive the convergence of policy π̂T+1 to the optimal policy π∗, we need the following
minimal sub-optimality gap assumption.
Assumption B.9 (Minimal sub-optimality gap). For each prompt x ∈ X , let y∗x =
argmaxy∈Y r∗(x, y) be the optimal response. The sub-optimality gap between the optimal response
and any other responses is strictly positive: miny ̸=y∗

x
r∗(x, y∗x)− r∗(x, y) ≥ ∆ > 0

Remark B.10. For a general Bradley-Terry (BT) model without the minimal sub-optimality gap,
there may exist multiple responses that share the same maximum reward, i.e., r(x, y1) = r(x, y2) =
maxy∈Y r∗(x, y). In this case, the optimal policy is not unique, and it is impossible to show that the
policy π̂T+1 converges to a specific optimal policy.
Theorem B.11 (APO with ℓDPO). For the Bradley-Terry (BT) model with loss function ℓDPO, under
Assumptions B.5, B.6 and B.9, with probability at least 1− δ, the TV-distance between π̂T+1 and the
optimal policy π∗(x) = argmaxy∈Y r∗(x, y) is bounded by

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗(·|x)

)]
≤ exp

(
−O

(
T∆

(1− α)
· 1
β

))
+O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
,

where the coverage coefficient κt is defined in (B.1).

13

Remark B.12. The TV-distance between π̂t+1 and the optimal policy π∗(x) = argmaxy∈Y r∗(x, y)
includes both the optimization error exp

(
− O(T/(1 − α))

)
and the statistical error

Õ
(√

T/(N(1− α)2)
)
. Similar to Theorem B.7, there is a tradeoff between these two errors based

on the choice of α. In addition, when the dataset size is sufficiently large (N → ∞), Theorem
B.11 suggests that APO converges to the optimal policy at a rate of exp

(
− O(T/(1 − α))

)
. In

comparison, iterative DPO is a special case of our algorithm with α = 0, which converges to the
optimal policy at a slower rate of exp

(
−O(T)

)
.

B.3 Accelerated Preference Optimization with General Preferences

In the previous sections, we assumed the existence of a latent reward function and focused on
the Bradley-Terry (BT) model. However, (Tversky, 1969) observed that the preferences across all
possible responses may not be monotonous or transitive, which cannot be represented by a latent
reward function. In this section, we extend the analysis to environments with general preferences and
focus on the win probability between different responses.

In detail, for an environment with general preferences, we denote the probability that response y1 is
preferred over response y2 given the context x as P(y1 ≻ y2|x), and we assume that the preference
model is antisymmetric, such that P(y2 ≻ y1|x) = 1 − P(y1 ≻ y2|x). Under this assumption, we
define the reward rπ,π′ = Ey1∼π,y2∼π′

[
P(y1 ≻ y2|x)

]
as the win probability for policy π against

policy π′. Our goal is to identify the von Neumann winner (Dudík et al., 2015) with the preference
model. Specifically, the von Neumann winner corresponds to the Nash equilibrium of the following
two-player zero-sum game:

(π∗, π∗) = argmax
π

min
π′

Ey1∼π,y2∼π′
[
P(y1 ≻ y2|x)

]
= argmax

π
min
π′

rπ,π′ .

For a general preference model, Theorem B.14 provides a convergence rate for Algorithm 1 with the
loss function ℓSPPO in Example B.2, under the assumption of a minimal sub-optimality gap.

Assumption B.13 (Minimal sub-optimality gap with general preferences). For each prompt x ∈ X ,
we assume there exist a unique optimal response y∗x ∈ Y such that for any other sub-optimal responses
y ̸= y∗x, we have

P(y∗x ≻ y′|x)− P(y ≻ y′|x) ≥ ∆,∀y′ ∈ Y.

Theorem B.14 (APO with ℓSPPO). For general preference model with loss function ℓSPPO, under the
mild assumptions of realizability (Assumption E.3), boundedness (Assumption E.4) and Assumption
B.13, with probability at least 1−δ, the TV-distance between π̂T+1 and the optimal policy π∗(x) = y∗x
is bounded by

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗(·|x)

)]
≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ exp

(
−O

(
t∆

(1− α)
· 1
β

))
,

where the coverage coefficient κt is defined as:

κt = max
(x,y)∈X×Y

π̂T+1(y|x)π∗
T+1(y|x)

π2
t (y|x)

.

Remark B.15. When the dataset size is sufficiently large (N →∞), Theorem B.14 suggests that
APO converges to the optimal policy at a rate of exp

(
− O(T/(1 − α))

)
. When α = 0, our

algorithm reduces to the standard SPPO algorithm in Wu et al. (2024), which only converges to the
optimal policy at a slower rate of exp

(
−O(T)

)
. It is worth noting that Wu et al. (2024) provides a

Õ(1/
√
T) sub-optimality gap guarantee for the average policy π̄ = 1

T

∑T
t=1 πt. In comparison, our

result relies on a minimal sub-optimality gap assumption (Assumption B.13) and provides a faster
convergence rate between the final policy π̂t+1 and the optimal policy π∗. As discussed in Remark
B.10, this assumption is used to ensure the uniqueness of the optimal policy, which is necessary for
the convergence guarantee.

14

C Proof of Main Results
C.1 Proof of Theorem B.4

In this section, we provide the proof of Theorem B.4, which is crucial for understanding the optimiza-
tion dynamics of Algorithm 1.

Proof of Theorem B.4. Based on the definition of the reparameterized reward rt, we have

rt(x, y) = β log π̂t+1(y|x)− β log πt(y|x). (C.1)

Furthermore, the extrapolation step (3.6) satisfies

πt+1(y|x) =
1

Z ′
t(x)

· π̂t+1(y|x) ·
(
π̂t+1(y|x)/π̂t(y|x)

)α
,

where Z ′
t(x) =

∑
y π̂t+1(y|x) ·

(
π̂t+1(y|x)/π̂t(y|x)

)α
represents the partition function. Taking the

logarithm of both sides yields the following equation

log πt+1(y|x) = (1 + α) log π̂t+1(y|x)− α log π̂t(y|x)− logZ ′
t(x). (C.2)

For simplicity, we define lt(x, y) = β log π̂t+1(y|x)− β log π̂t(y|x), and thus we have

lt+1(x, y) = β log π̂t+2(y|x)− β log π̂t+1(y|x)
= rt+1(x, y) + β log πt+1(y|x)− β log π̂t+1(y|x)
= rt+1(x, y) + α

(
β log π̂t+1(y|x)− β log π̂t(y|x)

)
− β logZ ′

t(x)

= rt+1(x, y)− β logZ ′
t(x) + αlt(x, y), (C.3)

where the second equation holds due to (C.1) and the third equation holds due to (C.2). Recursively
using (C.3) over all iterations, we derive the following equation:

lt(x, y) = rt(x, y)− β logZ ′
t−1(x) + αlt−1(x, y)

= rt(x, y)− β logZ ′
t−1(x) + αrt−1(x, y)− αβ logZ ′

t−2(x) + α2lt−2(x, y)

= . . .

=

t∑
i=0

αt−i · rt(x, y)− αt−i · β logZ ′
i−1(x), (C.4)

where we assume Z ′
−1(x) = 1 for simplicity. Finally, by summing (C.4) over all iterations 0 ≤ j ≤ t,

we have

β log π̂t+1(y|x)− β log π̂1(y|x)

=

t∑
j=0

j∑
i=0

αj−iri(x, y) + αj−i · β logZ ′
i−1(x)

=

t∑
i=0

t∑
j=i

αj−iri(x, y) + αj−i · β logZ ′
i−1(x)

=

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· ri(x, y) +

(
1

1− α
− αt+1−i

1− α

)
· β logZ ′

i−1(x). (C.5)

Given that π̂1 = πref, we have

π̂t+1(y|x)

= πref(y|x) · exp
{
β ·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· rt +

(
1

1− α
− αt+1−i

1− α

)
· β logZ ′

i−1(x)

}

∝ πref(y|x) · exp
{
β ·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· rt
}
.

Thus, we complete the proof of Theorem B.4.

15

C.2 Proof of Theorem B.7

In this section, we provide the proof of Theorem B.7. To simplify the notation, we define the auxiliary
policy, which is updated following the dynamics of π̂t+1 in Theorem D.1, but using the latent reward
r∗(x, y) instead of the reparameterized reward rt(x, y):

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗(x, y)

)
, (C.6)

where Z∗
t (x) =

∑
y πref(y|x)·exp

(∑t
i=0(1/(1−α)−αt+1−i/(1−α))·r∗(x, y)/β

)
is the partition

function for the auxiliary policy. With this notation, the following lemma provide a upper bound for
the statistical errors arising from the gap between the reparameterized reward rt(x, y) and the latent
reward r∗(x, y).

Lemma C.1. Under the mild assumptions of realizability (Assumption B.5) and boundedness
(Assumption B.6), with probability at least 1 − δ, the TV-distance between the policy π̂T+1 and
auxiliary policy π∗

T+1 is upper bounded by:

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]
≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
,

where the coverage coefficient κt is defined as:

κt = max
(x,y)∈X×Y

π̂T+1(y|x)π∗
T+1(y|x)

π2
t (y|x)

.

