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ABSTRACT

With the advent of pre-trained large language models (LLMs), natural language
prompts are now becoming a de-facto method for interacting with language mod-
els. However, prompting as a technique is an esoteric art, involving cumbersome
manual processes by individuals to search different strategies that make language
models work for the intended task. We introduce LEETPROMPT, a citizen sci-
ence platform that leverages on collective human creativity with prompting to
solve reasoning questions across various domains. Users of LEETPROMPT at-
tempt questions by writing prompts that solve all the hidden test cases. To measure
the efficacy of LEETPROMPT, we conduct a study 10 questions across 5 domains
(biology, physics, math, programming, and general knowledge) with 20 human
subjects. We gather a total of 1173 GPT-4 prompts with the following observa-
tions: First, problems deemed unsolvable by question setters were successfully
solved. Second, diverse prompting strategies were used by the different partici-
pants. Third, the more difficult problems also had a high number of prompt sub-
missions enabling better debugging of the LLM behaviour for that problem. These
observations support various downstream implications in robust approaches to
prompt interpretability and model evaluation, high quality data collection, human-
AI alignment and real-world usage of LLMs.
.

1 INTRODUCTION

Pre-trained large language models (LLMs) and the subsequent introduction of prompting, i.e. writ-
ing instructions to guide pre-trained models to perform tasks, has essentially ushered in a paradigm
shift in machine learning research. Prompting as an input modality has influenced existing ap-
proaches in model interpretability (e.g., probing with prompts; Li et al., 2022), learning & alignment
(e.g., RLHF; Ouyang et al., 2022), data requirements (e.g., instruction-tuning), and evaluation (e.g.,
prompts that get models to perform novel tasks; Bubeck et al., 2023), to initiating new avenues of
research such as prompt optimization (Zhou et al., 2022; Zhang et al., 2022; Pryzant et al., 2023).

Despite the crucial role of prompting, the task of prompting continues to perplex the AI research
community since obtaining insights through writing prompts is not only a cognitively demand-
ing task, but can also quickly become tedious (Reynolds & McDonell, 2021; Jiang et al., 2022;
Zamfirescu-Pereira et al., 2023). For example, if a researcher wishes to assess the capabilities of
a language model, they must write prompts using diverse strategies one by one, unlike previously
when they could benchmark the model straightaway against a dataset. Furthermore, while there are
general techniques such as zero-shot encouragement (Kojima et al., 2022), chain-/tree-/program-of-
thought (Wei et al., 2022; Yao et al., 2023; Chen et al., 2022), many strategies often vary between
specific problems, their domains (Jia & Zhang, 2022), between each model and most importantly,
may completely change over time. In such a complex space of prompts, conducting blind exhaus-
tive search becomes excruciating, leading to erroneous assertions about the capabilities of language
models. Such demanding nature of “prompt engineering” has also led to creation of new roles such
as “prompt engineers” whose sole job is to discover prompts that steer the language model towards
performing a particular task or analyzing the capabilities of language models.

Despite the trend towards optimizing prompts with automated methods, most of the already known
popular strategies, such as chain-of-thought and GPT-4’s ability to draw a unicorn in LaTeX, were
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developed by substantial efforts and time devoted by individual researchers (Wei et al., 2022; Bubeck
et al., 2023). Recognizing the importance of human creativity in prompt discovery, we introduce
LEETPROMPT, a citizen science platform that enables researchers to upload questions, or models,in
different domains and leverage the power of collective intelligence to solve these questions through
prompting. Specifically, LEETPROMPT is a platform that hosts reasoning problems which regu-
lar people solve by writing (and engineering) prompts, while contributing towards a collectively
knowledge of whether a problem is solvable and if so, how.

In order to evaluate the efficacy of LEETPROMPT as citizen-science infrastructure for testing LLMs,
we conduct a controlled in-lab study with N = 20 human subjects. We invite 4 initial users of the
platform to select 10 problems (out of a total of 101 already on the platform) to be used for the study.
Each problem consists of a question, a few examples, and corresponding 5 hidden test cases. The 10
problems equally span 5 domains: biology, physics, math, programming, and general Knowledge.
We chose these domains as representative of current testing and evaluation of LLMs (Hendrycks
et al., 2020; Patel et al., 2021; Sap et al., 2019a). Participants have varying education background,
experience with LLMs/programming, and demographics. The objective for the participant is to solve
the given 10 questions by writing prompts and pass all the hidden test cases within 1 hour.

