
Under review as submission to TMLR

Interpreting CLIP: Insights on the Robustness to ImageNet
Distribution Shifts

Anonymous authors
Paper under double-blind review

Abstract

What distinguishes robust models from non-robust ones? While for ImageNet distribution
shifts it has been shown that such differences in robustness can be traced back predomi-
nantly to differences in training data, so far it is not known what that translates to in terms
of what the model has learned. In this work, we bridge this gap by probing the represen-
tation spaces of 16 robust zero-shot CLIP vision encoders with various backbones (ResNets
and ViTs) and pretraining sets (OpenAI, LAION-400M, LAION-2B, YFCC15M, CC12M
and DataComp), and comparing them to the representation spaces of less robust models
with identical backbones, but different (pre)training sets or objectives (CLIP pretraining
on ImageNet-Captions, and supervised training or finetuning on ImageNet). Through this
analysis, we generate three novel insights. Firstly, we detect the presence of outlier features
in robust zero-shot CLIP vision encoders, which to the best of our knowledge is the first
time these are observed in non-language and non-transformer models. Secondly, we find the
existence of outlier features to be a signature1 of ImageNet shift robustness in models, since
we only find them in robust models in our analysis. Lastly, we also investigate the number
of unique encoded concepts in the representation space and find zero-shot CLIP models to
encode a higher number of unique concepts in their representation space. However, we find
this to be rather related to the language supervision than to be a signature of ImageNet
shift robustness.

1 Introduction

Large pretrained multimodal models, such as CLIP (Radford et al., 2021), have demonstrated unprecedented
robustness to distribution shifts around ImageNet2. When used as zero-shot image classifiers, their perfor-
mance on ImageNet (Deng et al., 2009) translates remarkably well to performances on natural shifts of
ImageNet, such as, e.g., ImageNet-V2 (Recht et al., 2019). This led to many works analyzing what actually
causes this remarkable robustness of CLIP to shifts around ImageNet, with Fang et al. (2022) establishing
that the root cause of CLIP’s robustness lies in the quality and diversity of data it was pretrained on. In
particular, they find the robustness of CLIP to shifts around ImageNet to disappear when it is pretrained
on ImageNet-Captions, a modification of ImageNet suitable for unsupervised language-vision pretraining.

While the cause of CLIP’s robustness to ImageNet shifts is thus known, we set out to establish how exactly
robustness manifests itself in features learned by the model. Finding feature patterns in the representation
space that only appear in robust models is the first step towards a better understanding of the emergence
of robustness. It is also key to diagnosing robustness in times when only limited knowledge about the
(pre)training distribution or the shifts is available. To find robustness patterns in robust CLIP models,
we leverage the various models provided by Ilharco et al. (2021) in the OpenCLIP repository, as well as
non-robust CLIP models pretrained on ImageNet-Captions provided by Fang et al. (2022), and models we
train in a supervised way on ImageNet from scratch. We analyze the visual features in these models by

1We use the term ‘A is a signature of B’ in this work to say that A =⇒ B.
2Similar to Radford et al. (2021), we use CLIP as a name for the general training technique of unsupervised language-vision

pretraining, not only for the specific models obtained by OpenAI.
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probing their last layer activation vectors with quantitative interpretability tools, such as kurtosis analysis
of activation vectors (Elhage et al., 2023), singular value decomposition (SVD) of classifier weight matrices
and concept probing of the representation space (Bau et al., 2017). Through this analysis, we distill insights
on distinctive characteristics of CLIP model features and CLIP ImageNet distribution shift robustness.

Our contributions. (1) We show that many robust CLIP models have outlier features. These features
stand out as their activation is typically several orders of magnitude above the average activation of
features in the same layer. Interestingly, this observation also holds for robust CLIP models with
ResNet backbones. To the best of our knowledge, this is the first time that outlier features are observed
in non-language and non-transformer models (Dettmers et al., 2022; Elhage et al., 2023; Sun et al.,
2024). We also show through an SVD analysis that outlier features are propagated to the logits of
downstream classifiers, which results in what we call privileged directions that are crucial to model
predictions. (2) Through a comparative analysis we find that outlier features are robustness signatures
that distinguish robust models from their non-robust counterparts: since none of the non-robust models
exhibit them, we find outlier features to be a signature whose presence can indicate that a model will
be robust to distribution shifts around ImageNet. Privileged directions on the other hand, are not
such a signature, since they can also be found in some of the non-robust models. (3) We show that
robust zero-shot CLIP models all encode a high number of unique concepts in their features. As a
consequence, the features of robust models are highly polysemantic, which means that they superpose a
large set of concepts. Surprisingly, we find through our comparative analysis that representations that
are rich in concepts are not necessarily more robust, as this property can also be found in non-robust
ImageNet-Captions pretrained CLIP models. This suggests that language supervision tends to enrich
visual representations in human concepts.

2 Background on CLIP models and notation

In this section, we summarize the CLIP paradigm introduced by Radford et al. (2021) and introduce the
notation used in later sections. We explain how CLIP models are trained and used for image classification.

CLIP architecture. A CLIP model consists in an image encoder fv : RdX → RdH and a text encoder
ft : RdT → RdH mapping to the same representation space RdH of dimensions dH ∈ N. With our notations,
dX = C · H ·W for images with C ∈ N channels, height H ∈ N and width W ∈ N. Similarly, dT = L · V
for texts with context length L ∈ N and vocabulary size V ∈ N. Given a batch of (image, text) pairs
B = {(x(b)

v , x
(b)
t ) ∈ RdX×RdT | b ∈ [B]}, where B ∈ N denotes the batch size and [B] := {n ∈ N | 1 ≤ n ≤ B},

the encoders are trained to minimize the symmetric contrastive loss

L(B, fv, ft) := Lv(B, fv, ft) + Lt(B, fv, ft)
2
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with cos denoting the cosine similarity. Lv and Lt are InfoNCE losses from Oord et al. (2018) with a learnable
temperature parameter τ ∈ R+. These losses induce the encoders to align the image and text embedding
pairs in the representation space RdH through the nominator, while separating image and text embeddings
of distinct samples through the denominator, which differs between Lv and Lt.

Building zero-shot classifiers. Once the model is trained, we have access to an image and text encoder
that tend to align images with their text description. This can be used to build a zero-shot image classifier
that discriminates between a set of K ∈ N classes k ∈ [K]. The typical approach is to combine the name of
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the class k, together with a template, to create x
(k)
t . For instance, the class lion can be combined with the

template an image of a <class> to yield the text description an image of a lion. To assign a class to
an input image xv ∈ RdX , one can assign logits to each class k ∈ [K] as follows:

logit(k)(xv) :=τ−1 cos
[
fv (xv) , ft

(
x

(k)
t

)]
=

[
W

fv(xv)
∥fv(xv)∥

]
k

,

where ∥ · ∥ denotes the euclidean norm in RdH and the matrix W ∈ RK×dH has elements

Wkj :=
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for each k ∈ [K] and j ∈ [dH ]. A zero-shot image classifier can thus be built from CLIP as the composition
between the linear classification head W and the CLIP image encoder (with normalization). For ease of
notation, we use f ≡ fv, x ≡ xv, etc. in the remainder of this work, unless otherwise specified.

3 Robustness of CLIP models

In this work, we focus on the robustness of models to shifts from ImageNet (Deng et al., 2009) to the
five natural distribution shifts considered by Fang et al. (2022), namely ImageNet-V2 (Recht et al., 2019),
ImageNet-R (Hendrycks et al., 2021a), ImageNet-Sketch (Wang et al., 2019), ObjectNet (Barbu et al., 2019)
and ImageNet-A (Hendrycks et al., 2021b).