With the help of Lemma C.1, we start the proof of Theorem B.7.

Proof of Theorem B.7. For each iteration t ∈ [T] and prompt x ∈ X , according to the definition of
π∗
t+1 in (C.6), we have

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗(x, y)

)

∝ πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗(x, y)

)

= πref(y|x) · exp

(
1

β
·
(
t+ 1

1− α
− α

(1− α)2
+

αt+2

(1− α)2

)
· r∗(x, y)

)
.

For simplicity, we set γ = ((t+1)/(1−α)−α/(1−α)2+αt+1/(1−α)2)/β, and the sub-optimality
gap for the policy π̂t+1 and a fixed prompt x can be denoted as:

Ey∼π∗(·|x)
[
r∗(x, y)

]
− Ey∼π∗

t+1(·|x)
[
r∗(x, y)

]
= r∗(x, y∗x)−

∑
y∈Y πref(y|x) · exp

(
γ · r∗(x, y)

)
· r∗(x, y)∑

y′∈Y πref(y′|x) · exp
(
γ · r∗(x, y′)

)
=

∑
y ̸=y∗

x
πref(y|x) · exp

(
γ · r∗(x, y)− γ · r∗(x, y∗x)

)
·
(
r∗(x, y∗x)− r∗(x, y)

)∑
y′∈Y πref(y′|x) · exp

(
γ · r∗(x, y′)− γ · r∗(x, y∗x)

) ,

where y∗x = argmaxy∈Y r∗(x, y) denotes the optimal response given the prompt x. For simplicity,
we set z(x, y) = exp

(
γ · r∗(x, y)− γ · r∗(x, y∗x)

)
and Z(x) =

∑
y ̸=y∗

x
πref(y|x) · z(x, y). With this

notation, we have

Ey∼π∗(·|x)
[
r∗(x, y)

]
− Ey∼π∗

t+1(·|x)
[
r∗(x, y)

]
= −

∑
y ̸=y∗

x
πref(y|x) · z(x, y) · log z(x, y)

γ ·
∑

y′∈Y πref(y′|x) · z(x, y′)

16

= −
(
1− πref(y

∗
x|x)

)
·
∑

y ̸=y∗
x
πref(y|x)/

(
1− πref(y

∗
x|x)

)
· z(x, y) · log z(x, y)

γ ·
∑

y′∈Y πref(y′|x) · z(x, y′)

≤ −

∑
y ̸=y∗

x
πref(y|x) · z(x, y) · log

(∑
y ̸=y∗

x
πref(y|x) · z(x, y)/

(
1− πref(y

∗
x|x)

))
γ ·
∑

y′∈Y πref(y′|x) · z(x, y′)

= −
Z(x) · log

(
Z(x)/

(
1− πref(y

∗
x|x)

))
γ ·
(
Z(x) + πref(y∗x|x)

) , (C.7)

where the inequality holds due to f(x) = x log x is a convex function with the fact that∑
y ̸=y∗

x
πref(y|x)/

(
1 − πref(y

∗
x|x)

)
= 1, and the last equation holds due to z(x, y∗x) = 1. Now,

we consider the following auxiliaty function for 0 < Z ≤ 1− πref(y
∗
x|x):

f(Z) = −Z · log
(
Z/
(
1− πref(y

∗
x|x)

))
−
(
Z + πref(y

∗
x|x)

)
· log

((
1− πref(y

∗
x|x)

)
/πref(y

∗
x|x)

)
.

With basic math calculation, we have

f ′(Z) = log

(
1− πref(y

∗
x|x)

Z

)
−
(
1 + log

((
1− πref(y

∗
x|x)

)
/πref(y

∗
x|x)

))
f(Z) ≤ f

((
1− πref(y

∗
x|x)

)
/ exp

(
1 + log

((
1− πref(y

∗
x|x)

)
/πref(y

∗
x|x)

)))
≤ 0.

Substituting the result f(Z) ≤ 0 into (C.7), we have

Ey∼π∗(·|x)
[
r∗(x, y)

]
− Ey∼π∗

t+1(·|x)
[
r∗(x, y)

]
≤ −

Z(x) · log
(
Z(x)/

(
1− πref(y

∗
x|x)

))
γ ·
(
Z(x) + πref(y∗x|x)

)
≤

log
((

1− πref(y
∗
x|x)

)
/πref(y

∗
x|x)

)
γ

= Õ

(
(1− α)β

t

)
. (C.8)

Therefore, the sub-optimality gap between π̂T+1 and the optimal policy π∗(x) =
argmaxy∈Y r∗(x, y) is bounded by

Ex∼ρ,y∼π∗(·|x)
[
r∗(x, y)

]
− Ex∼ρ,y∼π̂T+1(·|x)

[
r∗(x, y)

]
= Ex∼ρ,y∼π∗(·|x)

[
r∗(x, y)

]
− Ex∼ρ,y∼π∗

T+1(·|x)
[
r∗(x, y)

]
+ Ex∼ρ,y∼π∗

T+1(·|x)
[
r∗(x, y)

]
− Ex∼ρ,y∼π̂T+1(·|x)

[
r∗(x, y)

]
≤ Ex∼ρ,y∼π∗(·|x)

[
r∗(x, y)

]
− Ex∼ρ,y∼π∗

T+1(·|x)
[
r∗(x, y)

]
+ Ex∼ρ

[
2DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]

≤ Ex∼ρ,y∼π∗(·|x)
[
r∗(x, y)

]
− Ex∼ρ,y∼π∗

T+1(·|x)
[
r∗(x, y)

]
+O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)

≤ Õ

(
(1− α)β

T

)
+O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
,

where the first inequality holds due to the definition of TV-distance with the fact that r∗(x, y) ∈
[−1, 1], the second inequality holds due to Lemma C.1 and the last inequality holds due to (C.8).
Thus, we complete the proof of Theorem B.7.

17

C.3 Proof of Theorem B.11

In this section, we provide the proof of Theorem B.11.

Proof of Theorem B.11. For each iteration t ∈ [T] and prompt x ∈ X , according to the definition of
π∗
t+1 in (C.10), we have

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗(x, y)

)

∝ πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗(x, y)

)

= πref(y|x) · exp

(
1

β
·
(
t+ 1

1− α
− α

(1− α)2
+

αt+2

(1− α)2

)
· r∗(x, y)

)
.

For simplicity, we set γ =
(
(t+1)/(1−α)−α/(1−α)2+αt+1/(1−α)2

)
/β, and for each prompt

x ∈ X , the KL-divergence between π∗
t+1(·|x) and the optimal policy π∗(x) = argmaxy∈Y r∗(x, y)

can be denoted as:

KL
(
π∗(x)∥π∗

t+1(·|x)
)
= log

1

π∗
t+1

(
y∗x|x

)
= log

∑
y∈Y πref(y|x) · exp

(
γ · r∗(x, y)

)
πref(y∗x|x) · exp

(
γ · r∗(x, y∗x)

)
≤
∑

y ̸=y∗
x
πref(y|x) · exp

(
γ · r∗(x, y)

)
πref(y∗x|x) · exp

(
γ · r∗(x, y∗x)

)
=

∑
y ̸=y∗

x
πref(y|x) · exp

(
γ ·
(
r∗(x, y)− r∗(x, y∗x)

))
πref(y∗x|x)

≤
maxy ̸=y∗

x
exp

(
− γ ·

(
r∗(x, y∗x)− r∗(x, y)

))
πref(y∗x|x)

≤ exp(−γ∆)

πref(y∗x|x)

= exp

(
−O

(
t∆

(1− α)
· 1
β

))
, (C.9)

where y∗x = argmaxy∈Y r∗(x, y) denotes the optimal response given the prompt x, the first inequality
holds due to the fact that log(1 + x) ≤ x, the second inequality holds due to

∑
y ̸=y∗

x
πref(y|x) ≤ 1

and the last inequality holds due to Assumption B.9. Therefore, the TV distance between optimal
policy π∗ and π̂T+1 can be upper bounded as following:

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗(·|x)

)]
≤ Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]

+ Ex∼ρ

[
DTV

(
π∗(·|x), π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ Ex∼ρ

[
DTV

(
π∗(·|x), π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ Ex∼ρ

[√
1

2
· DKL

(
π∗(·|x)∥π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ exp

(
−O

(
t∆

(1− α)
· 1
β

))
,

where the first inequality holds due to DTV(X,Y) ≤ DTV(X,Z) +DTV(Z, Y), the second inequality
holds due to Lemma C.1, the third inequality holds due to DTV(X,Y) ≤

√
DKL(X∥Y)/2 and the

last inequality holds due to (C.9). Thus, we complete the proof of Theorem B.11.

18

C.4 Proof of Theorem B.14

In this section, we provide the proof of Theorem B.14. Similar to the proof of Theorem B.7, we define
the auxiliary policy, which is updated according to the dynamics of π̂t+1 as described in Theorem
D.1. However, in environments with general preferences, a latent reward r∗(x, y) may not exist.
Instead, we use the win probability of response y against the policy πt to replace the reparameterized
reward rt(x, y). Specifically, we set:

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗t (x, y)

)
, (C.10)

where r∗t (x, y) = Ey′∼πt

[
P(y ≻ y′|x)

]
and Z∗

t (x) =
∑

y πref(y|x) · exp
(∑t

i=0(1/(1 − α) −
αt+1−i/(1− α)) · r∗t (x, y)/β

)
is the partition function for the auxiliary policy. With this notation,

the following lemma provide a upper bound for the statistical errors arising from the gap between the
reparameterized reward rt(x, y) and the win probability r∗t (x, y).