Through quantitative analysis and qualitative coding of 1173 prompts obtained in our controlled
study, we have three key observations. First, problems that were deemed unsolvable by LEET-
PROMPT problem setters got solved over the many attempts by participants. Second, the more
difficult problems received more number of attempts overall ensuring more fine-grained debugging
data. Third, LEETPROMPT captures diverse approaches by participants eliciting natural human
intuitions (or, preferences; Ziegler et al., 2019) towards solving the problem. Our study demon-
strates the concept of LEETPROMPT and its implications on LLM research & development including
“high quality” data collection, robust approaches to prompt interpretability and model evaluation,
human-AI alignment and real-world usability of LLMs. LEETPROMPT is an instrument for testing,
analyzing and evaluating LLMs (Olah et al., 2020), akin to microscopes that enable the study of
microscopic organisms in biology.

Can GPT4 solve this math problem?

Find the smallest number with given 
number of digits and given digit sum? If 
no such number exists, answer 0.

Let’s think step-by-step… 
You are a math professor… 
Think about this logically…

Guess, GPT4 cannot solve this problem

Let me try probing GPT4 to check

Example: f(4, 9) = 1008

Post problems in papers, blogs and 
tweets with anecdotal evidences that 
are not exhaustively searched.

1

2

Put up question on LeetPromptI

Crowd solves question for scientist II

Scientist puts up question 
on LeetPrompt with a few 
example input & output

People want to solve 
challenges to get high 
score on leaderboard.

I solved it!!

Figure 1: An example workflow of using LEETPROMPT for interpretability and evaluation of mod-
els. In this scenario, an AI researcher is curious about whether GPT4 can solve a particular question
that they formulated. 1 & 2 demonstrate the traditional approach of the researcher independently
attempting the question and drawing preliminary conclusions about the model. I & II demonstrate
how the researcher posts up the question on leetprompt and leverages the power of collective intelli-
gence to not only get the question solved but also explore all the different strategies used by others.

2 LEETPROMPT

We introduce LEETPROMPT: an online platform where users are presented with problems from
multiple domains and tasked with writing prompts to get the LLM to solve the problems.
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Figure 2: LEETPROMPT is a platform where users can explore the space of instructions to solve tasks
with LLMs. 1 Problem description. This panel contains a description of the problem that needs
to be solved. It often contains examples of plausible inputs and outputs. 2 Interaction interface.
Here, users will write instructions, change model hyper-parameters, and evaluate their instructions
against public as well as private test cases. 3 Writing instructions. Here lies the text interface
where users write their instructions. The token [[ INPUT ]] identifies where test cases will
insert inputs. Most problems already contain a starter instructions to help users get started. 4
Model hyper-parameters. This panel shows which model is being used and the corresponding
modifiable model hyper-parameters. 5 Test and submit. Users can test their instructions against a
custom input by clicking Test or submit their instructions to be evaluated against the blind test cases
by clicking on Submit. 6 Problem details and submissions. Users can check overall problem
statistics, load past submissions, and compare their performance against other users.

Designing the LEETPROMPT workflow. LEETPROMPT’s core functionality is inspired by online
code judging systems such as LeetCode, TopCoder, and CodeForces.1 The platform contains a list
of problems that users choose to tackle. Each problem also has a leaderboard indicating how many
users have already attempted to tackle this problem, who achieved the best performance, and with
how many submissions. Once the user chooses a problem, they are given the problem’s description
as well as a few examples of inputs and outputs outlining expected behavior. With this information,
users must write prompts that steer a large language model toward solving the given problem. Users
can also change the model’s hyperparameters.

Once they are finished writing the prompt, users can test its utility against their own custom inputs.
Custom inputs allows users to iteratively explore how their changes affect LLM behavior. Once sat-
isfied, they can submit their prompt to be evaluated against our hidden test cases. These private test
cases are never revealed to the user; instead, they receive a percentage score indicating how many of
the private test cases passed. To discourage rapid-fire submission and hill-climbing behavior on the
private test cases, the platform provides a time-out after 3 submissions for 5 minutes. LEETPROMPT
also records how many times the user submits prompts, and uses that information to rearrange the
leaderboard to tacitly encourage fewer submissions.