Measuring robustness. There are different ways to measure robustness to a specific distribution shift
from source distribution A to shifted distribution B. In some works, especially in the literature on invariant
and robust learning, simply performance on both source and shifted distribution are reported (Arjovsky
et al., 2019; Makar et al., 2022; Jiang & Veitch, 2022; Kumar et al., 2022), and their quotient can be
straightforwardly computed to report robustness in a single metric (What fraction of the original performance
is maintained on the shifted data?). On the other hand, in the literature investigating the robustness of CLIP
to ImageNet shifts, typically a slightly more involved metric called Effective Robustness (ER) is reported
(Taori et al., 2020; Fang et al., 2022). We choose to include both, and will find that similar insights about
the robustness of models can be derived from both of them when it comes to distribution shifts around
ImageNet.

Lastly, we note that recently Shi et al. (2023) have investigated the robustness of models to the five natural
distribution shifts of ImageNet, using additionally a different data distribution than ImageNet (YFCC-15M
Thomee et al. (2016)) as the source distribution. In that case, none of the models investigated (including
CLIP models) is significantly more robust than the other models. Therefore, we keep the focus of our analysis
on the shifts from ImageNet to its five natural distribution shifts, where most zero-shot CLIP models are
without doubt significantly more robust than their finetuned or supervised counterparts, as we will recap in
the following.

Model pool. We run our analyses across five backbone architectures: ResNet50, ResNet101, ViT-B-16,
ViT-B-32, ViT-L-14 (He et al., 2015; Dosovitskiy et al., 2020). For each architecture, the OpenCLIP
repository (Ilharco et al., 2021) contains robust pretrained CLIP models on various pretraining datasets: the
original (unreleased) OpenAI pretraining set (OpenAI, Radford et al. (2021)), YFCC-15M (Thomee et al.,
2016; Radford et al., 2021), CC-12M (Changpinyo et al., 2021), LAION-400M, LAION-2B (Schuhmann
et al., 2022), and DataComp (Cherti et al., 2023). Furthermore, Fang et al. (2022) provided us with
checkpoints of the non-robust CLIP models pretrained on ImageNet-Captions for three different versions
of ImageNet-Captions: a first version for which only the original titles from the internet associated to
the images are used as text (ImageNet-Captions-t), a second version for which a concatenation of original
titles and description was used (ImageNet-Captions-td), and a last version for which a concatenation
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of original titles, description, and tags was used (ImageNet-Captions-tdt, for more details see Fang
et al. (2022)). We load the pretrained vision encoders of all available combinations of architecture and
pretraining dataset, and construct a zero-shot classification model for ImageNet using the methodology
described in Section 2. By finetuning each robust zero-shot model on ImageNet, we obtain classifiers with
lower robustness than their robust zero-shot counterparts (Andreassen et al., 2021; Kumar et al., 2022;
Wortsman et al., 2022a). Lastly, since the non-robust ImageNet-Captions models were only trained for
a ResNet50 backbone, we obtain further non-robust models for the remaining architectures by training
them as classification models on ImageNet from scratch, and obtain models with far lower robustness than
the finetuned ones (Fang et al., 2022) (details on model finetuning and training can be found in Appendix H).

Results. For all models, we compute the test accuracy on ImageNet, on the five shifted datasets
(averaged), their quotient, as well as the ER (for details on the computation of ER, see Appendix A). We
report the two metrics of robustness (quotient of test accuracies %acc, and ER) in Figure 1a and Figure 1b
(for the individual test accuracies that these metrics are calculated from, see Appendix B). We see that
according to both metrics, for each type of backbone the zero-shot CLIP models from OpenCLIP have the
highest robustness (‘Robust zero-shot CLIP’), which decreases but remains significant when fine-tuned on
ImageNet (‘Fine-tuned CLIP’). On the other hand, ImageNet-Captions CLIP models (‘Non-robust zero-shot
CLIP’) and ImageNet trained supervised models (‘Supervised’)3 do not exhibit any ER and much lower
robustness according to %acc, typically loosing more than half of their ImageNet accuracy on the shifted
datasets (%acc dropping below 50%).

Take-away 1. In agreement with the literature, we find that for each architecture, zero-shot CLIP
models that were pretrained on OpenAI, YFCC-15M, CC-12M, LAION-400M, LAION-2B, or Data-
Comp, are the most robust to ImageNet distribution shifts. This robustness, while decreased, remains
significant after fine-tuning on ImageNet for almost all pretraining datasets. On the other hand, zero-
shot CLIP models pretrained on ImageNet-Captions, and supervised models trained on ImageNet, are
non-robust to ImageNet distribution shifts.

4 Outlier features and privileged directions

In this section, we explain how we detect outlier features in zero-shot CLIP vision classifiers, and how we
find them to be a signature of model robustness. We start by explaining what outlier features are and how
they are surfaced, and then proceeed to analyse how they propagate to class logits in the form of privileged
directions. We analyze both outlier features and privileged directions for each of the models in our model
pool.

Approach. We aim to analyze what models with high robustness have learned in comparison to models
with lower robustness. To this end, we compare the features, i.e. the representation space spanned by the
image encoder fv described in Section 2. Like Goh et al. (2021), we focus on the output of the encoder
only since it is used for downstream classification by a linear head computing the ImageNet class logits.
Furthermore, a central kernel alignment (CKA) analysis in Appendix C reveals that robust models differ
from less robust models most consistently in this last layer, making it the most relevant layer to focus
on from a comparative standpoint as well. We use the ImageNet test set to produce activation vectors
h(n) = fv(x(n)) ∈ RdH for each image x(n) ∈ RdX fed to the encoder.

Preliminary observations. Qualitatively observing the distribution of activation vectors, one thing that
immediately stands out is the fact that some components i ∈ [dH ] are much larger than the average activation:
h

(n)
i ≫ d−1

H

∑dH

j=1 h
(n)
j . A similar phenomenon has recently been observed by Dettmers et al. (2022) in large

language models (LLMs). Such features, whose activation is substantially more important than average,
3For the ViT-L-14, we were unable to train a supervised version to convergence from scratch on ImageNet (Dosovitskiy et al.

(2020) and He et al. (2022) comment on the difficulties of training such an overparametrized model on ImageNet).
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(a) ER calculated according to Equation (5) in Appendix A.

(b) %acc calculated as the ratio between the average accuracy on the five
ImageNet shifts and the ImageNet test accuracy.

Figure 1: Robustness metrics for the models in our pool. Higher values indicate higher robustness. We see
that for each backbone and pretraining data, robustness decreases from Robust zero-shot CLIP to Fine-tuned
CLIP and reaches a minimum for ImageNet supervised (‘Supervised’) and Imagenet-Captions trained (‘Non-
robust zero-shot CLIP’) models.

were coined as outlier features. Subsequent work by Elhage et al. (2023) introduced a simple way to surface
these outlier features, through a metric called activation kurtosis. We now use this criterion to quantitatively
analyze the features of CLIP models.

Activation kurtosis. Following Elhage et al. (2023), we measure the activation kurtosis to quantitatively
evaluate the presence of outlier features in a model. The activation kurtosis is computed over all the
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components of an activation vector h(n), and averaged over N activation vectors:

Kurtosis := 1
N

N∑
n=1

1
dH

dH∑
i=1

[
h

(n)
i − µ

(
h(n))

σ
(
h(n)

) ]4

, (1)

where µ(h) := d−1
H

∑dH

i=1 hi and σ2(h) := d−1
H

∑dH

i=1[hi − µ(h)]2. As explained by Elhage et al. (2023),
Kurtosis≫ 3 indicates the presence of outlier features (3 being the kurtosis of an isotropic Gaussian).