Lemma C.2. Under the mild assumptions of realizability (Assumption E.3) and boundedness
(Assumption E.4), the TV-distance between the policy π̂T+1 and auxiliary policy π∗

T+1 is upper
bounded by:

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]
≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
,

where the coverage coefficient κt is defined as:

κt = max
(x,y)∈X×Y

π̂T+1(y|x)π∗
T+1(y|x)

π2
t (y|x)

.

With the help of Lemma C.2, we start the proof of Theorem B.14.

Proof of Theorem B.14. For each iteration t ∈ [T] and prompt x ∈ X , according to the definition of
π∗
t+1 in (C.6), we have

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗t (x, y)

)

∝ πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗t (x, y)

)
,

where the win probability r∗t (x, y) = Ey′∼πt

[
P(y ≻ y′|x)

]
. According to the Assumption B.13, for

each prompt x ∈ X and behavior policy πt, the unique optimal response y∗x ∈ Y satisfies

r∗t (x, y
∗
x) = Ey′∼πt

[
P(y∗x ≻ y′|x)

]
≥ Ey′∼πt

[
P(y ≻ y′|x)

]
+∆ = r∗t (x, y) + ∆,∀y ̸= y∗x.

(C.11)

For simplicity, we set γt =
(
1/(1 − α) − αt+1−i/(1 − α)

)
/β, and for each prompt x ∈ X , the

KL-divergence between π∗
t+1(·|x) and the optimal policy π∗(x) = y∗x can be denoted as:

KL
(
π∗(x)∥π∗

t+1(·|x)
)
= log

1

π∗
t+1

(
y∗x|x

)
= log

∑
y∈Y πref(y|x) · exp

(∑t
i=0 γi · r∗i (x, y)

)
πref(y∗x|x) · exp

(∑t
i=0 γi · r∗i (x, y∗x)

)
≤
∑

y ̸=y∗
x
πref(y|x) · exp

(∑t
i=0 γi · r∗i (x, y)

)
πref(y∗x|x) · exp

(∑t
i=0 γi · r∗i (x, y∗x)

)
=

∑
y ̸=y∗

x
πref(y|x) · exp

(∑t
i=0 γi

(
r∗i (x, y)− r∗i (x, y

∗
x)
))

πref(y∗x|x)

19

≤
maxy ̸=y∗

x
exp

(
−
∑t

i=0 γi
(
r∗i (x, y

∗
x)− r∗i (x, y)

))
πref(y∗x|x)

≤
exp(−

∑t
i=0 γi∆)

πref(y∗x|x)

= exp

(
−O

(
t∆

(1− α)
· 1
β

))
, (C.12)

where y∗x denotes the optimal response given the prompt x, the first inequality holds due to the fact
that log(1 + x) ≤ x, the second inequality holds due to

∑
y ̸=y∗

x
πref(y|x) ≤ 1 and the last inequality

holds due to (C.11). Therefore, the TV distance between optimal policy π∗ and π̂T+1 can be upper
bounded as following:

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗(·|x)

)]
≤ Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]

+ Ex∼ρ

[
DTV

(
π∗(·|x), π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ Ex∼ρ

[
DTV

(
π∗(·|x), π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ Ex∼ρ

[√
1

2
· DKL

(
π∗(·|x)∥π∗

T+1(·|x)
)]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
+ exp

(
−O

(
t∆

(1− α)
· 1
β

))
,

where the first inequality holds due to DTV(X,Y) ≤ DTV(X,Z) +DTV(Z, Y), the second inequality
holds due to Lemma C.2, the third inequality holds due to DTV(X,Y) ≤

√
DKL(X∥Y)/2 and the

last inequality holds due to (C.12). Thus, we complete the proof of Theorem B.14.

D Proof of Lemmas in Appendix C
D.1 Proof of Lemma C.1

In this subsection, we provide the proof of Lemma C.1 and first propose the following lemmas.
Lemma D.1. Under the mild assumptions of realizability (Assumption B.5) and boundedness
(Assumption B.6), for each iteration t ∈ [T], with probability at least 1− δ, the estimation error can
be upper bounded as follows:

Ex∼ρ,(y1,y2)∼πt

[(
r∗(x, y1)− r∗(x, y2)− rt(x, y1) + rt(x, y2)

)2] ≤ O

(
log
(
|Π|/δ

)
N

)
,

where reparameterized reward rt(x, y) = β log π̂t+1(y|x)− β log πt(y|x).
Lemma D.2. For any x ∈ R+, we have (1 + x) · | log x| ≥ |x− 1|.

With the help of Lemmas D.1 and D.2, we now begin the proof of Lemma C.1.

Proof of Lemma C.1. For each iteration t ∈ [T] and prompt x ∈ X , the TV-distance between
π̂t+1(·|x) and π∗

t+1(·|x) can be upper bounded as follows:

DTV
(
π̂t+1(·|x), π∗

t+1(·|x)
)

= Ey∼π∗
t+1(·|x)

[
1

2
·
∣∣∣ π̂t+1(y|x)
π∗
t+1(y|x)

− 1
∣∣∣]

≤ Ey∼π∗
t+1(·|x)

[
1

2
·
(
1 +

π̂t+1(y|x)
π∗
t+1(y|x)

)
·
∣∣∣ log π̂t+1(y|x)

π∗
t+1(y|x)

∣∣∣]
=

1

2
· Ey∼π∗

t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]+ 1

2
· Ey∼π̂t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]

20

≤

√
1

2
· Ey∼π∗

t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]2 + 1

2
· Ey∼π̂t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]2
≤

√
1

2
· Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+

1

2
· Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
, (D.1)

where the first inequality holds due to Lemma D.2, the second inequality holds due to x + y ≤√
2(x2 + y2) for x, y > 0, and the last inequality holds due to E[x]2 ≤ E[x2]. In addition, for each

iteration t ∈ [T] and prompt x ∈ X , we have

Ey∼π∗
t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
≤ Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ 2DKL

(
π̂t+1(·|x)∥π∗

t+1(·|x)
)
· DKL

(
π∗
t+1(·|x)∥π̂t+1(·|x)

)
= Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ 2Ey∼π∗

t+1(·|x)

[
− log

π̂t+1(y|x)
π∗
t+1(y|x)

]
· Ey∼π̂t+1(·|x)

[
log

π̂t+1(y|x)
π∗
t+1(y|x)

]
= Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

− log
π̂t+1(y

′|x)
π∗
t+1(y

′|x)

)2]
, (D.2)

where the inequality holds due to KL-divergence is non-negative. According to Theorem B.4 and
definition of π∗

t+1 in (C.6), we have

log
π̂t+1(y|x)
π∗
t+1(y|x)

=
logZ∗

t (x)

logZt(x)
+

t∑
i=0

1

β
·
(

1

1− α
− αt+1−i

1− α

)
·
(
ri(x, y)− r∗(x, y)

)
. (D.3)

Substituting (D.3) into (D.2), we have

Ey∼π∗
t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
≤ Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

− log
π̂t+1(y

′|x)
π∗
t+1(y

′|x)

)2]
≤ Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[(t∑
i=0

αt+1−i ·
(
ri(x, y)− r∗(x, y)

)
−
(
ri(x, y

′)− r∗(x, y′)
)2]

≤ Ey∼π∗
t+1(·|x),y′∼π̂t+1(·|x)

[
(t+ 1) ·

t∑
i=0

α2
t+1−i ·

(
ri(x, y)− ri(x, y

′)− r∗(x, y) + r∗(x, y′)
)2]

,

(D.4)

where αi =
(
1/(1 − α) − αi/(1 − α)

)
/β and the last inequality holds due to Cauchy–Schwarz

inequality. According to the definition of coverage coefficient κt in (B.1), for policy π̂T+1, we have

Ey∼π∗
T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
+ Ey∼π̂T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
≤ (T + 1)·

T∑
t=0

1

β2(1− α)2
· Ey∼π∗

T+1(·|x),y′∼π̂T+1(·|x)

[(
rt(x, y)− rt(x, y

′)− r∗(x, y) + r∗(x, y′)
)2]

≤ (T + 1)·
T∑

t=0

κt

β2(1− α)2
· Ey∼π∗

t (·|x),y′∼π̂t(·|x)

[(
rt(x, y)− rt(x, y

′)− r∗(x, y) + r∗(x, y′)
)2]

21

≤ 1

σ2(1 +R) ·
(
1− σ(1 +R)

)2 · (T + 1)
∑T

t=0 κt · log
(
T |Π|/δ

)
Nβ2(1− α)2

, (D.5)

where the first inequality holds due to (D.4) with the fact that αi ≤ 1/(1− α), the second inequality
holds due to the definition of coverage coefficient κt in (B.1) and the last inequality holds due to
Lemma D.1 with a union bound on the probability across all T iterations. Finally, substituring (D.5)
into (D.1), we have

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]

≤ Ex∼ρ

[√
1

2
· Ey∼π∗

T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
+

1

2
· Ey∼π̂T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]]

≤ 1

σ(1 +R) ·
(
1− σ(1 +R)

) ·
√

(T + 1)
∑T

t=0 κt · log
(
T |Π|/δ

)
Nβ2(1− α)2

.