Designing the LEETPROMPT’s interface. LEETPROMPT’s interface is designed to be simple and
promote an intuitive user experience (see Figure 2). We recruit UX designers to join our team

1leetcode.com, topcoder.com, codeforces.com
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Table 1: User performance across the 10 questions in 5 domains. Difficulty of the question was pre-determined
by the problem setters. #Int is the number of model interactions, #Sub is the number of instructions that
were submitted, Passed is the number of passed test cases, and Solved is the percentage of participants who
able to successfully solve the problem. LD, SD, and AD are the Lexical, Semantic, and Approach Diversity,
respectively.

Domain Question Difficulty #Int #Sub Passed Solved LD SD AD

Biology Water Potential Easy 30 37 4.72 ± 0.83 94% 0.59 21 0.61

Food Chain Hard 76 75 3.07 ± 1.47 50% 0.43 30 0.49

Physics Ideal Gas Law Easy 108 31 3.68 ± 1.76 88 % 0.45 32 0.25

Resistance is Futile Medium 84 48 2.88 ± 1.76 50% 0.43 34 0.39

Math Consecutive Integers Easy 67 25 4.36 ± 1.66 75% 0.7 33 0.80
Digit Sum Hard 134 45 3.27 ± 0.75 6 % 0.43 43 0.58

Programming Intersperse Medium 99 23 3.70 ± 1.46 63% 0.59 29 0.74
Sort Numbers Medium 64 27 3.56 ± 1.53 56% 0.49 34 0.68

Knowledge Beatles Title Medium 177 28 3.36 ± 1.57 38% 0.55 50 0.44
Theory of Mind Medium 36 13 3.15 ± 2.23 44% 0.43 15 0.60

Average ! 87.5 30.3 3.58 ± 0.55 56% 0.49 32 0.57

and run studies using mockups of the interface to identify common pitfalls. We face the following
design challenge: creating a platform that is intuitive for users who are not familiar with the process
of writing prompts for LLMs. Drawing on design theory (Nielsen, 1995), the following principles
are used: (1) Standardizing the interface to match with existing/popular LLM platforms and (2)
employing recognition over recall so users know the full extent of the platform’s affordances through
a quick skim. The appendix contains older versions of the interface.

Evaluating user-generated instructions. Figure 2(C) contains a screenshot of a possible instruc-
tion that a user might write to solve a problem. Users are expected to place an [[ INPUT ]] token
somewhere in their produced instruction. LEETPROMPT evaluates instructions using the following:

accuracy = 100⇥ 1

N

NX

i=1

[yi == LLM((Instruction;[[ INPUT ]] = xi))] (1)

where (xi, yi) 2 [1, . . . , N ] are N private test case (input, output) pairs.
(Instruction;[[ INPUT ]] = xi) replaces the input token in the instruction with test case
input xi. [·] is the indicator function. LEETPROMPT contains a set of common regexes to extract
the desired output for the problem from the LLM’s generation.

3 STUDY TO JUDGE EFFICACY OF LEETPROMPT

In the following section, we outline the study we conducted to determine the efficacy of LEET-
PROMPT as a platform for the crowd to participate in by solving challenging questions while helping
researchers gain insights into the working of language models.

Domain selection. LLMs are often evaluated on their ability to perform simple mathematical and
commonsense reasoning (Hendrycks et al., 2020; Patel et al., 2021; Sap et al., 2019a; Tafjord et al.,
2019), causal reasoning (Kıcıman et al., 2023) and theory of mind & social reasoning (Sap et al.,
2022; Moghaddam & Honey, 2023; Sap et al., 2019b), basic sciences (Taylor et al., 2022), program-
ming (Chen et al., 2021; Liu et al., 2023), and even law exams (Zhong et al., 2023; OpenAI, 2023).
We choose a subset of these domains as the test bed for our user study: Biology, Physics, Math,
Programming, and General Knowledge.

Problem setting. At present, LEETPROMPT consists a total of 101 problems uploaded by users of
the platform. Each problem consists of a set of 5 private test cases, and is also assigned a difficulty
by the problem uploader – Easy, Medium and Hard. We invite a small set of 4 initial users with prior
experience interacting with and using LLMs to LEETPROMPT. We ask the users to try and solve
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Table 2: Qualitative Coding of Instruction Strate-
gies used. Code represents the main category,
with several subcodes within each category.