(a) Activation kurtosis calculated through Equation (1).

(b) Direction importance ratio calculated through Equation (3).

Figure 2: Outlier features and privileged directions. Most robust zero-shot CLIP models have outlier features
(high kurtosis) and privileged directions (high direction importance outlierness). Fine-tuned models have no
outlier features but still exhibit privileged directions, although those are noticeably less privileged. Supervised
models and non-robust zero-shot CLIP models have no outlier features. The full distribution of importance
scores can be found in Appendix E.1

We report the average kurtosis over the ImageNet test set in Figure 2a for each architecture and across the
various levels of robustness. This leads to three insights. Firstly, across all architectures, there are robust
zero-shot CLIP models with outlier features, as indicated by their Kurtosis≫ 3. Secondly, the kurtosis, like
the robustness, drops when finetuning on ImageNet. In Appendix I we include an additional analysis showing
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that Kurtosis closely tracks the ER metric when interpolating between robust zero-shot CLIP models and
fine-tuned CLIP models in weight space. Lastly and most importantly, the values Kurtosis ≈ 3 obtained for
the non-robust supervised, and npn-robust zero-shot CLIP models suggest the absence of outlier features in
non-robust models, indicating that the presence of outlier features is a signature of robustness that can only
be found in robust models.

Privileged directions in representation space. The strong presence of outlier features in the most
robust models does not necessarily explain the performances of these models. Indeed, it is perfectly possible
that outlier features are ignored by the linear head computing the class logits based on the activation
vectors, e.g. if they are part of ker W , the null space of the weight matrix W defined in Section 2. Thus,
to assess whether outlier features are of importance, we now introduce the notion of privileged directions of
the representation space RdH , as an instance of a generalized form of outlier features. While outlier features
are studied in the canonical basis {e1, . . . , edH

}, since we can write hi = Projei
(h), they can be generalized

to be any set of directions of the representation space that receive a projection substantially above average
(for more details and an illustration, see Appendix F).

We focus on the directions that are important for the computation of logits by the linear head W , namely
right singular vectors of W . These can be identified by performing a singular value decomposition (SVD) of
W , which can be written as W =

∑rank(W )
i=1 σi · uiv

⊺
i , where σi ∈ R+, ui ∈ RdY and vi ∈ RdH respectively

correspond to singular values (SV), left singular vectors (LSV) and right singular vectors (RSV) of W . In
this decomposition, each RSV vi corresponds to a direction in representation space that is mapped to the
logits encoded in the LSV vi. Since both of these vectors are normalized ∥ui∥ = ∥vi∥ = 1, the importance of
the direction vi for W is reflected by the SV σi. Note that the SV σi by itself does not refer to the model’s
encoder activations. How can we measure if the direction vi is typically given an important activation by the
encoder? We propose to measure the average cosine similarity of activation vectors h(n) with this direction.
This leads us to a unified importance metric for each direction i ∈ [rank(W )] of the representation space:

Importance(i) := σi∑rank(W )
j=1 σj︸ ︷︷ ︸

Classification head importance

·
N∑

n=1

| cos(vi, h(n))|
N︸ ︷︷ ︸

Encoder importance

. (2)

Note that this metric is defined so that 0 < Importance(i) < 1. With this metric, we can measure to
what extent the presence of outlier features induces privileged directions in representation space. If such
privileged directions exist, we expect some singular directions vi to have an Importance(i) substantially
higher than average, i.e. with Importance(i) ≫ rank(W )−1 ∑rank(W )

j=1 Importance(j). We thus can identify
privileged directions as the RSVs associated to outlier values in the importance scores. Indeed, we observe
the existence of such privilege directions in Figure 2b, where we plot the quotient of the largest and the
average importance score for each model

Importance Ratio := maxrank(W )
i=1 Importance(i)∑rank(W )

j=1 Importance(j)rank(W )
. (3)

We notice that all the robust zero-shot CLIP models have such a privileged direction. For the less robust
finetuned models, these privileged directions still exist, but not they are not as strong. This indicates
that finetuning de-emphasizes privileged directions. Finally, the importance distributions of non-robust
models have no privileged directions with only one exception: the ImageNet-Captions CLIP models. These
models have privileged directions in the absence of outlier features, which might appear surprising at
first. By analyzing Equation (2), we deduce that these models should have some singular values that are
substantially larger than average. As explained in Section 2, these singular values correspond to a weight
matrix obtained by stacking activations of the language encoder from the CLIP model. Since the non-robust
ImageNet-Captions CLIP models show little to no effective robustness, we deduce that privileged directions
are not a signauture robustness.
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Take-away 2. Many robust models exhibit outlier features and privileged directions in their represen-
tation spaces. Since we do not find outlier features in non-robust models, outlier features appear to be
a signature indicating model robustness to shifts around ImageNet. Privileged directions can however
also be found in non-robust models and are thus not a signature of robustness.

Emergence of outlier features. We have observed that outlier features are a signature of robustness to
ImageNet distribution shifts. We would like to suggest a hypothesis to explain why they distinguish robust
models from their less robust counterparts. In our analysis, they can only be found in robust zero-shot CLIP
models that were typically trained on datasets with a size and diversity that is several orders of magnitude
above that of ImageNet. Similarly, Sun et al. (2024) observed ‘massive activations’ (closely related to outlier
features) only in transformers which were pretrained on datasets that were large and diverse in comparison
to ImageNet, but not in transformers trained on ImageNet itself. Combined together, these two facts suggest
that outlier features result from training on larger and more diverse datasets (in comparison to the evaluation
dataset), and that robustness and outlier features thus share a common root cause in the type of pretraining
data.

Relationship of outlier features to pruning. Note that previous work on LLMs found that outlier
features also have positive effects on model pruning: Sun et al. (2023) found that LLMs with outlier features
can be efficiently pruned by retaining features with larger activations. We also found some weak evidence of
this kind when pruning latent directions (see Appendix G).

5 Concept probing

In this section we find that robust CLIP models encode more concepts than non-robust supervised models.
However, also non-robust CLIP models encode similarly high numbers of concepts. Our analysis thus suggests
that this stems from language supervision in CLIP, rather than being related to robustness. We first describe
our approach, and then discuss the concepts encoded in the privileged directions identified in the previous
section. We then show that robust and non-robust CLIP models encode more unique concepts than fine-tuned
and supervised models. Lastly, we explain how this leads to polysemanticity in CLIP models.

Approach. With the discovery of privileged directions in the representation spaces of models with ro-
bustness to Imagenet shifts, it is legitimate to ask what type of information these directions encode. More
generally, are there differences in the way robust models encode human concepts? To answer these questions,
we use concept probing. This approach was introduced by Bau et al. (2017), along with the Broden dataset.
This dataset consists of 63, 305 images illustrating C = 1, 197 concepts, including scenes (e.g. street), objects
(e.g. flower), parts (e.g. headboard), textures (e.g. swirly), colors (e.g. pink) and materials (e.g. metal).
Note that several concepts can be present in each image. For each concept c ∈ [C], we construct a set of
positive images Pc ⊂ RdX (images that contain the concept) and negative images N c ⊂ RdX (images that
do not contain the concept). In the following, we shall consider balanced concept sets: |Pc| = |N c|. Concept
probing consists in determining if activations in a given direction of the representation space discriminate
between Pc and N c.