Thus, we complete the proof of Lemma C.1.

D.2 Proof of Lemma C.2

In this subsection, we provide the proof of Lemma C.2 and first propose the following lemma.
Lemma D.3. Under the mild assumptions of realizability and boundedness (see detailed definitions
in Appendix E.3), for each iteration t ∈ [T], with probability at least 1− δ, the estimation error can
be upper bounded as follows:

Ex∼ρ,(y1,y2)∼πt

[(
r∗t (x, y1)− r∗t (x, y2)− rt(x, y1) + rt(x, y2)

)2] ≤ O

(
log
(
|Π|/δ

)
N

)
,

where the win probability r∗t (x, y) = Ey′∼πt

[
P(y ≻ y′|x)

]
and reparameterized reward rt(x, y) =

β log π̂t+1(y|x)− β log πt(y|x),

With the help of Lemma C.2, we start the proof of Lemma C.2. The proof is similar to the proof of
Lemma C.1, however, it is worth noting that this proof relies on a different auxiliary policy based on
the win probability rather than the latent reward:

π∗
t+1(y|x) =

1

Z∗
t (x)

· πref(y|x) · exp

(
1

β
·

t∑
i=0

(
1

1− α
− αt+1−i

1− α

)
· r∗t (x, y)

)
,

where the win probability r∗t (x, y) = Ey′∼πt

[
P(y ≻ y′|x)

]
and Z∗

t (x) =
∑

y πref(y|x) ·
exp

(∑t
i=0(1/(1 − α) − αt+1−i/(1 − α)) · r∗t (x, y)/β

)
is the partition function for the auxiliary

policy.

Proof of Lemma C.2. For each iteration t ∈ [T] and prompt x ∈ X , the TV-distance between
π̂t+1(·|x) and π∗

t+1(·|x) can be upper bounded as follows:

DTV
(
π̂t+1(·|x), π∗

t+1(·|x)
)

= Ey∼π∗
t+1(·|x)

[
1

2
·
∣∣∣ π̂t+1(y|x)
π∗
t+1(y|x)

− 1
∣∣∣]

≤ Ey∼π∗
t+1(·|x)

[
1

2
·
(
1 +

π̂t+1(y|x)
π∗
t+1(y|x)

)
·
∣∣∣ log π̂t+1(y|x)

π∗
t+1(y|x)

∣∣∣]
=

1

2
· Ey∼π∗

t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]+ 1

2
· Ey∼π̂t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]

≤

√
1

2
· Ey∼π∗

t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]2 + 1

2
· Ey∼π̂t+1(·|x)

[∣∣∣ log π̂t+1(y|x)
π∗
t+1(y|x)

∣∣∣]2
≤

√
1

2
· Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+

1

2
· Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
, (D.6)

22

where the first inequality holds due to Lemma D.2, the second inequality holds due to x + y ≤√
2(x2 + y2) for x, y > 0, and the last inequality holds due to E[x]2 ≤ E[x2]. In addition, for each

iteration t ∈ [T] and prompt x ∈ X , we have

Ey∼π∗
t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
≤ Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ 2DKL

(
π̂t+1(·|x)∥π∗

t+1(·|x)
)
· DKL

(
π∗
t+1(·|x)∥π̂t+1(·|x)

)
= Ey∼π∗

t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ 2Ey∼π∗

t+1(·|x)

[
− log

π̂t+1(y|x)
π∗
t+1(y|x)

]
· Ey∼π̂t+1(·|x)

[
log

π̂t+1(y|x)
π∗
t+1(y|x)

]
= Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

− log
π̂t+1(y

′|x)
π∗
t+1(y

′|x)

)2]
, (D.7)

where the inequality holds due to KL-divergence is non-negative. According to Theorem B.4 and
definition of π∗

t+1 in (C.10), we have

log
π̂t+1(y|x)
π∗
t+1(y|x)

=
logZ∗

t (x)

logZt(x)
+

t∑
i=0

1

β
·
(

1

1− α
− αt+1−i

1− α

)
·
(
ri(x, y)− r∗(x, y)

)
. (D.8)

Substituting (D.8) into (D.7), we have

Ey∼π∗
t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
+ Ey∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

)2]
≤ Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[(
log

π̂t+1(y|x)
π∗
t+1(y|x)

− log
π̂t+1(y

′|x)
π∗
t+1(y

′|x)

)2]
≤ Ey∼π∗

t+1(·|x),y′∼π̂t+1(·|x)

[(t∑
i=0

αt+1−i ·
(
ri(x, y)− r∗i (x, y)

)
−
(
ri(x, y

′)− r∗i (x, y
′)
)2]

≤ Ey∼π∗
t+1(·|x),y′∼π̂t+1(·|x)

[
(t+ 1) ·

t∑
i=0

α2
t+1−i ·

(
ri(x, y)− ri(x, y

′)− r∗i (x, y) + r∗i (x, y
′)
)2]

,

(D.9)

where αi =
(
1/(1 − α) − αi/(1 − α)

)
/β and the last inequality holds due to Cauchy–Schwarz

inequality. According to the definition of coverage coefficient κt in (B.1), for policy π̂T+1, we have

Ey∼π∗
T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
+ Ey∼π̂T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
≤ (T + 1)·

T∑
t=0

1

β2(1− α)2
· Ey∼π∗

T+1(·|x),y′∼π̂T+1(·|x)

[(
rt(x, y)− rt(x, y

′)− r∗t (x, y) + r∗t (x, y
′)
)2]

≤ (T + 1)·
T∑

t=0

κt

β2(1− α)2
· Ey∼π∗

t (·|x),y′∼π̂t(·|x)

[(
rt(x, y)− rt(x, y

′)− r∗t (x, y) + r∗t (x, y
′)
)2]

≤ O

(
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
, (D.10)

where the first inequality holds due to (D.9) with the fact that αi ≤ 1/(1− α), the second inequality
holds due to the definition of coverage coefficient κt in (B.1) and the last inequality holds due to

23

Lemma D.3 with a union bound on the probability across all T iterations. Finally, substituring (D.10)
into (D.6), we have

Ex∼ρ

[
DTV

(
π̂T+1(·|x), π∗

T+1(·|x)
)]

≤ Ex∼ρ

[√
1

2
· Ey∼π∗

T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]
+

1

2
· Ey∼π̂T+1(·|x)

[(
log

π̂T+1(y|x)
π∗
T+1(y|x)

)2]]

≤ O

(√
(T + 1)

∑T
t=0 κt · log

(
T |Π|/δ

)
Nβ2(1− α)2

)
.

Thus, we complete the proof of Lemma C.2.

E Proof of Lemmas in Appendix D
E.1 Proof of Lemma D.1

In this section, we adapt the previous results on the estimation error from maximum likelihood
estimation to the Bradley-Terry (BT) model (Bradley and Terry, 1952) and provide the proof of
Lemma D.1.

We start the analysis with the conditional probability estimation setting. For an instance space X and
a target space Y , we collect the dataset D = (zi, oi)

N
i=1, where zi is sampled from a reference policy

zi ∼ µi, and oi is then generated with the latent conditional density P (oi|zi) = f∗(zi, oi). Under
this situation, the maximum likelihood estimator across a function class F : Z × O → R can be
denoted as follows

f = argmax
f∈F

N∑
i=1

log f(zi, oi).

For an i.i.d. sampled dataset D, where µ1 = µ2 = . . . = µN , Geer (2000) (Chapter 7) provides
upper bounds for the estimation error between f and the hidden function f∗. Later, Agarwal et al.
(2020) extended these results to reinforcement learning, allowing for a martingale sampling process.
Lemma E.1 (Theorem 21, Agarwal et al. 2020). For a finite function class |F| < +∞, if the latent
function f∗ ∈ F , then with probability at least 1− δ, we have

N∑
i=1

Ez∼µi

∥∥f(z, ·)− f∗(z, ·)
∥∥2

TV ≤ 2 log
(
|F|/δ

)
.

With the help of lemma E.1, we start to prove Lemma D.1.

Proof of Lemma D.1. Based on the Bradley-Terry (BT) model defined in equation (2.1), for the
prompt xi ∈ X and the generated responses y1, y2, we have

P (y1 ≻ y2|x) = σ
(
r∗(xi, yi,1)− r∗(xi, yi,2)

)
.

In this context, we define the instance zi and target oi as follows

zi = (xi, yi,1, yi,2),

oi = 1(yi,1 ≻ yi,2)− 1(yi,2 ≻ yi,1).