Strategy Code Sub Codes

Instruction Prompting INST EXP, SIM, INC, COMP
Examples Used EX ZERO, N-SHOT, ORDE
Chain-of-thought COT CONS, COMP, TEXT
Self reflection SELF ASK, TAUG
Structure ST BREAK, STEP, QUES, NONE
Code Used CODE PROG, PSEU

Table 3: Correlation Coefficients between problem
properties and difficulty, number of testcases passed
and whether it was solved.

Problem
Difficulty Pass Rate Solve Rate

# Test Runs 0.31 -0.35 -0.49
# Eval Runs 0.58.. -0.57.. -0.46

LD -0.34 0.71* 0.32
SD 0.37 -0.32 -0.15Pr

om
pt

AD -0.02 0.34 -0.03

each question and sample a total of 10 problems, 2 from each of the 5 aforementioned domains,
for the purpose of user study. In total there are 3 easy problems, 5 medium problems and 2 hard
problems. The 2 hard problems were chosen because the problem setters were not able to find an
prompt that worked for all the test cases. Problems are randomly ordered for each user.

Example problem. Figure 2 lays out one of our Biology problems and a user-generated prompt. It
presents the participant with a food chain in the form of X ! Y implies that species Y is at a higher
tropic level and, therefore, eats species X . The user is also presented with two species sampled from
that food chain. The problem asks the user to determine whether an increase in the population of the
first species will lead to an increase or decrease in the second. Example 1 in the problem description
presents the following food chain: kelp ! sea urchin ! otter ! orca. The two species presented are
“sea urchin” and “kelp”. Since “sea urchins” eats kelp, an increase in the “sea urchin” population
leads to a decrease in the “kelp” population. This is a hard problem.

The user-generated instruction uses pseudocode to inform the model that if the first species is at a
higher trophic level than the second, the population of the second species will decrease, and vice
versa. Even though this logic works for “sea urchin” and “kelp”, this pseudocode is incorrect when
the two species are “otter” and “kelp”. Since there is a skip connection between “otter” and “kelp”,
an increase in “otters” will result in a decrease in “sea urchins”, which will in turn result in an
increase in “kelp”.

Study protocol. We design a study to explore the utility of LEETPROMPT. The study begins by
asking participants to sign a consent form that outlines that their interactions will be stored and used
for this research contribution. Next, they are asked an initial survey to record their demograph-
ics, their background education, and their experience working with LLMs or programming more
broadly. Next, they are shown instructions for using the interface and provided resources that they
can reference for advice on good prompt design. After this, the participant is shown a demo of
the interface, which highlights and explains the various panes in the interface. To help familiarize
themselves with the interface, users are provided a sandbox interface with a toy starter problem that
they can test the functionality afforded by the platform. Next, the participants are presented with the
10 sampled problems and asked to attempt solving each one. We set expectations that the study will
likely take about 1 hour. The study ends with a final survey where we collect open-ended responses
describing their experience.

Participant selection. All of our participants are recruited locally from the authors’ city. We only
include participants that speak English, can spend at least 1 hour working on problems, and sub-
mitted at least one prompt to each of the 10 problems. All participants receive a payment of $15
for their time with no bonuses. We provide no other incentives other than intrinsic motivation for
subsequent attempts at designing better prompts for each problem. Regardless, we find that each
user tried an average of 5.8 prompts per question.

Measured variables. To evaluate prompts, we use two primary objective performance measures:
solvability and diversity. Solvability measures the percentage of test cases that pass when using a
specific prompt. Diversity measures how creative people are in writing prompts. Diversity pro-
vides insights into the different approaches that a participant takes to solve each problem. It allows
us to evaluate the claim that diverse prompts and ensembling leads to significant boosts in LLM
performance (Yoran et al., 2023). Since diversity of prompts can be measured in multiple ways, we
measure the following: (1) Lexical Diversity (LD), Semantic Diversity (SD), and Approach Diversity
(AD).
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 P1 A → Describing CoT 

Let's think step by 
step.We are given the 
initial pressure (P1) as 
3 atm, the initial 
temperature (T1) as 300 
K, and the final…