Assigning concepts to directions. We are interested in assigning concepts to each RSV vi of the linear
head matrix W . To determine whether a representation space direction enables the identification of a concept
c ∈ [C], we proceed as follows. For each activation vector h(c,n) = fv(xc,n) associated to positive images
x(c,n) ∈ Pc, we compute the projection Projvi

(h(c,n)) on the RSV. We perform the same computations for the
projections Projvi

(h(¬c,n)) of negative images x(¬c,n) ∈ N c. If the direction vi discriminates between concept
negatives and positives, we expect a separation between these projections: Projvi

(h(c,n)) ̸= Projvi
(h(¬c,n)).

In other words, we expect the projections on vi to be a good classifier to predict the presence of c. Following
Suau et al. (2022), we measure the average precision APc

i of this classifier to determine whether the concept
is encoded in direction vi. We set a threshold APc

i ≥ 0.9 to establish that the concept c is encoded in vi
4.

4All the below conclusions still hold in the same way if we change the threshold to other values such as 0.8, 0.85, or 0.95.
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Interpreting privileged directions. We look at the concepts with highest AP in the privileged direction
of each robust model represented in Figure 2b (i.e. robust and fine-tuned CLIP). In the following, we illustrate
our insights about which concepts are encoded in the privileged direction on the OpenAI pretrained models.
Note that the following discussion generalizes well to the other robust models, for which we report the top-3
concepts in Appendix E.3.

Interestingly, the most privileged direction of both zero-shot OpenAI ViTs encode the same top-3 concepts:
meshed, flecked and perforated. The most privileged direction of the ResNet50 also encodes concepts related
to textures, with the knitted and chequered concepts. The most privileged direction of the ResNet101 encodes
concepts with high colour contrasts, with the moon bounce, inflatable bounce game and ball pit concepts.
We note that all these concepts describe regular alternating patterns, either through the presence/absence
of holes or through the variation of colours.

Let us now discuss the concepts encoded in the privileged directions of finetuned models. We find that
finetuning replaces the above texture-related concepts by less abstract and more concrete concepts. After
finetuning, the concept that are best encoded in the privileged directions are martial art gym for the
ViT-B/16, tennis court for the ViT-B/32, mountain pass for the ResNet50 and flight of stairs for the
ResNet101. All of these concepts are substantially less generic than the ones encoded in the zero-shot models.

Take-away 3. We qualitatively observe that privileged directions of robust zero-shot CLIP models tend
to encode rather generic texture information, while fine-tuning tends to replace these generic concepts
in privileged directions by less abstract and more concrete concepts..

Figure 3: Results of the unique concept analysis, showing total number of unique Broden concepts encoded in
last layers, as in Equation (4). Zero-shot CLIP models encode substantially more concepts than supervised
models.

Number of unique concepts. Let us now discuss the representation spaces of various models beyond
privileged directions. A first way to characterize a representation space as a whole is to simply count the
number of unique concepts they encode. In other words, for the representation space of each model, we
evaluate

Nunique := |C| C := {c ∈ [C] | APc
i ≥ 0.9 for some i ∈ [rank(W )]} . (4)

We report the number of unique concepts encoded in each type of model from our pool in Figure 3.

We notice that robust zero-shot CLIP models encode substantially more concepts than their fine-tuned and
supervised counterparts, which thus at first might appear to be another signature of robustness. However,
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also some of the non-robust zero-shot ImageNet-Captions pretrained CLIP models encode a relatively high
number of unique concepts, namely ImageNet-Captions-t and ImageNet-Captions-td. On the other hand,
ImageNet-Captions-tdt, which also includes (potentially less diverse) image tags in the text associated to
each image, does not encode that many concepts, in fact only barely more than the supervised ResNet50.
Thus, the number of unique concepts in the model features seems to be more strongly influenced by the type
and diversity of the text associated to images during training and their inclusion into the training objective,
rather than by the model robustness or a root cause thereof.

We can further compare the set of concepts encoded for the other architectures, by producing their Venn
diagrams in Figure 4 (ImageNet-Captions models omitted here for better comparability among backbones).
In each case, the most significant section of the Venn diagrams is the overlap between all 3 model types
(this ranges from 237 concepts for RN-101 to 516 concepts for ViT-B/16). This suggests that all 3 models
share a large pool of features that are useful for each respective task the models were trained on. This
is confirmed by Figure 5, where we track the size of overlap of the finetuned concepts with all sections of
the Venn diagram (normalized by the number of finetuned concepts |Cfine|) during finetuning. As we can
see, finetuning increases the amount of concepts that are shared by the zero-shot, finetuned, and supervised
models, since Cfine ∩ Czero ∩ Csup increases. Interestingly, the overlap with concepts specific to the supervised
models ((Cfine ∩Cfine) \ Czero) does not always increase substantially, which suggests that finetuning does not
necessarily encode concepts that are exclusively learned in a supervised setting. In agreement with Figure 3,
the Venn diagrams show that zero-shot models encode many concepts that are unknown to fine-tuned and
supervised models (this ranges from 77 concepts for ViT-B/16 to 105 concepts for RN-50).
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4
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Figure 4: Overlap between the concepts encoded in the representation space of different models for each
OpenAI models. Zero-shot models encode many concepts not encoded other models.

Connection to polysemanticity. A large number of encoded concepts can come at the cost of inter-
pretability. As explained by Olah et al. (2020), superposing many concepts in a given representation space
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creates polysemantic features. Those features correspond to directions of the representation spaces that en-
code several unrelated concepts, which makes the interpretation of such features challenging. Polysemantic
features are typically identified by using feature visualization to construct images that maximally activate
the unit (neuron/representation space direction) of interest (Olah et al., 2017). A manual inspection of these
images permits to identify that several concepts are present in the image maximizing the unit activation.

A manual feature visualizations for each RSV vi of each model in our pool would be prohibitively expensive.
For this reason, we use a proxy for polysemanticity based on the Broden dataset. For each RSV vi, we count
the number of concepts encoded in the corresponding direction of the representation space Nconcept(i) :=
|{c ∈ [C] | APc

i ≥ 0.9}|. The higher this number is, the more likely it is that the feature corresponding to vi is
polysemantic. As a measure of polysemanticity for the model, we simply average this number over all singular
vectors: polysemanticity := d−1

H

∑dH

i=1 Nconcept(i). By measuring this number for all zero-shot models, we
found that this ranges between polysemanticity = 3 for the OpenAI ResNet 50 and polysemanticity = 16 for
the LAION-2B ViT-B/16. By looking at the complete results in Appendix E.4, we also note that most CLIP
models are on the higher side of this range, with typically more than 10 concepts per direction on average.
Since the Broden dataset has no duplicate concepts, we deduce that these models are highly polysemantic.

Take-away 4. Robust zero-shot CLIP models encode more concepts than their non-robust supervised
counterparts. However, our experiments with non-robust ImageNet-Captions pretrained zero-shot CLIP
models suggest that this stems from language supervision, rather than being related to model robustness.
Hence, a larger number of encoded concepts is not a signature of robustness. The large number of
concepts encoded in CLIP models makes these models polysemantic.

6 Related work

Interpretability and CLIP models. A number of works previously studied CLIP from a model-
centric/interpretability perspective. We can broadly divide these works into two categories. (1) The first
body of work, like ours, uses interpretability methods to gain a better understanding of CLIP. For instance,
Li et al. (2022) analyze saliency maps of CLIP models and found that they tends to focus on the background
in images. Goh et al. (2021) analyzed CLIP ResNets and found multimodal neurons, that respond to the
presence of a concept in many different settings. (2) The second body of work leverages CLIP to explain
other models. For instance, Jain et al. (2022) use CLIP to label hard examples that are localized as a di-
rection in any model’s representation space. Similarly, Oikarinen & Weng (2022) use CLIP to label neurons
by aligning their activation patterns with concept activation patterns on a probing set of examples. To the
best of our knowledge, our work is the first to leverage interpretability to better understand robustness of
CLIP to natural distribution shifts.