For each policy π ∈ Π, we denote the reparameterized reward rπ(x, y) = β log π(y|x) −
β log πt(y|x). Thus, the density function for an instance z = (x, y1, y2) with reward rπ can be
represented as

frπ (z, o) = σ
(
o ·
(
rπ(x, y1)− rπ(x, y2)

))
,

and we denote the density function class F as F = {frπ |π ∈ Π}. Based on Assumption B.5 and
the definition of the Bradley-Terry (BT) model, we have fr∗ ∈ F , and the latent density function
satisfies P (o|z) = fr∗(z, o). Consequently, the maximum likelihood estimator can be expressed as

frt = arg max
frπ∈F

N∑
i=1

log frπ (zi, oi),

24

where rt(x, y) = β log π̂t+1(y|x) − β log πt(y|x). Thus, according to Lemma E.1, the estimation
error between r∗ and rt can be upper bounded by

N∑
i=1

Ez∼µi

∥∥frt(z, ·)− fr∗(z, ·)
∥∥2

TV ≤ 2 log
(
|Π|/δ

)
. (E.1)

Since the dataset Dt is collected with reference policy πt, we have

Ex∼ρ,(y1,y2)∼πt

[
σ
(
r∗(x, y1)− r∗(x, y2)

)
− σ

(
rt(x, y1)− rt(x, y2)

)]2
=

1

2
· Ex∼ρ,(y1,y2)∼πt

[
σ
(
r∗(x, y1)− r∗(x, y2)

)
− σ

(
rt(x, y1)− rt(x, y2)

)]2
+

1

2
· Ex∼ρ,(y1,y2)∼πt

[
σ
(
r∗(x, y2)− r∗(x, y1)

)
− σ

(
rt(x, y2)− rt(x, y1)

)]2
= Ex∼ρ,(y1,y2)∼πt

∥∥frt(z, ·)− fr∗(z, ·)
∥∥2

TV

≤
log
(
|Π|/δ

)
N

, (E.2)

where the second equation holds due to the definition of TV-distance with z = (x, y1, y2) and
the inequality holds due to (E.1). According to Assumption B.6, we have r∗(x, y) ∈ [−1, 1] and
rt(x, y) ∈ [−R,R], which implies that

Ex∼ρ,(y1,y2)∼πt

[(
r∗(x, y1)− r∗(x, y2)− rt(x, y1) + rt(x, y2)

)2]
≤ 1

σ2(1 +R) ·
(
1− σ(1 +R)

)2
× Ex∼ρ,(y1,y2)∼πt

[
σ
(
r∗(x, y1)− r∗(x, y2)

)
− σ

(
rt(x, y1)− rt(x, y2)

)]2
≤ 1

σ2(1 +R) ·
(
1− σ(1 +R)

)2 · log
(
|Π|/δ

)
N

,

where the first inequality holds due to |a− b| · |maxx∈[a,b] σ
′(x)| ≤ |σ(a)− σ(b)| with the fact that

σ′(x) = σ(x)(1−σ(x)) ≤ σ(1+R)
(
1−σ(1+R)

)
and the last inequality holds due to (E.2). Thus,

we complete the proof of Lemma D.1.

E.2 Proof of Lemma D.2

Proof of Lemma D.2. We prove this inequality based on two situations: x ≥ 1 or x < 1. For the case
that x ≥ 1, we have

(1 + x) · | log x| = (1 + x) log x ≥ (1 + x)

(
1− 1

x

)
≥ x

(
1− 1

x

)
= x− 1,

where the first inequality holds due to log x ≥ 1− 1/x and the second inequality holds due to x ≥ 1.
We now consider the case where x < 1. In this case, we have

(1 + x) · | log x| = −(1 + x) log x ≥ −(1 + x)(x− 1) ≥ −(x− 1),

where the first inequality holds due to log x ≤ x− 1 and the second inequality holds due to x < 1.
Combining the results in these two cases, we complete the proof of Lemma D.2.

E.3 Proof of Lemma D.3

In this section, we provide the proof of Lemma D.3, and we summarize our definitions and assump-
tions as follows. Similar assumptions are used in Rosset et al. (2024) to analyze the statistical error
from the reparameterized reward.
Definition E.2 (Feasible Policy Class). For each iteration t ∈ [T], let Πt ⊆ Π represent the feasible
policy class, which includes all potential policies πt generated by Algorithm 1 during iteration t,
based on various possible samplings from the data collection process.

25

Assumption E.3 (Realizability). For each iteration t ∈ [T] and each potential policy π ∈ Πt, we
assume that the following updated policy also belongs to the policy class Π:

π̂(·|x) = 1

Zπ(x)
· π(·|x) · exp

(
r∗π(x, ·)

β

)
∈ Π,

where r∗π(x, y) = Ey′∼π

[
P(y ≻ y′|x)

]
denotes the win probability against the behavior policy π and

Zπ(x) =
∑

y∈Y π(y|x) exp
(
r∗π(x, y)/β

)
is the partition function.

Assumption E.4 (Boundedness). For each iteration t ∈ [T] and each potential policy πt ∈ Πt, we
have

β log
π̂t+1(y|x)
πt(y|x)

∈ [−R,R]

holds for all x ∈ X , u ∈ Y and any potential collected data set Dt.

Based on these assumption, we now begin the proof of Lemma D.3

Proof of Lemma D.3. For each policy π ∈ Πt and the corresponding reparameterized reward
rπ(x, y) = β log

(
π(y|x)/πt(y|x)

)
, we have

Ex∼ρ,y∼πt(·|x)

[
rπ(x, y)− r∗t (x, y) + logZπt

(x)
]2

= Ex∼ρ,y∼πt(·|x)

[
rπ(x, y)− Ey′∼πt

[
P(y ≻ y′|x)

]
+ logZπt

(x)
]2

= Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y)− 1(y ≻ y′|x) + logZπt(x)

]2
+ Cπt

= Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y)− 1(y ≻ y′|x) + logZπt(x)

]2
/2

+ Ex∼ρ,y,y′∼πt(·|x)
[
rπ(x, y

′)− 1(y′ ≻ y|x) + logZπt(x)
]2
/2 + Cπt

= Ex∼ρ,yw,yl∼πt

[
ℓ(rπ, x, y

w, yl, πt)
]
+ Cπt

,

where Zπt(x) =
∑

y∈Y πt(y|x) exp
(
r∗t (x, y)/β

)
is the partition function, Cπt =

Ex∼ρ,y,y′∼πt(·|x)
[
P(y ≻ y′|x) − 1(y ≻ y′|x)

]2
is the variance of behavior policy πt and the

third equation holds because y, y′ collected under the same behavior policy. Conditioned on Assump-
tion E.3, there exists a policy π∗

t+1 ∈ Π such that rπ∗
t+1

(x, y) = Ey′∼πt

[
P(y ≻ y′|x)

]
− logZπt(x).

Under this situation, according to the standard concentration argument based on Bernstein’s inequality,
the least-squares estimator π̂t+1 satisfies

Ex∼ρ,y∼πt(·|x)
[
rπ̂t+1

(x, y)− rπ∗
t+1

(x, y)
]2 ≤ O

(
(R+ 1)2 · log

(
|Π|/δ

)
N

)
, (E.3)

where the ineqaulity holds due to Lemma 6 in Xu and Zeevi (2020) with the Assumption E.4.
Therefore, we have

Ex∼ρ,(y1,y2)∼πt

[(
r∗t (x, y1)− r∗t (x, y2)− rt(x, y1) + rt(x, y2)

)2]
= Ex∼ρ,(y1,y2)∼πt

[(
rπ∗

t+1
(x, y1)− rπ∗

t+1
(x, y2)− rt(x, y1) + rt(x, y2)

)2]
≤ 2Ex∼ρ,y1∼πt

[
rπ∗

t+1
(x, y1)− rt(x, y1)

]2
+ 2Ex∼ρ,y2∼πt

[
rπ∗

t+1
(x, y2)− rt(x, y2)

]2
≤ O

(
(R+ 1)2 · log

(
|Π|/δ

)
N

)
,

where the first inequality holds due to (x + y)2 ≤ 2x2 + 2y2 and the last inequality holds due to
(E.3). Thus, we complete the proof of Lemma D.3.

F Additional Details in Experiments
F.1 Discussion

Effect of Generation Length. All iterative DPO training baselines, including Snorkel’s
Mistral-PairRM-DPO and our DPO Iter3, exhibit a trend of increasing response length. This

26

is inevitable because all response pairs used for training are generated online and ranked by PairRM,
where longer sequences are more likely to be chosen as winners. This effect accumulates as the
model trains on its own generation. We discuss this effect from the following perspectives: First,
both humans and GPT-4 exhibit length bias, and our goal is not to prevent any length growth but to
evaluate it from a perspective of fairness. Therefore, we primarily refer to the LC win rate 1, which
reflects the predicted win rate when response lengths are at the same level as the baseline. Second,
we note that APO Iter2 achieves a significantly higher LC win rate and overall win rate compared to
Snorkel’s iterative DPO implementation, while generating much shorter responses (2636 characters
compared to 2736). When compared to our DPO Iter3, APO Iter2 achieves a comparable win
rate, but also with shorter response lengths. This verifies a faster convergence rate and enhanced
performance of our methodology. Finally, this length growth is not inherent to our method but is
a result of the online training and PairRM ranking mechanism. It can be mitigated if we query
winner/loser pairs and preference choices from GPT-4 or human, with much higher cost.