 P2 A → Describing CoT 

Let's think step by 
step.We have 3 resistors 
in series in parallel 
with 2 resistors in 
series. The total 
resistance…

 P2 A → Using Ideal Gas Law 

To solve this problem, we 
can use the combined gas 
law, which states that 
the product of pressure 
and volume is directly…

 P2 B → Using Ohm’s Law 

Input: For the three 
resistors in series, we 
simply add their 
resistances: R_series = 
R1 + R2 + R3. For the two 
resistors in series…

 P2 C → Writing down Math 

Instructions: Divide the 
input by 100. Give me the 
output answer in the form 
"Output: "

 P2 C → Writing down Math

Find the value of 7500 / 
[[ INPUT ]]. Give your 
answer in the form 
"Output: “. Do not 
explain anything

Ideal Gas Law Resistance is Futile
Physics

 M1 A → Describing CoT 

Let's think step by 
step.Let the smallest 
integer be x. Then the 
other two consecutive 
integers are x+1 and x+2. 
The sum of these…

 M2 A → Describing CoT 

Let's think step by 
step.We need a 3-digit 
number with a digit sum 
of 3. The smallest such 
number would be 102. So 
the answer is…

 M1 B → Using Programming

def smallest_integer 
(sum_of_three):
avg =sum_of_three/3  
smallest=int(average)-1 
return smallest

 M2 B → Using Programming 

def smallest_digit_sum 
(digits, digit_sum):
if digit_sum > 9*digits:

return 0
elif digit_sum == 0 and 
digits == 1:…

 M1 C → Step-wise Reasoning 

Step 1: Subtract 3 from 
the input number
Step 2: Divide the output 
of Step 1 by 3. Return 
"Output:" then this 
number

 M2 C → Re-word Problem

given two input numbers, 
output the smallest 
number with the given 
number of digits and 
given digit sum? If no 
such number exists

Consecutive Integers Digit Sum
Math

 P1 A

 P1 B  P1 C

 P2 A

 P2 B  P2 C

 M1 B

 M1 C

 M1 A

 M2 B

 M2 C  M2 A

Figure 3: Visualizing the space of Auto-CoT and LEETPROMPT Instructions: 2D Principal Component
Analysis (PCA) of embeddings of Auto-CoT and collected instructions from LEETPROMPT. Auto-CoT in-
structions are marked as purple X. LEETPROMPT instructions are marked as dots with colors representing its
solvability: ”Test” instructions are colored gray. For ”Submitted” instructions, red color indicates that they
failed all testcases, yellow indicates they passed 1-4 testcases, and green indicates that they passed 5 testcases.
Instructions are specifically shown for two problems each from each domains to illustrate the different strate-
gies used by participants and whether they were successful.

LD uses Repetition Rate (RR) (Cettolo et al., 2014; Bertoldi et al., 2013) to measure diversity in
lexicons between a participant’s prompt and the original wording used in the problem description.
Specifically, LD = 1 � RR. LD is 0 if all lexicons appear more than once and 1 if all lexicon are
new.

SD measures the diversity in strategies used by a user when tackling a specific problem. We use
text+code embeddings (text-embedding-ada-002) to encode each prompt and visualize their first two
principle components for qualitative visual analysis. For a quantitative analysis, SD is the variance
for the first principal component.

AD measures the percentage of prompt strategies used, where strategies are qualitatively coded by
3 independent coders (see Table 2) for codes and appendix for full details). The qualitative codes
reflect common prompt strategies in literature: prime the model to behave like a domain expert (Ar-
gyle et al., 2022), use example input/outputs (Wang et al., 2022a), use CoT prompting (Wei et al.,
2022; Kojima et al., 2022; Wang et al., 2022b; Ye & Durrett, 2022; Turpin et al., 2023), use self-
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help (Press et al., 2022; Zelikman et al., 2022) and the lexical structure (Fu et al., 2022), and use
pseudo-code (Zhang et al., 2023a).

Automatic prompting mechanisms. We compare user-generated prompts with mechanisms used
in existing benchmarks. Zero-shot (0s) uses the problem description and no other information.
Zero-shot CoT (CoT) includes a phrase which requests the LLM to reason the steps aloud (Kojima
et al., 2022). Few-shot variants (N -shot Ns where N = 1, 2, 3, 4) append N -example input/output
pairs. We also test with advanced auto-prompting methods, such as Auto-CoT (Zhang et al., 2023b)
which invokes multiple CoT reasoning steps along with 10 input/output examples, and Synthetic
prompting (Shao et al., 2023) which tunes existing prompts.