Outlier features in foundation models. Outlier features in foundation models were first discovered
in LLMs by Dettmers et al. (2022). Those features are found to have an adverse effect on the model
quantization. The reason for which outlier features appear in LLMs is yet unknown. Elhage et al. (2023)
investigated several possibles causes (such as layer normalization), but found no conclusive explanation. They
conclude that the emergence of outlier features is most likely a relic of Adam optimization. Bondarenko et al.
(2023) found that outlier features in transformers assign most of their mass to separator tokens and that
modifying the attention mechanism (by clipping the softmax and using gated attention) decreases the amount
of outlier features learned during pretraining. To the best of our knowledge, our work is the first to discuss
outlier features outside of language and transformer models. We can also offer an alternative explanation
for their emergence (see end of Section 4). Overall, our work shows that outlier features are more universal
phenomena than previously known, and motivates further research to understand the mechanisms at play.

7 Discussion

The goal of this work was to generate a better understanding of what models that are robust to distribution
shifts around ImageNet have learned from data that distinguishes them from non-robust models. To this
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Figure 5: Overlap of the finetuned model concepts with zero-shot and supervised models during finetuning,
normalized at each epoch by the number of finetuned concepts |Cfine|. The overlap with the zero-shot-only
(i.e. not overlapping with supervised) concepts decreases (blue curve), while concepts shared with zero-shot
and supervised models increases (green curve).

end, we conducted a thorough investigation of the representation spaces of robust CLIP models and their
non-robust counterparts, analyzing a total of 39 models.

We found outlier features (Dettmers et al., 2022; Elhage et al., 2023) to be a signature of robustness, since
they can only be found in models that are robust to ImageNet distribution shifts. To the best of our
knowledge, this is also the first time that outlier features were observed outside of language and transformer
models. Since the presence of outlier features can be detected without access to the shifted datasets, we
believe that they could be a useful tool for practitioners to get a feeling for the distribution shift robustness
of a pretrained model during deployment, when the exact form of distribution shift is typically unknown.
Interestingly, we can also validate this signature on robust non-CLIP models (CoCa, Yu et al. (2022)) in
Appendix D.

Lastly, we found the number of encoded concepts in the representation space to be rather related to the
type of language supervision than to be a signature of robustness, since they can also be found in non-
robust ImageNet-Captions CLIP models and their number varies with the type of text used for language
supervision. It would be interesting to further investigate this hypothesis by creating different types of
language supervision for identical images, potentially leveraging state-of-the-art multimodal models, to create
even richer signals.

In general, we believe an interesting avenue for future research would be to extend the analysis of this
work to dataset shifts beyond the ImageNet family, to see if our analysis remains relevant beyond the much
investigated ImageNet shifts.
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Figure 6: Accuracies of baseline models and OpenAI CLIP models on ImageNet and (average) accuracies
on its five natural shifts (ImageNet-V2, ImageNet-R, ImageNet-Sketch, ImageNet-A, ObjectNet). The zero-
shot OpenAI CLIP models accuracies are substantially above the baseline fit, i.e., they have high ER. The
fine-tuned models are closer to the baseline fit, i.e., they have lower, but still significant ER.

A Computing Effective Robustness

In this section, we define Effective Robustness (ER).

Context. ER has emerged as a natural metric to measure how the performance of a model on a reference
distribution (in-distribution) generalizes to natural shifts of this distribution (Fang et al., 2022). When
plotting the in-distribution accuracy (X-axis, logit scaling) against the average shifted-distribution accuracy
(Y-axis, logit scaling) of various architectures trained on ImageNet, Taori et al. (2020) found that most of the
existing models lie on the same line. They also found that models trained with substantially more data lie
above this line, showing a desirable gain in shifted-distribution accuracy for a fixed in-distribution accuracy.
They coined this vertical lift above the line as Effective Robustness.

Computing ER. To quantify ER, following Taori et al. (2020), one gathers the ImageNet test accuracy
ACC(I) and the average accuracy over the ImageNet shifts ACC(S) of a set of reference models trained on
ImageNet and fits a linear model on this pool of accuracies to map logit[ACC(I)] to logit[ACC(S)], with the
logit function logit : [0, 1] → R defined as x 7→ ln(x) − ln(1 − x). The resulting line can be used to predict
what (logit) accuracy we would expect to see on the ImageNet shifts, given a (logit) accuracy on the original
ImageNet. Given a new model that has accuracy ACC(I) on ImageNet and average accuracy ACC(S) on the
canonical ImageNet shifts, ER is computed as:

ER(ACC(S), ACC(I)) :=
ACC(S)− logit−1 [β1 logit [ACC(I)] + β0] . (5)

By fitting a line on the baseline accuracies collected by Taori et al. (2020), we get a slope of β1 = .76 and
an intercept of β0 = −1.49, with a Pearson correlation r = .99. This line, along with the baseline models,
can be observed in Figure 6.
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B Model Accuracies on ImageNet and its shifts

In Table 1 we show the top-1 accuracies that the models analysed in the main part of the paper achieve on
the ImageNet test set, and in Table 2 the test accuracies on the five shifted datasets (averaged).

Table 1: ImageNet test set accuracies for the models under investigation

Backbone Pretraining data Zero-shot CLIP Finetuned CLIP ImageNet supervised

ResNet50

OpenAI 60 % 76 %

70 %

YFCC-15M 32 % 69 %
CC-12M 36 % 69 %
ImageNet-Captions-t 25 %

N.A.ImageNet-Captions-td 27 %
ImageNet-Captions-tdt 28 %

ResNet101 OpenAI 62 % 78 % 71 %YFCC-15M 34 % 72 %

ViT-B-16

OpenAI 68 % 81 %

80 %LAION-400M 67 % 80 %
LAION-2B 70 % 81 %
DataComp 63 % 78 %

ViT-B-32

OpenAI 63 % 78 %
75 %LAION-400M 60 % 76 %

LAION-2B 66 % 76 %

ViT-L-14

OpenAI 75 % 85 %

N.A.LAION-400M 73 % 84 %
LAION-2B 74 % 84 %
DataComp 79 % 85 %

Table 2: Average test set accuracies on ImageNet-V2, ImageNet-R, ImageNet-Sketch, ImageNet-A, ObjectNet
for the models under investigation.

Backbone Pretraining data Zero-shot CLIP Finetuned CLIP ImageNet supervised

ResNet50

OpenAI 44 % 43 %

30 %

YFCC-15M 18 % 30 %
CC-12M 27 % 36 %
ImageNet-Captions-t 9 %

N.A.ImageNet-Captions-td 9 %
ImageNet-Captions-tdt 10 %

ResNet101 OpenAI 49 % 48 % 31 %YFCC-15M 21 % 33 %

ViT-B-16

OpenAI 60 % 55 %

41 %LAION-400M 56 % 56 %
LAION-2B 60 % 58 %
DataComp 52 % 53 %

ViT-B-32

OpenAI 50 % 45 %
35 %LAION-400M 48 % 48 %

LAION-2B 54 % 48 %

ViT-L-14

OpenAI 72 % 67 %

N.A.LAION-400M 64 % 64 %
LAION-2B 66 % 66 %
DataComp 76 % 71 %

C Zero-shot and finetuned models’ differences are localized

In this appendix, we apply central kernel alignment (CKA) to identify where changes between robust zero-
shot CLIP models and their less robust fine-tuned counterparts occur. Kornblith et al. (2019) introduce
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the CKA metric to quantify the degree of similarity between the activation patterns of two neural network
layers. It takes two batch of activation vectors a and b, it computes their normalized similarity in terms of
the Hilbert-Schmidt Independence Criterion (HSIC, Gretton et al. (2005)):

CKA(a, b) := HSIC(a, b)√
HSIC(a, a)

√
HSIC(b, b)

We use the PyTorch-Model-Compare package (Subramanian, 2021) to compute this metric between the
activation vectors of zero-shot models and their finetuned counterparts for each layer in the backbone. The
results are shown in Figure 7 and Figure 8. Across architectures and pretraining sets, we find that there
is often a large drop in CKA between zero-shot and finetuned models occurring in the last layer. This
makes the activations in the last layer a particularly interesting layer to analyse when investigating ER, as
fine-tuned models typically have only half the ER of their zero-shot counterpart (see Figure 1a).