Effect of Coefficient α. In Table 2, we explore how different choices of α might affect performance.
At iteration 1, performance fluctuates when changing α, peaking at α = 0.3 with a win rate of
28.23%. Lower and higher values of α yield less stable results, indicating that extreme values may
either underutilize or overcompensate the momentum effect. At iteration 2, the model demonstrates
performance improvements at both α = 0.3 and α = 0.6, with the highest win rate of 30.62%
observed at α = 0.6. Although α = 0.3 continues to provide a strong performance, it is surpassed
by the higher α = 0.6, suggesting that the optimal α might increase with iterations as the model
stabilizes. Nevertheless, we continue to use α = 0.3 at iteration 2, as our theoretical analysis assumes
α as a constant. While an adaptive approach to setting α might offer benefits, α = 0.3 has consistently
shown to be the most stable and effective choice across different iterations.

Table 2: The effect of different extrapolation strategy and parameters at iteration 1 and 2. Results are
reported in terms of length-controlled win rate (%). The row labeled "Start from π̂0" represents results
at t = 1 (π1). The row labeled "Start from π̂1" corresponds to results at t = 2 (π2). Additionally, the
row labeled "Start from π1" shows results when the momentum vector is calculated using π̂2 − π1

instead of π̂2 − π̂1, which is not covered by our theoretical guarantee.

Starting From α =0.1 α =0.2 α =0.3 α =0.4 α =0.5 α =0.6

π̂0 27.41 25.30 28.23 24.40 25.52 26.57

π̂1 28.11 29.15 29.73 28.70 29.33 30.62
π1 28.23 28.16 27.21 28.44 29.75 28.90

Effect of Extrapolation Strategy. When the momentum vector is calculated using π̂2 − π1 instead
of π̂2 − π̂1, the performance appears less stable, with the lowest LC win rate being 27.21. Despite
achieving competitive win rates at certain α values, the results are generally lower than those using
the standard Nesterov’s momentum scheme. Intuitively, π̂2 − π̂1 = (π̂2 − π1) + (π1 − π̂1) includes
accumulated information, acting as an exponential average of all previous updates. In contrast, if
extrapolation is based on π1, the direction’s variance is significantly higher, leading to less predictable
outcomes. This instability underscores the importance of adhering to the theoretically guaranteed
strategy for consistent performance gains.

F.2 Training Pipeline

We now turn to our training pipeline. In Algorithm 1, we begin by setting π0 = π̂0 = πref as the base
model, Mistral-7B-Instruct-v0.2. At each iteration, we sample five pairs of responses under
the current policy πt and rank them using their PairRM score (Jiang et al., 2023a). We designate
the top-ranked response as the winner and the bottom-ranked response as the loser. Following
the proximal point update described in equation (6), we proceed with a momentum extrapolation.
We note that when the policy is a softmax linear function, update (3.6) reduces to a momentum
extrapolation in the parameter space. Consequently, we carry out an extrapolation in the parameter
space to approximate the corresponding momentum step (3.6) in the probability space.

F.3 Hyperparameters

Our training is conducted on eight A100 GPUs, setting a global batch size of 64. This is done through
setting a local batch size of 8 across all GPUs, with a gradient accumulation step of 1. We utilize

27

Table 3: MT-Bench Evaluation. The MT-Bench comprises a total of 8 tasks. We present the average
score for all 8 tasks, as well as the average score across 5 dimensions relevant to our training dataset:
Writing, Roleplay, Extraction, STEM, and Humanities. Each task includes 2 progressive turns, and
we provide the average score for the first turn, the second turn, and the overall average of both turns.

Model MT-Bench Average of Five Tasks
1st Turn 2nd Turn Average 1st Turn 2nd Turn Average

Mistral-7B-Instruct-v0.2 8.08 7.20 7.64 9.42 8.86 9.14

DPO Iter1 7.98 7.29 7.63 9.56 9.06 9.31
DPO Iter2 7.80 7.26 7.52 9.36 8.98 9.17
DPO Iter3 7.61 7.25 7.43 9.23 9.04 9.14

APO Iter1 7.98 7.29 7.63 9.56 9.06 9.31
APO Iter2 7.95 7.26 7.60 9.56 9.23 9.40
APO Iter3 7.72 7.33 7.53 9.69 9.44 9.57

the RMSProp optimizer for each iteration, tuning the learning rate and β parameters. Although we
initially considered a range of learning rates from [5× 10−7, 1× 10−7, 5× 10−8], we found that a
fixed learning rate of 5× 10−7 while adjusting β across iterations results in enhanced performance.
The final β value is set at 0.01 for the first iteration, 0.1 for the second iteration, and 1.0 for the
third iteration. The extrapolation parmeter α is set to be a constant 0.3. In addition, the learning
rate follows a linear schedule with a warm-up ratio of 0.1. For inference, we employ the vllm
library (Kwon et al., 2023) for response generation, configured with a temperature of 0.7 and a top_p
of 0.9. The maximum token length for response generation is set to 2048 tokens. Finally, evaluations
across all benchmarks are conducted using eight A6000 GPUs.

F.4 MT-Bench Evaluation

MT-Bench: MT-Bench comprises of 80 multi-turn questions across eight distinct dimensions:
Writing, Roleplay, Reasoning, Math, Coding, Extraction, STEM, and Humanities. The evaluation
process prompts the GPT-4 judge to assign scores from 1 to 10 to the generated responses. However,
this scoring metric has limitations. Particularly, score saturation occurs quickly in certain dimensions,
making it difficult to distinguish between models. Additionally, this can disadvantage models that
perform exceptionally well in these saturated dimensions, as their distinctiveness is less recognizable.

MT-Bench Evaluation. In addition, we also evaluate our model using the MT-Bench tasks. Among
the eight tasks, three—math, coding, and reasoning—are evaluated by a GPT-4 math judge, while the
other five—writing, roleplay, extraction, STEM, and humanities—are evaluated by a GPT-4 general
judge. Table 3 illustrates the results of iterative DPO and APO across all three iterations. Since the
UltraFeedback dataset is not designed for math/code tasks, and our model has never seen correct
answers, the ability to solve math questions is not directly related to our training objective. Therefore,
we also provide an average of scores for the five tasks focusing on general instruction-following
abilities. From Table 3, we see that APO exhibits superior performance on the five general tasks,
showing consistent improvement with each iteration, with average scores progressing from 9.31 to
9.40 to 9.57. In contrast, both the base model and the iteratively trained DPO model maintain an
average score of around 9.14. Moreover, even when math, coding and reasoning are included, the
performance of APO in the second turn surpasses that of other models. However, because it is not
specifically trained on math problems, the overall average score is slightly reduced. This decline in
average is primarily due to a saturation in the tasks where our method excels (achieving 9.57 out of
10), with limited room for further improvement in these areas. Consequently, the tasks where our
model was not trained on become more detrimental when calculating an average of eight.

F.5 Open LLM Leaderboard Evaluation

Open LLM Leaderboard: The Open LLM Leaderboard evaluates models across six different
tasks, focusing on a variety of language modeling capabilities. Each task consists of multiple-choice
questions (MCQs), with the most probable choice being selected and compared against the correct
answer. The final score is calculated based on accuracy. The ability for answering MCQs are not
directly related with instruction-following abilities.

28

Table 4: Open LLM Leaderboard Evaluation. Comparison of APO with state-of-the-art iterative
training algorithms, results are reported using v0.4.1 of the lm-evaluation-harness library.
Tasks and parameters follows Beeching et al. (2023).

Models Arc TruthfulQA WinoGrande GSM8k HellaSwag MMLU Avg. Avg. 5

Mistral-7B-Instruct-v0.2 63.74 66.81 77.90 42.00 84.77 59.12 65.72 70.47

DPO Iter1 65.36 69.19 77.11 36.92 85.1 58.89 65.43 71.13
DPO Iter2 66.47 69.93 78.14 42.46 85.44 58.29 66.79 71.65
DPO Iter3 66.72 68.07 77.51 41.47 85.74 58.85 66.39 71.37

APO Iter1 65.36 69.19 77.11 36.92 85.1 58.89 65.43 71.13
APO Iter2 66.98 70.98 77.51 42.61 85.32 58.69 67.02 71.90
APO Iter3 65.78 69.75 77.03 37.83 85.43 58.76 65.76 71.35

Open LLM Leaderboard Evaluation: We provide the result of Open LLM Leaderboard. We
calculate the average scores across six tasks, as well as the average of five tasks excluding GSM8k.
This exclusion is due to our training’s emphasis on general instruction-following ability, with no
exposure to correct answers for math problems. Table 4 shows that APO demonstrates robust
performance across multiple tasks. Notably, at iteration 2, APO achieves the highest overall average
score of 67.02, outperforming the baseline models. When focusing on the average of five key tasks,
excluding GSM8k, APO iteration 2 again leads with an impressive score of 71.90. Although APO
iteration 3 shows a slight decrease in the overall average score, it maintains a competitive edge. This
decline is primarily attributed to the low correlation of multiple-choice question tasks with instruction-
following abilities. we note that all trained baselines exhibit similar performance suboptimality on
this metric, while the AlpacaEval performance increases.