Models used. LEETPROMPT supports any LLM that affords an API access to invoke the model.
We allow participants to use any of the following models: GPT-4, GPT-3.5, and GPT-3. However,
all participants chose to use GPT-4 for all their attempts. In the appendix, we retroactively evaluate
their prompts on the other models as a point of comparison.

4 RESULTS

By analyzing the 1173 user-generated prompts and their feedback from the survey we find the fol-
lowing: To start, participants are able to generate prompts to solve all the problems, including the
hard questions that the problem setters had deemed unlikely to be solved. Second, for more difficult
questions, the users submit more prompts increasing the amount of data even though they might not
be able to solve them. Third, there were many diverse prompt strategies that each participant used
to solve these questions. Finally, the background of the participants had an impact on their ability to
solve different problems.

1 LEETPROMPT enables solving problems deemed unsolvable by problem setters As shown
in Table 1, all problems were solved by at least one participant. The problem setters’ difficulty
categorization is strongly correlated with how many test cases participants passed (r(19) = .74, p =
.01) and what percentage of participants were able to solve all 5 private test cases (r(19) = 0.84, p =
.001). For “Digit Sum”, only one participant was able to solve the question. Surprisingly, the
successful solution involved re-arrangement of examples and a specific re-wording of the question
that improved the problem’s clarity and thus made it easier for the model to understand and solve the
problem. Only through collective action was LEETPROMPT able to identify this solution. Similarly,
half the participants were able to solve “Food Chain”. Surprisingly, one winning instruction was
a logically incorrect reasoning step that somehow still passes the test cases (shown in Figure 2).
This adds more support to concurrent work, which also finds that unfaithful reasoning steps improve
LLM performance (Turpin et al., 2023).

Furthermore, none of the automatic mechanisms were able to find prompts to solve all the problems
(Table 4) and the diversity metrics (LD and SD) are both significantly smaller. A low LD implies
that these mechanisms do not deviate from the original problem description. We visualize the lack
of diversity of Auto-CoT in Figure 3, which visualizes the first two principal components of the SD
prompt embeddings for each problem.

2 LEETPROMPT encourages more attempts on difficult problems. From 1 we also see that the
problems labelled as ’Hard’ have a higher number of submissions compared to other problems. For
more challenging problems we see users persevere and actually generate much more data that can
be further used later to aid in model interpretability. These prompt submissions can be studied to
help debug the model’s strengths and weaknesses for the type of problem.

3 LEETPROMPT captures diverse prompting strategies used by participants. Each column in
Figure 3 is a different domain. Interestingly, the clusters appear to follow a similar pattern between
the two rows, implying that people use similar strategies for problems within a given domain.

Not only did we have diverse prompting strategies, but also lexical diversity of prompts is positively
correlated with higher pass rates (p(19) = 0.71, p < 0.01) (Table 3). This mirrors prior work (?)
which found that having diverse reasoning allowed for better LLM performance. This result suggests
that large LLM benchmarks should rethink the use of a small fixed set of prompts. From Table 4 the
best automatic mechanism, Auto-CoT, has lower LD than LEETPROMPT participants (0.26 vs 0.49)
and also passes fewer number of test cases (45 vs 50) which further proves this point.
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Table 4: Comparison of existing prompting approaches to prompts collected from LEETPROMPT. 0s: Zero-
shot; 0s CoT: Zero-shot Chain-of-Thought prompting; 1s, 2s, 3s, 4s: 1,2,3,4 shot (or examples) prompting;
Auto-CoT: Automatic Prompting Method; Ours: Prompts from LEETPROMPT. P denotes the maximum
number of testcases that the the given method was able to pass. As Auto-CoT and Ours have multiple prompts
per problem, we report LD & CD which are the lexical and content diversity of prompts for each problem. We
do not report AD for Auto-CoT since it defaults to using CoT as the main strategy for solving the problem.