D Robustness signatures in non-CLIP models

In addition to the CLIP models investigated in the main paper, we below investigate CoCa models (Yu et al.,
2022) pre-trained on LAION-2B as another set of robust multimodal models which do not fall into the CLIP
family. We see that our findings extend to these non-CLIP multimodal models as well.

First, in Table 3, we confirm that these models have high effective robustness when used as zero-shot
classifiers. As for the other models in the main part of the paper, we observe that finetuning on ImageNet
decreases the effective robustness of these classifiers.

Table 3: ER for the models of the CoCa family, as calculated by Equation (5) (accuracies on ImageNet
shown in brackets). We see that also for these models, ER decreases from Zero-shot to Finetuned.

Backbone CoCa Zero-shot CoCa Finetuned

ViT-B-32 24% (64%) 14% (76%)

ViT-L-14 34% (76%) 21% (84%)

Next, in Table 4, we show that all the zero-shot models have high kurtosis, which implies the existence
of outlier features in their representation space. Additionally, we show that finetuning again decreases the
kurtosis.

Table 4: Results of the kurtosis analysis showing outlier features present also in robust models with ViT-L-14
backbone or of CoCa family, but disappearing as soon as models are finetuned. Values calculated according
to Equation (1) over all ImageNet test examples.

Backbone CoCa Zero-shot CoCa Finetuned

ViT-B-32 12.0 3.6

ViT-L-14 15.5 4.6

Finally, in Table 5, we see that zero-shot model encodes more concepts. Again, we see that finetuning removes
some concepts from the model’s representation space. However, from our experiments with ImageNet-
Captions CLIP models, we know that this does not correspond to a robustness signature.

Table 5: Results of the unique concept analysis, showing total # of unique Broden concepts encoded in last
layers, as in Equation (4). Zero-shot models encode substantially more concepts.

Backbone CoCa Zero-shot CoCa Finetuned

ViT-B-32 674 530

ViT-L-14 747 629
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Figure 7: Result of layer by layer CKA comparison between zero-shot CLIP and its counterpart that was fine-
tuned on ImageNet for various backbones and pretraining sets (Part 1). In orange, CKA between activation
vectors on ImageNet test set. In blue, CKA between activation vectors on shifted ImageNet sets (average as
solid line, standard deviation in shaded blue). Typically, we see large drops of CKA in the last layer.
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Figure 8: Result of layer by layer CKA comparison between zero-shot CLIP and its counterpart that was fine-
tuned on ImageNet for various backbones and pretraining sets (Part 2). In orange, CKA between activation
vectors on ImageNet test set. In blue, CKA between activation vectors on shifted ImageNet sets (average as
solid line, standard deviation in shaded blue). Typically, we see large drops of CKA in the last layer.
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E Further experiment results

E.1 Importance score analysis for each model

In Figure 9 and Figure 10 we show the the full distribution of importance scores (Equation (2)) over all
representation space directions for all models.

We see that robust zero-shot CLIP models and finetuned CLIP models have one strongly privileged direction,
typically orders of magnitude larger than the bulk of importance scores. For the non-robust models trained
on ImageNet and ImageNet-Caption, this single outlier value in importance scores does not exist.

E.2 Pruning analysis for each model

Figure 11 and Figure 12 show the effect of gradually pruning the least important SV of W on ER and ACC
for all models that were not pretrained on the OpenAI pretraining dataset, similar to the analysis shown in
Figure 13 in the main paper.

Qualitatively, our finding from the main paper is confirmed across the remaining models we investigate: A
small subset (typically around 20%) of privileged directions in representation space explain the high ER of
zero-shot models. The remaining directions can be pruned without significantly impacting neither ER nor
ACC.

E.3 Top-3 concepts in most dominant direction for each model

We look at the concepts with highest AP in the most privileged direction of each model represented in
Figure 9, similar to what we did in Section 5 for the most privileged direction of each model in Figure 2b.
The results are shown in Table 6. Again, we observe that for the majority of cases, the robust zero-shot
models encode concepts related to textures as their top concepts encoded along the privileged directions
(e.g., scaly, meshed, or matted), while the less robust finetuned models encode more concrete concepts (e.g.,
carrousel, book stand, or pantry).

Table 6: Top-3 concepts with highest AP encoded in the most privileged direction of each model. For each
concept, the AP is included in brackets.

Top-1 Concept Top-2 Concept Top-3 Concept
Step Finetuned Zeroshot Finetuned Zeroshot Finetuned Zeroshot

Backbone Pretraining

RN-101
OpenAI flight of stairs natural s ( 0.9) moon bounce s ( 0.99) movie theater indoor s ( 0.88) inflatable bounce game ( 0.99) home theater s ( 0.86) ball pit s ( 0.91)
Supervised ImageNet auto mechanics indoor s ( 0.96) N.A. labyrinth ( 0.94) N.A. hay ( 0.94) N.A.
YFCC-15M chapel s ( 1) ice cream parlor s ( 0.99) pantry s ( 0.97) temple ( 0.98) pantry ( 0.97) temple east asia s ( 0.95)

RN-50

CC-12M sacristy s ( 0.98) wheat field s ( 0.98) funeral chapel s ( 0.97) meshed ( 0.98) formal garden s ( 0.96) polka dotted ( 0.96)
OpenAI mountain pass ( 0.99) knitted ( 0.95) butte s ( 0.94) chequered ( 0.91) water mill s ( 0.89) wheat field s ( 0.87)
Supervised ImageNet kiosk indoor s ( 0.95) N.A. vegetable garden s ( 0.88) N.A. sacristy s ( 0.86) N.A.
YFCC-15M liquor store indoor s ( 0.97) polka dotted ( 0.98) book stand ( 0.96) lined ( 0.97) horse drawn carriage ( 0.89) dotted ( 0.97)

ViT-B/16

DataComp carrousel s ( 0.98) jail cell s ( 0.84) banquet hall s ( 0.93) gift shop s ( 0.83) carport freestanding s ( 0.89) manhole s ( 0.82)
LAION-2B flood s ( 0.9) stained ( 0.89) catwalk s ( 0.87) scaly ( 0.86) rubble ( 0.85) cracked ( 0.85)
LAION-400M book stand ( 0.97) temple ( 0.97) bookstore s ( 0.94) courtyard s ( 0.95) rudder ( 0.93) cabana s ( 0.94)
OpenAI martial arts gym s ( 0.95) meshed ( 0.92) jail cell s ( 0.92) flecked ( 0.92) throne room s ( 0.91) perforated ( 0.92)
Supervised ImageNet hot tub outdoor s ( 0.99) N.A. bedchamber s ( 0.98) N.A. stadium baseball s ( 0.97) N.A.
YFCC-15M fountain s ( 0.68) N.A. black c ( 0.67) N.A. air base s ( 0.62) N.A.