F.6 Response Examples in Different Iterations

29

Table 5: Generation example of our fine-tuned model by APO at different iterations.

Prompt Hi, my sister and her girlfriends want me to play kickball with them. Can you explain
how the game is played, so they don’t take advantage of me?

Iteration 1 Hello! I’d be happy to help explain the rules of kickball to ensure that you feel
confident and prepared for your game with your sister and her girlfriends. Kickball
is a fun, social, and inclusive game that combines elements of baseball and soccer.
Here’s a breakdown of the essential rules: 1. Teams and Setup: - Divide into two
teams, ideally of equal numbers. - Designate a field with a home base, a first base,
a second base, a third base, and a kickball diamond. - Choose a team to be in the
field (defense) and one to be at bat (offense). 2. Equipment: - A standard soccer
ball (or a large, soft kickball) is used. - No specialized equipment is required for
players, except for comfortable clothing and athletic shoes. 3. Objective: - The
objective of the game is for the team at bat to score runs by kicking the ball and
advancing around the bases, while the fielding team tries to prevent this by getting
the runners out. 4. Batting: - The game begins with a pitch (roll) from the pitcher
(field player) to the kicker (batter). - The kicker attempts to kick the ball with their
foot (no toe-kicks or using hands are allowed). - After a valid kick, the runner(s) may
advance around the bases, trying to reach the next base before the ball reaches that
base or a defensive player tags them. 5. Fielding: - The fielding team’s goal is to get
the runners out. - Players can attempt to catch a kicked ball in mid-air to retire the
side (three consecutive outs), or they can touch a base with the ball before a runner
reaches it to force them out. 6. Scoring: - A run is scored when a player advances
around all four bases and returns to home plate. - Each inning is typically limited to
a specific number of outs or runs scored (agree on this beforehand). 7. Fair Play: -
Encourage sportsmanship and ensure all players understand and respect the rules
to maintain a fun and enjoyable experience for everyone involved. 8. Additional
rules: - Discuss any specific house rules or modifications to the game before starting,
such as allowing multiple kicks per at-bat or implementing a mercy rule if one team
is significantly ahead in runs. I hope this information is helpful! If you have any
further questions or need clarification on any rules, feel free to ask. Good luck and
have a great time playing kickball with your sister and her girlfriends!

30

Table 6: Generation example of our fine-tuned model by APO at different iterations.

Prompt Hi, my sister and her girlfriends want me to play kickball with them. Can you explain
how the game is played, so they don’t take advantage of me?

Iteration 2 Hello! It’s great that your sister and her friends have invited you to join them for a
game of kickball. Kickball is a fun, social, and inclusive team sport that combines
elements of baseball and soccer. Here’s a basic explanation of how the game is
played to ensure you feel prepared and confident on the field. Keep in mind that
variations may exist depending on the specific rules your group chooses to follow,
but this outline should provide a solid foundation. 1. Teams and Setup: Divide
into two even teams, ideally with similar numbers of players (typically 8-12 per
team). Designate one team as the home team (they’ll be up to bat first), and the
other as the visiting team. Set up a diamond-shaped kicking area (the "kickline")
approximately 60 feet from a base diamond, similar to baseball. Mark out four bases
(first, second, third, and home) in a square shape around the diamond, with home
plate located at the end of the kickline. 2. Objective: The objective of kickball is to
score runs by hitting the ball with your foot and advancing around the bases before
returning to home plate safely. The opposing team aims to get outs by fielding the
ball and tagging runners with the ball or touching them with it while they’re not
on a base. 3. Batting: The batter stands at home plate and kicks the ball when it’s
pitched towards them by the pitcher from the opposing team. A runner may advance
from their base at the start of each pitch, but they must return to that base before
the ball is touched by a fielder or thrown to that base. If a runner advances too far
before returning to their base, they risk being tagged out in a force play. 4. Fielding:
Fielders position themselves around the diamond and outfield to catch fly balls or
field grounders. They can also attempt to tag runners with the ball while they’re
advancing between bases or when they reach a base. Once a fielder catches a fly ball
or tags a runner, they record an out. A maximum of three outs per inning is typical. 5.
Scoring: Runners score by advancing around the bases and returning safely to home
plate. A run is scored when a player reaches home plate after kicking the ball and
successfully advances around all four bases without being tagged out or reaching
base before a preceding runner is retired (resulting in that runner being forced out).
6. Inning Structure: Each team gets an opportunity to bat in each half-inning. The
inning ends when three outs are recorded by the fielding team. Typically, games
consist of multiple innings until one team reaches a predetermined number of runs
(e.g., five or ten). 7. Fair Play: Ensure that everyone follows the rules and plays in
good spirits. Kickball is meant to be an enjoyable experience for all involved, so
focus on having fun while staying mindful of safety and fairness. If you feel unsure
about any aspect of the game or suspect your sister and her friends might be taking
advantage of you, communicate openly with them about your concerns and work
together to find solutions that maintain a balanced and enjoyable playing field for
everyone.

31

Table 7: Generation example of our fine-tuned model by APO at different iterations.

Prompt Hi, my sister and her girlfriends want me to play kickball with them. Can you explain
how the game is played, so they don’t take advantage of me?

Iteration 3 Hello! It’s great that your sister and her friends have invited you to join their kickball
game. Kickball is a fun, social, and inclusive sport, well-loved for its simplicity
and energy. To ensure you feel confident and prepared for the game, here’s a basic
explanation of how kickball rules typically work. Keep in mind that variations
exist, so always clarify any specific rules with your group before playing. 1. Teams
and Setup: Divide into two teams, ideally through an evenly distributed random
draw or team selection process. Designate a field with clear boundaries using cones
or markers 2̆013 a diamond shape or rectangle works well. Each team defends a
designated home base (typically marked by a large cone or object). 2. Equipment: A
standard soccer ball is commonly used for kickball games. No specialized equipment
is required beyond that, although gloves may be worn for comfort or to improve grip
on the ball. 3. Objective: The objective of the game is to score points by kicking
the ball and successfully advancing around the bases 2̆013 first base, second base,
third base, and home plate 2̆013 before returning to home base. A run is scored
when a player reaches home base after completing a full circuit around the bases.
4. Starting the Game: A coin toss determines which team bats first. The fielding
team positions themselves around the bases and in the outfield, ready to receive
the kicked ball. The batting team gathers near home plate with a designated kicker
ready to start the inning. 5. Kicking and Running: The kicker takes a stance and
kicks the ball forcefully with their foot, aiming for a solid contact to launch the
ball as far as possible. Runners on base attempt to advance based on where the ball
lands and how the fielding team reacts. 6. Fielding Rules: Fielders must retrieve
or touch the ball before a runner advances to the next base. Once a fielder has the
ball, they can tag runners with it to record outs. However, runners can advance on
a missed catch or an overthrow. If a fielder touches a base before a runner arrives,
the runner is out. 7. Scoring: A run is scored when a batter safely kicks the ball and
reaches first base, while teammates advance around the bases and return to home
plate before the inning ends (three outs). 8. Inning Structure: Each team takes turns
at-bat and in the field. Typically, an inning lasts until the fielding team records three
outs, at which point the teams switch roles. A game consists of multiple innings,
with the team with the most runs at the end declared the winner. 9. Fair Play and
Sportsmanship: Encourage a friendly and respectful environment, following the
spirit of the game. Ensure all players understand the rules, and focus on having
fun rather than taking advantage of one another. If needed, consult your group to
establish additional guidelines or modifications to accommodate skill levels and
preferences. 10. Additional Tips: - Wear comfortable clothing and shoes appropriate
for running and kicking. - Stay hydrated and take breaks as needed. - Communicate
clearly with teammates and opponents. - Focus on improving your skills, both as a
kicker and a runner, to contribute effectively to your team. With this foundational
knowledge, you should feel more confident joining your sister and her friends for a
kickball game. Enjoy the experience and have fun!

32

Table 8: Another generation example of our fine-tuned model by APO at different iterations.

Prompt How did US states get their names?

Iteration 1 The naming of US states reflects a rich and varied history, influenced by explorers,
Native American cultures, natural features, and political considerations. Here are
some common ways US states got their names: 1. Names derived from Native
American words: Many states’ names come from Native American languages or
place names. For example, California comes from the Spanish rendition of the
Native American word "Quercus californius," meaning "californio," or "californian,"
which referred to the native people or the abundant california trees. Florida’s name
comes from the Spanish word "Pascuan Floridus," meaning "flowery land," a term
used by explorer Juan Ponce de Le0̆0f3n, likely inspired by the abundant natural
beauty he encountered. 2. Names inspired by explorers and European settlers: Some
states are named after famous explorers, settlers, or colonial founders. For instance,
Virginia was named after Queen Elizabeth I of England, who was known as the
"Virgin Queen" due to her status as an unmarried monarch. Georgia was named after
King George II of Great Britain in honor of his support for the founding of a colony
there. 3. Names based on geographical features: Several states are named after
prominent geographical features, such as mountains, rivers, or bodies of water. For
example, Colorado’s name comes from the Spanish word "colorado," meaning "red,"
a term often used to describe the reddish hue of the area’s soil and water. Montana’s
name means "mountainous" in Latin. 4. Names reflecting historical events or early
settlement patterns: Some states’ names are connected to significant historical events
or early settlement patterns. For instance, Maine was originally called "Norumbega"
based on tales of a mythical northern land of abundance, but was later renamed by
English explorer John Smith to reflect its northern location relative to Massachusetts.
Texas was named by the Spanish as "Tejas," meaning "friends" or "allies," due to
the friendly reception given to Spanish explorers by the local Caddo and Tonkawa
tribes. 5. Names honoring political or ideological affiliations: A few states’ names
reflect political or ideological affiliations. For example, Vermont was originally
called "New Vermont" or "New England’s Plymouth" due to its ties to the English
county of Vermont and the Pilgrims of Plymouth Colony. Later, when it sought
independence from New York, the name was adopted as a tribute to the revolutionary
ideals of the Republic of Vermont. Overall, US states’ names offer a fascinating
glimpse into the rich history of exploration, settlement, and political development
that shaped the American nation.