0s 0s
COT

1s 2s 3s 4s Auto-CoT Ours

Domain Question P P P P P P P LD SD P LD SD

Biology Water Potential 2 2 3 5 5 5 5 0.17 2e-05 5 0.56 3e-02
Food Chain 4 3 3 3 2 3 5 0.25 3e-05 5 0.48 6e-03

Physics Ideal Gas Law 5 3 4 4 4 5 4 0.42 1e-04 5 0.38 7e-02
Resistance is Futile 0 0 3 3 4 2 3 0.42 2e-04 5 0.43 8e-02

Math Consecutive Integers 5 4 5 4 4 5 5 0.34 2e-05 5 0.68 5e-03
Digit Sum 3 2 3 3 3 4 5 0.31 2e-05 5 0.46 5e-03

Programming Intersperse 5 5 5 5 5 5 4 0.10 2e-05 5 0.51 8e-03
Sort Numbers 0 0 4 4 3 3 4 0.37 9e-05 5 0.49 2e-03

Knowledge Beatles Title 5 5 4 4 4 5 5 0.11 5e-05 5 0.47 3e-04
Theory of Mind 0 0 5 5 5 5 5 0.11 3e-05 5 0.49 4e-04

29 24 39 40 39 42 45 0.26 6e-05 50 0.49 2e-02

Table 5: Pearson’s correlation coefficient (r) between participant attributes (demographic, background, and
experience) and the maximum number of test cases passed and the time taken for each problem. ‘..’ indicates
trending towards significance (p < 0.1) and ‘*’ denotes significance (p < 0.05). P is the average number of
testcases passed and T is the avg. time taken between first and last interaction with the problem

.
Domain ! Biology Physics Math Program General Overall
Participant # P T P T P T P T P T P T

Demographic
Age 0.23 -0.23 -0.13 0.20 0.13 0.29 0.36 0.44.. 0.13 0.23 0.21 0.32

Experience
Biology -0.03 -0.11 -0.32 0.03 -0.41.. -0.50* -0.26 0.16 -0.29 -0.09 -0.37 -0.24
Physics 0.12 -0.01 0.18 0.46.. 0.04 0.03 0.21 -0.08 0.31 -0.23 0.25 0.02
Math 0.18 0.25 0.01 0.31 0.10 0.30 0.34 0.41.. 0.25 0.27 0.26 0.54*
Trivia -0.01 0.19 0.08 -0.11 0.25 -0.05 0.45.. 0.34 0.22 0.01 0.30 0.11
LLM 0.09 0.51* 0.14 0.22 0.43.. 0.19 0.36 0.25 0.43.. 0.42.. 0.42.. 0.59*
Prompting 0.43.. 0.13 0.21 0.54* 0.35 0.16 0.35 0.06 0.25 0.35 0.43.. 0.45..
Program -0.27 0.18 -0.05 -0.38 0.09 -0.22 0.19 0.15 0.25 0.19 0.10 -0.02

We also found that on average, natural language worked better than pseudocode. By qualitatively
analyzing the clusters in Figure 3), we find that participants who used pseudocode prompts generally
wrote longer prompts to account for all possible edge cases, similar to writing exceptions in software.
Debugging these prompts was easier even though writing the complex prompt took longer. For those
who wrote natural language prompts, their prompts were shorter, and more successful.

Explicit, detailed prompts do better but prompt structure can also affect performance. Participants
learned a need for clarity and to “give more direct and structured commands” (P34) and be “ex-
tremely explicit and instructive” (P48) in order for the model to understand. Others noticed that
relatively trivial changes led to different results in unpredictable ways, such as “‘do not include any
explanation and just provide the answer’ changing the answer” (P48). Related, in “Beatles Title”,
we notice that the approaches did not cluster into easily separable clusters (Figure 3). This is be-
cause the question purely relied on factual knowledge and did not require explicit reasoning. In the
absence of a strategy, we evaluated how minor changes in prompts might result in better perfor-
mance, finding that generous use of line breaks between examples resulted in better performance.
Our future work will evaluate the generality of this finding.