ViT-B/32

DataComp zen garden s ( 0.95) ice cream parlor s ( 0.67) dolmen s ( 0.94) bullring ( 0.67) gift shop s ( 0.88) junkyard s ( 0.67)
LAION-2B viaduct ( 0.93) stained ( 0.91) cargo container interior s ( 0.91) scaly ( 0.91) labyrinth ( 0.9) matted ( 0.88)
LAION-400M barnyard s ( 0.86) scaly ( 0.94) subway interior s ( 0.86) jail cell s ( 0.9) bird feeder ( 0.86) manhole s ( 0.9)
OpenAI tennis court ( 1) meshed ( 0.95) batters box s ( 0.98) perforated ( 0.93) kennel indoor s ( 0.93) flecked ( 0.91)
Supervised ImageNet television studio s ( 0.88) N.A. barbecue ( 0.87) N.A. lined ( 0.85) N.A.

E.4 Polysemanticty for each model

We report the polysemanticity metric computed as per Section 5 for all zero-shot models in Table 7. As
claimed in the paper, this ranges from polysemanticity = 3 for the OpenAI ResNet 50 to polysemanticity = 16
for the LAION-2B ViT-B/16, with typically more than 10 concepts encoded in one direction on average.
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Figure 9: Distribution of importance over all RSVs in the representation space for all models with ResNet50,
ResNet101, and ViT-B-16 backbones. Robust zero-shot CLIP models (blue) have one strongly privileged
direction. Fine-tuned models (green) still exhibit one strong privileged direction, but with lower importance
than the robust zero-shot models. The supervised models (orange) do not have them at all. The non-robust
ImageNet-Caption models (red) do have a few directions that are a little bit larger than the bulk, but not
separated by orders of magnitude like for the robust and fine-tuned CLIP models.
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Figure 10: Distribution of importance over all RSVs in the representation space for all models with ViT-B-
32 and ViT-L-14 backbones. Robust zero-shot CLIP models (blue) have one strongly privileged direction.
Fine-tuned models (green) still exhibit one strong privileged direction, but with lower importance than the
robust zero-shot models. The supervised models (orange) do not have them at all.
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(a) ER - LAION-400M pretrained (b) ACC - LAION-400M pretrained

(c) ER - LAION-2B pretrained (d) ACC - LAION-2B pretrained

(e) ER - DataComp pretrained (f) ACC - DataComp pretrained

Figure 11: Effect of gradually pruning the least important SV of W on ER and ACC for LAION-400M, LAION-
2B, and DataComp pretrained models.
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(a) ER - YFCC-15M pretrained (b) ACC - YFCC-15M pretrained

(c) ER - CC-12M pretrained (d) ACC - CC-12M pretrained

Figure 12: Effect of gradually pruning the least important SV of W on ER and ACC for YFCC-15M and
CC-12M pretrained models.
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Table 7: Polysemanticity of zero-shot CLIP models, showing average # of concepts encoded in RSV of last
layer (i.e. with AP ≥ 0.9 on Broden dataset concepts).

Backbone Pretraining data Polysemanticity

ResNet50
OpenAI 3.0
YFCC-15M 6.4
CC-12M 5.3
ImageNet-Captions-t 10.5
ImageNet-Captions-td 10.5
ImageNet-Captions-tdt 4.5

ResNet101 OpenAI 3.5
YFCC-15M 7.8

ViT-B-16

OpenAI 14.5
LAION-400M 11.9
LAION-2B 16.0
DataComp 14.1

ViT-B-32

OpenAI 14.1
LAION-400M 11.5
LAION-2B 11.1

F Intuition behind generalization of outlier features

Below, we give more details and an intuition why outlier features can be generalized from the canonical
basis {e1, . . . , edH

} (we can write hi = Projei
(h)) to be any set of directions of the representation space that

receive a projection substantially above average:

Let us assume, for instance, that two of the elements in the canonical basis e1 and e2 correspond to outlier
features. This means that an activation vector h related to an input image x has projections h1 = Proje1(h)
and h2 = Proje2(h) substantially above the average h1, h2 ≫ n−1 ∑n

i=1 hi. Now let us define a new unit
vector e′

1 = 2−1/2(e1 + e2). We deduce that the projection onto this vector is also substantially higher than
average h′

1 = Proje′
1
(h) = 2−1/2(h1 + h2)≫ n−1 ∑n

i=1 hi. Hence, the unit vector e′
1 can be considered as an

outlier feature in a new non-canonical basis. In general, we can extend the notion of outlier features to any
vector in the span{e1, . . . , en ∈ Rn}.

G Pruning results

Pruning non-privileged directions. Given that we have established that outlier features induce privileged
directions in representation space, it seems interesting to check their role in model performance. To that aim,
we gradually prune each RSV vi by increasing order of σi by setting σi ← 0 in the singular value expansion5

W =
∑rank(W )

i=1 σiuiv
⊺
i . By pruning a variable proportion of the singular vectors, we obtain the results in

Figure 13. We see that the 80% least important RSV of the representation space can be pruned without
a substantial effect on performance, i.e. that the robust models are low-rank in their last layer where they
have privileged directions.

When extending the pruning experiment to finetuned CLIP models and supervised models trained only with
ImageNet, we make the two interesting observations from these new results (see Figure 14):

All models are low-rank. For all the models (zero-shot, finetuned and supervised), the performances are
not substantially affected if we remove the 80% least important singular directions of their representation
space (compare to Table 1). This shows that many existing models admit good low-rank approximations.
This also demonstrates that the fact that these models are low-rank is not necessarily a signature of robust-
ness.

5Note that sorting the RSV vi by increasing σi is similar to sorting the RSV by increasing Importance(i), since these two
variables are related by a Spearman rank correlation ρ = 96%
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Figure 13: Effect of gradually pruning the least important SV of W on ER and ACC. The least 80% important
SV can be pruned without any substantial effect.
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(b) ResNet101

Figure 14: Extension of pruning results to finetuned and ImageNet supervised models. Zero-shot models
obtained with OpenAI pretraining set.

Faster drop for supervised models. When the number of ablated singular values ranges between
80% − 100%, we see that the ImageNet accuracy of supervised models drop substantially faster than the
accuracy of the finetuned and the zero-shot models. In fact, for the ResNet50, the ImageNet accuracy curves
even cross. This implies that the most important direction of the zero-shot model’s representation space
better discriminate between ImageNet classes than the most important directions of the supervised model’s
representation space. In the former case, these directions correspond to the zero-shot model’s privileged
directions. We believe that this new result further reinforces the importance of privileged directions to
understand the performances of robust models.

H Details on experiments

H.1 Finetuned CLIP models

To obtain the finetuned CLIP models, we proceed as follows. We start from building the zero-shot CLIP
models as described in Section 3. As Wortsman et al. (2022b), we then finetune these models for 10 epochs
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on the ImageNet training set, using a batch size of 256 and a learning rate of 3 ·10−5 with a cosine annealing
learning rate scheduler and a warm-up of 500 steps. We use the AdamW optimizer and set the weight decay
to 0.1.

H.2 Supervised ImageNet models

We note that the ResNets used by Radford et al. (2021) have small modifications, such as the usage of
attention pooling. Unfortunately, we are not aware of any public weights for such modified architectures
trained on ImageNet from scratch. We thus train these modified ResNet models from scratch for 90 epochs
on the ImageNet training set, using a batch size of 1024. We use AdamW, and a learning rate schedule
decaying from 10−3 to 10−4 after 30 epochs and to 10−5 after 60 epochs (with a warm-up period of 5,000
steps). We set weight decay to 10−2. We use the standard augmentations of horizontal flip with random
crop as well as label smoothing.

For the ViT models, loadable checkpoints with identical architectures were available from torchvision
(TorchVision maintainers and contributors, 2016), and we thus use those directly.