33

Table 9: Another generation example of our fine-tuned model by APO at different iterations.

Prompt How did US states get their names?

Iteration 2 US states have varied histories regarding how they received their names, with some
derived from native place names or geographical features, others from explorers
or colonial founding figures, and still others from natural elements or symbolic
concepts. Here’s a brief overview of how some common state names came to
be: 1. Alabama: Derived from the Native American Chickasaw and Creek words
"alhahoma" or "allapaha," meaning "thicketed place" or "place with ticklenut trees."
2. Alaska: Russian explorer Vitus Bering, who first documented the region in 1741,
named it "Alaska" from the Russian words "alas k0̆4300̆44f," meaning "great land"
or "large country." 3. Arizona: Named after the Arizona Mining District, which
in turn was derived from the Spanish term "Arizonia," meaning "arid" or "dry,"
likely in reference to the desert climate. 4. Arkansas: Originally called the "Land
of Hieroglyphics" by early European explorers due to the abundance of Native
American petroglyphs found in the region. Later, it was named Arkansas after the
Quapaw tribe’s name for a village near present-day Osceola, which translates to
"people of the south wind." 5. California: Spanish explorer Juan Rodriguez Cabrillo
is credited with giving the name "California" to the region in 1542, possibly inspired
by the ancient mythical island of Califoria described by Greek geographer Ptolemy
as lying offshore west of the Pacific Ocean, abundant with gold and paradisiacal
conditions. 6. Colorado: Derived from the Spanish word "colorado," meaning
"red," likely in reference to the red soil and red sandstone formations found in the
region. 7. Connecticut: Named by Dutch explorer Adriaen Block in honor of the
Mohegan and Montauk Sachems (tribal leaders) Huskera or Quinipet and Sinigtot or
Sitenico, whom he met in 1614. The name Connecticut comes from the Mohegan
word "quinnipiac," meaning "long tidal river." 8. Delaware: Named after Sir Thomas
West, 3rd Baron De La Warr, an English nobleman who served as the first colonial
governor in 1630. The name Delaware comes from the Delaware River, which
was named after the Lenape Native American tribe, whose name means "upstream
people" or "people of the cleared land." 9. Florida: Spanish explorer Juan Ponce de
Le0̆0f3n is credited with discovering Florida in 1513 and naming it after "Pascua
Florida," meaning "feast of flowers," likely due to the abundant blooming vegetation
he encountered during his expedition. 10. Georgia: Named after King George II
of Great Britain in honor of his support for establishing a colony there in 1732.
11. Hawaii: The islands’ indigenous Polynesian name, "Hawaii Loa," translates to
"long home" or "homeland," reflecting the archipelago’s unique identity as a distinct
and unified cultural entity. The name Hawaii became widely known to Europeans
through British explorer James Cook, who visited in 1778 and adopted it for the
larger island of Hawaii in his charts. 12. Idaho: Derived from a Shoshone Native
American word, "hee-da-ho," meaning "gem of the mountains" or "the sun comes
from the waters." This name was popularized during the late 19th century when Idaho
was being considered for statehood. 13. Illinois: Derived from a Native American
word, "Illiniwek," meaning "tribe of superior men" or "tribe dwelling properly."
This term referred to various tribes within the Illini Confederacy, which inhabited
much of present-day Illinois prior to European contact. 14. Indiana: Named after
the Native American term "Indian0̆0e1," meaning "land of the Indians," reflecting
that the region was inhabited by various Native American tribes when European
settlers arrived. 15. Iowa: Derived from a Native American word, "ayoua," meaning
"prairie" or "beautiful land." This name was popularized during the late 19th century
when Iowa was being considered for statehood. These examples represent just a
fraction of US states and their unique origin stories. Many other states have names
rooted in Native American languages, European explorers, geographical features, or
symbolic concepts.

34

Table 10: Another generation example of our fine-tuned model by APO at different iterations.

Prompt How did US states get their names?

Iteration 3 US states have varied histories regarding how they earned their names. Here are
some common ways and specific examples: 1. Indigenous Place Names: Many state
names originate from Native American languages spoken by tribes inhabiting the
regions prior to European exploration. For instance: - Florida: Derived from the
Native American word "Pvscaleola " or "Scal scal lla, " meaning "flowing water " or
"land of flowers, " depending on the specific indigenous tribe. European explorer
Juan Ponce de Leon may have chosen this name based on reports of native peoples
and their designations for the land. - Missouri: Derived from the Missouri River,
which in turn took its name from the Miwoksi or Missouri Nation, a Siouan-speaking
people inhabiting the area at the time of French explorer Louis Jolliet and Jacques
Marquette’s passage in 1673. Their name translates roughly to "people of large
canoes. " 2. European Explorers and Settlers: Many states were named after early
European explorers, settlers, or monarchs. For example: - Virginia: Named after
Queen Elizabeth I of England in honor of her reign and patronage, specifically
her title "the Virgin Queen. " Sir Walter Raleigh, who received a royal charter
to establish colonies in North America, chose this name. - California: Named by
Spanish explorer Vasco N0̆0fa0̆0f1ez de Balboa in 1542, who gave it the Latinized
name "California " after the Classical mythological figure Californias, who was
believed to inhabit a paradisiacal island on the western edge of the known world.
3. Natural Features: Some states bear names inspired by distinctive geographic
or topographical features. For instance: - Colorado: Derived from the Spanish
"colorado, " meaning "red " 2̆013 a reference to the red soil and rock formations
found throughout the region. - Mo ntana: Named for the Latin word "montanus, "
meaning "mountainous. " 4. Historical Events: A few states have names connected
to significant historical events. For example: - Texas: Derived from the Spanish
"Tejas, " meaning "friends " or "allies. " The name referred to the indigenous peoples
who initially welcomed Spanish explorers in the late 16th century. Later, Mexico
used the name when it ruled the region, and after Texas gained independence in 1836,
the name remained. - Wisconsin: Named by French explorer Jean Nicolet in 1634
after the native peoples he encountered, the "Wisconsin " or "Meskousing " 2̆013 an
Algonquian-speaking people. The name "Wisconsin " is believed to mean "gathering
place " or "place of the red people. " 5. Symbolic Meanings: In some cases, state
names reflect symbolic or metaphorical concepts. For example: - Nevada: Derived
from the Spanish "nevado, " meaning "snow-covered mountain range, " which aptly
describes the state’s mountainous terrain and its name’s association with the silver
rush that brought settlers to the area in the late 19th century (the silver being referred
to as "white gold " or "silver snow "). These examples illustrate just a few ways US
states have acquired their names throughout history. The specific origins of each
state name are complex and often intertwined with the rich tapestry of indigenous,
European, and American cultural influences that have shaped the United States.

35

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide theoretical and experimental analysis to justify the main claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide assumptions for each theorem and proof presented.

36

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: For reproducibility, we provide details on our training pipeline, alone with our
hyperparameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

37

Answer: [No]
Justification: We are not able to reorganize the code at the time of submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental settings and details in our experimental section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not involved in our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96 CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computing resource with experimental settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conform with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We describe the compute resources in the Experiment Setup section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

39

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper proposes a general methodology that is applicable to any large
language model, and poses no particular such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers that produced the dataset and base models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

40

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

41

	Introduction
	Preliminaries
	Accelerated Preference Optimization
	Iterative Preference Optimization Freamework
	Accelerated Preference Optimization

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions and Future Work
	Related Work
	Reinforcement Learning from Human Feedback
	Accelerated Optimization with Momentum

	Theoretical Analysis
	The Choice of Loss Function
	Accelerated Preference Optimization with Bradley-Terry model
	Accelerated Preference Optimization with General Preferences

	Proof of Main Results
	Proof of Theorem B.4
	Proof of Theorem B.7
	Proof of Theorem B.11
	Proof of Theorem B.14

	Proof of Lemmas in Appendix C
	Proof of Lemma C.1
	Proof of Lemma C.2

	Proof of Lemmas in Appendix D
	Proof of Lemma D.1
	Proof of Lemma D.2
	Proof of Lemma D.3

	Additional Details in Experiments
	Discussion
	Training Pipeline
	Hyperparameters
	MT-Bench Evaluation
	Open LLM Leaderboard Evaluation
	Response Examples in Different Iterations