4 LEETPROMPT allows observing participant behavior. Participants with experience with
LLMs, or an education in math spent significantly more time writing prompts (p(19) = 0.59, p <
0.05) and (p(19) = 0.54, p < 0.05). From Table 6, those with either experience with LLMs or
prompting were trending towards significance for solving more problems (p(19) = 0.42, p < 0.1,
p(19) = 0.43, p < 0.1). From Table 6, there is no strong correlation between the participant’s
domain knowledge with solving problems in that domain. Taken together, these two findings sug-
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gest that knowing how to instruct the model can be more important than domain knowledge about
the problem. Participants also demonstrated and self-reported a learning effect as they progressed
through the study. Multiple participants mentioned that they began adopting specific strategies as
they completed more questions. “Yes, as I went through the problems I learned how to ask the model
questions so it could help me answer the question. I also learned how to provide reasoning for the
examples.” (P39) “I realized simplifying the problems greatly increased the reliablility of the model,
so I tried to rephrase questions to be as simple as possible [for future problems]” (P42).

5 LEETPROMPT uncovers misalignment between users and models. Participants reported a
sense of confusion between their expectations versus how the model worked. Figure 3 shows visu-
ally that there exists entire clusters of instructions that do not solve the problem. For example, math-
related strategies to solve the two math problems didn’t work while programming-related strategies
did. Participants complained that the model “would do math incorrectly” (P42). Similarly, using
domain-specific information, such as using Ohm’s Law to solve the “Resistance is Futile” Physics
question failed while using math-related instructions sometimes succeeded. Even so, one participant
exclaimed, “what was also strange was that the numerical answer the LLM provided could change
based on seemingly trivial additions to the prompt: “I would perturb prompts in small ways that
might unexpectedly change the output” (P37).

5 DISCUSSION & IMPLICATIONS

Evaluation and Interpretability. Benchmarking is the primary approach to evaluting machine
learning models. But as prompt-based language models have become more prevalent, benchmarks
are dealing with a number of problems. 1 Benchmarks such as BigBench (Ghazal et al., 2013),
MMLU (Hendrycks et al., 2020), and HELM (Liang et al., 2022) provide standardized prompts that
all models use for evaluation. However, a lack of performance on tasks cannot be directly linked
to the model’s incapacity to execute the task or its incapacity to comprehend the prompt. 2 Mod-
els trained on diverse data sources including data leaks and contamination of benchmarks, making
many public benchmarks and evaluation on standardized tests questionable. (Jacovi et al., 2023) 3
Benchmarks are quickly outdated due to rapid progress in AI modelling, but without an insight of
what is to be measured, leading to claims of “superhuman” performances. (Kiela et al., 2021) 4
Benchmarks work with datasets and hence at macro-level inhibiting micro-level analysis leading
to papers that put out anecdotal evaluations (Bubeck et al., 2023; Qin et al., 2023). LEETPROMPT
platform helps mitigate all 4 weaknesses of benchmarks. 1 demonstrates the power of crowd to
perform exhaustive search to come up with novel solutions. Given the nature of LEETPROMPT,
new and more challenging questions can be constantly uploaded on the platform preventing models
learning from any data leaks. 3 shows the possibility of collecting large number of prompts that
enable fine-grained analysis of which prompts work and which don’t, and what tasks are solvable at
large.

Data Collection. Data collection is the backbone of data-driven machine learning research. How-
ever, recent introduction of pre-trained language models is changing the landscape of data collection
in several ways. For example, 1 Instruction data is becoming an increasingly valuable resource to
the extent that researchers are distilling larger models for synthetic prompts (Wang et al., 2022b).
2 Collection of prompts and other data from traditional data collection systems like MTurk are

deteriorating in quality due to linear rewards especially with with annotators using ChatGPT for
annotating their responses (Veselovsky et al., 2023).LEETPROMPT shows the potential for data col-
lection fulfilling these pain points of data collection by making it competitive, i.e. only paid for
solving the question and also a platform for collecting prompt data in a natural setup.

Human-AI alignment With models being increasingly used for real-world tasks, human-AI align-
ment has taken a center stage (Ouyang et al., 2022). However, there are several hurdles on the
way towards alignment. 1 A lack of human supervision as research is favoring synthetic con-
tent by distilling language models instead of getting human supervised data leading to data feedback
loops (Taori & Hashimoto, 2023). 2 Lack of real-world usage of models makes it difficult to collect
human preferences. LEETPROMPT enables collecting diverse but commonly approached strategies
that do not fully work with the current models showing gaps in human-AI alignment along with the
required fixes 5 .
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