I Analysis of Wise-FT models

In this appendix, we use the approach of Wise-FT (Wortsman et al., 2022b) to obtain a continuous spectrum
of ER. Given a zero-shot model fθ0 with weights θ0 ∈ Θ and a finetuned model fθ1 with weights θ1 ∈ Θ,
Wortsman et al. (2022b) propose to interpolate between the two models in weight space. This is done by
taking a combination θα := (1−α) · θ0 + α · θ1 for some interpolation parameter α ∈ [0, 1]. One then defines
a new model fθα

based on the interpolated weights.

Surprisingly, interpolating between zero-shot CLIP models and finetuned CLIP models produce models with
good performances. To illustrate that, we perform the Wise-FT interpolation with all the models from our
pool. We report the ImageNet & shift accuracies of these models in Figures 15 and 16. For the OpenAI
and LAION models in Figure 15, we observe that the shift accuracy of interpolated models often surpass
both the zero-shot and the finetuned models. The YFCC-15M and CC-12M models in Figure 16 exhibit
a different trend: both ImageNet & shift accuracies increase monotonically as α sweeps from zero-shot to
finetuned. This is likely due to the low accuracy of the corresponding zero-shot models.

By analyzing the ER of interpolated OpenAI and LAION models in Figure 17, we see that the ER gradually
degrades as α sweeps between the zero-shot and the finetuned models. Interestingly, the ER of YFCC-15M
and CC-12M models in Figure 18 peaks at α = .4 and then decreases monotonically.

Let us now look at how our ER signatures evolve as we sweep α between zero-shot and finetuned models.
Ideally, if these signatures are good ER proxies, they should exhibit similar trends as the ones described in
the previous paragraph. For the OpenAI and LAION models, we indeed observe in Figures 19 and 21 that
the kurtosis and the number of unique encoded concepts gradually decrease as α sweeps from zero-shot to
finetuned models. Similarly, we observe in Figures 20 and 22 that these two metrics start to substantially
after α = 0.4 for the YFCC-15M and CC-12M models. This suggests that these two metrics constitute a
good proxy to track how the ER of a given model evolves.

Note that the Wise-FT idea has since been generalized to a combination of several finetuned models by
Wortsman et al. (2022a) with model soups. We leave the investigations of model soups for future work.
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Figure 15: Accuracies on ImageNet & shifts for Wise-FT models (1/2).
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Figure 16: Accuracies on ImageNet & shifts for Wise-FT models (2/2).

31



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.08

0.10

0.12

0.14

0.16

0.18

0.20

E
ffe

ct
iv

e 
R

ob
us

tn
es

s

FinetunedZeroshot

RN-50 OpenAI

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.12

0.14

0.16

0.18

0.20

0.22

0.24

E
ffe

ct
iv

e 
R

ob
us

tn
es

s

FinetunedZeroshot

RN-101 OpenAI

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.150

0.175

0.200

0.225

0.250

0.275

0.300

E
ffe

ct
iv

e 
R

ob
us

tn
es

s

FinetunedZeroshot

ViT-B/16 OpenAI

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

E
ffe

ct
iv

e 
R

ob
us

tn
es

s

FinetunedZeroshot

ViT-B/32 OpenAI

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.16

0.18

0.20

0.22

0.24

0.26

0.28

E
ffe

ct
iv

e 
R

ob
us

tn
es

s

FinetunedZeroshot

ViT-B/16 LAION-400M

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.14

0.16

0.18

0.20

0.22

0.24

E
ffe

ct
iv

e 
R

ob
us

tn
es

s

FinetunedZeroshot

ViT-B/32 LAION-400M

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.18

0.20

0.22

0.24

0.26

0.28

0.30

E
ffe

ct
iv

e 
R

ob
us

tn
es

s

FinetunedZeroshot

ViT-B/16 LAION-2B

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

E
ffe

ct
iv

e 
R

ob
us

tn
es

s

FinetunedZeroshot

ViT-B/32 LAION-2B

Figure 17: ER for Wise-FT models (1/2).
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Figure 18: ER for Wise-FT models (2/2).
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Figure 19: Activation kurtosis for Wise-FT models (1/2). The activation kurtosis is computed for both
ImageNet tests and ImageNet shifts.
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Figure 20: Activation kurtosis for Wise-FT models (2/2). The activation kurtosis is computed for both
ImageNet tests and ImageNet shifts.
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Figure 21: Number of unique concepts encoded in Wise-FT models (1/2).
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Figure 22: Number of unique concepts encoded in Wise-FT models (2/2).
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J Further literature

Defining CLIP ER. The definition of ER crucially relies on the observation in multiple works that the
model performance on natural shifts is linearly related to its performance in-distribution when both quantities
are plotted with a logit scaling (Recht et al., 2018; 2019; Miller et al., 2020). We note though that there
are known exceptions to this, e.g. considering out-of-distribution generalization on real-world datasets that
substantially differ from the in-distribution dataset (Fang et al., 2023).

Explaining CLIP ER. A first intuitive explanation for the surprisingly high effective robustness of CLIP
might be the fact that the learned embeddings are endowed with semantic grounding through pretraining
with text data. This hypothesis was refuted by Devillers et al. (2021), who demonstrated that the embeddings
in CLIP do not offer gains in unsupervised clustering, few-shot learning, transfer learning and adversarial
robustness as compared to vision-only models. In a subsequent work, Fang et al. (2022) demonstrated that
the high robustness of these models rather emerges from the high diversity of data present in their training
set. This was achieved by showing that pretraining SimCLR models Chen et al. (2020) on larger datasets,
such as the YFCC dataset by Radford et al. (2021), without any language supervision matches the effective
robustness of CLIP. Shi et al. (2023) reinforced this data-centric explanation by showing that the performance
on the pretraining set also correlates linearly with the out-of-distribution performance. To put the emphasis
on the importance of data-quality for effective robustness, Nguyen et al. (2022) showed that increasing the
pretraining set size does not necessarily improve the effective robustness of the resulting model. Rather, it
suggests that it is preferable to filter data to keep salient examples, as was done, e.g., to assemble the LAION
dataset (Schuhmann et al., 2022).

Other signatures of ER. By comparing pretrained models with models trained from scratch, Neyshabur
et al. (2020) demonstrated that these models exhibit interesting differences, such as their reliance on high-
level statistics of their input features and the fact that they tend to be separated by performance barriers in
parameter space. Guillory et al. (2021) found observable model behaviours that are predictive of effective
robustness. In particular, the difference of model’s average confidence between the in and out-of-distribution
correlates with out-of-distribution performance.

Polysemanticity in foundation models. Polysemantic neurons were coined by Olah et al. (2020) in
the context vision model interpretability. These neurons get activated in the presence of several unrelated
concepts. For instance, the InceptionV1 model has a neurons that fires when either cats or cars appear in
the image. These neurons render the interpretation of the model substantially more complicated, as they
prevent to attach unambiguous labels to all the neurons in a model. This will limit the insights gained by
traditional interpretability techniques. For example, producing saliency maps for a polysemantic neuron
could highlight many unrelated parts of an image, corresponding to the unrelated concepts this neuron is
sensitive to. A qualitative analysis of the neurons in CLIP by Goh et al. (2021) showed that a CLIP ResNet
has a substantial amount of polysemantic neurons. The emergence of polysemantic neurons is a complex
phenomenon. It is not yet well-understood for models at scale. The latest works on the subject mostly
focus on toy models, see e.g. the works of Elhage et al. (2022) and Scherlis et al. (2022). To the best of
our knowledge, our work is the first to explicitly discusses the link that exists between polysemanticity and
robustness to natural distribution shifts.
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